How Much Data Is Sufficient to Learn High-Performing
Algorithms? Generalization Guarantees for Data-Driven
Algorithm Design

Maria-Florina Balcan
ninamf@cs.cmu.edu
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Carl Kingsford
carlk@cs.cmu.edu
Carnegie Mellon University
Ocean Genomics, Inc.
Pittsburgh, Pennsylvania, USA

Dan DeBlasio
dfdeblasio@utep.edu
University of Texas at El Paso
El Paso, Texas, USA

Tuomas Sandholm
sandholm@cs.cmu.edu
Carnegie Mellon University
Strategic Machine, Inc.
Strategy Robot, Inc.

Travis Dick
tbd@seas.upenn.edu
University of Pennsylvania
Philadelphia, Pennsylvania, USA

Ellen Vitercik
vitercik@cs.cmu.edu
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Optimized Markets, Inc.
Pittsburgh, Pennsylvania, USA

ABSTRACT

Algorithms often have tunable parameters that impact performance
metrics such as runtime and solution quality. For many algorithms
used in practice, no parameter settings admit meaningful worst-
case bounds, so the parameters are made available for the user
to tune. Alternatively, parameters may be tuned implicitly within
the proof of a worst-case guarantee. Worst-case instances, how-
ever, may be rare or nonexistent in practice. A growing body of
research has demonstrated that data-driven algorithm design can
lead to significant improvements in performance. This approach
uses a training set of problem instances sampled from an unknown,
application-specific distribution and returns a parameter setting
with strong average performance on the training set.

We provide a broadly applicable theory for deriving generaliza-
tion guarantees that bound the difference between the algorithm’s
average performance over the training set and its expected perfor-
mance on the unknown distribution. Our results apply no matter
how the parameters are tuned, be it via an automated or manual
approach. The challenge is that for many types of algorithms, perfor-
mance is a volatile function of the parameters: slightly perturbing
the parameters can cause a large change in behavior. Prior research
(e.g., Gupta and Roughgarden, SICOMP’17; Balcan et al., COLT’17,
ICML’18, EC’18) has proved generalization bounds by employing
case-by-case analyses of greedy algorithms, clustering algorithms,
integer programming algorithms, and selling mechanisms. We un-
cover a unifying structure which we use to prove extremely general
guarantees, yet we recover the bounds from prior research. Our
guarantees, which are tight up to logarithmic factors in the worst

This work is licensed under a Creative Commons Attribution International 4.0 License.

STOC 21, June 21-25, 2021, Virtual, Italy

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8053-9/21/06.
https://doi.org/10.1145/3406325.3451036

919

case, apply whenever an algorithm’s performance is a piecewise-
constant, -linear, or—more generally—piecewise-structured function
of its parameters. Our theory also implies novel bounds for voting
mechanisms and dynamic programming algorithms from computa-
tional biology.

CCS CONCEPTS

« Theory of computation — Sample complexity and general-
ization bounds.

KEYWORDS

Automated algorithm design, data-driven algorithm design, auto-
mated algorithm configuration, machine learning theory, computa-
tional biology, mechanism design

ACM Reference Format:

Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas
Sandholm, and Ellen Vitercik. 2021. How Much Data Is Sufficient to Learn
High-Performing Algorithms? Generalization Guarantees for Data-Driven
Algorithm Design. In Proceedings of the 53rd Annual ACM SIGACT Sympo-
sium on Theory of Computing (STOC °21), June 21-25, 2021, Virtual, Italy.
ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3406325.3451036

1 INTRODUCTION

Algorithms often have tunable parameters that impact performance
metrics such as runtime, solution quality, and memory usage. These
parameters may be set explicitly, as is often the case in applied dis-
ciplines. For example, integer programming solvers expose over
one hundred parameters for the user to tune. There may not be
parameter settings that admit meaningful worst-case bounds, but
after careful parameter tuning, these algorithms can quickly find so-
lutions to computationally challenging problems. However, applied
approaches to parameter tuning have rarely come with provable
guarantees. Alternatively, an algorithm’s parameters may be set im-
plicitly, as is often the case in theoretical computer science: a proof
may implicitly optimize over a parameterized family of algorithms
in order to guarantee a worst-case approximation factor or runtime

https://doi.org/10.1145/3406325.3451036
https://doi.org/10.1145/3406325.3451036
https://creativecommons.org/licenses/by/4.0/

STOC ’21, June 21-25, 2021, Virtual, Italy

bound. Worst-case bounds, however, can be overly pessimistic in
practice. A growing body of research (surveyed by Balcan [5]) has
demonstrated the power of data-driven algorithm design, where
machine learning is used to find parameter settings that work par-
ticularly well on problems from the application domain at hand.

We present a broadly applicable theory for proving generalization
guarantees in the context of data-driven algorithm design. We adopt
a natural learning-theoretic model of data-driven algorithm design
introduced by Gupta and Roughgarden [38]. As in the applied liter-
ature on automated algorithm configuration [e.g., 41, 43, 45, 48, 66,
76, 77], we assume there is an unknown, application-specific distri-
bution over the algorithm’s input instances. A learning procedure
receives a training set sampled from this distribution and returns a
parameter setting—or configuration—with strong average perfor-
mance over the training set. If the training set is too small, this
configuration may have poor expected performance. Generalization
guarantees bound the difference between average performance over
the training set and expected performance. Our guarantees apply
no matter how the parameters are optimized, via an algorithmic
search as in automated algorithm configuration [e.g., 22, 66, 76, 77],
or manually as in experimental algorithmics [e.g., 16, 44, 54].

Across many types of algorithms—for example, combinatorial
algorithms, integer programs, and dynamic programs—the algo-
rithm’s performance is a volatile function of its parameters. This is
a key challenge that distinguishes our results from prior research
on generalization guarantees. For well-understood functions in ma-
chine learning theory such as linear separators or other smooth
curves in Euclidean spaces, there is generally a simple connec-
tion between a function’s parameters and the value of the function.
Meanwhile, slightly perturbing an algorithm’s parameters can cause
significant changes in its behavior and performance. To provide
generalization bounds, we uncover structure that governs these
volatile performance functions.

The structure we discover depends on the relationship between
primal and dual functions [2]. To derive generalization bounds, a
common strategy is to calculate the intrinsic complexity of a function
class U which we refer to as the primal class. Every function u, € U
is defined by a parameter setting p € R? and up(x) € R measures
the performance of the algorithm parameterized by p given the
input x. We measure intrinsic complexity using the classic notion
of pseudo-dimension [63]. This is a challenging task because the
domain of every function in U/ is a set of problem instances, so
there are no obvious notions of Lipschitz continuity or smoothness
on which we can rely. Instead, we use structure exhibited by the
dual class U*. Every dual function u}, € U™ is defined by a problem
instance x and measures the algorithm’s performance as a function
of its parameters given x as input. The dual functions have a simple,
Euclidean domain R? and we demonstrate that they have ample
structure which we can use to bound the pseudo-dimension of .

1.1 Our Contributions

Our results apply to any parameterized algorithm with dual func-
tions that exhibit a clear-cut, ubiquitous structural property: the
duals are piecewise constant, piecewise linear, or—more broadly—
piecewise structured. The parameter space decomposes into a small
number of regions such that within each region, the algorithm’s

920

Balcan, DeBlasio, Dick, Kingsford, Sandholm, and Vitercik

Function value

Figure 1: A piecewise-constant function over R% o With linear

boundary functions g(l) and g(2).

performance is “well behaved” As an example, Figure 1 illustrates
a piecewise-structured function of two parameters p = (p[1], p[2]).
There are two functions g and ¢ that define a partition of the pa-
rameter space and four constant functions that define the function
value on each subset from this partition.

More formally, the dual class U* is (F, G, k)-piecewise decompos-
able if for every problem instance, there are at most k boundary
functions from a set G (for example, the set of linear separators) that
partition the parameter space into regions such that within each re-
gion, algorithmic performance is defined by a function from a set 7
(for example, the set of constant functions). We bound the pseudo-
dimension of U in terms of the pseudo- and VC-dimensions of the
dual classes F* and G*, denoted Pdim (F*) and VCdim (G*). This
yields our main theorem: if [0, H] is the range of the functions in I/,
then with probability 1 — § over the draw of N training instances,
for any parameter setting, the difference between the algorithm’s
average performance over the training set and its expected perfor-

mance is O (H\/% (Pdim (F*)+ VCdim (G*)Ink + In %)) Specif-

ically, we prove that Pdim(l{) = O (Pdim (F*) + VCdim (G*)Ink)
and that this bound is tight up to log factors. The classes F and G are
often so well structured that bounding Pdim (F*) and VCdim (G*)
is straightforward.

This is the most broadly applicable generalization bound for
data-driven algorithm design in the distributional learning model
that applies to arbitrary input distributions. A nascent line of re-
search [3, 8-10, 12, 38] provides generalization bounds for a selec-
tion of parameterized algorithms. Unlike the results in this paper,
those papers analyze each algorithm individually, case by case. Our
approach recovers those bounds, implying guarantees for configur-
ing greedy algorithms [38], clustering algorithms [10], and integer
programming algorithms [8, 10], as well as mechanism design for
revenue maximization [12]. We also derive novel bounds for com-
putational biology algorithms and voting mechanisms.

Proof insights. At a high level, we prove this guarantee by count-
ing the number of parameter settings with significantly different
performance over any set S of problem instances. To do so, we
first count the number of regions induced by the |S|k boundary
functions that correspond to these problem instances. This step
subtly depends not on the VC-dimension of the class of boundary
functions G, but rather on VCdim (G*). These |S|k boundary func-
tions partition the parameter space into regions where across all
instances x in S, the dual functions uj are simultaneously struc-
tured. Within any one region, we use the pseudo-dimension of the
dual class F* to count the number of parameter settings in that

How Much Data Is Sufficient to Learn High-Performing Algorithms?

region with significantly different performance. We aggregate these
bounds over all regions to bound the pseudo-dimension of /.

Parameterized dynamic programming algorithms from computa-
tional biology. Our results imply bounds for a variety of compu-
tational biology algorithms that are used in practice. We analyze
parameterized sequence alignment algorithms [29, 35, 39, 61, 62] as
well as RNA folding algorithms [60], which predict how an input
RNA strand would naturally fold, offering insight into the mole-
cule’s function. We also provide guarantees for algorithms that
predict topologically associating domains in DNA sequences [30],
which shed light on how DNA wraps into three-dimensional struc-
tures that influence genome function.

Parameterized voting mechanisms. A mechanism is a special type
of algorithm designed to help a set of agents come to a collective
decision. For example, a town’s residents may want to build a public
resource such as a park, pool, or skating rink, and a mechanism
would help them decide which to build. We analyze neutral affine
maximizers [55, 59, 65], a well-studied family of parameterized
mechanisms. The parameters impact social welfare, which is the
sum of the agents’ values for the mechanism’s outcome.

