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ABSTRACT

Existing physical model-based imaging methods for ultra-

sound elasticity reconstruction utilize fixed variational reg-

ularizers that may not be appropriate for the application of

interest or may not capture complex spatial prior information

about the underlying tissues. On the other hand, end-to-end

learning-based methods count solely on the training data,

not taking advantage of the governing physical laws of the

imaging system. Integrating learning-based priors with phys-

ical forward models for ultrasound elasticity imaging, we

present a joint reconstruction framework which guarantees

that learning driven reconstructions are consistent with the

underlying physics. For solving the elasticity inverse prob-

lem as a regularized optimization problem, we propose a

plug-and-play (PnP) reconstruction approach in which each

iteration of the elasticity image estimation process involves

separate updates incorporating data fidelity and learning-

based regularization. In this methodology, the data fidelity

term is developed using a statistical linear algebraic model of

quasi-static equilibrium equation revealing the relationship

of the observed displacement fields to the unobserved elastic

modulus. The regularizer comprises a convolutional neural

network (CNN) based denoiser that captures the learned prior

structure of the underlying tissues. Preliminary simulation

results demonstrate the robustness and effectiveness of the

proposed approach with limited training datasets and noisy

displacement measurements.

Index Terms— Computational imaging, inverse prob-

lems, ultrasound elasticity imaging, regularizer learning,

plug-and-play priors, convolutional neural networks.

1. INTRODUCTION

Ultrasound elasticity imaging has significant potential in

tissue stiffness quantification enabling reliable diagnostic

decisions. Elasticity reconstruction problem which is cast

as solving an ill-posed inverse problem can be formulated

as a regularized optimization task that involves a forward

This work has been partially supported by the National Science Founda-

tion (NSF) under Grant CCF-1934962.

model describing physics of data acquisition and regular-

ization constraints describing the prior information about

the latent image. For addressing medical imaging concerns,

many approaches have been developed for both fast elasticity

imaging as well as robust and accurate image reconstruc-

tion using limited noisy deformation measurements. Existing

model-based approaches in elasticity imaging [1], [2] typ-

ically assume fixed regularization terms for various tissue

types in elastography tasks while advanced priors might be

required to mitigate the corresponding corrupted incomplete

measurements and also to capture complex spatial informa-

tion about the underlying tissues.

On the other hand, end-to-end deep learning methods [3–6]

require large datasets which conflict with fast and time-

efficient image reconstruction essentials by real-time medical

applications. Moreover, as the forward measurement model

is not explicitly used in such methods, the estimated solution

may not be consistent with the physics governing the imaging

problem.

These limitations can be suppressed by integrating the phys-

ical models and the learning-based priors as the complemen-

tary information sources to enable fast and accurate elasticity

imaging [7–9]. There are two types of approaches for com-

bining model-based and learning-based methods. The first

group of methods is based on unrolling concepts of the clas-

sical optimization iterations where each iteration is a layer of

a neural network involving the forward model. These types

of approaches including physics-informed learning methods

( [10], [11], PINN [12], PI-GAN [13] and MoDL [14]) pro-

vide improved accuracy while they are time-consuming as

they require network retraining at each iteration which makes

them impractical for some medical applications.

The second group of approaches combine learned regularizers

and physics knowledge within the framework of model-based

image reconstruction. Most of these methods including plug-

and-play prior (PnP) [15] and regularization by denoising

(RED [16], N2N [17]) solve the imaging optimization prob-

lem by separating the forward model from the learned prior.

Once the regularization network is trained, it can be inte-

grated into the iterations of reconstruction procedure such

as alternating direction method of multipliers (ADMM) and

other proximal splitting methods [18], [19]. One major bene-
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fit of these approaches is that they promote generalization by

plugging any forward model independent of the regulariza-

tion term.

In this paper, we propose a statistical learning approach based

on PnP methodology for ultrasound elasticity image recon-

struction in which the elasticity image is estimated using data

fidelity and learned regularization term updates. We model

the data fidelity term using the equilibrium equation of elas-

ticity as a linear representation for elasticity modulus and

learn a CNN-based denoiser to be employed as the proxi-

mal operator of the regularizer in an iterative reconstruction

approach. Taking advantage of feasible computing of the gra-

dient of data fidelity term and learning the proximal operator

of the regularizer encourages employing the proximal gradi-

ent methods which lead to robust and interpretable elasticity

reconstruction. Our simulation results verify the effective-

ness of the proposed PnP methodology with limited training

datasets and noisy displacement fields.

The remainder of this manuscript is organized as follows.

We analyze the inverse problem formulation for ultrasound

elasticity imaging in Section 2. The PnP approach and the

proposed paradigm are elaborated in Section 3. The simula-

tion results of elasticity image reconstruction are presented

in Section 4, and finally, concluding remarks are provided in

Section 5.

2. INVERSE PROBLEM FORMULATION

The forward model of ultrasound elasticity imaging for in-

compressible tissue with plane strain assumption is governed

by quasi-static equilibrium equation. The statistical formula-

tion of this equilibrium condition known as global stiffness

equation which relates the measured deformation fields u and

force vector f to the unknown elasticity modulus E can be

presented as:

f = K(E)u+w w ∼ N (0, Σw) (1)

Letting N denote the number of mesh nodes, f ∈ R
2N×1 rep-

resents the global nodal force measurements including bound-

ary conditions in lateral and axial directions, u ∈ R
2N×1 de-

notes the noiseless global nodal deformation measurements,

and w ∈ R
2N×1 represents the nodal Gaussian noise fields.

