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North American bat species have been undergoing extreme population declines due 
to the White-Nose Syndrome (WNS) epidemic caused by the spread of its pathogen, 
Pseudogymnoascus destructans. Existing models that represent the spread of the disease 
are limited in their scalability for use in management decisions or lacked the sophistication 
necessary to capture the complexity of WNS spread. Grounded in the theory of geoexpression, 
we exploit the latent structure of geographical process concurrency by implementing 
our modeling software using a concurrent Entity Component System architecture. We 
demonstrate our model’s computational tractability for millions of individual bats. This 
work is significant because it lays the foundation for the use of advanced cyberinfrastructure 
and cyberGIS to address challenges in geographical wildlife epidemiology that can be 
understood using dynamic geographical Individual-Based Models.

Introduction

Wildlife epidemiology is a frequent subject of dynamic environmental modeling motivating 
geographical discovery. Understanding the interactions of epidemiological, biological, and en-
vironmental processes that affect disease spread leads to more effective treatment methods and 
species conservation (Maher et al. 2012; Hammerson et al. 2017; White, Forester, and Craft 
2017). North American bat species have been undergoing extreme population declines due to the 
White-Nose Syndrome (WNS) epidemic (Foley et al. 2011; Maher et al. 2012; Thogmartin et al. 
2012). The first documented outbreak of WNS occurred at a winter hibernaculum in Schoharie 
County, New York, during the 2005–2006 winter hibernation (Blehert et al. 2009). WNS is 
caused by a fungal pathogen, Pseudogymnoascus destructans (Pd), which is commonly spread 
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between winter hibernacula by bats (Trivedi et al. 2017). Since the winter of 2005, the disease 
has spread throughout much of the East-Central United States and portions of Canada (Dzal  
et al. 2011; White-Nose Syndrome Response Team 2018). In the first six years of the White-
Nose Syndrome epidemic, 6.7 million bats died of the disease (White-Nose Syndrome Response 
Team 2018). Victims of the disease, contracted within hibernacula, present white fungal growth 
over the nostrils and wings accompanied by life-threatening physical function changes. Bat  
biologists and natural resource managers currently conduct monitoring and surveillance efforts 
to assess the continued expansion of the epidemic (Bat Conservation International 2019). Many 
treatment approaches have been evaluated, but the effectiveness of these approaches relies upon 
a greater understanding of how the disease spreads geographically.

Colonial cave roosting vespertilionid species face greater risk due to increased interaction 
with the WNS pathogen and conspecifics (Ihlo and Baker 2013). Since the initial outbreak in 
2005, due to massive population declines of multiple species, a significant amount of spatial 
epidemiological WNS modeling has been conducted on vespertilionid bats. Maher et al. (2012) 
constructed a statistical model to predict WNS spread. To address the limitations of the statistical 
model as a decision aid, Ihlo and Baker (2013) used spatial analysis to tie the spread of WNS to a 
set of geographical variables. O’Regan et al. (2015) introduced a dynamic spatial epidemiologi-
cal model as a series of differential equations to address the lack of dynamic representation in the 
prior efforts, but represented bat species without the ability to recover. In 2018, Lilley, Anttila, 
and Ruokolainen developed a set of mean-field (not individual-based) models to represent WNS 
spread. The Lilley, Anttila, and Ruokolainen model does not represent the spread of WNS across 
different species of bats and treats the population as a single generic species even though dif-
ferent bat species are known to have different infection potentials. A model that represents the 
geographical spread of WNS with different parameters for different species of bats, over large 
numbers of roost sites, is needed to address the shortcomings of prior studies. Our study builds 
upon existing research efforts and aims to develop a computational Individual-Based Model 
(IBM) that represents the spread of WNS by exploiting geographical process concurrency.

As cyberinfrastructure has advanced, the geographical sciences have sought to exploit more 
of its capabilities. Investigations into the exploitation and latent parallelism of computationally 
intensive geographical analysis have only been possible with advancements in computer hard-
ware, new theoretical approaches, and computational methods (Wang and Armstrong 2009). 
Previous research has pursued the adaptation of existing geographic problem-solving tools into 
cyberGIS components known as spatial middleware (Wang 2010). These investigations evolved 
to discern how cyberinfrastructure can serve as a basis for further inquiry toward the influence 
of space-time pattern representation using epidemiological modeling as a case study (Shook and 
Wang 2015). The next logical step, explored first in the work of Davis and Wang (2018) and now 
here, is the investigation of how cyberinfrastructure motivates the need to expand the theory of 
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•	 The spread of White-Nose Syndrome in North American bat populations is challenging.
•	 White-Nose Syndrome spreads geographically due to geographical process concurrency.
•	 Geoexpression provides a framework to represent geographical process concurrency.
•	 We implement a model based on geoexpression and demonstrate its tractability.
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geographic process representation; specifically, to understand and exploit geographic process 
concurrency.

High-performance parallel computing can enhance the computational performance of spa-
tial epidemiological modeling (Shook, Wang, and Tang 2013). Developing modeling software 
that exploits high-performance computing power is an important step toward the seamless inte-
gration of cyberGIS and spatial modeling based on advanced cyberinfrastructure (Wang et al. 
2013; Lin et al. 2015). The geographical process concurrency between biological and epidemi-
ological processes is a key aspect of the WNS epidemic. Geographical process concurrency is 
the decomposability of geographical processes into a structure of partially orderable components 
that take place within spatial and temporal configurations to represent geospatial dynamics. Once 
this system of concurrent processes is structured graphically, as examined by Davis and Wang’s 
(2018) geoexpression, it can be used to exploit computationally performant software to represent 
latent concurrency in geographical processes.