1.2 Additional Related Research

A growing body of theoretical research investigates how machine
learning can be incorporated in the process of algorithm design [1,
3,4,8-10, 12, 14, 15, 17, 19, 26, 27, 31, 38, 42, 46, 47, 53, 56, 64, 73—
75]. A chapter by Balcan [5] provides a comprehensive survey. We
highlight a few papers that are most related to ours below.

Runtime optimization with provable guarantees. Kleinberg et al.
[46, 47] and Weisz et al. [74, 75] provide configuration procedures
with provable guarantees when the goal is to minimize runtime. In
contrast, our bounds apply to arbitrary performance metrics, such
as solution quality as well as runtime. Also, their procedures are
designed for the case where the set of parameter settings is finite
(although they can still offer some guarantees when the parameter
space is infinite by first sampling a finite set of parameter settings
and then running the configuration procedure; Balcan et al. [8, 13]
study what kinds of guarantees discretization approaches can and
cannot provide). In contrast, our guarantees apply immediately to
infinite parameter spaces. Finally, unlike our results, the guarantees
from this prior research are not configuration-procedure-agnostic:
they apply only to the specific procedures that are proposed.

Learning-augmented algorithms. A related line of research has
designed algorithms that replace some steps of a classic worst-case
algorithm with a machine-learned oracle that makes predictions
about structural aspects of the input [26, 27, 42, 53, 56, 64, 73]. If the
prediction is accurate, the algorithm’s performance (for example, its
error or runtime) is superior to the original worst-case algorithm,
and if the prediction is incorrect, the algorithm performs as well as
that worst-case algorithm. Though similar, our approach to data-
driven algorithm design is different because we are not attempting
to learn structural aspects of the input; rather, we are optimizing the
algorithm’s parameters directly using the training set. Moreover, we
can also compete with the best-known worst-case algorithm by in-
cluding it in the algorithm class over which we optimize. Just adding

921

STOC °21, June 21-25, 2021, Virtual, Italy

one extra algorithm—however different—does not increase our sam-
ple complexity bounds. That best-in-the-worst-case algorithm does
not have to be a special case of the parameterized algorithm.

Dispersion. Balcan et al. [4, 9] provide provable guarantees for
algorithm configuration, with a particular focus on online learning
and privacy-preserving algorithm configuration. These tasks are
impossible in the worst case, so these papers identify a property of
the dual functions under which online and private configuration
are possible. This condition is dispersion, which, roughly speaking,
requires that the discontinuities of the dual functions are not too
concentrated in any ball. Online learning guarantees imply sample
complexity guarantees due to online-to-batch conversion, and Bal-
can et al. [9] also provide sample complexity guarantees based on
dispersion using Rademacher complexity.

Proofs that dispersion holds typically follow by exploiting prop-
erties of the input distribution under certain assumptions or—when
applicable—by appealing to the random nature of the parameter-
ized algorithm. Thus, for arbitrary distributions and deterministic
algorithms, dispersion does not necessarily hold. In contrast, our
results hold even when the discontinuities concentrate, and thus
are applicable to a broader set of problems in the distributional
learning model. In other words, the results from this paper cannot
be recovered using the techniques of Balcan et al. [4, 9].

2 NOTATION AND PROBLEM STATEMENT

We study algorithms parameterized by a set P C R?. As a concrete
example, parameterized algorithms are often used for sequence
alignment [35]. There are many features of an alignment one might
wish to optimize, such as the number of matches, mismatches, or
indels (defined in Section 4.1). A parameterized objective function
is defined by weighting these features. As another example, hier-
archical clustering algorithms often use linkage routines such as
single, complete, and average linkage. Parameters can be used to
interpolate between these three classic procedures [10], which can
be outperformed with a careful parameter tuning [3].

We use X’ to denote the set of problem instances the algorithm
takes as input. We measure the performance of the algorithm pa-
rameterized by p = (p[1],...,p[d]) € RY via a utility function
up : X — [0,H], with U/ = {up : p € P} denoting the set of
all such functions. We assume there is an unknown, application-
specific distribution D over X.

Our goal is to find a parameter vector in P with high perfor-
mance in expectation over D. We provide generalization guarantees
for this problem. Given a training set of problem instances S sam-
pled from D, a generalization guarantee bounds the difference—for
any choice of the parameters p—between the average performance
of the algorithm over S and its expected performance.

Specifically, our main technical contribution is a bound on the
pseudo-dimension [63] of the setU. For any arbitrary set of functions
‘H that map an abstract domain) to R, the pseudo-dimension of H,
denoted Pdim(H), is the size of the largest set {y1,...,yn} € YV
such that for some set of targets z1,...,zN € R,

[{(sign (A (y1) = z1), ..., sign (h (yn) — zn)) | h € H} =2V, (1)

Classic results from learning theory [63] translate pseudo-dimension
bounds into generalization guarantees. For example, suppose [0, H]

STOC ’21, June 21-25, 2021, Virtual, Italy

is the range of the functions in . For any § € (0, 1) and any distri-
bution D over), with probability 1 — § over the draw of S ~ DN
for all functions h € H, the difference between the average value
of h over S and its expected value is bounded as follows:

v

N yeS

1 1
hy)— E [h(y)]|=0 H\/— (Pdim('H) +1In —)) (2)
y~D N 1)
When H is a set of binary-valued functions that map) to {0, 1},
the pseudo-dimension of H is more commonly referred to as the
VC-dimension of H [70], denoted VCdim(H).

3 GENERALIZATION GUARANTEES FOR
DATA-DRIVEN ALGORITHM DESIGN

In data-driven algorithm design, there are two closely related func-
tion classes. First, for each parameter setting p € P,up : & - R
measures performance as a function of the input x € X. Simi-
larly, for each input x, there is a function uy : P — R defined as
ux(p) = up(x) that measures performance as a function of the pa-
rameter vector p. The set {ux | x € X'} is equivalent to Assouad’s
notion of the dual class [2].

Definition 3.1 (Dual class [2]). For any domain) and set of
functions H C RY, the dual class of H is defined as

Ho={hy:H >R ye)

where hy(h) = h(y). Each function hj, € H* fixes an inputy € Y
and maps each function h € H to h(y). We refer to the class H as
the primal class.

The set of functions {uy | x € X'} is equivalent to the dual class
u* = {u;ﬁ U - [0,H] | x € X} in the sense that for every param-
eter vector p € P and every instance x € X, ux(p) = uj (up).

Many combinatorial algorithms share a clear-cut, useful struc-
ture: for each instance x € X, the function uy is piecewise structured.
For example, each function u, might be piecewise constant with
a small number of pieces. Given the equivalence of the functions
{ux | x € X'} and the dual class U*, the dual class exhibits this
piecewise structure as well. We use this structure to bound the
pseudo-dimension of the primal class U/.

Intuitively, a function h :) — R is piecewise structured if we
can partition the domain) into subsets Vi, ..., YV so that when
we restrict h to one piece V;, h equals some well-structured function
f Y — R. In other words, for all y € V;, h(y) = f(y). We define
the partition V1, . . ., Y using boundary functions gV, . . .,g(k) :
Y — {0, 1}. Each function gm divides the domain) into two sets:
the points it labels 0 and the points it labels 1. Figure 2 illustrates a
partition of R? by boundary functions. Together, the k boundary
functions partition the domain) into at most 2k regions, each
one corresponding to a bit vector b € {0, l}k that describes on
which side of each boundary the region belongs. For each region,
we specify a piece function f, : Y — R that defines the function
values of h restricted to that region. Figure 1 shows an example of
a piecewise-structured function with two boundary functions and
four piece functions.

For many algorithms, every function in the dual class is piece-
wise structured. Moreover, across dual functions, the boundary

922

Balcan, DeBlasio, Dick, Kingsford, Sandholm, and Vitercik

(1) g?

9

g

Figure 2: Boundary functions partitioning R2. The arrows
indicate on which side of each function ¢()(p) = 0 and on
which side g((p) = 1. For example, ¢! (p1) =1, g (p2) =1,
and g(1> (p3) =o0.

functions come from a single, fixed class, as do the piece functions.
For example, the boundary functions might always be halfspace in-
dicator functions, while the piece functions might always be linear
functions. The following definition captures this structure.

Definition 3.2. A function class H C RY that maps a domain
Y toRis (F, G, k)-piecewise decomposable for a class G C {0, 1}
of boundary functions and a class 7 € RY of piece functions
if the following holds: for every h € H, there are k boundary
functions g(l), e ,g(k) € G and a piece function f;, € F for each
bit vector b € {0, 1}¥ such that for all ye)V, hy) = fby (y) where

by = (9@ .. g P W) € 0, 11%.

Our main theorem shows that when the dual class U/ * is (F, G, k)-
piecewise decomposable, we can bound the pseudo-dimension of
U in terms of the VC-dimension of G* and the pseudo-dimension
of F*. Later, we show that for many common classes F and G, we
can easily bound the complexity of their duals.

THEOREM 3.3. Suppose that the dual function classU* is (F, G, k)-
piecewise decomposable with boundary functions G C {0, 1} and
piece functions F C RY. The pseudo-dimension of U is bounded as
follows: Pdim(Uf) = O (Pdim(F*) + VCdim(G*) Ink) .

To make the theorem’s proof succinct, we extract a key insight in
the following lemma. Given a set H of functions that map a domain
Y to {0, 1}, Lemma 3.4 bounds the number of binary vectors

(h1(). hn(y)) ®)

we can obtain for any N functions hy,...,hxy € H as we vary
the input y € V. Pictorially, if we partition R? using the functions
g(l), g(z), and g(S) from Figure 2 for example, Lemma 3.4 bounds
the number of regions in the partition. This bound depends not
on the VC-dimension of the class #, but rather on that of its dual
H*. We use a classic lemma by Sauer [69] to prove Lemma 3.4.
Sauer’s lemma [69] bounds the number of binary vectors of the form
(h(y1),...,h(yn)) we can obtain for any N elements yi,...,ynN €
) as we vary the function h € H by (eN)VC4m(*)_ Therefore, it
does not immediately imply a bound on the number of vectors from
Equation (3). In order to apply Sauer’s lemma, we must transition
to the dual class.

LEMMA 3.4. Let H be a set of functions that map a domain Y
to {0, 1}. For any functions hy, ..., hN € H, the number of binary

How Much Data Is Sufficient to Learn High-Performing Algorithms?

vectors (h1(y), . . ., hn(y)) obtained by varying the inputy € Y is
bounded as follows:

|{(h1(y), N hN(y)) | Y€ y}l < (eN)VCdim(H*)'
ProoFr. We rewrite the left-hand-side of Equation (4) as
[(5 .ty) |9 €).

