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ARTICLE INFO ABSTRACT
Keywords: Mathematical knowledge is constructed hierarchically during development from a basic understanding of
Math learning difficulties addition and subtraction, two foundational and inter-related, but semantically distinct, numerical operations.

Representational similarity analysis

Early in development, children show remarkable variability in their numerical problem-solving skills and dif-
Arithmetic problem-solving

ficulties in solving even simple addition and subtraction problems are a hallmark of math learning difficulties.
Here, we use novel quantitative analyses to investigate whether less distinct representations are associated with
poor problem-solving abilities in children during the early stages of math-skill acquisition. Crucially, we leverage
dimensional and categorical analyses to identify linear and nonlinear neurobehavioral profiles of individual
differences in math skills. Behaviorally, performance on the two different numerical operations was less
differentiated in children with low math abilities, and lower problem-solving efficiency stemmed from weak
evidence-accumulation during problem-solving. Children with low numerical abilities also showed less differ-
entiated neural representations between addition and subtraction operations in multiple cortical areas, including
the fusiform gyrus, intraparietal sulcus, anterior temporal cortex and insula. Furthermore, analysis of multi-
regional neural representation patterns revealed significantly higher network similarity and aberrant integra-
tion of representations within a fusiform gyrus-intraparietal sulcus pathway important for manipulation of nu-
merical quantity. These findings identify the lack of distinct neural representations as a novel neurobiological
feature of individual differences in children’s numerical problem-solving abilities, and an early developmental
biomarker of low math skills. More generally, our approach combining dimensional and categorical analyses
overcomes pitfalls associated with the use of arbitrary cutoffs for probing neurobehavioral profiles of individual
differences in math abilities.

1. Introduction their perceptual format, they differ considerably at the cognitive-
semantic level (Campbell and Alberts, 2009). Crucially, knowledge of

Mathematical knowledge is constructed hierarchically from sym- basic addition and subtraction problems lies at the core of successful
bolic representations of quantity and rules to manipulate them by add- acquisition of more complex mathematical skills during development,
ing and subtracting items to and from numerical sets. Although the and poor performance on these two basic arithmetic operations is a
symbolic representations of these operations differ only minimally in defining phenotypical and clinical feature of learning disabilities and
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math learning difficulties (MLD) more generally. Here, we use novel
quantitative analyses to investigate whether two foundational arith-
metical operations, namely addition and subtraction, share overlapping
neural representations, and whether an inability to form distinct rep-
resentations is associated with poor problem-solving abilities in children
during the early stages of math-skill acquisition. A key aspect of our
approach is that we combined dimensional and categorical analyses to
uncover linear and nonlinear neurobehavioral profiles of heterogeneity
in MLD.

Addition and subtraction differ minimally in surface format and are
highly inter-related operations, by virtue of the fact that subtraction is
the mathematical inverse of addition. Perceptually the two operations
are virtually identical as they differ only by a single vertical line: ‘+’ vs.
‘~’. However, they are highly dissimilar in terms of cognitive processes
and efficiency (Barrouillet et al., 2008). Behavioral studies have shown
that while single-digit addition problems are typically solved by mem-
ory retrieval (Barrouillet et al., 2008; Thevenot et al., 2007; Thevenot
and Barrouillet, 2020) or fast procedural strategies (Ashcraft, 1992; Y.
Chen and Campbell, 2018), related subtraction problems are far less
likely to be solved by direct retrieval, and they place greater demands on
working memory and cognitive control, particularly in children with
weaker problem-solving skills (Caviola et al., 2014; Hayashi et al.,
2000). Typically-developing children initially use inefficient strategies
such as finger counting, slow mental counting and eventually learn to
retrieve solutions to simple addition problems from memory with high
efficiency; however, they continue to solve subtraction problems with
more elaborate algorithmic procedures, such as counting and multi-step
calculation (Barrouillet et al., 2008; G. Peters et al., 2014). While typi-
cally developing children engage distinct strategies when starting to
master addition and subtraction problems, children with poor math
abilities continue to rely on laborious procedural computations for both
operations (Ostad, 1999). These behavioral findings suggest that the two
operations rely on dissimilar cognitive processes, but the extent to which
they engage distinct brain representations, and the underlying neuro-
behavioral sources of individual variability are poorly understood.

Neuroimaging studies have shown that children with poor math
abilities show aberrant brain responses and connectivity during the
processing of both addition and subtraction problems (Ashkenazi et al.,
2012; Iuculano et al., 2015; Lowe, 2011; Rosenberg-Lee et al., 2015;
Rykhlevskaia, 2009). Surprisingly, despite slower and less accurate
performance, children with low math skills show significant
hyper-activity in multiple parietal, occipito-temporal and prefrontal
regions during arithmetic problem-solving (De Smedt et al., 2011;
Iuculano et al., 2015; L. Peters and De Smedt, 2018) as well as
hyper-connectivity between parietal and prefrontal cortices (Rose-
nberg-Lee et al., 2015). Yet, although extant brain imaging studies have
identified the anatomical and functional bases of deficits in children
with different levels of math difficulties, it remains unclear how these
aberrancies may relate to behavioral difficulties in arithmetic process-
ing, and for different types of numerical problems and operations.
Examining patterns of neural representations, rather than activations,
could potentially provide a neurobiological mechanism to probe sources
of heterogeneity in math processing, and thereby identify novel bio-
markers of impairments in children at the lower end of the distribution
of abilities. Furthermore, it is unknown whether aberrant patterns of
neural representations exist along a continuum of math abilities or
whether children with most severe difficulties represent information in a
fundamentally different manner. To date, few studies have examined
individual variation in children with low math skills and the neural
mechanisms associated with these differences, creating a significant
challenge to our understanding of heterogeneity in math
problem-solving skills during its formative stages, particularly in chil-
dren falling at the lower end of the distribution of abilities. Notably, in
order to develop effective interventions for those with low math skills,
the neurobiological basis of the deficits need to be well characterized
using robust quantitative approaches. Thus far, research into these
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causes has been hindered by variable selection/cut-off criteria used to
define individuals with lower math abilities (Geary, 2011, 2013). To
address this challenge, we leverage both dimensional and categorical
analyses to probe neural representations underlying distinct numerical
operations in the brains of children with poor math abilities, using
multiple levels of analyses (Fig. 1).

The first aim of our study was to investigate behavioral and cognitive
profiles associated with arithmetic problem-solving involving addition
and subtraction operations in children with low math abilities
(Fig. 1A&B). We used both dimensional and categorical approaches to
determine whether children with low proficiency are impaired on both
operations, and whether performance on the two operations is less
differentiated in children with poor math skills compared to their typi-
cally developing (TD) peers (Bruyer and Brysbaert, 2011). In addition to
overt behavioral measures, we evaluated latent decision-making pro-
cesses by jointly modelling accuracy and reaction time using a hierar-
chical drift diffusion model (HDDM) in which a drift-process
accumulates evidence over time until it crosses one of the two response
boundaries (Froehlich et al., 2016; Oganian et al., 2016; Ratcliff and
McKoon, 2008; Ratcliff and Smith, 2004). Drift-rate, the speed with
which the accumulation process approaches the decision boundaries,
represents the relative evidence for or against a particular response
(Wiecki et al., 2013), and previous work has suggested that a lower
drift-rate could indicate worse performance on math tasks involving
addition problem-solving (Iuculano et al., 2020). Therefore, we inves-
tigated whether the rate of evidence accumulation to a decision
threshold was a potential mechanism underlying weak problem-solving
skills and tested the hypothesis that, compared to their peers with higher
math skills, children with poor math skills would show a lower speed of
evidence accumulation, for both addition and subtraction operations.

