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ABSTRACT

Model-based computational elasticity imaging of tissues can

be posed as solving an inverse problem over finite elements

spanning the displacement image. As most existing quasi-

static elastography methods count on deterministic formula-

tions of the forward model resulting in a constrained opti-

mization problem, the impact of displacement observation er-

rors has not been well addressed. To this end, we propose a

new statistical technique that leads to a unified optimization

problem for elasticity imaging. Our statistical model takes

the imperfect nature of the displacement measurements into

account, and leads to an observation model for the Young’s

modulus that involves signal dependent colored noise. To

solve the resulting regularized optimization problem, we pro-

pose a fixed-point algorithm that leverages proximal split-

ting methods. Preliminary qualitative and quantitative results

demonstrate the effectiveness and robustness of the proposed

methodology.

Index Terms— ultrasound elastography, computational

imaging, elasticity imaging, Young’s Modulus, statistical

modeling, proximal splitting methods.

1. INTRODUCTION

Elasticity imaging is concerned with the problem of recon-

structing tissue physical parameters in terms of elastic mod-

ulus distribution and is usually performed by techniques

mainly adapted from deformation imaging and shear waves

[1]. Knowledge of Young’s modulus and shear modulus,

broadly referred to as elasticity parameters, has a large num-

ber of applications in non-invasive medical diagnosis and

tissue property characterization [2], [3]. In many ultrasound

elastography problems, quasi-static loading is applied on the

tissue which involves small force indentation moving slowly

on the exterior surface and the overall interior tissue reacting

to it robustly through the stationary state [1].

For estimating deformation fields, speckle tracking is gen-

erally utilized which relies on B-mode ultrasound images

acquisition, before and after applying quasi-static force load-

ing on the surface [1],[4]. Moreover, to represent the tissue

deformation, finite element methods (FEM) coupled with a

generated mesh are exploited which seek to reflect the spatial

distribution of force-displacement relationships as a function

of the material geometry and boundary conditions [5]. For

the modulus elastography objective, vast majority of solvers

for elasticity inverse problems are developed for the linear

elastic tissues, which required the use of a constitutive model,

equilibrium equation or global stiffness equation as a forward

model. In this regard, existing methods can be classified ac-

cording to their adopted priors while majority of them can be

characterized as model-based inverse methods [6], [2].

As reported in [7], no unique solution is available for the

quasi-static elastic problem from a single observation; ac-

cordingly, many approaches employing a variety of priors or

regularizers have been developed for solving this ill-posed

problem [6]. In [8], the authors propose approaches based

on the adjoint method which require solving the system of

three prior models iteratively utilizing gradient-based meth-

ods. The methodology introduced in [9] considers the prob-

lem of elasticity imaging using surface displacement during

multiple observations. Recently, a Matlab package for quasi-

static elasticity imaging has been developed in [10] which

attempts to solve the regularized least squares inverse prob-

lem involving a displacement correlation data fidelity term by

Gauss-Newton method. This deterministic approach requires

forward model solving for displacement estimation at each

iteration and Jacobian computation of the global stiffness as a

function of unknown elasticity parameters which introduces

significant computation time for large number of nodes and

exhibits solution instability and inaccuracy especially due to

the effect of noise in Jacobian computation.

To address some of the weaknesses of existing methods for

ultrasound elastography, we propose a new statistical frame-

work to reconstruct Young’s elasticity modulus directly from

a single measured displacement field and force boundary

conditions. In this approach, a unified objective function is

introduced by integrating the elasticity forward model and

displacement realization model into the data fidelity term

which involves an effective signal dependent correlated noise

model. Moreover, the proposed inverse problem solution is

developed by incorporating a total variation regularizer for
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the Young’s modulus, which can be interpreted as leading

to a Bayesian estimation problem and is efficiently solved

using fixed-point methods and proximal splitting algorithms.

Our preliminary results demonstrate the effectiveness of the

proposed approach.

The remainder of this article is organized as follows. We in-

troduce the inverse problem of quasi-static elasticity imaging

in Section 2. The proposed statistical approach for solv-

ing the inverse elasticity problem is detailed in Section 3.

Simulations and Young’s modulus reconstruction results are

presented in Section 4, and finally, Section 5 contains some

concluding remarks and identifies future work directions.