Since we fix N inputs and vary the function hj},, the lemma statement
follows from Sauer’s lemma [69]. o

©

We now prove Theorem 3.3.

Proor oF THEOREM 3.3. Fix an arbitrary set of problem instances
X1,...,xN € & and targets z1, . ..,zy € R. We bound the number
of ways that U can label the problem instances xi, ..., xy with
respect to the target thresholds z1, ..., zn € R. In other words, as
per Equation (1), we bound the size of the set

sign (up (x1) — 1)
: peP
sign (up (xN) — ZN)
sign (u;}1 (up) - zl)
= peP (5)
sign (u;N (up) - zN)

by (ekN)VCdim(g*)(eN)Pdim(]: *). Then solving for the largest N
such that 2N < (ekN)VCdim(g*)(eN)Pdim(]: ") gives a bound on
Pdim(l{). Our bound on Equation (5) has two main steps:

(1) In Claim 3.5, we show that there are M < (ekN)VCdim(g*)
subsets P, . . ., Pas partitioning the parameter space P such
that within any one subset, the dual functions uy,, ..., uy,
are simultaneously structured. In particular, for each subset
Pj, there exist piece functions fi,..., fy € F such that
uy, (up) = fi (up) forall p € Pj and i € [N]. This is the
partition of P induced by aggregating all of the boundary
functions corresponding to the dual functions uy., ..., u%, .

(2) We then show that for any region P; of the partition, as we
vary the parameter vector p € P}, up can label the problem
instances x1, .. ., x in at most (eN)Pdim(F™) ways with re-
spect to the target thresholds z1, . . ., zn. It follows that the
total number of ways that I/ can label the problem instances

., xN is bounded by (ekN)VCdim(g*)(eN)Pdim(]:*).

We now prove Claim 3.5.

X1, .-

CLAIM 3.5. There are M < (ekN)VCU™9") sypsets Py, ..., Py
partitioning the parameter space P such that within any one subset,

the dual functions uy, ..., uy, are simultaneously structured. In

particular, for each subset Pj, there exist piece functions f1,. .., fN €
F such that uy, (up) = fi (up) for all p € Pj and i € [N].
ProorF oF CLamm 3.5. Let u ,...,uy . € U* be the dual func-

X1° PUXN
tions defined by the instances xi, ..., xnN. Since U* is (F, G, k)-
piecewise decomposable, we know that for each function uy, there

M,....g" € G < {0.1}¥ that define
.,ggk)} be the

are k boundary functions g

its piecewise decomposition. Let G= Ué\il {ggl), ..

923

STOC °21, June 21-25, 2021, Virtual, Italy

union of these boundary functions across all i € [N]. For ease of
notation, we relabel the functions in G , calling them gy, ..., gk N-
Let M be the total number of kN-dimensional vectors we can obtain
by applying the functions in Gc {0, 1} to elements of U:

g1 (up)

M := :peP (6)

9N (up)
By Lemma 3.4, M < (ekN)VCdim(g*) . Let by, ..., bps be the binary
vectors in the set from Equation (6). For each i € [M], let P;
{p (g1 (up).....9kn (up)) = b} . By construction, for each set
P, the values of all the boundary functions g (up), ..., gkn (up)
are constant as we vary p € P;. Therefore, there is a fixed set of
piece functions fi,..., fy € F so that uf, (up) = fi (up) for all
vectors p € Pj and indices i € [N]. Therefore, the claim holds. O

Claim 3.5 and Equation (5) imply that for every subset P; of the
partition,

sign (up (x1) — zl)
: pPEP;
sign (up (xN) — zN)
sign (fi (up) —21)
= : pePj ™)
sign (v (up) — 2N)
Lemma 3.4 implies that Equation (7) is bounded by (eN)P dim(F"),

In other words, for any region P; of the partition, as we vary
the parameter vector p € Pj, u, can label the problem instances
X1....,xN in at most (eN)Pdim(F") ways with respect to the target
thresholds z1, . .., zn. Because there are M < (ekN)VCdim(g*) re-
gions P; of the partition, we can conclude that that {/ can label the
instances xi,...,xN in at most (ekN)VCdim(g*)(eN)Pdim(]:*) dis-
tinct ways relative to the targets z1, . . ., zn. In other words, Equa-
tion (5) is bounded by (ekN)VCdim(g*)(eN)Pdim(P). On the other
hand, if U shatters the problem instances x1, . . ., xn, then the num-
ber of distinct labelings must be 2N Therefore, Pdim({{) is at most
the largest value of N such that 2N < (ekN)VCdim(g*)(eN yPdim(F™)
which implies that N = O (Pdim(F*) + VCdim(G*)Ink) . O

We prove several lower bounds which show that Theorem 3.3 is
tight up to logarithmic factors.

THEOREM 3.6. The following lower bounds hold:

(1) There is a parameterized sequence alignment algorithm with
Pdim(U) = Q(logn) for some n > 1. Its dual class U* is
(F. G, n)-piecewise decomposable for classes F and G with
Pdim (F*) = VCdim (G*) = 1.

(2) There is a parameterized voting mechanism with Pdim(U) =
Q(n) for somen > 1. Its dual class U™ is (F, G, 2)-piecewise
decomposable for classes F and G with Pdim (F*) = 1 and
VCdim (G*) = n.

Proor. In Theorem 4.3, we prove the result for sequence align-
ment, in which case n is the maximum length of the sequences,
F is the set of constant functions, and G is the set of threshold

STOC ’21, June 21-25, 2021, Virtual, Italy

functions. In Theorem 5.2, we prove the result for voting mecha-
nisms, in which case n is the number of agents that participate in
the mechanism, F is the set of constant functions, and G is the set
of homogeneous linear separators in R". O

Applications to representative function classes. We now instantiate
Theorem 3.3 in a general setting inspired by data-driven algorithm
design. Let U = {up |pe R} be a set of utility functions defined
over a single-dimensional parameter space. We often find that the
dual functions are piecewise constant, linear, or polynomial. More
generally, the dual functions are piecewise structured with piece
functions that oscillate a fixed number of times. In other words,
the dual class U™ is (F, G, k)-piecewise decomposable where the
boundary functions G are thresholds and the piece functions F
oscillate a bounded number of times, as formalized below.

Definition 3.7. A function h : R — R has at most B oscillations if
for every z € R, the function p — I(5(,)>,} is piecewise constant
with at most B discontinuities.

Figure 3 illustrates three common types of functions with bounded
oscillations. In the following lemma, we prove that if H is a class of
functions that map R to R, each of which has at most B oscillations,
then Pdim(#*) = O(ln B).

LEmMA 3.8. Let H be a class of functions mapping R to R, each of
which has at most B oscillations. Then Pdim(H*) = O(In B).

ProoF. Suppose that Pdim (H*) = N. Then there exist functions
hi,...,hN € H and witnesses z1, . .., zN € R such that for every
subset T C [N], there exists a parameter setting p € R such that
hy, (hi) 2 z; if and only if i € T. We can simplify notation as
follows: since h(p) = h}‘, (h) for every function h € H, we have
that for every subset T C [N], there exists a parameter setting
p € Rsuch that h; (p) > z; if and only if i € T. Let P* be the set
of 2N parameter settings corresponding to each subset T C [N].
By definition, these parameter settings induce 2N distinct binary
vectors as follows:

Liny(py2z1)
2N,

1pE P
RUNEDY!

On the other hand, since each function h; has at most B oscil-
lations, we can partition R into M < BN + 1 intervals I, ..., Iy
such that for every interval I; and every i € [N], the function
p > Lin,(p)sz;} is constant across the interval I;. Therefore, at

most one parameter setting p € P* can fall within a single interval
I;. Otherwise, if p, p e Iin P*, then

Lihy(p)2z1)

L2z

Linn(przzny) \lhn(p)zzn}

which is a contradiction. Thus, 2V < BN +1,s0 N = O(InB). O

Lemma 3.8 implies the following pseudo-dimension bound when
the dual function class U* is (F, G, k)-piecewise decomposable,
where the boundary functions G are thresholds and the piece func-
tions F oscillate a bounded number of times.

924

Balcan, DeBlasio, Dick, Kingsford, Sandholm, and Vitercik

LEMMA 3.9. LetU = {up | pe R} be a set of utility functions
and suppose the dual classU* is (F, G, k)-decomposable, where the
boundary functions G = {gs | a € R} are thresholds gq : up
Iia<py- Suppose for each f € F, the function p — f (up) has at
most B oscillations. Then Pdim({/) = O((In B) In(k In B)).

Proor. First, we claim that VCdim (G*) = 1. For a contradiction,
suppose G* can shatter two functions g4,g9;, € G*, where a <
b. There must be a parameter setting p € R where g:;p (9a) =
9ga (up) = Ijaspy = 0 and g, (9p) = gp (up) = Lp<py = 1.
Therefore, b < p < a, which is a contradiction, so VCdim (G*) = 1.

Next, we claim that Pdim (F*) = O(ln B). For each function
f € Flethy : R — Rbedefinedas hr(p) = f (u). By assumption,
each function k¢ has at most B oscillations. Let H = {hf | feF }
and let N = Pdim (H*). By Lemma 3.8, we know that N = O(ln B).
We claim that Pdim(H*) > Pdim(F™). For a contradiction, sup-
pose the class F* can shatter N + 1 functions fi, ..., fN+1 using
witnesses z1, . . ., zN+1 € R. By definition, this means that

R
: pePyl= aN+1,

R

For any function f € F and any parameter setting p € R, pr (f) =
f (up) = hf(P) = h;(hf). Therefore,

a2
: :peP
0 () 220
I
{fip (=
= : cpeP|=2N,
H{fl:p(fN'*l)ZzN-#l}

which contradicts the fact that Pdim(#*) = N. Thus, Pdim(F™*) <
N = O(In B). The corollary then follows from Theorem 3.3. O

4 PARAMETERIZED COMPUTATIONAL
BIOLOGY ALGORITHMS

We study algorithms that are used in practice for three biological
problems: sequence alignment, RNA folding, and predicting topo-
logically associated domains in DNA. In these applications, there
are two unifying similarities. First, algorithmic performance is mea-
sured in terms of the distance between the algorithm’s output and
a ground-truth solution. In most cases, this solution is discovered
using laboratory experimentation, so it is only available for the
instances in the training set. Second, these algorithms use dynamic
programming to maximize parameterized objective functions. This
objective function represents a surrogate optimization criterion
for the dynamic programming algorithm, whereas utility measures
how well the algorithm’s output resembles the ground truth. There
may be multiple solutions that maximize this objective function,
which we call co-optimal. Although co-optimal solutions have the

How Much Data Is Sufficient to Learn High-Performing Algorithms?