The second aim of our study was to characterize neural representa-
tions between addition and subtraction operations, and to test the hy-
pothesis that children with poor problem-solving abilities show weak
neural differentiation between the two distinct operations. Different
from mapping brain activation levels, neural representational similarity
(NRS) analysis assesses whether cognitive processes share similar neural
features, and identifies brain areas that are most sensitive to distinctions
between mental states evoked by specific task conditions (Kriegeskorte
et al., 2008; Kriegeskorte and Kievit, 2013). Neural representational
similarity reflects similarities in population-based coding and is there-
fore ideal for examining neurocognitive processes underlying addition
and subtraction problems, given their close perceptual similarity but
semantic dissimilarity. A previous study found that children with MLD
tended to show less differentiated neural representations between
addition problems of different levels of difficulty (Ashkenazi et al.,
2012). Whether such lack of differentiation extends to distinct numeri-
cal operations is currently not known. We hypothesized that children
with low math abilities would show less differentiated neural repre-
sentations between two operations because they are likely to engage
inefficient strategies for both (Ostad, 1999). An alternative hypothesis is
that if children with lower math abilities engaged entirely different
cognitive processes for addition and subtraction problems (Barrouillet
etal., 2008; G. Peters et al., 2014), they would show more differentiated
neural representations than their TD peers. Here, we test these
competing hypotheses to gain insights into neurocognitive processes
associated with basic problem-solving skills in children with MLD.

In an advance over previous work, we used both dimensional and
categorical approaches to characterize linear and nonlinear relation-
ships of math skills and neural representations of addition and sub-
traction, the two arithmetic operations during a crucial age for math
skill acquisition in children (Fig. 1C&D). A dimensional approach was
used to assess linear changes along a continuum of arithmetic abilities,
while a combination of dimensional and categorical approaches was
used to assess distinct profiles in children at the lower end of the dis-
tribution of abilities, including those with MLD, in contrast to the pro-
files observed in their TD peers. This two-pronged approach was used to
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Fig. 1. Multi-level analytical framework for investigating individual differences in behavioral, cognitive and neural profiles of differentiation between distinct
numerical operations. (A, B) Analysis of cognitive-behavioral relationship using dimensional and categorical approaches. (C, D) Analysis of cognitive-brain re-
lationships using dimensional and categorical approaches. (E, F) Inter-regional network similarity analysis to probe integration of neural representations in pathways

important for the manipulation of numerical quantity.

identify brain systems that show weaker- or stronger-than-expected
profiles in children with MLD.

The third and final aim of our study was to probe disruptions in
communication of neural representations across brain regions in chil-
dren at the lower end of the distribution of abilities, including those with
MLD (Fig. 1E&F). In a further advance over previous research in the
field, we examined representational similarity at a network level and
determined impairments in co-occurring patterns of deficits across
multiple brain regions (Anzellotti and Coutanche, 2018; Pillet et al.,
2020). This approach was used to characterize the organization of
multivariate representational networks in children with low math skills
and determine specific pathways of impaired communication. Using an
NRS-based network analysis, we specifically examined whether: (a)
weak differentiation of neural representations at the regional level is
also manifested at the network level; and (b) integration of neural rep-
resentations in the ventral (i.e., number form system) and dorsal (i.e.,
quantity information system) pathways (Battista et al., 2018; Evans
et al., 2015; Menon, 2014) are aberrant in children with poor math
abilities.

We hypothesized that children with poor math abilities would show
less differentiated behavioral, cognitive, and neural representational
profiles between addition and subtraction problems. We further hy-
pothesized that aberrant neural representations would be detected in
distributed brain areas, including parietal areas associated with visuo-
spatial attention, temporal lobe regions involved in language and se-
mantic processing, as well as prefrontal cognitive control systems,
consistent with a multicomponent model of math learning disabilities
and developmental dyscalculia (Fias et al., 2013; Iuculano, 2016). We

demonstrate that our novel quantitative approaches provide a more
comprehensive understanding of how distinct numerical operations are
represented in the brains of children, elucidate linear and nonlinear
profiles of neural representations associated with individual differences
in children’s math abilities, and reveal weak operation-specific pruning
of distributed neural circuits. Our findings are relevant for under-
standing both typical and atypical development of problem-solving
skills and has the potential to inform targeted interventions in chil-
dren with math learning difficulties.

2. Method
2.1. Participants

A total of forty-six children in their 2nd or 3rd grade of schooling
(ages 7 to 9) were recruited from multiple school districts in the San
Francisco Bay area. Informed written consent was obtained from the
legal guardian of the child and all study protocols were approved by the
Stanford University Review Board. All participants were volunteers and
were treated in accordance with the American Psychological Association
“Ethical Principles of Psychologists and Code of Conduct”. The partici-
pants had no history of medical, neurological or psychiatric illness. All
participants had Full-scale IQ (FS-IQ) scores > 80 (range: 84-128;
Table 1), as assessed by the Wechsler Abbreviated Scale of Intelligence
(WASL, Wechsler, 1999). Math skills of children were assessed by the
Numerical Operations (NumOps) subtest of the Wechsler Individual
Achievement Test Second Edition (WIAT-II; Wechsler, 2001) given that
weak arithmetic ability represents one of the most distinctive behavioral
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Table 1
Demographic and cognitive profiles of the whole sample and the TD/MLD
subgroups.

The whole sample TD MLD
N Range Mean Mean Mean
(SD) (SD) (SD)
Gender (Female/ 25F/ 12F/12M 13F/8M
Male) 20M
Grade (2nd/3rd) 15/30 7/17 8/13
Age 45 7.149.92 837 8.40 8.34
(0.64) (0.64) (0.65)
WASI
VIQ 45 79-138 110 111.88 107.86
(12.47) (12.46) (12.43)
PIQ 45 77-145 108.38 109.38 107.24
(12.80) (12.71) (13.12)
FSIQ 45 84-128 110.2 111.83 108.33
(10.50) (10.26) (10.69)
WIAT-II
Word reading 45 77-130 106.29 110.38 101.62
(11.26) (9.36) (11.64)
Numerical 45 77-131 98.73 110.75 85.00
operations (15.01) (9.60) (4.29)
Reading 45 88-124 106.73 109.04 104.10
comprehension (10.06) (10.19) (9.45)
Math reasoning 45 50-130 104.69 109.17 99.57
(14.78) (15.64) (12.16)
WMTB-C
Digit recall 45 73-145 106.47 107.42 105.38
(16.57) (16.30) (17.22)
Block recall 44 64-114 93.55 96.21 90.35
(11.72) (11.39) (11.60)
Count recall 45 56-117 85.38 88.04 82.33
(18.82) (20.03) (17.31)
Digit backward 45 70-131 96.29 100.42 91.57
recall (16.53) (15.40) (16.88)

Notes: WASI = Wechsler Abbreviated Scale of Intelligence; WIAT-II = Wechsler
Individual Achievement Test (Second Edition); WMTB-C = Working Memory
Test Battery for Children.

features of impaired problem-solving skills in children, and it is a hall-
mark of MLD (Butterworth, 2005). On this test, a wide range of math
skills was observed (range: 77-131). One participant with an invalid
NumOps subtest score due to administrator error was then excluded,
resulting in a final sample of 45 children (25 Females; mean age = 8.37
years old).