2. FORMULATION OF INVERSE PROBLEM FOR

QUASI-STATIC ELASTOGRAPHY

Model-based elastography problems involve discretized for-

ward models to express the force-displacement data relation-

ship with the physical material property. Typical ultrasound

realizations consist of displacement fields u over all the mesh

nodes and applied force fields f over the surface. Let the num-

ber of mesh nodes be denoted by N which is the same as the

number of Elastic parameters E. In this setting, the ideal for-

ward model in the context of the global stiffness equation can

be described as:

ftrue = K(E)u (1)

where ftrue ∈ R
2N×1 indicates the global nodal force vector

constructed by the noiseless true force boundary conditions

in lateral and axial directions (which leads to the dimen-

sion of 2N ) and u ∈ R
2N×1 represents the global nodal

displacement vector. Moreover, the global stiffness matrix

K(E) ∈ R
2N×2N , which is a function of Young’s elasticity

modulus E ∈ R
N×1, describes the stiffness behavior of the

entire mesh structure over the nodes.

The inverse problem of finding the spatial distribution of

Young’s modulus of elasticity can be turned to the problem

of solving a constrained optimization problem. Typical ap-

proaches to solve this problem require the minimization of

objective functions of the following form, based on regular-

ized displacement error, subject to a constraint involving the

forward model:

argmin
u,E ‖u− u

m‖2
2
+ λ‖∇E‖1

s.t. K(E)u− ftrue = 0

(2)

where u
m ∈ R

2N×1 describes the measured displacement

vector consisting of measured lateral and axial displacements

for all nodes, λ is the regularization parameter, and ‖∇E‖1
is the total variation (TV) regularization term which is an

appropriate choice for image reconstruction that promotes

image smoothness while preserving edges.

This problem was solved previously as a deterministic in-

verse problem in [11] by Gaussian-based perturbation method

which iteratively updates the true displacements by forward

model enforcement (K(E)u − ftrue = 0) and updates the

elasticity modulus by minimizing the regularized displace-

ment error (‖u− u
m‖2

2
+ λ‖∇E‖1) using a perturbation

method [11]. As this approach requires partial derivative

matrix computation, it is highly sensitive to noise, addressing

of which requires analytical noise modeling. In this regard,

we pursue a statistical approach starting with the following

observation model:

f = K(E)u+w w ∼ N (0, Σw) (3)

where f ∈ R
2N×1 is the force vector containing the mea-

sured force boundary conditions and w ∈ R
2N×1 is the nodal

Gaussian noise vector. We can relate the measured displace-

ments u
m, commonly acquired by spectral tracking, to the

underlying true displacements u by:

u
m = u+ n n ∼ N (0, Σn) (4)

where n ∈ R
2N×1 is the displacement noise vector with co-

variance Σn which features distinct noise variance in lateral

and axial directions.

For estimating the Young’s modulus E in this statistical

framework, we extract the unknown elasticity parameters

from the global stiffness matrix as an explicit vector by rear-

ranging the forward model. In this regard, we benefit from

the matrix D(u) ∈ R
2N×N [12] which has the following

relationship with K(E) using a 3D tensor Ψ ∈ R
N×2N×2N

constructed by the equilibrium equation, Neumann boundary

conditions, Poisson’s ratio ν, and node-element conversions:

D(u)E = K(E)u (5)

D(u) = (Ψu)T (6)

K(E) = Ψ
T
E (7)

By applying these formulations to (3) and considering sta-

tistical modeling of observations error, we seek to solve an

integrated linear-algebraic optimization problem with respect

to the unknown elasticity modulus E without the need to ex-

plicitly estimate the displacement vector u.

3. OPTIMIZATION PROBLEM FORMULATION

Integrating the statistical observation model in (3) with the

displacement realization process introduced in (4), leads to:

f = K(E)u+w = K(E)(um − n) +w

= K(E)um −K(E)n+w (8)

Letting w̃ = −K(E)n + w and using the noisy form of (5)

D(um)E = K(E)um, the overall observation model could

be represented as:

f = D(um)E+ w̃ w̃ ∼ N (0, Γ) (9)
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where Γ is given by:

Γ = Σw +K(E)ΣnK(E)T (10)

Given observations f and u
m, the problem is to estimate E.

One way to interpret (9) is as a measurement model involving

signal-dependent colored noise w̃. To estimate E, we con-

struct a TV regularized cost function, which is equivalent to a

maximum a posteriori (MAP) estimation formulation with a

Laplacian prior distribution for E:

Ê = argmin
E

1

2
‖f −D(um)E‖2

Γ−1 + N
2
log |Γ|+ λ‖∇E‖1

s.t. E > 0
(11)

where ‖A‖2
B

:= (AT
BA). We use a fixed-point approach

to solve (11), where Γ will be fixed when we take update E,

and then Γ will be updated with the new E based on (10).