(a) Constant function (zero oscilla-

tions). tion).

(b) Linear function (one oscilla-

STOC °21, June 21-25, 2021, Virtual, Italy

(c) Inverse-quadratic function of the form h(p) = ﬁ +

bp + ¢ (two oscillations).

Figure 3: Each solid line is a function with bounded oscillations and each dotted line is an arbitrary threshold. Many parame-
terized algorithms have piecewise-structured duals with piece functions from these families.

same objective function value, they may have different utilities. To
handle tie-breaking, we assume that in any region of the parameter
space where the set of co-optimal solutions is fixed, the algorithm’s
output is also fixed, which is typically true in practice.

4.1 Global Pairwise Sequence Alignment

In pairwise sequence alignment, the goal is to line up strings in
order to identify regions of similarity. In biology, for example, these
similar regions indicate functional, structural, or evolutionary rela-
tionships between the sequences. Formally, let ¥ be an alphabet and
let S1, Sz € 2™ be two sequences. A sequence alignment is a pair of
sequences 71, 7z € (XU{-})* such that |r;| = |r2|, del (r1) = S1,and
del (12) = Sy, where del is a function that deletes every —, or gap
character. There are many features of an alignment that one might
wish to optimize, such as the number of matches (r1[i] = 2[i]),
mismatches (t1[i] # 2[i]), indels (r1[i] = — or 12[i] = —), and gaps
(maximal sequences of consecutive gap characters in 7 € {71, 72}).
We denote these features using functions ¢1, . . ., £z that map pairs
of sequences (51, S2) and alignments L to R.

A common dynamic programming algorithm A, [35, 72] returns
the alignment L that maximizes the objective function

pl1] - €1(S1,S2, L) + -+ + p[d] - £4 (51,52, L),

®)

where p = (p[1],...,p[d]) € RYisa parameter vector. We denote
the output alignment as A, (51, S2). As Gusfield et al. [39] wrote,
“there is considerable disagreement among molecular biologists
about the correct choice” of a parameter setting p. We assume
there is a utility function that characterizes an alignment’s quality,
denoted u(S1, S2, L) € R. For example, u(S1, S2, L) might measure
the distance between L and a “ground truth” alighment of S; and
Sz [68]. We then define up (S1,52) = u (Sl, S2,Ap (S1, Sz)) to be the
utility of the alignment returned by the algorithm Ap.

In the following lemma, we prove that the set of utility functions
up has piecewise-structured dual functions.

LEMMA 4.1. LetU be the set of functions
U= {u,, (S1,52) > u (51,52, Ap (S1,52)) | p € Rd} .
The dual class U™ is (]—', g, 4" n4”+2) -piecewise decomposable, where
F ={fc : U - R | ¢ € R} consists of constant functions f; :
up = cand G = {ga U —>{0,1} |a € Rd} consists of halfspace
indicator functions gq : up]I{a,p<0}.

Proor. Fix a sequence pair Sj and S;. Let £ be the set of align-
ments the algorithm returns as we range over all parameter vectors

p € R4, In other words, £ = {AP(Sl,Sz) | p e Rd}. In the full

925

version [7], we prove that |£| < 2"n?"*1, For any alignment L € L,
the algorithm A, will return L if and only if

plAl- €1 (81,82, L) + - - - + pld] - €4 (51, 52, L)

> p[1]- & (51, Sz,L,) +-+pld] - €y (S], SZ,LI) 9)

forall L € £\ {L}. Therefore, there is a set H of at most (znnzzrm) <
4"n"*2 hyperplanes such that across all parameter vectors p in
a single connected component of R? \ H, the output of the al-
gorithm parameterized by p, A,(S1, S2), is fixed. (As is standard,
R4 \ ‘H indicates set removal.) This means that for any connected
component R of R4 \ H, there exists a real value cg such that
up(S1,S2) = cg for all p € R. By definition of the dual, this means
that ug o (up) = up (S1,52) = cg as well.

We now use this structure to show that the dual class U* is
(F.G,4" n4"+2)—piecewise decomposable, as per Definition 3.2. Re-
call that G = {ga :U > {0,1} |a € Rd} consists of halfspace in-
dicator functions gq : up]I{a_p<0} and F = {fc : U > R |
¢ € R} consists of constant functions f : up + c. For each pair of
alignments L, L’ € £, let gL-L) € G correspond to the halfspace

represented in Equation (9). Order these k := (l'g |

) functions arbi-
trarily as g(l), e, g(k). Every connected component R of RY\ H
corresponds to a sign pattern of the k hyperplanes. For a given
region R, let by € {0, 1}¥ be the corresponding sign pattern. Define
the function fr) € F as fBr) = £, so fR) (u,) = cg for all
pE R9. Meanwhile, for every vector b not corresponding to a sign
pattern of the k hyperplanes, let f(b) = fo, so f(b) (up) = 0 for all

pE R, In this way, for every pE R4,

WGs, (Wp) = D0 Lgioguy)=sivierny " wp):
be{0,1}*

as desired. O

In the full version [7], we prove Pdim(F*) = 0 and VCdim(G*) =
d + 1. Theorem 3.3 and Lemma 4.1 therefore imply that Pdim({/) =
O(nd In n). Moreover, in the full version [7], we provide guarantees
for algorithms that align more than two sequences.

Tighter guarantees for a structured algorithm subclass: the affine-
gap model. A line of prior work [29, 39, 61, 62] analyzed a specific
instantiation of the objective function (8) where d = 3. In this
case, we can obtain a pseudo-dimension bound of O(In n), which is
exponentially better than the bound implied by Lemma 4.1. Given a
pair of sequences S1, So € ™, the dynamic programming algorithm

STOC ’21, June 21-25, 2021, Virtual, Italy

Ap returns the alignment L maximizes the objective function
MT(Sl, S, L)—p[l]MS(Sl, S, L) —p[Z]ID(Sl, S, L) —p[3]GP(51, S, L),

where MT(S1, S, L) is the number of matches, ms(S1, S, L) is the
number of mismatches, 1D(S1, S2, L) equals the number of indels,
GP(S1, S2, L) is the number of gaps, and p = (p[1], p[2], p[3]) € R?is
a parameter vector. We denote the output alignment as A, (S1, S2).
This is known as the affine-gap scoring model. We exploit specific
structure exhibited by this algorithm family to obtain the exponen-
tial pseudo-dimension improvement. This useful structure guar-
antees that for any pair of sequences S; and Sy, there are only
0] (n3/ 2) different alignments the algorithm family {A, | p € R3}
might produce as we range over parameter vectors [29, 39, 61]. This
bound is exponentially smaller than the generic bound of 4" n*"*2
that we use in the proof of Lemma 4.1. The proof is in the full
version [7].

LEMMA 4.2. LetU be the set of functions
U ={up :(S1,52) - u(S1.S2,Ap (S1,52)) | pe R} .

The dual classU* is (]:, Gg,o (n))—piecewise decomposable, where
F =A{fe:U — R | c € R} consists of constant functions fe : up
¢ and where G = {ga U - {0,1} |a € R4} consists of halfspace
indicator functions gq : up Liarpli]+al2lpl2]+al3]p03]<al4]}-

Theorem 3.3 and Lemma 4.2 imply that Pdim({/) = O(In n). We
also prove that this pseudo-dimension bound is tight up to constant
factors. In this lower bound proof, our utility function u is the Q
score between a given alignment L of two sequences (Si, S2) and
the ground-truth alignment L* (the Q score is also known as the
SPS score in the case of multiple sequence alignment [24]). The Q
score between L and the ground-truth alignment L* is the fraction
of aligned letter pairs in L* that are correctly reproduced in L. For
example, the following alignment L has a Q score of % because it
correctly aligns the two pairs of Cs, but not the pair of Gs:

L_le AT cc so- e AT Cc
“|A 6 - coc A6 - - ¢ ¢

We use the notation u (S1,S2,L) € [0,1] to denote the Q score
between L and the ground-truth alignment of S; and Sy. The full
proof of the following theorem is in the full version [7].

THEOREM 4.3. There exists a set {Ap |pe RSZO} of co-optimal-
constant algorithms and an alphabet T such that the set of functions
U = {up : (51.52) - u (S1,52. Ap (51.52)) | p € R3)}, which map
sequence pairs S1,S2 € U?lei of length at most n to [0, 1], has a
pseudo-dimension of Q(log n).

ProorF skETCH. In this proof sketch, we illustrate the way in
which two sequences pairs can be shattered, and then describe how
the proof can be generalized to ©(log n) sequence pairs.

Setup. Our setup consists of the following three elements: the
alphabet, the two sequence pairs (551), Sgl)) and (SEZ), ng)), and

ground-truth alignments of these pairs. We detail these elements
below:

(1) Our alphabet consists of twelve characters: {a;, b;, ¢, d; }?:1

926

Balcan, DeBlasio, Dick, Kingsford, Sandholm, and Vitercik

(2) The two sequence pairs are comprised of three subsequence
pairs: (tgl), tél)), (tiz), tgz)), and ((3) (3)) where

172
/@)

t(l) = aibid; t(3)
2
tZ

%1)) azazbaas and azaszasbsds (10)
l’2 =bicyd;

)

0 = b3C3C3C3d3

= bacacady

We define the two sequence pairs as

Sgl) %1) f) %3) = a1b1d1a2a2b2d2a3a3a3b3d3
v 243 _ b1C1d1b2C2C2d2b3C3C3C3d3
5(2) = t(z) = asashyds
and S%Z) _ %2) _ .
5 = Z’Z = bycycady

(3) Finally, we define ground-truth alignments of the two se-
quence pairs (551)’ Sgl)) and (Siz), ng)).We define the ground-

truth alignment of (Sil), Sél)) to be

a; by - dyazazby - - dyasas az b - - d3
by - c1dy - - bacpcpdaby - - - c3c3c3d3

. (11)

The most important properties of this alignment are that
the d; characters are always matching and the b; characters
alternate between matching and not matching. Similarly, we

define the ground-truth alignment of (ng) s ng)) to be

az az by - - dy
bz ¢z co da”

Shattering. We now show that these two sequence pairs can

be shattered. A key step is proving that u(_p[2),0) (S Y S(l)) and
(0, p[2],0) (S<) st)) have the following form:

1 °%2
1 ifplz <
5 el 1
m) _Jg ig<pl2l<g
s sV = 12
”<0’Pf21’°>(1 2) toifl<pll<d (2
: lfp[] 7
@) 2 1 ifp[Z]S‘-l}
and w10 (5757) = {% if pl2] > 1

1092
straightforward to verify that the two sequence pairs are shattered

by the parameter settings (0, 0, 0), (O, 5 0) (0, 3 0), and (0, 1,0)

The form of (g, p[2],0) (S() st)) is illustrated by Figure 4. It is then

with the witnesses z; = z3 = %. In other words, the mismatch and
gap parameters are set to 0 and the indel parameter p[2] takes the
values {0, 5 3 1}

Proof sketch of Equation (12). The full proof that Equation (12)

holds follows the following high-level reasoning:

(1) First, we prove that under the algorithm’s output alignment,
the d; characters will always be matching. Intuitively, this
is because the algorithm’s objective function will always be
maximized when each subsequence t(J) is aligned with t(])

(2) Second, we prove that the characters b;j will be matched if
and only if p[2] < % Intuitively, this is because in order to
match these characters, we must pay with 2j indels. Since the

How Much Data Is Sufficient to Learn High-Performing Algorithms?

