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ABSTRACT

Elasticity image, visualizing the quantitative map of tis-

sue stiffness, can be reconstructed by solving an inverse prob-

lem. Classical methods for magnetic resonance elastogra-

phy (MRE) try to solve a regularized optimization problem

comprising a deterministic physical model and a prior con-

straint as data-fidelity term and regularization term, respec-

tively. For improving the elasticity reconstructions, appro-

priate prior about the underlying elasticity distribution is re-

quired which is not unique. This article proposes an infused

approach for MRE reconstruction by integrating the statisti-

cal representation of the physical laws of harmonic motions

and learning-based prior. For data-fidelity term, we use a sta-

tistical linear-algebraic model of equilibrium equations and

for the regularizer, data-driven regularization by denoising

(RED) is utilized. In the proposed optimization paradigm,

the regularizer gradient is simply replaced by the residual

of learned denoiser leading to time-efficient computation and

convex explicit objective function. Simulation results of elas-

ticity reconstruction verify the effectiveness of the proposed

approach.

Index Terms— MR elastography, inverse problem, elas-

ticity imaging, elasticity distribution, denoising regularizer,

statistical modeling, gradient descent.

1. INTRODUCTION

MRE as an emerging elastography technique offers promising

potentials for non-invasive reliable diagnosis for liver fibro-

sis, brain tissue degeneration, and other pathological changes

using quantitative visualization of tissue properties. The gen-

eral procedure for elasticity reconstruction of tissue can be

described in two stages [1]: first, measuring deformation

patterns called MRE-measurements using an MRI system

in response to the external excitation through a transducer

and then estimating the physical parameters of the interior

medium using the measured fields [2]. The model-based

approaches for tissue elasticity estimation can be termed as

a constrained optimization problem composed of physical

imaging model and the prior information about the elasticity

This work has been partially supported by the National Science Founda-

tion (NSF) under Grants CCF-1934962 and DGE-1922591.

distribution which leads to improved reconstruction perfor-

mance without any local homogeneity assumption (as op-

posed to the first two approaches). The physical imaging sys-

tem describes the time-harmonic equation of motion in terms

of partial differential equations (PDEs) as the forward model.

Classical model-based MRE imaging approaches, employ-

ing governing PDE and physical boundary constraints, use

Gaussian-Newton methods for elasticity reconstruction by as-

suming an initial elasticity image and solving the constrained

forward model at each iteration until convergence to a sta-

tionary solution [3] which leads to poor performance in low

SNR condition [4], [5]. Moreover, these approaches utilize

fixed regularizers for various tissue patterns while appropri-

ate data-adaptive priors might be required for capturing the

complex spatial distribution of elasticity for each tissue type.

Deep neural network (DNN) potentials [6] suggests integrat-

ing the physical forward model with learning-based priors

in a regularized optimization task in addition to end-to end

learning applications [7], [8]. The integration scheme leads to

both consistent reconstructions with the physical model and

leveraging data-driven information using reduced amount of

training pairs [9], [10] and to accomplish this purpose, two

types of approaches have been proposed: unrolling-based

approaches and prior learning approaches.

Unrolling-based methods infuse the physical imaging model

into the learning procedure by unrolling every single iteration

of the optimization task as a neural network layer. This type

of approaches including PINN [11], PI-GAN [12], [13], [14],

[15], and MoDL [16] which perform network retraining at

each optimization task iteration. On the other hand, prior

learning techniques try to have learned units embedded in

model-based image reconstruction by bringing learned priors

as data-driven regularizers into physics-model-based image

reconstruction. This group of methods including Plug-and-

Play (PnP) [17], [18] and regularization by denoising (RED)

[19] learn a data-driven denoiser and then plug it as the reg-

ularizer proximal operator or regularizer gradient into the

constrained optimization task . PnP methods substitute the

proximal operator of regularizer with a DNN denoiser which

can be expressed as an implicit prior. Although PnP methods

show empirical success, general theoretical convergence to

the global minimum of loss function has not been provided
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since no explicit expression of the objective function is avail-

able. On the other hand, RED approach replaces the gradient

of regularizer with the residual of denoising network leading

to an explicit prior in the objective function which can pro-

vide theoretical convergence results [20].

