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Abstract
We propose a neural network architecture combined with

specific training and inference procedures for linear inverse prob-

lems arising in computational imaging to reconstruct the underly-

ing image and to represent the uncertainty about the reconstruc-

tion. The proposed architecture is built from the model-based

reconstruction perspective, which enforces data consistency and

eliminates the artifacts in an alternating manner. The training

and the inference procedures are based on performing approxi-

mate Bayesian analysis on the weights of the proposed network

using a variational inference method. The proposed architecture

with the associated inference procedure is capable of character-

izing uncertainty while performing reconstruction with a model-

based approach. We tested the proposed method on a simulated

magnetic resonance imaging experiment. We showed that the pro-

posed method achieved an adequate reconstruction capability and

provided reliable uncertainty estimates in the sense that the re-

gions having high uncertainty provided by the proposed method

are likely to be the regions where reconstruction errors occur.

Introduction
The problem of reconstructing the underlying image can

be cast as solving a linear inverse problem for several imaging

modalities such as magnetic resonance imaging [1] and computed

tomography [2]. Thus, linear inverse problems are at the founda-

tion of the computational imaging.

Recently, neural network-based methods have become in-

creasingly popular to solve the linear inverse problems arising in

computational imaging (for a review see [3]). While one class of

methods such as [4] tries to invert the forward model with a deep

neural network to reconstruct the underlying image from the mea-

sured data, another class of methods such as [5] takes a slightly

more conservative approach and aims to recover the latent image

by formulating an optimization problem and replacing some part

of the iterative reconstruction algorithm with a neural network.

Although these methods achieve state-of-the-art results in

several computational imaging applications, the resulting image

might experience unexpected instabilities [6]. The lack of uncer-

tainty information about the reconstructed image severely limits

the applicability of neural network-based methods in practice, es-

pecially in safety-critical applications. If a neural network-based

reconstruction algorithm is able to provide uncertainty informa-

tion about the reconstructed image, that can be leveraged to as-

sess the quality of the reconstruction or to warn the practitioner,
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who uses a fully automated pipeline performing reconstruction

and analysis tasks simultaneously. Thus, being able to represent

the uncertainty in neural network-based reconstruction methods

is crucial for computational imaging problems.

To solve the problem of obtaining uncertainty information

with a Bayesian perspective, we need to define probability distri-

butions on the weights of a neural network, and to obtain the pos-

terior distribution of the weights. These type of probabilistic mod-

els, called Bayesian neural networks [7], have attracted significant

attention recently. Unfortunately, obtaining the posterior distribu-

tion of weights is not an easy task because of the large number

of parameters and complex neural network models. Hence, dif-

ferent approximation methods (see [8] and the references therein)

have been used in the literature to perform approximate Bayesian

analysis for neural networks.

In this article, we introduce a model-based Bayesian deep

learning architecture for computational imaging, which is built

by using a model-based reconstruction approach. The training

and inference procedures utilize Monte Carlo (MC) Dropout [9]

to perform variational inference. Combined with specific train-

ing and inference procedures, the proposed architecture performs

reconstruction and provides uncertainty information about the re-

constructed image. The proposed architecture and the associated

training and inference procedures are easy to implement in deep

learning frameworks.

Recently, [10] has proposed a U-Net [11] based methodol-

ogy combined with MC Dropout to obtain uncertainty informa-

tion about the reconstruction for phase imaging. The differences

between our approach and the one in [10] lie in that our architec-

ture is built by taking a model-based reconstruction perspective,

which can be perceived as a slightly more conservative approach

compared to [10], and that we focus on a broad class of computa-

tional imaging problems, i.e., all computational imaging problems

that can be written as a system of linear equations.

The rest of the paper is organized as follows: In the “Pre-

liminaries” section, we review the basic material related to the

formulation of the reconstruction problem, the generative model

of the data, and the Bayesian approach to uncertainty estimation.

In the “Proposed Method” section, we describe the proposed ar-

chitecture with its training and inference procedures in detail. In

the “Experiments” section, we present the experimental results

we have obtained in a simulated magnetic resonance imaging sce-

nario. Finally, the “Conclusion” section concludes the paper.