For updating E in each step of the fixed-point approach, we

leverage proximal splitting methods [13]:

En+1 = prox
En>0(proxγnTV (En − γn∇g(En))) (12)

where:

g(E) =
1

2
(f −D(um)E)TΓ−1(f −D(um)E) (13)

∇g(E) = −(D(um))TΓ−1(f −D(um)E) (14)

It is worth mentioning that favoring the power of proximal

splitting methods, various types of regularizers could be em-

ployed as the split terms of the objective function are used dis-

tinctly during the optimization procedure. The Pseudo-code

of the proposed approach is provided in Algorithm 1.

4. SIMULATION RESULTS

To evaluate the performance of the proposed approach for

elasticity imaging, we attempt to reconstruct Young’s mod-

ulus E from noisy synthetic measurements of force f and dis-

placement field u
m.

It should be mentioned that force fields f are obtained us-

ing surface displacements and boundary conditions based on

applied loading force. Leveraging FEM, an irregular mesh

composed of triangle elements is employed for discretization

of all parameters over nodes of the mesh. Then, synthetic

displacement fields u are calculated by solving the ideal for-

ward problem (K(E)u − ftrue = 0) for a specified distribu-

tion of material property E corresponding to a circle inclusion

of 50KPa elasticity modulus with specified radius and geo-

metric location in a homogeneous background with 10KPa

modulus elastogram. Multivariate Gaussian noise with co-

variance Σn is added to these displacement fields to synthet-

ically generate noisy displacement fields um. The noise level

∆ = ‖um − u‖ / ‖um‖ [14] is set to 9% and 3% in the lat-

eral and axial directions, respectively, leading to an overall

Algorithm 1: Computational Elasticity Imaging

Procedure

Input: f , um, λ, Iter1, Iter2, Ê0

Output: Young’s modulus field Ê

1 for j = 0, ..., Iter1 − 1 do

2 Γj = (Σw +

K(Êj)ΣnK(Êj)
T )//Correlated covariance update

3 E0=Êj

4 for k = 0, ..., Iter2 − 1 do

5 ∇g(Ek) = −(D(um))TΓ−1

j (f −D(um)Ek)

6 Ek+1 = prox
Ek>0(proxγkTV (Ek −

γk∇g(Ek))) //Young’s modulus update

7 end

8 return EIter2

9 Êj+1 = EIter2;

10 end

11 return ÊIter1

12 return Ê = ÊIter1

SNR of 25 dB. Poisson’s ratio ν is set to 0.495 and Neumann

Boundary conditions are applied to the top and bottom bound-

aries of the tissue [15]. Furthermore, Gaussian noise w is

added to force measurements. The step size γ in (12) for op-

timal convergence is computed by the Lipschitz constant of

the gradient of cost functions [13]. The Python code of this

implementation is available at GitHub 1.

Fig. 1 illustrates several components involved in our elas-

ticity imaging process. Fig. 1(a)-(b) show the noisy displace-

ment field measurements, which in practice could be obtained

using speckle tracking algorithms on B-mode ultrasound im-

ages. For cross-section discretization of the domain, an ir-

regular triangle mesh is utilized as shown in Fig. 1(c), which

could be adaptively adjusted by measured displacement im-

ages. The Young’s modulus image estimated by our algorithm

is shown in Fig. 1(d).

Next, we compare the performance of our approach with

that of OpenQSEI [10] with TV and weighted smoothness

regularizers [11]. Reconstruction results for two noise lev-

els are shown in Fig. 2. OpenQSEI is highly sensitive to

noise in estimating the Young’s modulus, due to Jacobian

matrix computation. Our proposed approach is more robust

to noise and estimates the Young’s modulus better, as a re-

sult of our signal-dependent colored noise modeling perspec-

tive and the subsequent optimization process. However noisy

displacement measurements cause degradation in the perfor-

mance of both methods in terms of recovering the geometry

of the inclusion. For quantitative analysis, we compute two

performance metrics [16]: contrast-to-noise ratio (CNR) and

normalized RMS error. Fig. 3 shows the CNR and RMS er-

1https://github.com/narges-mhm/comp-elast
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