STOC °21, June 21-25, 2021, Virtual, Italy

ENIS

M
U(0,p[2],0) (51 +Sy)

[SNTSN
Nl

ap by d;
b1 C1 d]

N
azg az by d2 a3 a3 as by d3

b cz cz d2 by c3 c3 c3 ds

al b1 - d1
- b1 C1 d1

N
az a2 by dy a3 a3 as bz d3

by c2 cz d» by c3 c3 c3 ds

N
ag by - di a a by - - dy a3 a3 a3 bz d3
- by ¢ di - - by ¢z ¢ d2 by c3 c3 c3 ds
N
- az a 9 - - dy a3 a3 a - - - d
ar by di a az b d 3 a3 az bs ds
- by ¢ dp - - by e cg d2 - - - b3 c3 c3 c3 dj

Figure 4: The form of u(,[3),0) (Sil), Sgl)) as a function of the indel parameter p[2]. When p[2] < é, the algorithm returns the

1

bottom alignment. When % < p[2] < 3, the algorithm returns the alignment that is second to the bottom. When % < pl2] < %,
the algorithm returns the alignment that is second to the top. Finally, when p[2] > %, the algorithm returns the top alignment.
The purple characters denote which characters are correctly aligned according to the ground-truth alignment (Equation (11)).

objective function is MT (Sil), Sgl), L) -p[2]- D (Sil), Sgl), L),
the 1 match will be worth the 2j indels if and only if 1 >
2jp(2].

1
>E’

none of the b; characters are matched, so the characters that are
correctly aligned (as per the ground-truth alignment (Equation (11)))
in the algorithm’s output are (aj, b1), (d1, di), (dg, d2), (a3, b3), and
(ds3, d3), as illustrated by purple in the top alignment of Figure 4.
Since there are 6 aligned letters in the ground-truth alignment, the

These two properties in conjunction mean that when p[2]

Q score is %, or in other words, u(_p[2],0) (Sgl), Sgl)) = %,

When p|[2] shifts to the next-smallest interval (% %] the indel
penalty p[2] is sufficiently small that the by characters will align.
Thus we lose the correct alignment (a1, by), and the Q score drops

to %. Similarly, if we decrease p[2] to the next-smallest interval

(%, %], the by characters will align, which is correct under the

ground-truth alignment (Equation (11)). Thus the Q score increases
back to g. Finally, by the same logic, when p[2] < é, we lose

the correct alignment (a3, b3) in favor of the alignment of the bs
characters, so the Q score falls to %. In this way, we prove the form

of (o, p21,0) (Sgl), Sgl)) from Equation (12). A parallel argument
proves the form of u(g_p[21,0) (552), ng)).

Generalization to shattering ©(log n) sequence pairs. This proof
intuition naturally generalizes to ©(log n) sequence pairs of length

O(n) by expanding the number of subsequences 1)
tion (10). In essence, if we define Sgl) = til)tiz) e tik) and Sgl) =

tél) tgz) e t;k) for a carefully-chosen k = © (v/n), then we can force

a la Equa-

U0, p[2],0) (Sgl), Sgl)) to oscillate O(n) times. Similarly, if we define
SO (@) g O 1 0,00 ke

force u(g, p[21,0) (551)7 Sgl)

on. This construction allows us to shatter ©(log n) sequences. O

, then we can

) to oscillate half as many times, and so

4.2 RNA Folding

RNA molecules have many essential roles including protein coding
and enzymatic functions [40]. RNA is assembled as a chain of bases
denoted A, U, C, and G. It is often found as a single strand folded
onto itself with non-adjacent bases physically bound together. RNA
folding algorithms infer the way strands would naturally fold, shed-
ding light on their functions. Given a sequence S € {A, U, C,G}", we
represent a folding by a set of pairs ¢ C [n] X [n]. If (i, j) € @, then
the i*" and j*" bases of S bind together. Typically, the bases A and U
bind together, as do C and G. Other matchings are likely less stable.
We assume that the foldings do not contain any pseudoknots, which
are pairs (i, j), (i’, j*) that cross with i < i’ < j < j’.

A well-studied algorithm returns a folding that maximizes a
parameterized objective function [60]. At a high level, this objective
function trades off between global properties of the folding (the
number of binding pairs |¢|) and local properties (the likelihood
that bases would appear close together in the folding). Specifically,

927

STOC ’21, June 21-25, 2021, Virtual, Italy

the algorithm A, uses dynamic programming to return the folding
Ap(S) that maximizes

pll+(1-p) Z Msiig, i sli-11. s+ G- 1,j+Deg)> (13)
(i,))ed

where p € [0,1] is a parameter and Mgy s[j,s[i-1],5[j+1] € R is

a score for having neighboring pairs of the letters (S[i], S[j]) and

(S[i — 11, S[j + 1]). These scores help identify stable sub-structures.

We assume there is a utility function that characterizes a folding’s
quality, denoted u(S, ¢). For example, u(S, ¢) might measure the
fraction of pairs shared between ¢ and a “ground-truth” folding,
obtained via expensive computation or laboratory experiments.

LEMMA 4.4. LetU be the set of functions
U={up:SHu(S,Ay(S)) | peR}.

The dual class U™ is (.7:, g, nz) -piecewise decomposable, where G =
{9a : U — {0,1} | a € R} consists of threshold functions gq : up
Iip<qy and F = {fc : U — R | ¢ € R} consists of constant functions
fe: up - c.

Proor. Fix a sequence S. Let @ be the set of alignments that the
algorithm returns as we range over all parameters p € R. In other
words, ® = {A,(S) | p € [0,1]}. We know that every folding has
length at most n/2. For any k € {0, ...,n/2}, let §;. be the folding
of length k that maximizes the right-hand-side of Equation (13):

P = argmaxy|4|_ Z Mgy, s171,81i-11,s[+11 1= 1,7+ 1)eg) -
(i.))ed
The folding the algorithm returns will be one of {(;30, .. .,¢n/2},)
@] < & +1.
Fix an arbitrary folding ¢ € ®. We know that ¢ will be the folding
returned by the algorithm A, (S) if and only if

PIBI+(1=p) > Msiiy sl stimtlsyil(G-1,j+eg)
(e

> pl¢’|+(1-p) Z Ms[i), S50, S[i-11,S[+11 (-1, j+1)ed’}
(i.))eg’

forall ¢’ € @\ {¢}. Since these functions are linear in p, this means
that there is a set of T < (lfl) < n? intervals [p1, p2), [p2. 3), -,
[or, pr+1]l with p1 := 0 < pg < -+ < pr < 1:= pryq such that
for any one interval I, across all p € I, A,(S) is fixed. This means
that for any one interval [p;, pi+1), there exists a real value ¢; such
that u,(S) = ¢; for all p € [p;, pi+1). By definition of the dual, this
means that ug(up) = up(S) = ¢; as well.

We now use this structure to show that the dual class U* is
(.7:, g, nz)—piecewise decomposable, as per Definition 3.2. Recall
that G = {gq : U — {0, 1} | a € R} consists of threshold functions
ga tup o Ipcqyand F = {fe : U — R | ¢ € R} consists
of constant functions f; : u, +— c. We claim that there exists a
function f ®) ¢ F for every vector b € {0,1}7 such that for every
pelo,1],

. b
wiup) = Y I[{g,,i(up):b[i],vie[r]}f(Yup).
be{0,1}T

(14)

To see why, suppose p € [pi, pi+1) for somei € [T]. Then g (up) =
H{pSpj} =1forallj > i+ 1andgp(up) = E{pgpj} = 0 for all

928

Balcan, DeBlasio, Dick, Kingsford, Sandholm, and Vitercik

j <i.Letb; € {0,1}7 be the vector that has only 0s in its first i
coordinates and all 1’s in its remaining T — i coordinates. For all
i € [T], we define f(bi) = f¢;» SO f(bi) (up) = c; forall p € [0, 1].
For any other b, we set f(b) = fo, so f(b) (up) = 0forall p € [0,1].
Therefore, Equation (14) holds. O

Since constant functions have zero oscillations, Lemmas 3.9 and

4.4 imply that Pdim({/) = O (Inn).

4.3 Topologically Associating Domains

Inside a cell, the linear DNA of the genome wraps into three-
dimensional structures that influence genome function. Some re-
gions of the genome are closer than others and thereby interact
more. Topologically associating domains (TADs) are contiguous seg-
ments of the genome that fold into compact regions. More formally,
given the genome length n, a TAD set is a set

T ={(@i1,j1), - - - (it,jr)} € [n] x [n]

such that iy < j; < ip < jy < -+ < iy < j;. If (i,j) € T, the
bases within the corresponding substring physically interact more
frequently with each other than with other bases. Disrupting TAD
boundaries can affect the expression of nearby genes, which can
trigger diseases such as congenital malformations and cancer [52].

The contact frequency of any two genome locations, denoted
by a matrix M € R™*", can be measured via experiments [49]. A
dynamic programming algorithm A, introduced by Filippova et al.
[30] returns the TAD set A, (M) that maximizes

D splid) = ppli =, (15)
(i.))eT
where p > 0 is a parameter,
a1
) =G255 > Mpq
i<p<q=<j

is the scaled density of the subgraph induced by the interactions
between genomic loci i and j, and p,(d) = ﬁ Z;’:_Od_l sp(t,t+d)
is the mean value of s, over all sub-matrices of length d along the
diagonal of M. We note that unlike the sequence alignment and
RNA folding algorithms, the parameter p appears in the exponent
of the objective function.

We assume there is a utility function that characterizes the qual-
ity of a TAD set T, denoted u(M,T) € R. For example, u(M, T)
might measure the fraction of TADs in T that are in the correct
location with respect to a ground-truth TAD set.

LEmMMA 4.5. LetU be the set of functions

U={uP:M|—>u(M,Ap(M))|p€R}.

The dual class U™ is (]:', g, 2n24"2)-piecewise decomposable, where
G ={g9a : U - {0,1} | a € R} consists of threshold functions
ga 1 up = Iipeqy and F = {fc : U — R | ¢ € R} consists of
constant functions fc : up c.