Preliminaries
In this section, we review some background on the classi-

cal statistical reconstruction approach, the generative model of
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the data, and the Bayesian approach to uncertainty estimation for

neural networks.

MAP Reconstruction
Consider the following setup

m = As+n, (1)

where m ∈ C
S is the vector containing the measurements, A ∈

C
S×D is the operator that represents the transformation applied

by the imaging system, s ∈ C
D is the vectorized image, and n ∈

C
S is the measurement noise in the system, which is assumed

to be circulary-symmetric complex Gaussian noise with variance

σ2
noise.

For an underdetermined system (S < D), recovering the im-

age, s, from the measurements, m, becomes an ill-posed problem.

One way to restrict the solution space and regularize the task is

to use the prior knowledge about the image, s. Then, the maxi-

mum a posteriori (MAP) estimate of the image, ŝ, can be found

by solving the following optimization problem

ŝ = argmin
s∈CD

{

‖As−m‖2
2 +βψ(s)

}

, (2)

where the function ψ :CD →R is the regularizer coming from the

image prior, and the parameter β controls the balance between

the data fidelity term and the regularizer. To find an equivalent

problem involving only real vectors and matrices, we introduce

two operators η : Cn → R
2n and κ : Cn×m → R

2n×2m such that

ηn(x)=
[

ℜ(x>) ℑ(x>)
]>

, κn,m(X)=

[

ℜ(X) −ℑ(X)
ℑ(X) ℜ(X)

]

, (3)

where ℜ and ℑ compute the element-wise real and imaginary

parts of a given vector or matrix, respectively. Then, using these

two operators, the optimization problem in Eqn. (2) can be writ-

ten as

ŝ = η−1
D

(

argmin
s̃∈R2D

{

‖Ãs̃− m̃‖2
2 +βψ̃(s̃)

}

)

, (4)

where Ã := κS,D(A), s̃ := ηD(s), m̃ := ηS(m), and ψ̃ is the mod-

ified regularizer such that ψ(s) = ψ̃(s̃) for all (s, s̃) pairs. There-

fore, finding the solution of the Eqn. (2) boils down to finding

the solution of the optimization problem located inside the η−1
D

operator in Eqn. (4).

Assuming that the modified regularizer, ψ̃ , is a convex,

closed and proper function, we can use different splitting methods

such as the proximal gradient method [12] or the alternating direc-

tion of method of multipliers (ADMM) [13] to solve the problem

inside the η−1
D operator in Eqn. (4) efficiently.

Generative Model of the Data
Suppose for a fixed operator A and a noise variance σ2

noise,

we have a training dataset, Dtr, consisting of a collection of N

measurement-target image pairs, i.e.,

Dtr = {(m̃(i)
, s̃(i)) | m̃(i) =ηS(m

(i)), s̃(i) =ηD(s
(i)), i∈ [N]}. (5)

We assume that the training dataset, Dtr, consists of i.i.d. samples

of measurements and target images drawn from the distribution

(m̃(i)
, s̃(i))∼ p(m̃)p(s̃|m̃), ∀i ∈ {1, ...,N},

where both p(m̃) and p(s̃|m̃) are unknown distributions and could

be only accessed empirically through Dtr. This assumption is jus-

tifiable for computational imaging problems. Each measurement

in the training dataset is obtained by using the operator A and the

noise variance σ2
noise, which can be thought as generating a sam-

ple from p(m̃). Ideally, we want to use ground truth images as

target images; however, we do not have an access to ground truth

images in practice. Thus, the target image for the measurement

is obtained by imaging the same object using a suppressed noise

level and without data reduction so that the resulting image, which

is often referred to as the reference image, is close to the ground

truth image. This process can be thought as generating a sample

from p(s̃|m̃).
We also assume that the test dataset,

Dte = {(m̃
(i)
∗ , s̃

(i)
∗ ) | m̃

(i)
∗ =ηS(m

(i)
∗ ), s̃

(i)
∗ =ηD(s

(i)
∗ ), i∈ [M]}, (6)

consists of i.i.d. samples of measurements and target images

drawn from the same distribution that the training measurements

and target images are drawn from.