Using a norm-based criterion, namely below-grade-level scores (the
25th percentile. i.e., a standardized score below 90) on the WIAT-II
NumOps subtest, 21 children were classified as having math learning
difficulties (MLD group), while 24 children whose scores were at or
above 90 on the same test formed the TD group (Table S1). The 25th
percentile was chosen based on the extant literature of cohorts identified
as having math learning difficulties (Lambert and Spinath, 2018;
Schwartz et al., 2018; Skeide et al., 2018; Swanson et al., 2018; Tolar
et al.,, 2016; Wong and Chan, 2019). We also chose this criterion to
ensure an appropriate N of children falling within the low-end of the
distribution of abilities (N = 21) in order to conduct categorical analysis
of nonlinearity-effects associated with individual differences in math
problem-solving skills, and to ensure that individuals with low math
abilities did not have comorbid disabilities in general cognitive func-
tions, such as low IQ or impaired working memory compared to TD. The
MLD and TD groups did not differ on age, FSIQ, Verbal and Performance
IQ, and standardized Working Memory (WM) measures (Working
Memory Test Battery for Children, WMTB-C; Pickering and Gathercole,
2001). The MLD had significant lower NumOps, Math Reasoning and
Word Reading scores than the TD group (see Table S1).

2.2. Standard assessments of math and reading abilities

Children’s mathematical and reading abilities were assessed using
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the WIAT-II (Wechsler, 2001). This achievement battery includes na-
tionally standardized measures of academic skills and problem-solving
abilities for Grades K to 12, which are normed by grade and time of
academic year (Fall, Spring, or Summer). The Numerical Operations was
used to assess participants’ mathematical skills and assign children into
MLD or TD groups, and measures number writing and identification,
rote counting, number production and simple addition, subtraction,
multiplication and division. Additionally, the Mathematical Reasoning
subtest was also administered (see Table 1). This subtest measures
counting, geometric shape identification, and single- and multi-step
word problem-solving involving time, money, and measurement. In
this subtest, students are given unlimited time to solve written math
problems and the problems are organized with increased progression of
task difficulty. The participant is required to solve problems with whole
numbers, fractions or decimals, interpret graphs, identify mathematical
patterns, and solve problems of statistics and probability. The WIAT-II (i.
e., Word Reading and Reading Comprehension subtests) was also used to
assess reading abilities in both cohorts.

2.3. Experimental procedures

2.3.1. Functional MRI (fMRI) tasks

The fMRI experiment examined single-digit arithmetic problem-
solving skills in children and consisted of one run of addition and one
run of subtraction. Within each run, there were four task conditions: (i)
Complex arithmetic, (ii) Simple arithmetic, (i) Symbol-finding and (iv)
Passive fixation/rest. In the Complex addition task, participants were
presented with an equation involving two addends and were asked to
indicate, via a button press, whether the presented answer was correct
(e.g., “3 + 4 = 8”). The first operand ranged from 2 to 9, the second from
2 to 5 (tie problems, such as “5 + 5 = 10”, were excluded), and correct
answers appeared in 50 % of the trials. Incorrect answers deviated by +
1 or +2 from the correct sum. The Simple addition task was identical
except that one of the addends was always ‘1’ (e.g., “3 + 1 = 4”). In the
Complex subtraction task, the first operand ranged from 3 to 14 and the
second operand from 2 to 5. In the Simple subtraction task, the first
operand ranged from 2 to 14 and the second operand was always ‘1’. As
in the addition task, incorrect answers deviated by + 1 or +2 from the
actual difference, with the constraint that actual and presented differ-
ence was always greater than zero. All subtraction problems were the
inverse of addition problems and matched on problem size. In the
symbol-finding condition, participants were asked to decide whether the
digit “5” was present in a string of symbols, e.g., “3 @ 5 (9" or “4 (7 @
2”. In the passive fixation block-periods the symbol “*” appeared at the
center of the screen and participants were asked to focus their attention
on it.

During the task, stimuli were presented in a block fMRI design in
order to optimize signal detection (Friston et al., 1999). In each task,
stimuli were displayed for 5 s with an inter-trial interval of 500 ms.
There were 18 trials for each task condition, broken into 4 blocks of 4 or
5 trials (2 blocks of 4 trials and 2 blocks of 5 trials, resulting in a total of
18 trials), thus each block lasted either 22 or 27.5 s. The total length of
each experimental run was 6 min and 36 s. The order of blocks was
randomized across participants with the following constraints: in every
set of four blocks, all conditions were presented, and the Complex and
Simple arithmetic condition-blocks were always separated by either a
symbol-finding (not examined here) or a passive-fixation condition--
block. We focused on the contrast between Complex and Simple arith-
metic conditions, rather than the symbol-finding condition, to best
equate (and thus control for) low-level perceptual, motor and
decision-making processes involved in arithmetic problem-solving.
Previous research has shown that ‘N+1’ and ‘N-1’ arithmetic problems
are solved by incremental, or decremental, counting (Campbell and
Metcalfe, 2007) with higher accuracy and faster reaction times relative
to more complex addition (and subtraction) problems (Cho et al., 2011).
Hence, this choice of contrast allowed us to best isolate processes
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involved in arithmetic problem-solving across addition and subtraction
tasks, reflecting overall arithmetic problem-solving efficiency with
different strategies in children.

2.3.2. Behavioral performance on mental arithmetic tasks

We determined accuracy (% of correct responses) and Reaction
Times (RTs) associated with performance of addition and subtraction
problem-solving tasks during fMRI scanning in each participant. To
overcome accuracy-speed trade-off issues (Bruyer and Brysbaert, 2011),
we used composite efficiency scores (ES) calculated as: accuracy
%/mean RTs of correct responses, to examine task performance so
higher ES values reflect better performance. We used this measure
because a speed-accuracy trade-off has been systematically reported to
be a phenotypic characteristic of poor math performance across a range
of math abilities, including MLD (Butterworth, 2005; Geary et al., 1991;
Iuculano et al., 2008; G. Peters et al., 2014; L. Peters and De Smedt,
2018; Rosenberg-Lee et al., 2015).

2.3.3. Cognitive modeling of behavior

The addition and subtraction verification processes (two-choice)
were modeled as a drift diffusion process, in which evidence accumu-
lates over time resulting in a forced-choice selection, when a decision
threshold is reached. We developed a hierarchical drift diffusion model
(HDDM) to determine the drift rate, decision threshold, response bias,
and non-decision time. The drift rate parameter characterizes evidence
accumulation, with higher values characterizing a greater proportion of
correct responses, and higher absolute values of the drift rate charac-
terizing faster responses. The decision threshold parameter captures the
degree of evidence required to conclusively evaluate the answers. For
each individual, the threshold, bias, and non-decision time parameters
were allowed to vary for addition and subtraction, and for simple versus
complex problems. The drift rate was hierarchically inferred by adding
an item-response model that allowed the drift rate to be a combination
of item-level difficulty that was inferred at a group level (TD and MLD)
individually for each unique item, and individual level ability, sepa-
rately for addition and subtraction. The model was implemented within
a Bayesian inference framework using JAGS (Plummer, 2003).