K(E) ∈ R
2N×2N relates force and deformation fields as a

function of tissue elasticity distribution E ∈ R
N×1. The

inverse problem of estimating the elasticity modulus E can

be formulated as a regularized optimization problem. To this

end, it is required to reformulate the forward model (1) by

extracting the latent elasticity modulus from the global stiff-

ness matrix as the unknown vector. In this respect, we in-

troduce the matrix D(u) ∈ R
2N×N [20] which is related to

K(E) by a 3D tensor Ψ ∈ R
N×2N×2N developed from the

equilibrium equation and by applying Poisson’s ratio ν and

Neumann boundary conditions:

D(u)E = K(E)u (2)

D(u) = (Ψu)T K(E) = Ψ
T
E (3)

The displacement fields are acquired by cross-correlation of

multiples B-mode ultrasound images which introduce the

noisy displacement observations as u
m = u + n where

n ∼ N (0, Σn). Integrating this observation process into the

statistical forward model (1) results in:

f = K(E)u+w = K(E)(um − n) +w

= K(E)um −K(E)n+w (4)

Letting w̃ = −K(E)n + w and employing (2) using noisy

displacements, D(um)E = K(E)um, the unified statistical

forward model could be described as:

f = D(um)E+ w̃ w̃ ∼ N (0, Γ) (5)

where Γ is computed by:

Γ = Σw +K(E)ΣnK(E)T (6)

This underlying forward model enables us to formulate the

elasticity inverse problem as a constrained optimization prob-

lem given by:

Ê = argmin
E

1

2
‖f −D(um)E‖2

Γ−1 + λR(E)
s.t. E > 0

(7)

where ‖A‖2
B

:= (AT
BA) and R represents the regularizer.

The optimization problem in (7) introduces a new representa-

tion for the elasticity inverse problem, which can be solved by

the use of a fixed-point procedure, fixing Γ during the update

of E, and then updating Γ by plugging the new estimate of E

in (6). For updating the elastic modulus E, we use proximal

gradient algorithm [18] as follows:

En+1 = prox
En>0(proxRλγn

(En − γn∇g(En))) (8)

Furthermore, one can compute ∇g(E) using:

g(E) =
1

2
(f −D(um)E)TΓ−1(f −D(um)E) (9)

∇g(E) = −(D(um))TΓ−1(f −D(um)E) (10)

According to the elasticity update formulation (8), the proxi-

mal gradient approach decouples the data fidelity term update

and the proximal operator of the regularizer which facilitates

the PnP methodology for applying a learning-based prior.

3. LEARNING-BASED PLUG-AND-PLAY PRIOR

METHODOLOGY

For estimating the elasticity modulus E, the prior information

of the latent images should be applied to (8) as the regularizer.

Here, we examine the use of learning-based advanced priors

1166

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on August 20,2021 at 19:58:39 UTC from IEEE Xplore.  Restrictions apply. 







6. REFERENCES

[1] M. M. Doyley, “Model-based elastography: a survey of

approaches to the inverse elasticity problem.,” Physics

in medicine and biology, vol. 57 3, pp. R35–73, 2012.

[2] N. Mohammadi, M. M. Doyley, and M. Cetin, “A sta-

tistical framework for model-based inverse problems in

ultrasound elastography,” ArXiv, vol. abs/2010.10729,

2020.

[3] B. Ni and H. Gao, “A deep learning approach to the

inverse problem of modulus identification in elasticity,”

MRS Bulletin, p. 1–7, 2020.

[4] S. Wu, Z. Gao, Z. Liu, Jianwen Luo, H. Zhang, and

S. Li, “Direct reconstruction of ultrasound elastography

using an end-to-end deep neural network,” in MICCAI,

2018.

[5] R. R. Wildeboer, R. J. G. v. Sloun, C. K. Mannaerts,

G. Salomon, H. Wijkstra, and M. Mischi, “Syn-

thetic elastography from b-mode ultrasound through

deep learning,” in 2019 IEEE International Ultrason-

ics Symposium (IUS), 2019, pp. 108–110.

[6] M. Feigin, D. Freedman, and B. W. Anthony, “A deep

learning framework for single-sided sound speed inver-

sion in medical ultrasound,” IEEE Trans. on Biomedical

Engineering, vol. 67, no. 4, pp. 1142–1151, 2020.

[7] G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G.

Dimakis, and R. Willett, “Deep learning techniques for

inverse problems in imaging,” IEEE Journal on Selected

Areas in Information Theory, vol. 1, no. 1, pp. 39–56,

2020.

[8] M. Mardani, Q. Sun, S. S. Vasawanala, V. Papyan,

H. Monajemi, J. Pauly, and D. Donoho, “Neural prox-

imal gradient descent for compressive imaging,” in

NeurIPS, 2018.

[9] O. Senouf, S. Vedula, T. Weiss, A. Bronstein,

O. Michailovich, and M. Zibulevsky, “Self-supervised

learning of inverse problem solvers in medical imaging,”

ArXiv, vol. abs/1905.09325, 2019.

[10] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-

informed neural networks: A deep learning framework

for solving forward and inverse problems involving non-

linear partial differential equations,” Journal of Compu-

tational Physics, vol. 378, 11 2018.

[11] Y. Zhu, N. Zabaras, P. S. Koutsourelakis, and

P. Perdikaris, “Physics-constrained deep learning for

high-dimensional surrogate modeling and uncertainty

quantification without labeled data,” Journal of Com-

putational Physics, vol. 394, pp. 56–81, Oct 2019.

[12] E. Haghighat, M. Raissi, A. Moure, H. Gómez, and
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