Bayesian Approach to Uncertainty Estimation
Suppose we have a training dataset, Dtr, and a test measure-

ment, m̃∗, from Dte. For a regression model with a set of param-

eters γ , the predictive distribution is

p(s̃∗|m̃∗,Dtr) =
∫

p(s̃∗|m̃∗,γ)p(γ|Dtr)dγ. (7)

Throughout this paper, we refer to p(s̃∗|m̃∗,γ) as the likelihood,

and to p(γ|Dtr) as the posterior distribution.

Unfortunately, obtaining the posterior distribution is not an

easy task because of the large number of parameters and complex

neural network architectures. Hence, approximation techniques

such as variational inference methods [9] or Markov Chain Monte

Carlo-based methods [7] are necessary.

After obtaining an approximation of the posterior distribu-

tion and defining the form of the likelihood, we can approximate

the integral in Eqn. (7) using Monte Carlo integration to esti-

mate the predictive distribution. Finally, we obtain the mean and

the variance of the estimated predictive distribution with moment-

matching. The resulting predictive variance can be used to char-

acterize the uncertainty in the prediction.

Proposed Method
We define the following Gaussian likelihood for the recon-

struction problem

p(s̃|m̃,γ) = N(s̃| fω (m̃),diag(σφ (m̃)2)), (8)

where fω : R2S → R
2D and σφ : R2S → R

2D are neural networks

parametrized by sets of parameters ω and φ , respectively, and

γ = ω ∪φ .

The architecture of the neural network fω is motivated by the

model-based reconstruction approach. Assuming that the mod-

ified regularizer is a closed proper convex function, the update

equation of the proximal gradient method to solve the optimiza-

tion problem inside the η−1 operator in Eqn. (4) is

s̃[k] = proxλβψ̃

{(

I−2λ Ã>Ã
)

s̃[k−1]+2λ Ã>m̃
}

, (9)
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Figure 1. Proposed model-based Bayesian deep learning architecture.
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Figure 2. Neural network block R used in the proposed model-based Bayesian deep learning architecture.

where λ is the step size, and s̃[k] is the reconstructed image at the

kth iteration. The benefit of using proximal gradient method over

methods such as ADMM is that it does not require any matrix

inversion in the update equation.

Similar to the idea in [5], we replace the proximal operator

proxλβψ̃ with a neural network, and the update equation becomes

z̃[k] =
(

I−2λ Ã>Ã
)

s̃[k−1]+2λ Ã>m̃

s̃[k] = R
{

z̃[k],ω
}

,

(10)

where R is the neural network, and ω is the set of parameters of

the neural network R. For a fixed number of iterations K, the

series of updates correspond to a deep neural network, which is

the desired function fω . Figure 1 illustrates the structure of fω
in detail. Figure 2 depicts the components of the neural network

R that contains P residual blocks consisting of a skip connection

and C modules. Each module includes a convolutional layer fol-

lowed by dropout, and each module except the last one includes a

rectified linear unit (ReLU) activation function. Note that we use

the same neural network R at every iteration, so the resulting neu-

ral network fω is consistent with the model-based reconstruction

approach.

For computational imaging problems, the neural network σφ

captures the inherent noise in the target images, which is some-

times referred to as the aleatoric uncertainty [14]. Thus, the

choice of the σφ depends on the requirements of the applica-

tion. If the true conditional distribution, p(s̃|m̃), is not invariant

across the training and test datasets, we can simply use an arbi-

trary neural network that provides a non-negative output to explic-

itly model the data dependent uncertainty. On the other hand, if

the true conditional distribution is invariant across the training and

test datasets, we can focus on quantifying the uncertainty on the

model parameters and set it to be a constant function σφ = σmodel ,

where σmodel is a fixed model parameter and φ = /0. In the rest of

this section, we assume that σφ is a neural network parametrized

by a set of parameters φ to keep the generality.