2.3.4. Functional MRI data acquisition

Functional brain images were acquired on a 3T GE Signa scanner
(General Electric, Milwaukee, WI) using a custom-built head coil at the
Stanford University Lucas Imaging Center. Cushions were placed around
participants’ heads to minimize head movement. A total of 29 axial
slices (4.0 mm thickness, 0.5 mm skip) parallel to the anterior
commissure-posterior commissure line and covering the whole brain
were acquired using a T2* weighted gradient echo spiral-in/spiral-out
pulse sequence (Glover and Lai, 1998) with the following parameters:
TR =25, TE = 30 ms, flip angle = 80°, 1 interleave. The field of view was
20 cm, and the matrix size was 64 x 64, providing an in-plane spatial
resolution of 3.125 mm. To reduce blurring and signal loss from field
inhomogeneity, an automated high-order shimming method based on
spiral acquisitions was used before acquiring fMRI scans (Kim et al.,
2002).

2.3.5. Functional MRI data preprocessing

Data were analyzed using SPM12 (http://www.fil.ion.ucl.ac.
uk/spm). The first 5 vol were discarded to allow for signal equilibra-
tion. Images were reconstructed, by inverse Fourier transform, for each
of the time points into 64 x 64 x 28 image matrices (voxel size 3.125 x
3.125 x 4.5 mm). Images were first realigned to the first scan to correct
for motion and slice acquisition timing. A linear shim correction was
applied separately for each slice during reconstruction using a magnetic
field map acquired automatically by the pulse sequence at the beginning
of the scan (Glover and Lai, 1998). Translational movement in milli-
meters (%, y, z) was calculated based on the SPM12 parameters for
motion correction of the functional images in each subject. To correct for
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deviant volumes resulting from spikes in movement, we used de-spiking
procedures similar to those implemented in AFNI (Cox, 1996). Deviant
volumes were identified as having either total displacement from the
initial volume greater than half of a voxel size (1.562 mm) or change in
global signal greater than 5 %. The frame-wise displacement was then
computed as the square root of the sum of both translational and rota-
tional displacement by first converting rotational displacement from
degree to millimeters, assuming a brain radius of 65 mm. Deviant vol-
umes were then interpolated using the two adjacent scans. Furthermore,
translational movement parameters (X, y, z), rotational movement pa-
rameters (roll, pitch, yaw), and framewise displacement did not differ
between MLD and TD groups for either addition or subtraction tasks (all
ps > .05, see Table S6). No participants had more than 0.5 mm
frame-to-frame mean displacement. After the interpolation procedure,
images were spatially normalized to standard stereotaxic space (based
on the Montreal Neurologic Institute — MNI — coordinate system),
resampled every 2 mm using sinc interpolation, and smoothed with a 6
mm full-width half-maximum Gaussian kernel to decrease spatial noise
prior to statistical analysis.

2.3.6. Functional MRI data analysis

1°-level analyses Task-related brain activation in response to each
condition (complex arithmetic, simple arithmetic, symbol-finding, fix-
ation) and each task (addition, subtraction) was first modeled at the
individual subject-level using the General Linear Model (GLM) imple-
mented in SPM12. For each subject we modeled task-related regressors
as boxcar functions corresponding to the epochs during which each
condition was presented, and for each task, and convolved with a he-
modynamic response function. The six head motion parameters gener-
ated in the realignment procedure were also included in the model as
regressors of non-interest. Voxel-wise contrasts and t-statistics images
were then generated by contrasting Complex versus Simple problems in
each task. We focused on the contrast of Complex versus Simple since
behavioral research suggests that the simple (n + 1) trials are solved by
incremental or decremental counting (Campbell and Metcalfe, 2007),
and performance on this task is characterized by higher accuracy and
faster reaction times compared to complex problems (Cho et al., 2012;
Iuculano et al., 2014; Rosenberg-Lee et al., 2011; Young et al., 2012).
Moreover, because stimuli in the Simple condition have the same format
as in the Complex condition, it provides a high-level control for sensory
and number processing, as well as decision-making and response se-
lection. All trials were included in the analysis to ensure similar number
of trials across participants.

Multi-voxel Representational Similarity Analyses (MRSA) A whole
brain searchlight MRSA (Kriegeskorte et al., 2008) was used to assess the
similarity of spatial activity patterns associated with two arithmetic
tasks: addition and subtraction at the individual subject level. At each
voxel, a 6 mm radius sphere was used to define a searchlight region. The
Pearson correlation coefficient between t-scores for addition and sub-
traction problems was then computed for each region after removing
mean brain activity. Then, correlation coefficients were normalized
using Fisher’s r-to-Z transform: Z = 0.5 * In ((1 + r)/(1-r)) and entered
into group-level analyses. First, we used the NRS z-score in a one-sample
correlational analysis to identify brain regions showing multivoxel
representation similarity between addition and subtraction that was
associated with individual differences in math skills using NumOps
scores. In order to ensure an independent analysis for the nonlinear
approach, we then investigated brain regions showing different re-
lationships of NRS and NumOps between the MLD and TD groups to
characterize any nonlinear patterns between NRS and NumOps. Signif-
icant NRS clusters were determined using a voxel-wise height threshold
of p < 0.005, FDR-corrected for multiple spatial comparisons at p < 0.01
(cluster extent 87 voxels), based on Monte Carlo simulations (Cho et al.,
2012; Iuculano et al., 2014).

Multi-region network similarity analysis In order to further inves-
tigate how neural representations were related to individual differences



http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm

L. Chen et al.

in math skills in children at a network level, we conducted a series of
analyses based on the NRS score from the local regions which showed
significant correlations — in terms of less differentiated neural repre-
sentations — and math skills across individuals (Table 2 and Fig. 3). We
characterized the multi-region network similarity in MLD and TD groups
separately. Based on the regional NRS of the same set of identified re-
gions from the GLM results, we first calculated the Manhattan Distance
of these brain regions across all subjects with MLD or across all subjects
in the TD group, and then converted the Distance matrix into a similarity
matrix by normalization, 1-(D-min(D))/range(D), in which D is the dis-
tance matrix. We then used independent sample t-tests to examine group
difference (MLD vs TD) in the mean values of the lower triangles of the
multi-region similarity matrix. To test the hypothesis of deficits in
ventral-dorsal integration in MLD, we selected three regions from the
GLM results for this analysis: (i) the posterior fusiform gyrus (pFG) as a
seed, and examined the similarity of the right pFG with a (ii) dorsal
target superior parietal lobe/intraparietal sulcus (SPL/IPS) and a (iii)
ventral target superior anterior temporal cortex (SATC) as a comparison
control). We chose these regions as they are core regions for repre-
senting the number form, manipulation of numerical quantity, and se-
mantic knowledge of numerical operations (Fias et al., 2013; Iuculano,
2016; Menon, 2014; L. Peters and De Smedt, 2018). The significance
testing was conducted by subsampling and permutation. In each per-
mutation, we subsampled 80% of subjects in the MLD and TD groups
separately, and conducted the same multi-region similarity analysis and
the hierarchical clustering based on the similarity matrix. We recorded
the distance of pFG with SPL/IPS and sATC in MLD and TD groups. After
10,000 permutations of this procedure, we established distributions of
PFG-SPL/IPS and pFG-sATC distances in both MLD and TD. Finally, we
conducted a two-way ANOVA to examine the interaction between Group
(MLD vs. TD) and Target (dorsal vs. ventral).