In this paper, we propose a joint statistical and learning-based

RED reconstruction paradigm for estimating the MR elas-

ticity distribution in noisy scenarios. In this methodology,

the forward model of MRE imaging system is implemented

as a linear algebraic representation of harmonic equilibrium

equation incorporated with analytical modeling of error for

elasticity distribution. Moreover, data-driven prior infor-

mation about the underlying elasticity structure of tissue

type is learned using a DNN denoiser; and following RED

methodology, the residual of such denoiser is plugged into

the optimization task as the gradient of regularizer leading to

an explicit energy function to be minimized. This underly-

ing objective function encourages us to better understand the

solution features and more properly tune the inverse problem

parameters. Our simulation results using a synthetic dataset

verify the improved performance of the proposed paradigm.

The remainder of this paper is organized as follows. We elab-

orate on the MRE imaging model and MRE inverse problem

in Section 2 and 3 respectively. The proposed methodology

for solving the optimization problem is introduced in Section

4. Our simulation and experimental results are provided in

Section 5, and lastly, conclusion remarks are presented in

Section 6.

2. FORWARD MODEL FORMULATION

The harmonic motion equation in MRE imaging modality is

governed by equilibrium constraints in terms of PDEs which

reveal the relationship between the dynamic motion and tissue

elasticity . To simplify these governing PDEs, triangle mesh

is utilized for discretization of cross-section of the medium

over the mesh nodes and it is assumed that the elastic soft

tissues are linear incompressible and isotropic with local ho-

mogeneity. Leveraging the local equilibrium condition pre-

sented in [21] in each element of mesh leads to a compact

linear model for the governing discretized PDEs as follows:

(ke(E) + k
′

e
)ue = fe (1)

M is the node numbers for each element of the mesh and E

represents the scalar elasticity values of the element, ke(E) ∈
R

2M×2M is the local stiffness matrix entailing the elasticity

characteristic of element, k′

e
∈ R

2M×2M containing the dy-

namic vibration information propagating through the element

and tissue density parameter [21], ue ∈ R
2M×1 is the nodal

Fourier deformation fields, fe ∈ R
2M×1 is the force bound-

ary conditions (BCs) and (1) is known as the local stiffness

equation. By considering all elements of the mesh and as-

sembling their equivalent local equilibrium equation in the

way that each nodal vector is concatenated into a global vec-

tor and each local matrix is assembled into the global one, the

following global equilibrium equation can be presented by :

K(E)u = D(u)E = ftrue (2)

where N indicates nodes numbers in the mesh, K(E) ∈
R

2N×2N containing the global stiffness information, D(u) ∈
R

2N×2N , u ∈ R
2N×1 is the global deformation vector,

E ∈ R
N×1 represent the elasticity distribution of the tissue

over all nodes and ftrue ∈ R
2N×1 denotes the Neumann BC

on observed Fourier deformation vector.

3. INVERSE PROBLEM FORMULATION

The statistical representation of (2) as the forward model of

MRE imaging modality unveils the relationship between the

elasticity distribution E of tissue and the measured deforma-

tion field as follows:

f = D(u)E+w w ∼ N (0, Σw) (3)

where f stands for the observed medium BCs and w ∈
R

2N×1 expresses the Gaussian noise. The frequency do-

main deformation measurements are acquired by applying

Fourier transform to phase contrast images captured by MRI

which leads to the observation process u
m = u + n where

n ∼ N (0, Σn) and u
m is the noisy Fourier deformation

fields contaminated with noise n ∈ R
2N×1 with covariance

Σn. Unifying the statistical model in (3) with the deforma-

tion observation process results in:

f = K(E)u+w = K(E)(um − n) +w

= K(E)um −K(E)n+w (4)

Setting w̃ = −K(E)n + w and employing noisy deforma-

tion fields D(um)E = K(E)um yields to the following in-

tegrated observation model:

f = D(um)E+ w̃ w̃ ∼ N (0, Γ) (5)

where Γ is expressed by:

Γ = Σw +K(E)ΣnK(E)T (6)

where we can mention to (5) as a linear forward model with

signal-dependent colored noise. By acquiring f and u
m

measurements, a regularized optimization problem has to be

solved for estimating the latent elasticity distribution E by:

Ê = argmin
E

1

2
‖f −D(um)E‖2

Γ−1 + N

2
log |Γ|+ λR(E)

s.t. E > 0
(7)

where ‖A‖2
B

:= (AT
BA), R(E) is the regularization term

and λ regularization parameter. For solving the correspond-

ing regularized optimization task, a fixed-point approach [22]

is utilized which update E while Γ is fixed and this new E

is employed into (6) for updating Γ. We exploit gradient de-

scent (GD) as a first-order optimization technique to update

the latent elasticity distribution E as follows:

E←− [E− ε(∇g(E) + λ∇R(E))]+ (8)

where:
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