Proor. Fix a matrix M. We rewrite Equation (15) as follows:
Cl]

Ap (M) = argmax m,

TC[n]X[n] (i,j)ET

How Much Data Is Sufficient to Learn High-Performing Algorithms?

where
v
B 1 n—j+i
€ij = Z My T n—j+i Z Mpq
iSu<v<j t=0 t<p<q<t+j-i

is a constant that does not depend on p.
Let 7 be the set of TAD sets that the algorithm returns as we
range over all parameters p > 0. In other words, 7 = {A,(M) |

p > 0}. Since each TAD set is a subset of [n] X [n], |T| < 2"’ For
any TAD set T € T, the algorithm A, will return T if and only if

2

(i,))eT
forall T’ € T \ {T}. This means that as we range p over R, the
TAD set returned by algorithm A, (M) will only change when

S S g

— T np
(i 5er (—i G =)
for some T, T’ € T. As a result of Rolle’s Theorem (detailed in the
full version [7]), we know that Equation (16) has at most |T|+|T”| <
2n? solutions. This means there are ¢t < 2n? (|72-|) < 2n24"" intervals
[p1,p2), (P2, p3)5 - - -5 [pts pre1) With p1 2= 0 < pp < -+ < pp <
00 := pr4q that partition Rx¢ such that across all p within any one
interval [p;, pi+1), the TAD set returned by algorithm A, (M) is
fixed. Therefore, there exists a real value c; such that u,(M) = ¢;
for all p € [pi, pi+1). By definition of the dual, this means that
uy(up) = up(M) = ¢; as well.
We now use this structure to show that the dual class U* is

cirj

Cij

G-np ~

(&.J)eT’

cirit
j -0

e (16)
(i",j))eT’

F.G, 2n24n° -piecewise decomposable, as per Definition 3.2. Re-

call that G = {9, : U — {0,1} | a € R} consists of threshold
functions gq : up = Ijpcqyand F = {fc : U > R | c € R}
consists of constant functions f : u, +— c. We claim that there
exists a function f(b) € F for every vector b € {0, 1}! such that
for every p > 0,

up(up) = Z H{gpi(up)zb[i],ViE[l‘]}f(b)(up). (17)

bef0.1)t
To see why, suppose p € [p;, pi+1) for some i € [t]. Then g, (up) =
H{pSpj} = 1forallj > i+ 1andgp(up) =]I{pspj} = 0 for all
j < i.Let b; € {0,1}! be the vector that has only 0’s in its first i
coordinates and all 1’s in its remaining ¢ — i coordinates. For all
i € [t], we define f(b") = f¢;, s0 f(b") (up) = c; forall p € [0,1].
For any other b, we set f(®) = f;, so f(®) (up) = 0forall p € [0,1].
Therefore, Equation (17) holds. O

Since constant functions have zero oscillations, Lemmas 3.9 and

4.5 imply that PdimU) = O (n?) .

5 PARAMETERIZED VOTING MECHANISMS

Alarge body of economics research studies how to design protocols—
or mechanisms—that help groups of agents come to collective de-
cisions. For example, when children inherit an estate, how should
they divide the property? When a jointly-owned company is dis-
solved, which partner should buy the others out? There is no one
protocol that best answers these questions; the optimal mechanism
depends on the setting at hand.

929

STOC °21, June 21-25, 2021, Virtual, Italy

We study a family of mechanisms called neutral affine maximizers
(NAMs) [55, 59, 65]. ANAM takes as input a set of agents’ reported
values for each possible outcome and returns one of those outcomes.
A NAM can thus be thought of as an algorithm that the agents use
to arrive at a single outcome. NAMs are incentive compatible, which
means that each agent is incentivized to report his values truthfully.
In order to satisfy incentive compatibility, each agent may have to
make a payment. NAMs are also budget-balanced which means that
the aggregated payments are redistributed among the agents.

Formally, we study a setting where there is a set of m alternatives
and a set of n agents. Each agent i has a value v;(j) € R for each
alternative j € [m]. We denote all of his values as v; € R™ and
all n agents’ values as v = (vy,...,v,) € R"™. In this case, the
unknown distribution D is over vectors v € R,

A NAM is defined by n parameters (one per agent)

p=(pl1l,....p[n]) € RY,

such that at least one agent is assigned a weight of zero. There is a
social choice function Y5 : R*™ — [m] which uses the values v €
R™™ to choose an alternative yp(v) € [m]. In particular, §,(v) =
argmax; e[| >, plilvi(j) maximizes the agents’ weighted values.
Each agent i with zero weight p[i] = 0 is called a sink agent because
his values do not influence the outcome. For every agent who is not
a sink agent (p[i] # 0), their payment is defined as in the weighted
version of the classic Vickrey-Clarke-Groves mechanism [20, 36, 71].
To achieve budget balance, these payments are given to the sink
agent(s). More formally, let j* = 1/,(v) and for each agent i, let j_; =
argmax;e|,| Li'#i Pli’1vir(j). The payment function is defined as

pi(v) = ,ﬁ (Zirzi pli'1ow G) = Zirzi pli’Tow (-1)) if pli] # 0,
pi(w) = =Y yyipir(v) if i = min{i’: p[i’] = 0}, and pi(v) = 0
otherwise.

We aim to optimize the expected social welfare

n

R

i=1

E

v~D

of the NAM’s outcome ¢p(v), so we define the utility function
up(v) = X1, vi (Yp(v)).

LEmMMA 5.1. LetU be the set of functions
{i|plil=0}=+0}.

The dual class U™ is (.7-_, g, m2) -piecewise decomposable, where G =
{ga : U — {0,1} | a € R"} consists of halfspace indicators gq :
up]I{p~aso} and F = {fc : U — R | c € R} consists of constant

U={uP|p€R;0,

functions fe 1 up — c.

Proor. Fix a valuation vector v € R™™. We know that for any
two alternatives j, j* € [m], the alternative j would be selected over

Jj’ so long as
n

pliloi() >) plilos (') -

1 i=1

(18)

n
i=
Therefore, there is a set H of (';) hyperplanes such that across all
parameter vectors p in a single connected component of R" \ #,
the outcome of the NAM defined by p is fixed. When the outcome
of the NAM is fixed, the social welfare is fixed as well. This means
that for a single connected component R of R™ \ H, there exists a

STOC ’21, June 21-25, 2021, Virtual, Italy

real value cg such that up(v) = cg for all p € R. By definition of
the dual, this means that u}, (up) = up(v) = cg as well.

We now use this structure to show that the dual class U/* is
(]:, g, mz)—piecewise decomposable, as per Definition 3.2. Recall
that G = {gq : U — {0,1} | @ € R} consists of halfspace indicator
functions gq : up]I{a,p<0} and F ={fe : U > R|ceR}
consists of constant functions f¢ : up > c. For each pair of al-
ternatives j,j’ € L, let gU’jl) € G correspond to the halfspace
represented in Equation (18). Order these k := (}) functions arbi-
trarily as ¢\, . . ., ¢®). Every connected component R of R" \
corresponds to a sign pattern of the k hyperplanes. For a given
region R, let by € {0, 1}¥ be the corresponding sign pattern. Define
the function f(bR) € Fas f(bR) = feg» SO f(bR) (up) = cg for all
p € R™. Meanwhile, for every vector b not corresponding to a sign
pattern of the k hyperplanes, let f(b) = fo,s0 f®) (up) = 0 forall
p € R™. In this way, for every p € R",

* b
wp (up) = D Tgo(up)=piinviets f o).
be{0,1}k

as desired.)

Theorem 3.3 and Lemma 5.1 imply that the pseudo-dimension
of U is O(nInm). Next, we prove that the pseudo-dimension of I/
is at least %, which means that our pseudo-dimension upper bound
is tight up to log factors.

THEOREM 5.2. DefineUd = {up | p € R”

. no{plil [i=0} #0}.
Then Pdim(Uf) > .

ProOF. Let the number of alternatives m = 2 and without loss
of generality, suppose that n is even. To prove this theorem, we will
identify a set of N = % valuation vectors v(l), R o) that are
shattered by the set ¢ of social welfare functions.

Let € be an arbitrary number in (0, %) For each ¢ € [N], define

agent i’s values for the first and second alternatives under the ¢ th

valuation vector v(g)—namely, vgé})(l) and vgg)(z)—as follows:

1 ifé=i e ift=2+i
o(1) = _andol?(2) = 2

0 otherwise 0 otherwise.
For example, if there are n = 6 agents, then across the N = 5 =3
valuation vectors v(l), 0(2)7 v(3), the agents’ values for the first
alternative are defined as

+P() vél)(l) 10 00 0 0
U%z)(l) 2Pmyl=10 1 0 0 0 0
v?)(l) 063)(1) 0 0 1 0 0 O
and their values for the second alternative are defined as
#M(2) @] fo 0 0 e 0 0
oP(2) WD) =0 0 0 0 e 0.
053)(2) ’US)(Z) 0 0 0 0 0 €

Let b € {0,1}" be an arbitrary bit vector. We will construct a
NAM parameter vector p such that for any ¢ € [N], if b[£] = 0,
then the outcome of the NAM given bids 20 will be the second

alternative, so u, (v([)) = € because there is always exactly one

930

Balcan, DeBlasio, Dick, Kingsford, Sandholm, and Vitercik

agent who has a value of € for the second alternative, and every
other agent has a value of 0. Meanwhile, if b[£] = 0, then the
outcome of the NAM given bids v(©) will be the first alternative, so
up (v([)) = 1 because there is always exactly one agent who has a
value of 1 for the first alternative, and every other agent has a value
of 0. To construct this parameter vector p, when b[{] = 0, p must
ignore the values of agent £ in favor of the values of agent + £.
After all, under o0 , agent £ has a value of 1 for the first alternative
and agent 2 + £ has a value of € for the second alternative, and all
other values are 0. By a similar argument, when b[{] = 1, p must
ignore the values of agent % + £ in favor of the values of agent ¢.
Specifically, we define p € {0, 1}" as follows: for all € € [N] = [%],
if b[{] = 0, then p[f] = 0 and p [% + f] = land if b[£] = 1, then
pl€]=1andp [% + é’] = 0. All other entries of p are set to 0.

We claim that if b[£] = 0, then u, ('u([)) = €. To see why, we
know that X7, p[i]vgf)(l) = p[f]v;[)(l) = p[£] = 0. Meanwhile,
P p[i]vE[)(Z) =p [% + f] v(ﬁr[(l) = €. Therefore, the outcome

2
of the NAM is the second alternative. The social welfare of this
alternative is €, so up (v(€)> = €.