Specifying the form of the neural networks fω and σφ

completely specifies the form of the likelihood function. Next,

we need to find an approximation of the posterior distribution,

p(γ|Dtr), which represents the uncertainty in the parameters of

the regression model, γ . The uncertainty in the parameters of the

regression model, which is sometimes referred to as the epistemic

uncertainty [14], reflects the uncertainty caused by the lack of

training examples around the test measurement m̃∗.

Monte Carlo Dropout [9] is a popular and scalable varia-

tional inference method because it has a simple implementation

in deep learning frameworks, requires minimal changes on the

classical neural network architecture, training and inference pro-

cedures, and provides reliable uncertainty estimates in several ap-

plications such as depth completion [8], and semantic segmenta-

tion [14]. In this work, we employ Monte Carlo Dropout to ob-

tain an approximation of the true posterior distribution p(γ|Dtr)
by minimizing the Kullback-Leibler divergence between the true

posterior distribution and the distribution qα (γ) parametrized by

the set of parameters α .

If the likelihood is defined as in Eqn. (8), and the distribution

that we use to approximate the true posterior distribution, qα (γ),
is a Bernoulli variational distribution [15], i.e.,

qα (γ) =
L
⋃

i=1

p(zi = 1)N(γi|αi,σ
2)+ p(zi = 0)N(γi|0,σ

2), (11)

where σ is a sufficiently small constant, α = {αi}
L
i=1, γ = {γi}

L
i=1,

and p(zi = 1) = p, then the optimal set of parameters, α∗, can be

approximated by solving the following optimization problem [14]

α∗ = argmin
α

{
1

N

N

∑
i=1

2D

∑
k=1

[log[σφ̃ (i)(m̃
(i))]k

+
([s̃(i)]k − [ fω̃(i)(m̃(i))]k)

2

2[σφ̃ (i)(m̃(i))]2
k

]+
p

2N

L

∑
i=1

α2
i },

(12)

where [ . ]k denotes the kth element of a given vector, and γ̃(i) =
ω̃(i)∪ φ̃ (i) is a sample from the Bernoulli variational distribution,

qα (γ).
Interestingly, generating a sample from the Bernoulli vari-

ational distribution requires sampling a set of Bernoulli random

variables {zi}
L
i=1 and multiplying them with the parameters of the

Bernoulli variational distribution, {αi}
L
i=1. This procedure resem-

bles the dropout operation in the deep learning literature. Hence,

solving the optimization problem in Eqn. (12) boils down to train-

ing two neural networks fω and σφ using the first term of the Eqn.

(12) as a loss function with the weight decay parameter of
p

2N
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while the dropout is applied after every weight layer of the neural

networks fω and σφ with the dropout rate of 1− p. The result-

ing weights of the neural networks after the training stage are the

optimal parameters of the Bernoulli variational distribution, α∗.

After obtaining an approximation of the posterior distribu-

tion, qα∗(γ)≈ p(γ|Dtr), we can find approximations of the mean

and the variance of the predictive distribution by moment match-

ing with T samples

E [s̃∗|m̃∗,Dtr]≈
1

T

T

∑
t=1

fω̃(t)(m̃∗), (13)

Var [[s̃∗]k |m̃∗,Dtr]≈
1

T

T

∑
t=1

[σφ̃ (t)(m̃∗)]
2
k +

1

T

T

∑
t=1

[ fω̃(t)(m̃∗)]
2
k

−

(

1

T

T

∑
t=1

fω̃(t)(m̃∗)]k

)2

.

(14)

Because the original formulation of the problem involves

complex target images, we can find the mean and the variance

of the complex version of the predictive distribution as

E [s∗|m∗,Dtr] = η−1
D (E [s̃∗|m̃∗,Dtr]) (15)

Var [[s∗]k |m∗,Dtr] = Var [[s̃∗]k |m̃∗,Dtr]+Var
[

[s̃∗]k+D |m̃∗,Dtr

]

(16)

for all k ∈ {1,2, ...,D}. Remarkably, the inference procedure

also requires samples from the Bernoulli variational distribution.