3. Results

3.1. Performance on addition and subtraction operations is correlated
with individual differences in math abilities

We investigated the relation between performance on addition and
subtraction tasks, undertaken during fMRI scanning, and Numerical
Operations (NumOps) subscores of the WIAT-II, a standardized measure

Table 2
Brain regions showing significant effects of NRS associated with NumOps scores
and Group (MLD vs. TD)* NumOps interaction.

Main effect of NumOps (linear)

Region MNI Coordinates
X y z Max Z Cluster Size

Negative effect
Left STS/Heschl's gyrus —42 -22 2 5.72 414
Right IPL/IPS 26 -72 52 5.45 318
Right Ventral Striatum 26 -10 2 4.79 316
Right ventral insula 32 6 -12 4.14 200
Right SPL/IPS 46 —40 52 3.79 112
Left TPJ/SMG —64 —44 22 3.74 192
Left SATC —-50 12 -22 3.56 90
Right cerebellum 38 —64 —24 3.50 274
Right FG 36 —62 -12 3.21

Positive effect

No significant clusters

Interaction between Group*NumOps (nonlinear)

TD > MLD

Left dIPFC -30 36 28 3.74 97

Left IPS —28 -72 42 3.76 89

Right Cerebellum 14 -50 -22 4.30 103

MLD > TD

No significant clusters
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of math abilities (see Table 1) (Wechsler, 2001). Behavioral perfor-
mance was assessed using efficiency scores (Iuculano et al., 2008), a
composite measure obtained by dividing accuracy by mean reaction
time (RT) in each participant (Bruyer and Brysbaert, 2011). Efficiency
scores in both addition (r = 0.447, p < 0.01) and subtraction (r = 0.299,
p < 0.05) were correlated with NumOps, suggesting that children with
lower math abilities performed worse on both arithmetical operations
(Fig. 2A). Although the overall difference in slopes was not significant (p
> 0.05), children at the lower end of performance tended to show
smaller differences in efficiency between the two operations. Additional
analyses with accuracy and RT measures, separately, are reported in the
Supplementary Information (see Figure S1 and Tables S1 & S2).

3.2. Less differentiated performance in children with MLD

Next, we used a categorical approach to investigate whether children
with MLD show poorer performance overall, when compared to TD
controls, and crucially, whether they show less differentiated perfor-
mance between the addition and subtraction operations (Table S3). A
two-way mixed ANOVA on performance efficiency with between-subject
factor Group (MLD vs. TD) and within-subject factor Operation (Addition
vs. Subtraction) revealed a significant interaction between Group and
Operation (F (1,43) = 4.647, p < 0.05). Main effects of Group (F (1,43) =
11.22, p < 0.01) and Operation (F (1,43) = 8.062, p < 0.01) were also
significant. Further analysis revealed that in the MLD group, there was
no significant difference between performance on addition and sub-
traction (t (20) = 0.3085, p = 0.76), whereas the TD controls showed
significantly better performance in the addition task, compared to the
subtraction task (t (23) = 4.376, p < 0.001) (Fig. 2B). It is unlikely that
the lack of statistically significance in the MLD group was due to sample
size because the sample size of n = 21 (i.e., MLD group) had a large a-
priori power = 95 % assuming the same effect size in TD (d = 0.83), at
the a = 0.05 level.

3.3. Decision-making associated with addition and subtraction problem-
solving is impaired in children with low abilities

Next, we investigated latent decision-making processes associated
with arithmetic problem-solving by combining hierarchical drift diffu-
sion modeling (Ratcliff and McKoon, 2008; Ratcliff and Smith, 2004)
with item-response based modeling to account for differential item-level
difficulty. We found that NumOps scores were positively correlated with
the drift rate on addition (r = 0.341, p < 0.05) and subtraction (r =
0.347, p < 0.05) problems. No other model parameters — decision
threshold, non-decision time, or response bias — showed a significant
correlation with NumOps scores (Table S4). Comparison of children with
MLD and their TD peers revealed that the drift rate on addition and
subtraction problems differed in the TD group (Madgq = 0.91 vs. Mgyp =
0.80, p < 0.05), but not in the MLD group (Magq = 0.68 vs. Mgy = 0.60,
p > 0.05; a-priori power = 46 % at « = 0.05 assuming a similar effect size
in TD as d = 0.43) (Figure S2).

3.4. Less differentiated neural representations in children with lower math
abilities

We next sought to determine whether low math abilities are asso-
ciated with weaker differentiation between neural representations for
addition and subtraction problems, using a whole-brain searchlight al-
gorithm (Ashkenazi et al., 2012; Bugden et al., 2019; Misaki et al.,
2009). We found that NumOps scores were negatively correlated with
NRS values between addition and subtraction problems in multiple
parietal-temporal-prefrontal areas, including intraparietal sulcus (IPS),
posterior superior temporal sulcus (pSTS) and the superior part of the
anterior temporal cortex (sATC), and anterior insula (Table 2 and
Fig. 3A-H). No brain regions showed a positive correlation between NRS
and NumOps scores. These results suggest that more distinct NRS is a
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Fig. 2. Behavioral performance during problem-solving involving addition and subtraction operations. (A) Numerical Operations subtest scores were significantly
correlated with performance efficiency (accuracy/reaction time) in both addition and subtraction tasks; (B) Lower efficiency in children with MLD compared to TD
children in both addition and subtraction tasks. A significant difference between addition and subtraction operations was observed in TD, but not in MLD children.

hallmark of higher math skills in children.
3.5. Less differentiated neural representations in children with MLD

A categorical approach was used to further demonstrate that children
identified as MLD in our study did show aberrant neural representations
in the same set of regions revealed in the dimensional analysis. Two-
sample t-tests between the MLD and TD groups showed a significant
group difference in each of the parietal, temporal and prefrontal cortex
regions identified above, with the MLD group showing significantly
higher NRS values between addition and subtraction problems (all ps <
.05; Fig. 31 and Table S5).

3.6. Nonlinear profile of less differentiated neural representations in
children with MLD

Next, we investigated whether any brain regions showed nonlinear
profiles of neural representations in children with MLD, compared to TD
controls. This analysis allowed us to identify brain areas that showed
worse- or better-than-expected profiles in children with MLD. Adding
group membership (MLD, TD) as a moderator (Fig. 4A), we found a
significant interaction between Group and NumOps scores on NRS in the
left superior part of the anterior temporal cortex (sATC; Fig. 4B).
Additionally, the independent whole-brain NRS analysis examining the
interaction between Group and NumOps on NRS, identified two other
brain regions: the left dorsolateral prefrontal cortex (dIPFC) and intra-
parietal sulcus (IPS), which showed a moderation effect of Group on the
relationship between NumOps scores and NRS values (height threshold p
< 0.005; FDR-corrected for multiple spatial comparisons at p < 0.01).
Specifically, we found that lower NumOps scores were associated with
higher NRS values in the MLD group only (all ps < 0.05; Fig. 4C&D), but
no such relationship was found in the TD group. More surprisingly, the
relationship between NumOps and NRS values was positive in the TD
group in left dIPFC (p < 0.001).