Next, we claim that if b[{] = 1, then up (v(f)) = 1. To see
why, we know that 37, plile\”(1) = plel\(1) = ple] = 1.
Meanwhile, 37, p[i]vgg)(z) =p [% + 6’] v(ﬂq[,(l) = 0. Therefore,

2

the NAM’s outcome is the first alternative. The social welfare of
this alternative is 1, so up 00 = 1.

We conclude that the valuation vectors 'v(l), o, o) that are
shattered by the set U/ of social welfare functions with witnesses
Zi=-=zy =1 o

Theorem 5.2 implies that the pseudo-dimension upper bound
from Lemma 5.1 is tight up to logarithmic factors.

6 SUBSUMPTION OF PRIOR RESEARCH ON
GENERALIZATION GUARANTEES

Theorem 3.3 also recovers existing guarantees for data-driven algo-
rithm design. In all of these cases, Theorem 3.3 implies generaliza-
tion guarantees that match the existing bounds, but in many cases,
our approach provides a more succinct proof.

(1) In the full version [7], we analyze several parameterized clus-
tering algorithms [10], which have piecewise-constant dual
functions. These algorithms first run a linkage routine which
builds a hierarchical tree of clusters. The parameters inter-
polate between the popular single, average, and complete
linkage. The linkage routine is followed by a dynamic pro-
gramming procedure that returns a clustering corresponding
to a pruning of the hierarchical tree.

In the full version [7], we analyze two integer programming
algorithms, which have piecewise-constant and piecewise-
inverse-quadratic dual functions (as in Figure 3c). The first
is branch-and-bound, which is used by commercial solvers
such as CPLEX. Branch-and-bound always finds an optimal
solution and its parameters control runtime and memory us-
age. We also study semidefinite programming approximation

—
S
~

How Much Data Is Sufficient to Learn High-Performing Algorithms?

algorithms for integer quadratic programming. We analyze a
parameterized algorithm introduced by Feige and Langberg
[28] which includes the Goemans-Williamson algorithm [32]
as a special case. We recover previous generalization bounds
in both settings [8, 10].

(3) Guptaand Roughgarden [38] introduced parameterized greedy
algorithms for the knapsack and maximum weight indepen-
dent set problems, which we show have piecewise-constant
duals. We recover their guarantees in the full version [7].

(4) We provide generalization bounds for parameterized selling
mechanisms when the goal is to maximize revenue, which
have piecewise-linear dual functions (as in Figure 3b). A
long line of research has studied revenue maximization via
machine learning [6, 11, 18, 21, 23, 25, 33, 34, 37, 50, 51, 57,
58, 67]. In the full version [7], we recover Balcan, Sandholm,
and Vitercik’s generalization bounds [12] which apply to a
variety of pricing, auction, and lottery mechanisms. They
proved new bounds for mechanism classes not previously
studied in the sample-based mechanism design literature
and matched or improved over the best known guarantees
for many classes.

7 CONCLUSIONS

We provided a general sample complexity theorem for learning high-
performing algorithm configurations. Our bound applies whenever
a parameterized algorithm’s performance is a piecewise-structured
function of its parameters: for any fixed problem instance, boundary
functions partition the parameters into regions where performance
is a well-structured function. We proved this guarantee by exploit-
ing intricate connections between primal function classes (measur-
ing the algorithm’s performance as a function of its input) and dual
function classes (measuring the algorithm’s performance on a fixed
input as a function of its parameters). We demonstrated that many
parameterized algorithms exhibit this structure and thus our main
theorem implies sample complexity guarantees for a broad array
of algorithms and application domains.

A great direction for future research is to build on these ideas for
the sake of learning a portfolio of configurations, rather than a single
high-performing configuration. At runtime, machine learning is
used to determine which configuration in the portfolio to employ for
the given input. Gupta and Roughgarden [38] and Balcan et al. [15]
have provided initial results in this direction, but a general theory
of portfolio-based algorithm configuration is yet to be developed.

ACKNOWLEDGMENTS

This research is funded in part by the Gordon and Betty Moore
Foundation’s Data-Driven Discovery Initiative (GBMF4554 to C.K.),
the US National Institutes of Health (R0O1GM122935 to C.K.), the
US National Science Foundation (a Graduate Research Fellowship
to EV,, and grants IIS-1901403 to M.B. and T.S., IIS-1618714, CCF-
1535967, CCF-1910321, and SES-1919453 to M.B., IIS-1718457, IIS-
1617590, and CCF-1733556 to T.S., and DBI-1937540 to C.K.), the
US Army Research Office (W911NF-17-1-0082 and W911NF2010081
to T.S.), the Defense Advanced Research Projects Agency under
cooperative agreement HR00112020003 to M.B., an AWS Machine
Learning Research Award to M.B., an Amazon Research Award to

931

STOC °21, June 21-25, 2021, Virtual, Italy

M.B., a Microsoft Research Faculty Fellowship to M.B., a Bloomberg
Research Grant to M.B., a fellowship from Carnegie Mellon Univer-
sity’s Center for Machine Learning and Health to EV,, and by the
generosity of Eric and Wendy Schmidt by recommendation of the
Schmidt Futures program.

REFERENCES

[1] Daniel Alabi, Adam Tauman Kalai, Katrina Ligett, Cameron Musco, Christos
Tzamos, and Ellen Vitercik. 2019. Learning to Prune: Speeding up Repeated
Computations. In Conference on Learning Theory (COLT).

[2] Patrick Assouad. 1983. Densité et dimension. Annales de !'Institut Fourier 33, 3
(1983), 233-282.

[3] Maria-Florina Balcan, Travis Dick, and Manuel Lang. 2020. Learning to Link. In
Proceedings of the International Conference on Learning Representations (ICLR).

[4] Maria-Florina Balcan, Travis Dick, and Wesley Pegden. 2020. Semi-bandit Opti-
mization in the Dispersed Setting. In Proceedings of the Conference on Uncertainty
in Artificial Intelligence (UAI).

[5] Maria-Florina Balcan. 2020. Data-Driven Algorithm Design. In Beyond Worst Case
Analysis of Algorithms, Tim Roughgarden (Ed.). Cambridge University Press.

[6] Maria-Florina Balcan, Avrim Blum, Jason D Hartline, and Yishay Mansour. 2005.
Mechanism design via machine learning. In Proceedings of the Annual Symposium
on Foundations of Computer Science (FOCS). 605-614.

[7] Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sand-
holm, and Ellen Vitercik. 2021. How Much Data Is Sufficient to Learn High-
performing Algorithms? Generalization Guarantees for Data-driven Algorithm
Design. arXiv preprint arXiv:1908.02894 (2021).

[8] Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. 2018.

Learning to Branch. International Conference on Machine Learning (ICML) (2018).

Maria-Florina Balcan, Travis Dick, and Ellen Vitercik. 2018. Dispersion for

Data-Driven Algorithm Design, Online Learning, and Private Optimization. In

Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS).

Maria-Florina Balcan, Vaishnavh Nagarajan, Ellen Vitercik, and Colin White. 2017.

Learning-Theoretic Foundations of Algorithm Configuration for Combinatorial

Partitioning Problems. Conference on Learning Theory (COLT) (2017).

[11] Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. 2016. Sample Com-

plexity of Automated Mechanism Design. In Proceedings of the Annual Conference

on Neural Information Processing Systems (NeurIPS).

Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. 2018. A General

Theory of Sample Complexity for Multi-Item Profit Maximization. In Proceedings

of the ACM Conference on Economics and Computation (EC). Extended abstract.

Full version available on arXiv with the same title.

Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. 2020. Learning to

Optimize Computational Resources: Frugal Training with Generalization Guar-

antees. AAAI Conference on Artificial Intelligence (AAAI) (2020).

Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. 2020. Refined

Bounds for Algorithm Configuration: The Knife-edge of Dual Class Approxima-

bility. In International Conference on Machine Learning (ICML).

Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. 2021. Generaliza-

tion in Portfolio-based Algorithm Selection. In AAAI Conference on Artificial

Intelligence (AAAI).

[16] Jon Louis Bentley, David S Johnson, Frank Thomson Leighton, Catherine C

McGeoch, and Lyle A McGeoch. 1984. Some unexpected expected behavior

results for bin packing. In Proceedings of the Annual Symposium on Theory of

Computing (STOC). 279-288.

Avrim Blum, Chen Dan, and Saeed Seddighin. 2020. Learning Complexity of

Simulated Annealing. In International Conference on Artificial Intelligence and

Statistics (AISTATS).

Yang Cai and Constantinos Daskalakis. 2017. Learning Multi-item Auctions with

(or without) Samples. In Proceedings of the Annual Symposium on Foundations of

Computer Science (FOCS).

Shuchi Chawla, Evangelia Gergatsouli, Yifeng Teng, Christos Tzamos, and Ruimin

Zhang. 2020. Pandora’s Box with Correlations: Learning and Approximation. In

Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS).

[20] EdH. Clarke. 1971. Multipart pricing of public goods. Public Choice 11 (1971),

17-33.

Richard Cole and Tim Roughgarden. 2014. The sample complexity of revenue

maximization. In Proceedings of the Annual Symposium on Theory of Computing

(STOC).

Dan DeBlasio and John D Kececioglu. 2018. Parameter Advising for Multiple

Sequence Alignment. Springer.

Nikhil R Devanur, Zhiyi Huang, and Christos-Alexandros Psomas. 2016. The

Sample Complexity of Auctions with Side Information. In Proceedings of the

Annual Symposium on Theory of Computing (STOC).

Robert C Edgar. 2010. Quality measures for protein alignment benchmarks.

Nucleic acids research 38, 7 (2010), 2145-2153.

[9

[10

=
N

[13

[14

[15

(17

[18

[19

[21

[22

[23

[24

STOC ’21, June 21-25, 2021, Virtual, Italy

[25]

[26

[27

[28]

[29]

[30]

[31

[32

[33]

[34

[36
[37]

[38

[39]

[40

[41]

[42]

[43

[44]

[45

[46

[47]

[48]

[49

[50]

Edith Elkind. 2007. Designing and learning optimal finite support auctions. In
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).

Etienne Bamas, Andreas Maggiori, Lars Rohwedder, and Ola Svensson. 2020.
Learning Augmented Energy Minimization via Speed Scaling. In Proceedings of
the Annual Conference on Neural Information Processing Systems (NeurIPS).
Etienne Bamas, Andreas Maggiori, and Ola Svensson. 2020. The Primal-Dual
method for Learning Augmented Algorithms. In Proceedings of the Annual Con-
ference on Neural Information Processing Systems (NeurIPS).

Uriel Feige and Michael Langberg. 2006. The RPR? rounding technique for
semidefinite programs. Journal of Algorithms 60, 1 (2006), 1-23.

David Fernandez-Baca, Timo Seppéldinen, and Giora Slutzki. 2004. Parametric
multiple sequence alignment and phylogeny construction. Journal of Discrete
Algorithms 2, 2 (2004), 271-287.