Thus, finding the predictive variance and the mean boils down to

feeding the measurement, m̃∗, into the neural networks fω and σφ

T times while the dropout is enabled and performing the updates

in Eqn. (15) and Eqn. (16).

Experiments and Results
The main advantage of the proposed method is that we can

both perform reconstruction and obtain uncertainty information

about the reconstruction. In this section, we evaluate the proposed

method on a simulated magnetic resonance imaging experiment

and focus on addressing the following questions:

• Can we use the uncertainty information to locate the poten-

tially erroneous regions in the reconstructed image?

• Is the uncertainty information reliable in the sense that the

region described by the predictive mean and the predictive

variance contains the target pixel intensity values?

• How does the size of the training dataset N effect the uncer-

tainty?

Setup
In magnetic resonance imaging, the measurement vector, m,

contains the Fourier coefficients of the ground truth image. In ex-

periments, we used a single-coil model with a constant sensitivity

map; therefore, the forward operator A is simply a subsampled

Fourier transform operator. The subsampling rate of the Fourier

coefficients in the k-space determines the structure of the A matrix

and the acceleration rate of the data acquisition step. For example,

if 20% of the Fourier coefficients are collected, the acceleration

rate of the acquisition becomes 5×.

For different acceleration rates (3.33×, 5×, and 10×) and

noise standard deviations (0.01, 0.05, 0.1, and 0.2), we con-

structed 12 different training dataset-test dataset pairs. To obtain

the target images of the training and test datasets, we extracted

N = 7300 256× 256 MRI images from the MRI data of 558 pa-

tients in the IXI Dataset1 and M = 268 256× 256 MRI images

from the MRI data of 20 patients in the IXI Dataset, respectively.

The target images were normalized such that the pixel intensity

values lie between 0 and 1. For each acceleration rate-noise stan-

dard deviation pair, i.e., for each setup configuration, the mea-

surements of the training and test datasets were generated using

the linear model given in Eqn. (1).

For the function that maps measurements to images fω , we

use the neural network architecture introduced in the “Proposed

Method” section with K = 10 iterations, P = 1 residual blocks

and C = 8 modules. We used 32 filters in the first and the second

modules, 64 filters in the third and the fourth modules, 128 filters

in the fifth, sixth, and the seventh modules, and 2 filters in the final

module. The kernel size of the filters was set to 3, and the stride

and the padding size were set to 1. By the assumption that the true

conditional distribution is invariant between the training and the

test datasets, here we concentrate on quantifying the uncertainty

on the parameters of the regression model. Thus, we set σφ to be

a constant function with a fixed model parameter σmodel = 0.001,

i.e. σφ = σmodel , and φ = /0. In the case where the target images

contain noise, or the true conditional distribution is not invariant

across the training and test datasets, representing the aleatoric un-

certainty becomes an important task for characterizing the overall

uncertainty in the prediction. We leave the investigation of these

cases for future work.

Uncertainty Map and Reconstruction Error
To investigate the relationship between the uncertainty map

obtained by the proposed method and the reconstruction error, we

tested the proposed model on test measurements and computed

the absolute reconstruction errors and the uncertainty maps. Fig-

ure 3 illustrates the reconstruction error and the uncertainty map

for a single test measurement.

As can be seen in Figure 3, the similarity between the un-

certainty map and the absolute reconstruction error is remarkable.

The uncertainty provided by the proposed method is high in the

regions where the reconstruction error occurs such as the regions

around the edges and small details. On the other hand, it is rela-

tively low in the regions where the reconstruction error is negli-

gibly small such as piecewise constant and smooth regions. We

observed the same behavior for different setup configurations as

well. Thus, we deduce that we can leverage the uncertainty infor-

mation provided by the proposed method to locate the erroneous

regions in a reconstructed image without the need of the reference

image.

Reliability of the Uncertainty Information
To evaluate the reliability of the uncertainty information ob-

tained by the proposed method, we trained the proposed model for

each setup configuration using the corresponding training dataset.

1https://brain-development.org/ixi-dataset/
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