3.7. Aberrant multi-region network similarity in children with MLD

As noted above, we found a significant relationship between math
abilities and NRS values in multiple brain regions. We extended this

analysis to determine whether aberrant neural representations at the
local level are also manifested at the network level. We first noted that
when we averaged NRS values across the eight brain regions shown in
Fig. 3 and tested their association with NumOps, we observed a signifi-
cant negative relationship: r (43) = -0.82, p < 0.001. This result is not
surprising given the linear relationship between NumOps scores and NRS
values found in individual brain regions. The consistent pattern across
these brain regions can be seen in Fig. 5A&B. Furthermore, we also
observed that the multi-region NRS values across individuals seemed to
be more similar (or consistent) in the MLD group, i.e., the individual
lines showed similar patterns around the group averaged line, compared
to the TD group. This observation suggested that NRS across multiple
brain regions (i.e., multi-region network similarity) could provide a
novel aspect of neural representational similarity at a network level.

To further quantify the consistent patterns of NRS across multiple
brain regions and its relationship to arithmetic abilities, we examined
whether children with MLD showed different patterns of network-level
similarity compared to TD controls. To calculate the multi-region
network similarity, we first derived a distance matrix between
regional NRS values across participants in the MLD and TD groups
separately. We then converted the group-specific distance matrices to a
similarity measure wherein ‘0’ indexed lowest similarity (i.e., largest
distance) and ‘1’ highest similarity (i.e., shortest distance; for more
details see Method). We found that children with MLD showed higher
multi-region network similarity compared to TD children (Fig. 5C&D).
Permutation tests with 10,000 subsampling procedures revealed a sig-
nificant difference in the multi-region network similarity matrix be-
tween MLD and TD groups (Mpyp = 0.66, Mtp = 0.43; p < 0.001;
Fig. 5E).

3.8. Aberrancies of neural representations in the ventral-dorsal pathway
in children with MLD

To further investigate the structure of multi-region network simi-
larity, we applied hierarchical clustering to the similarity matrix in the
MLD and TD groups, separately. This analysis revealed that the multi-
region representations between the posterior fusiform gyrus (pFG) and
Superior Parietal Lobule/Intra-Parietal Sulcus (SPL/IPS) were clustered
at a higher level of hierarchy in children with MLD, compared to TD
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Fig. 3. Higher Neural Representational Similarity (NRS) in children with low math abilities. (A) Brain regions showing significant negative correlation between NRS
and Numerical Operations (NumOps) scores of the WIAT-II. (B-H) Children with low math abilities show higher NRS values in multiple parietal, temporal and pre-
frontal cortical regions (I) Children with MLD show higher NRS values than TD children (ROIs were chosen to visualize the MRS difference in a categorical approach).
Note: Statistical testing and analysis were conducted using a stringent threshold (height, p < 0.005; FDR-corrected for cluster extent p < 0.01); to facilitate visu-
alization activation maps are shown at p < 0.01 (height) (FDR-corrected for cluster extent p < 0.01). STS/HG = Superior Temporal Sulcus and Heschl’s gyrus; IPS =
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Fig. 4. Nonlinear relationship between math ability and Neural Representational Similarity (NRS). (A) Model to test effect of group membership on the relationship
between NumOps and NRS. (B-D) NRS values in the superior part of the left anterior temporal cortex (sATC), left intraparietal sulcus (IPS), and left dorsolateral
prefrontal cortex (dIPFC) were associated with lower math skills in children with MLD, but not in TD children.

children. In contrast, multi-region representations between the pFG and
the superior anterior temporal cortex (SATC) were clustered at a higher
level of hierarchy in TD children. Using permutation testing across
10,000 subsamples, we confirmed that neural similarity between pFG
and SPL/IPS representations was significantly lower in the MLD group,
compared to the TD group, while similarity between the pFG and the
sATC showed a reverse pattern (p < 0.001; Fig. 5F).

4. Discussion

We examined whether addition and subtraction, the two founda-
tional numerical operations, are represented differently in children with
low math abilities, compared to their TD peers. Both dimensional and
categorical approaches revealed less differentiated neural representa-
tions in children with low math abilities in multiple neurocognitive
systems including the parietal visuo-spatial attention, lateral temporal
lobe language-semantic, and prefrontal cognitive control systems.
Furthermore, a nonlinear profile characterized by a worse-than-
expected profile of deficits in children with MLD was detected in fron-
toparietal attention and anterior temporal cortex language-semantic
systems. Analysis of multi-region network similarity patterns revealed
weak communication of neural representations across pathways linking
the fusiform gyrus with parietal regions important for manipulation of
quantity and numerical problem-solving. Together, these findings point
to weak pruning of local and distributed neural circuits in children with
poor math abilities, and identify less differentiated neural representa-
tions as a potential neurobiological signature of MLD.

4.1. Weak behavioral differentiation between numerical operations in
children with low mathematical skills

The first aim of our study was to investigate behavioral performance
and decision-making associated with problem-solving involving addi-
tion and subtraction operations in children with low math abilities. Not
surprisingly, children with poor math abilities showed lower efficiency
in solving addition and subtraction problems. Critically, children with
lower math skills were similarly impaired in problem-solving efficiency
of both operations. In contrast, compared to their TD peers who per-
formed better on addition than subtraction problems, children with MLD
showed no such distinction. Children with low math abilities showed
less differentiated performance on the two numerical operations, sug-
gesting the engagement of similar — and inefficient — computational —
strategies for both addition and subtraction operations/problems.

Computational modeling of latent decision-making processes during
problem-solving revealed that lower math abilities were related to
slower drift rate (v) for both addition and subtraction problems on a
continuous scale. At a group level, TD children, compared to children
with MLD, showed better differentiation on drift rate (v) between
addition and subtraction problems. This suggests that decision-making
processes between operations are better differentiated in TD children
compared to the MLD group. Our results indicate that lower problem-
solving efficiency in children with impaired math abilities may stem
from weak evidence-accumulation, partly on account of poor item
discrimination, leading to impaired decision-making. In TD children, the
rate of evidence accumulation differed significantly between addition
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and subtraction problems, and therefore, it is reasonable to assume that
at this developmental stage, TD children may rely on different strategies,
processes, or representations for solving addition and subtraction
problems (Barrouillet et al., 2008; Geary et al., 1991; Jordan et al., 2003;
Ostad, 1999), and children with MLD did not show such a distinction.
Further studies with larger samples and analysis of strategy-use are
needed to elaborate on the observed patterns.