Darya Filippova, Rob Patro, Geet Duggal, and Carl Kingsford. 2014. Identification
of alternative topological domains in chromatin. Algorithms for Molecular Biology
9 (May 2014), 14. Issue 1.

Vikas Garg and Adam Kalai. 2018. Supervising Unsupervised Learning. In
Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurlPS).

Michel X Goemans and David P Williamson. 1995. Improved approximation
algorithms for maximum cut and satisfiability problems using semidefinite pro-
gramming. Journal of the ACM (JACM) 42, 6 (1995), 1115-1145.

Yannai A Gonczarowski and Noam Nisan. 2017. Efficient empirical revenue
maximization in single-parameter auction environments. In Proceedings of the
Annual Symposium on Theory of Computing (STOC). 856-868.

Yannai A Gonczarowski and S Matthew Weinberg. 2018. The Sample Complex-
ity of Up-to-& Multi-Dimensional Revenue Maximization. In Proceedings of the
Annual Symposium on Foundations of Computer Science (FOCS).

Osamu Gotoh. 1982. An improved algorithm for matching biological sequences.
Journal of Molecular Biology 162, 3 (1982), 705 - 708.

Theodore Groves. 1973. Incentives in Teams. Econometrica 41 (1973), 617-631.
Chenghao Guo, Zhiyi Huang, and Xinzhi Zhang. 2019. Settling the sample
complexity of single-parameter revenue maximization. Proceedings of the Annual
Symposium on Theory of Computing (STOC) (2019).

Rishi Gupta and Tim Roughgarden. 2017. A PAC approach to application-specific
algorithm selection. SIAM J. Comput. 46, 3 (2017), 992-1017.

Dan Gusfield, Krishnan Balasubramanian, and Dalit Naor. 1994. Parametric
optimization of sequence alignment. Algorithmica 12, 4-5 (1994), 312-326.
Robert W. Holley, Jean Apgar, George A. Everett, James T. Madison, Mark Mar-
quisee, Susan H. Merrill, John Robert Penswick, and Ada Zamir. 1965. Structure
of a Ribonucleic Acid. Science 147, 3664 (1965), 1462—-1465.

Eric Horvitz, Yongshao Ruan, Carla Gomez, Henry Kautz, Bart Selman, and
Max Chickering. 2001. A Bayesian Approach to Tackling Hard Computational
Problems. In Proceedings of the Conference on Uncertainty in Artificial Intelligence
(UAD).

Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. 2019. Learning-based
frequency estimation algorithms. In Proceedings of the International Conference
on Learning Representations (ICLR).

Frank Hutter, Holger Hoos, Kevin Leyton-Brown, and Thomas Stiitzle. 2009.
ParamlILS: An automatic algorithm configuration framework. Journal of Artificial
Intelligence Research 36, 1 (2009), 267-306.

Raj Iyer, David Karger, Hariharan Rahul, and Mikkel Thorup. 2002. An Experi-
mental Study of Polylogarithmic, Fully Dynamic, Connectivity Algorithms. ACM
Journal of Experimental Algorithmics 6 (Dec. 2002), 4—es.

Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. 2010. ISAC-
Instance-Specific Algorithm Configuration.. In Proceedings of the European Con-
ference on Artificial Intelligence (ECAI).

Robert Kleinberg, Kevin Leyton-Brown, and Brendan Lucier. 2017. Efficiency
Through Procrastination: Approximately Optimal Algorithm Configuration with
Runtime Guarantees. In Proceedings of the International Joint Conference on Arti-
ficial Intelligence (IJCAI).

Robert Kleinberg, Kevin Leyton-Brown, Brendan Lucier, and Devon Graham. 2019.
Procrastinating with Confidence: Near-Optimal, Anytime, Adaptive Algorithm
Configuration. Proceedings of the Annual Conference on Neural Information
Processing Systems (NeurIPS) (2019).

Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. 2009. Empirical
hardness models: Methodology and a case study on combinatorial auctions. }.
ACM 56, 4 (2009), 1-52.

Erez Lieberman-Aiden, Nynke L. van Berkum, Louise Williams, Maxim Imakaev,
Tobias Ragoczy, Agnes Telling, Ido Amit, Bryan R. Lajoie, Peter J. Sabo, Michael O.
Dorschner, Richard Sandstrom, Bradley Bernstein, M. A. Bender, Mark Groudine,
Andreas Gnirke, John Stamatoyannopoulos, Leonid A. Mirny, Eric S. Lander, and
Job Dekker. 2009. Comprehensive Mapping of Long-Range Interactions Reveals
Folding Principles of the Human Genome. Science 326, 5950 (2009), 289-293.
https://doi.org/10.1126/science.1181369

Anton Likhodedov and Tuomas Sandholm. 2004. Methods for Boosting Revenue
in Combinatorial Auctions. In Proceedings of the National Conference on Artificial

Balcan, DeBlasio, Dick, Kingsford, Sandholm, and Vitercik

Intelligence (AAAI). San Jose, CA, 232-237.

Anton Likhodedov and Tuomas Sandholm. 2005. Approximating Revenue-
Maximizing Combinatorial Auctions. In Proceedings of the National Conference
on Artificial Intelligence (AAAI). Pittsburgh, PA.

Dario G Lupiafiez, Malte Spielmann, and Stefan Mundlos. 2016. Breaking TADs:
how alterations of chromatin domains result in disease. Trends in Genetics 32, 4
(2016), 225-237.

Thodoris Lykouris and Sergei Vassilvitskii. 2018. Competitive caching with
machine learned advice. In International Conference on Machine Learning (ICML).
Catherine C McGeoch. 2012. A guide to experimental algorithmics. Cambridge
University Press.

Debasis Mishra and Arunava Sen. 2012. Roberts’ Theorem with neutrality: A
social welfare ordering approach. Games and Economic Behavior 75, 1 (2012),
283-298.

Michael Mitzenmacher. 2018. A model for learned bloom filters and optimizing
by sandwiching. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NeurIPS). 464—473.

Mehryar Mohri and Andrés Mufioz. 2014. Learning Theory and Algorithms
for revenue optimization in second price auctions with reserve. In International
Conference on Machine Learning (ICML).

Jamie Morgenstern and Tim Roughgarden. 2016. Learning Simple Auctions. In
Conference on Learning Theory (COLT).

Swaprava Nath and Tuomas Sandholm. 2019. Efficiency and budget balance in
general quasi-linear domains. Games and Economic Behavior 113 (2019), 673 —
693.

Ruth Nussinov and Ann B Jacobson. 1980. Fast algorithm for predicting the
secondary structure of single-stranded RNA. Proceedings of the National Academy
of Sciences 77, 11 (1980), 6309-6313.

Lior Pachter and Bernd Sturmfels. 2004. Parametric inference for biological
sequence analysis. Proceedings of the National Academy of Sciences 101, 46 (2004),
16138-16143. https://doi.org/10.1073/pnas.0406011101

Lior Pachter and Bernd Sturmfels. 2004. Tropical geometry of statistical models.
Proceedings of the National Academy of Sciences 101, 46 (2004), 16132-16137.
https://doi.org/10.1073/pnas.0406010101

David Pollard. 1984. Convergence of Stochastic Processes. Springer.

Manish Purohit, Zoya Svitkina, and Ravi Kumar. 2018. Improving online algo-
rithms via ML predictions. In Proceedings of the Annual Conference on Neural
Information Processing Systems (NeurIPS). 9661-9670.

Kevin Roberts. 1979. The characterization of implementable social choice rules.
In Aggregation and Revelation of Preferences, J-] Laffont (Ed.). North-Holland
Publishing Company.

Tuomas Sandholm. 2013. Very-Large-Scale Generalized Combinatorial Multi-
Attribute Auctions: Lessons from Conducting $60 Billion of Sourcing. In Handbook
of Market Design, Zvika Neeman, Alvin Roth, and Nir Vulkan (Eds.). Oxford
University Press.

Tuomas Sandholm and Anton Likhodedov. 2015. Automated Design of Revenue-
Maximizing Combinatorial Auctions. Operations Research 63, 5 (2015), 1000-1025.
Special issue on Computational Economics. Subsumes and extends over a AAAI-
05 paper and a AAAI-04 paper.

J. Michael Sauder, Jonathan W. Arthur, and Roland L. Dunbrack Jr. 2000. Large-
scale comparison of protein sequence alignment algorithms with structure align-
ments. Proteins: Structure, Function, and Bioinformatics 40, 1 (2000), 6-22.
Norbert Sauer. 1972. On the density of families of sets. Journal of Combinatorial
Theory, Series A 13, 1 (1972), 145-147.

Vladimir Vapnik and Alexey Chervonenkis. 1971. On the uniform convergence
of relative frequencies of events to their probabilities. Theory of Probability and
its Applications 16, 2 (1971), 264-280.

William Vickrey. 1961. Counterspeculation, Auctions, and Competitive Sealed
Tenders. Journal of Finance 16 (1961), 8-37.

Michael S Waterman, Temple F Smith, and William A Beyer. 1976. Some biological
sequence metrics. Advances in Mathematics 20, 3 (1976), 367-387.

Alexander Wei and Fred Zhang. 2020. Optimal Robustness-Consistency Trade-
offs for Learning-Augmented Online Algorithms. In Proceedings of the Annual
Conference on Neural Information Processing Systems (NeurIPS).

Gellért Weisz, Andras Gyorgy, and Csaba Szepesvari. 2018. LEAPSANDBOUNDs:
A Method for Approximately Optimal Algorithm Configuration. In International
Conference on Machine Learning (ICML).

Gellért Weisz, Andras Gyorgy, and Csaba Szepesvari. 2019. CAPSANDRUNS:
An improved method for approximately optimal algorithm configuration. In
International Conference on Machine Learning (ICML).

Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2008. SATzilla:
portfolio-based algorithm selection for SAT. Journal of Artificial Intelligence
Research 32, 1 (2008), 565-606.

Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Hydra-MIP:
Automated algorithm configuration and selection for mixed integer programming.
In RCRA workshop on Experimental Evaluation of Algorithms for Solving Problems
with Combinatorial Explosion at the International Joint Conference on Artificial
Intelligence (IJCAI).

https://doi.org/10.1126/science.1181369
https://doi.org/10.1073/pnas.0406011101
https://doi.org/10.1073/pnas.0406010101

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Additional Related Research

	2 Notation and problem statement
	3 Generalization guarantees for data-driven algorithm design
	4 Parameterized computational biology algorithms
	4.1 Global Pairwise Sequence Alignment
	4.2 RNA Folding
	4.3 Topologically Associating Domains

	5 Parameterized Voting Mechanisms
	6 Subsumption of Prior Research on Generalization Guarantees
	7 Conclusions
	Acknowledgments
	References