Previous research has suggested that children with poor math abil-
ities fail to use retrieval strategies even for simple addition problems,
and they adopt suboptimal strategies for both operations (Ostad, 1999).
During the early stages of formal math learning, children use a wide
range of inefficient strategies, such as finger counting, verbal counting
and some forms of decomposition, for solving both operations (Bar-
rouillet et al., 2008; Siegler, 1987; Siegler and Shrager, 1984). With
increased practice, operation-specific shifts take place, and by 3rd grade,
neurotypical children start applying more efficient retrieval strategies
for addition problems while continuing to rely on more laborious mental
manipulation strategies for subtraction problems (Barrouillet et al.,
2008; Geary et al., 1991; Jordan et al., 2003; Ostad, 1999). Our findings
converge on these observations, and suggest that children with low math
abilities may rely on similar, indistinct, and suboptimal cognitive pro-
cesses for solving the two distinct operations.

4.2. Neural representations are less distinct in children with low math
abilities

The second aim of our study was to determine the neural un-
derpinnings related to weak behavioral differentiation in children with
poor math abilities. Specifically, we examined whether children with
low math abilities showed weak neural differentiation during problem-
solving associated with the two numerical operations. We found that
children with low math abilities displayed less distinct neural repre-
sentations in posterior parietal, prefrontal and lateral temporal cortices
including the intraparietal sulcus (IPS), anterior insula, fusiform gyrus,
and anterior temporal cortex. Interestingly, no brain region showed
lower neural representational similarity, i.e., more differentiated rep-
resentations, in children with weak math abilities. These results provide
novel insights into the neurobiological basis of behavioral learning dif-
ficulties in math problem-solving, highlighting a distinctive brain-based
feature of impairment in relation to two foundational arithmetical op-
erations, deficits in which are known to be a defining phenotypic feature
of MLD.

It is noteworthy that the format of numerical problems presented to
participants was perceptually identical across the two problem types:
the two strings of presented problems differ only by a single vertical line
‘+’ vs. ‘’. Thus, as expected, no individual differences or aberrancies in
neural representations were found in primary visual cortex, consistent
with the view that the lack of distinct representations arises at the se-
mantic level, rather than at the low-level perceptual processing.

Less differentiated neural representations between addition and
subtraction problems associated with lower math skills were observed in
the IPS/SPL, a brain region that plays a critical role in quantity judge-
ment and manipulation (Dehaene et al., 2003; Holloway et al., 2013;
Schel and Klingberg, 2016). The IPS/SPL is a critical locus of numerical
processing deficits in children and adults with MLD (Arsalidou and
Taylor, 2011; Ashkenazi et al., 2012; Chang et al., 2016; De Smedt et al.,
2011; Houdé et al., 2010; L. Peters and De Smedt, 2018; Rosenberg-Lee
et al., 2015). Less differentiated representations associated with lower
math skills were also detected in the fusiform gyrus. The fusiform gyrus
in the ventral-occipital cortex is involved in high-level visual processing
of complex visual objects, including words and numbers (Cantlon et al.,
2009; Shum et al., 2013; Vogel et al., 2017). Taken together, this pattern
of weak neural differentiation of addition and subtraction problems in
the dorsal (IPS/SPL) and ventral visual stream (fusiform gyrus) is
consistent with impaired core-systems for representing and manipu-
lating numerical quantity, highlighting a less tuned representation of
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these problems in terms of their core features of symbols processing and
numerosity manipulation.

Weak differentiation was also observed in the anterior temporal
cortex, a region crucial for integrating cross-modal semantic informa-
tion (L. Chen et al., 2017; Lambon Ralph et al., 2016), and for processing
abstract concepts (Binney et al., 2016; Hoffman et al., 2015; Rodd et al.,
2010; Sabsevitz et al., 2005). Lesions in the anterior temporal cortex are
associated with semantic dementia and furthermore specifically with
deficits in arithmetic problem-solving (Cappelletti et al., 2012; Julien
et al., 2008). These observations point to aberrant representations in
brain areas important for processing semantic knowledge in children
with MLD.

Children with low math abilities also showed weak differentiation in
brain regions involved in phonological processing, including the supe-
rior temporal sulcus, superior temporal gyrus, and supramarginal gyrus
(De Smedt et al., 2011; Prado et al., 2014). Differential engagement of
language-related systems have been reported in relation to distinct
arithmetical operations, reflecting task and operation-specific speciali-
zations (Archibald et al., 2013; De Smedt et al., 2011; Hecht et al., 2001;
L. Peters and De Smedt, 2018; Prado et al., 2014). Critically, verbal-
ization during arithmetic problem-solving has been linked to language
systems (Zarnhofer et al., 2013). Higher neural representational simi-
larity between addition and subtraction problems within
language-processing regions may therefore stem from similar reliance
on immature and effortful verbally-mediated strategies for both types of
arithmetic problems. We suggest that children with low math abilities
may rely on the same language-based strategies to solve both types of
problems, consequently resulting in higher neural representational
similarity, and lower neural differentiation, across the two operations.

Children with low math abilities also showed higher neural repre-
sentational similarity in the anterior insular cortex, a region important
for cognitive control during cognition in general, and numerical
problem-solving in particular (Supekar and Menon, 2012). The strength
of causal signals from the anterior insular cortex to parietal and pre-
frontal regions has been associated with better performance during
arithmetic problem-solving (Supekar and Menon, 2012). Meta-analysis
of brain imaging studies points to the insula as a region showing a
consistent profile of deficits in children with low math abilities (Arsa-
lidou et al., 2018). Compared to addition problems, subtraction prob-
lems require more effortful processing, resulting in different levels of
cognitive control demands for the two operations (Caviola et al., 2014;
Hayashi et al., 2000). Our results indicate, for the first time, that chil-
dren with low math abilities may not appropriately engage this pre-
frontal control region for operation-specific numerical problem-solving.

In sum, both dimensional and categorical approaches revealed that
neural patterns associated with the two basic operations were less
distinct in children with poor math abilities across multiple functional
brain systems, further supporting the hypothesis of dysfunctions in
multiple functional brain systems in the neurobiological characteriza-
tion of MLD (Fias et al., 2013; Iuculano, 2016). Notably, our findings
suggest that neural dysfunction in MLD arises not just at the level of
task-related activation (Iuculano et al., 2015; Rosenberg-Lee et al.,
2015), but also at the level of multivariate pattern representations in
multiple brain systems (Iuculano, 2016; Iuculano et al., 2015). This
pattern of enhanced neural representational similarity is consistent with
hyperactive responses observed in children with MLD (Jolles et al.,
2016; Rosenberg-Lee et al., 2015), and together points to weak
operation-specific tuning of neural circuits as a putative mechanism of
poor math abilities in these children. More generally, the distributed
nature of the deficits uncovered here provides further support for a
multi-componential deficit model of math difficulties, including MLD
(Fias et al., 2013; Iuculano, 2016).
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4.3. Nonlinear, worse-than-expected, profile of weak neural
representations in children with MLD

The next aim of our study was to characterize nonlinear profiles of
neural representations in children integrating dimensional and cate-
gorical approaches. While most brain areas showed a continuous linear
profile of neural representational similarity associated with poor math
skills, the left anterior temporal cortex and left IPS showed a nonlinear
profile characterized by a significant negative relation in the MLD group
and no variation in the TD group (Fig. 4). These results suggest that
children with MLD show a unique neural profile, characterized by
weaker than expected differentiation of problem representations in two
left hemisphere regions important for semantic knowledge of numerical
operations (Julien et al., 2008) and their manipulation (Cappelletti
et al.,, 2012). Our findings identify a novel locus of impairments in
children with MLD and are noteworthy because they converge on studies
of patients with semantic dementia (Julien et al., 2008) which have
suggested that aberrancies in the anterior temporal cortex result in
difficulty with identifying arithmetic signs as well as conceptual un-
derstanding of quantity.

Our analysis also revealed a worse than expected profile in the
dorsolateral prefrontal cortex. However, in this case, while the MLD
group showed a negative relationship between neural representational
similarity and math abilities, as seen in the parietal-temporal-prefrontal
areas consistently identified above, this relationship was instead posi-
tive in the TD group. This result suggests that children with MLD engage
the dorsolateral prefrontal cortex differently from TD children, and
further highlights a dissociation in representations encoded by this brain
region. Notably, children at the lowest and highest end on the ability
scale show similar overlap in representations, but for entirely different
reasons. The dorsolateral prefrontal cortex plays a key role in selective
manipulation of information in working memory (Barbey et al., 2013;
Curtis & D’Esposito, 2003). One interpretation of our findings is that
children with high math abilities engage the dorsolateral prefrontal
cortex with similar efficiency for both operations, whereas children with
MLD at the lowest end of the abilities (Fig. 4C) engage this region with a
similar level of inefficiency for both operations. This interpretation is
also consistent with previous findings showing that adults with better
arithmetic skills display higher neural representational similarity be-
tween addition and subtraction operations in the dorsolateral prefrontal
cortex compared to typically-developing children (Chang et al., 2015).

Together, these results identify brain areas with a nonlinear profile,
characterized by worse-than-expected aberrations in neural represen-
tations, and thus, areas of particular vulnerability in the most severe
cases of children with poor math skills.

4.4. Less differentiated neural representations at the network level in
children with MLD

The final goal of our study was to characterize network similarity
across brain regions (Anzellotti and Coutanche, 2018; Pillet et al., 2020)
showing lower differentiation in neural representational similarity
values as a function of math abilities. We used a novel computational
approach to determine multi-region representational similarity patterns,
and assessed whether these patterns could differentiate children with
MLD from their TD peers. Analysis of network similarity revealed that
children with MLD showed higher multi-region representational simi-
larity compared to their TD peers, suggesting that less differentiated
neural representations are manifested not only at the regional level
(Fig. 3I) but also at the network level (Fig. 5E). Notably, this analysis
also highlights weaker integration of representations between the fusi-
form gyrus and intraparietal sulcus in children with MLD. These brain
regions are crucial for representing and manipulating numerical quan-
tity (Ansari, 2008; Cantlon et al., 2009), and the functional connectivity
between these two regions has been shown to be associated with the
successful acquisition of numerical abilities (Battista et al., 2018; Evans
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et al., 2015). In contrast, children with MLD showed higher integration
of neural representations between the right fusiform and the left anterior
temporal cortex, likely reflecting the greater need to access semantic
representations for solving both problem types. More generally, these
results highlight impairments in co-occurring patterns of deficits across
multiple brain regions in children with MLD (Fias et al., 2013).

4.5. A developmental model of operation-specific changes in neural
representation with age and math skills

Our findings inform putative developmental models of how distinct
neural representations may develop across ages and different levels of
math abilities (Fig. 6). Behavioral studies have characterized distinctive
strategies used to solve addition and subtraction operations at different
developmental stages. School-age children apply efficient retrieval
strategies to solve addition problems 65 % of the time — with lower rates
in children with poor math abilities — while only 19 % of subtraction
problems are solved using this strategy by the 3rd grade (Barrouillet
et al., 2008). Consistent with these behavioral results we found less
distinct neural representations between addition and subtraction prob-
lems children with high math abilities. In contrast, adults solve 76 % of
addition problems by retrieval and use this strategy during subtraction
58 % of the time (Campbell and Xue, 2001). These differences in
retrieval-rates suggest that with development, there is a shift from
effortful counting to efficient fact retrieval, leading to a convergence of
problem-solving strategies across the two operations. In this case, we
would predict increased overlap in neural representations between the
two operations in adults. Thus, we predict that, paradoxically, children
with poor math abilities and adults would show similar levels of neural
representational similarity across distributed frontal, parietal, and
temporal regions, but for different reasons (Fig. 6). Specifically, in
children with poor math abilities, similar NRS patterns reflect the use of
inefficient strategies for both operations, while in proficient adults,
similar NRS patterns reflect the use of efficient strategies for both op-
erations (Chang et al., 2015). Furthermore, our data also hints at the

possibility that linear versus nonlinear patterns of neural
A
Addition = Subtraction " .
s Addition = Subtraction
both inefficient o
Young TD children both efficient
(e.g., 1st and 2nd Graders) TD Adults
MLD
(5]
x
=
Addition # Subtraction
efficient addition,
less efficient subtraction
Older TD Children

Age/Math Skills

Fig. 6. Proposed developmental model of operation-specific shifts in neural
representations with age and math skills. This model predicts that there is a
shift from effortful counting to efficient fact retrieval, leading to a convergence
of problem-solving strategies across the two operations. Therefore, we would
predict increased overlap in neural representations between the two operations
in adults. Paradoxically, children with poor math abilities would also show high
levels of neural representational similarity across distributed frontal, parietal,
and temporal regions as in adults, but because they tend to use inefficient
strategies for both operations.
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representational similarity may reflect different sub-types of math dif-
ficulties, such that children following a linear trajectory may be classi-
fied as having a developmental delay, while nonlinear profiles may
reflect more severe forms of math difficulties, including children
commonly classified as having severe forms of learning disabilities.
Future studies using longitudinal designs are needed to assess how
neural representations change over time heterogeneous groups of chil-
dren with MLD.

5. Conclusions

The present study identifies distinct neural representations as a novel
neurobiological feature for individual differences in math abilities, and a
potential neurobiological marker of poor math skills in an inability to
form distinct neural representations for different numerical operations.
Less differentiated neural representations for addition and subtraction
problems associated with poor arithmetic abilities were evident in
widely-distributed cortical regions related to quantity representations
and their manipulation, as well as in prefrontal regions involved in
cognitive control, and those engaged in the semantic and phonological
aspects of language processing. Our findings identify a novel distributed
locus of information processing and representational deficits in children
at the lower end of the distribution of math abilities. Moreover, network-
level analysis revealed that poor mathematical skills were associated
with not only less differentiated representations at the regional level but
also with manifested overlapping representations at the network level.
Critically, the present study is the first to show that failure to properly
differentiate between arithmetical problem-types may be a hallmark of
math difficulties. Notably, lack of representational differentiation was
not evident in perceptual, but rather in cognitive-semantic processing
brain systems. The approach and methods developed here may be useful
for future studies of neural representational features in other learning
disabilities, such as developmental dyslexia. Finally, our approach
provides a template for probing typical and atypical developmental
changes associated with cognitive problem-solving and skill acquisition,
overcoming pitfalls associated with use of arbitrary cutoffs for probing
neurobehavioral profiles of heterogeneity in learning disabilities.
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