Geographic representation is segmented into the representation of pattern and the repre-
sentation of the process. Research has focused heavily on the representation of the pattern and 
very little on the representation of the process (Goodchild, Yuan, and Cova 2007). However, as 
introduced in Davis and Wang (2018), cyberinfrastructure has motivated the need to explore a 
new process representation theory that captures and exploits the notion of geographical process 
concurrency. Geographical process concurrency is an underexplored frontier in geographical 
theories; especially as it relates to the representation of processes using computational machines. 
Here we demonstrate that geographical process concurrency can be exploited to identify a latent 
structure of concurrency to construct a geographical model. The geoexpression is a framework 
that structures geographical process concurrency using a graphical representation to express the 
relationships between a set of related geographical processes in a way that is mutually under-
standable by a human and computational machine. Davis and Wang (2018) conceptualize geo-
graphical process concurrency through geoexpression using a graphical language, Petri-net, to 
represent the concurrent execution order of a set of processes. Once the concurrent execution 
order is structured, it is feasible to identify regions within the model and software that are condu-
cive to parallel execution, which cyberinfrastructure is well suited to support.

The primary objective of this research is to demonstrate and evaluate the performance of a 
software solution that implements an IBM of WNS spread using an Entity Component System 
(ECS) architectural pattern based on geoexpression. IBM is a modeling strategy that can be used 
to investigate how individual interactions produce a collective outcome. Our approach applies 
an IBM and geoexpression to capture geographical concurrency in WNS spread to support man-
agement decision making. Improvement in WNS spread modeling is important to develop better 
surveillance strategies, efficacious treatment techniques, and more effective disease response 
and species recovery plans. The implementation of our IBM WNS spread modeling software is 
informed by geoexpression to tractably structure computational and geographical concurrency 
within the software.

ECS is an architectural pattern drawn from the data-oriented design paradigm of software 
development (Danielsson and Bohlin 2015; Majerech 2015). Traditional object-oriented design 
constructs software by focusing on the structure of the code into classes, inheritance relation-
ships, and abstractions. Data-oriented design views programs from the perspective of how com-
putation transforms data. Data-oriented design is focused on reducing the hazard of cache misses 
to support more performant code execution (Fabian 2013). In modern computers, data in the 
main memory are hundreds of clock cycles away from the processing unit. Data that resides 
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within a processing unit’s cache take significantly fewer clock cycles to access; and modern 
computer hardware will preload data from main memory to cache based on the principle of local-
ity. Therefore, computer performance is heavily affected by data locality issues (Fabian 2013).

ECS structures data by composition rather than inheritance to improve the cache performance 
of the software by exploiting the principle of locality heuristics. Entities are represented using a 
single integer identifier for each entity. Components are stored in disparate arrays of memory in-
dexed by the Entity integer value and describe the attributes of each entity, and Systems contain 
the logical operations of the program. ECS also has Resources that serve as accessible storage for 
global attributes. Our IBM is instantiated using a parallel ECS that allows multiple Systems to be 
ordered for concurrent execution. Additionally, a parallel ECS enables data-parallel computation 
to occur on Component data within a System. In our IBM, geoexpression is used to order the 
Systems for concurrent execution within the parallel ECS to model the spread of WNS.

Our modeling software uses the SPECS Parallel Entity Component System (SPECS) library 
authored in Rust (Klabnik & Nichols 2019). Rust was sponsored in 2009 as a systems language 
by the Mozilla Foundation. Rust includes many features, including guaranteed memory safety 
and concurrency without data races. Its guarantees are enforced at compile time and it imple-
ments a static garbage collector. The language’s ownership model guides a static analysis made 
by the compiler to determine and enforce its guarantees. The Rust compiler reaches an interme-
diate representation language before the final compilation that runs on a virtual machine. It has 
cross-platform support, a supportive user community, an excellent build system, and growing 
user groups focused on extending its capabilities to advanced cyberinfrastructure (Blandy 2015; 
Scull 2015).

This research demonstrates the performance of IBM software that is built using a parallel 
ECS for modeling the geographical spread of WNS through North American bat populations. 
Prior modeling efforts have either been too abstract for spatial representation or lacked the so-
phistication necessary to capture the complexity of WNS spread (Ihlo and Baker 2013; O’Regan 
et al. 2015). During the initial outbreak, limited data availability, a lack of understanding of the 
pathogen’s spread, and limited knowledge of how WNS affects the life cycle of multiple bat 
species constrained related methodologies to understand the hazard posed by the disease and 
predict its spread. We introduce a straightforward IBM of WNS spread based on existing litera-
ture, implement the model using an existing parallel ECS library, and evaluate its computational 
tractability for different landscape and population configurations. We conclude with a discussion 
of the importance of capturing geographic process concurrency, present and future benefits of 
using a parallel ECS for instantiating a wildlife epidemiological IBM, and remark on the use of 
Rust as a language for environmental modeling.

Methods

O’Regan et al. (2015) were the first to demonstrate the utility of emergent modeling to under-
stand the spatial spread of WNS. Their approach built on the findings of the statistical model 
developed by Maher et al. (2012) that categorizes the processes that spread WNS into a multi-
scale hierarchy: (1) bat-to-bat, individual scale, transmission processes; (2) transmission be-
tween hibernacula; and (3) transmission over large distances on the landscape. Our model builds 
on the work by O’Regan et al. (2015) to understand how individual movement across landscape 
causes the emergent spread of WNS through the interaction of biological, epidemiological, and 
geographical processes.
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Instead of categorizing processes that spread WNS into a multi-scale hierarchy, our model 
categorizes processes based on the epidemiological triangle (a process is either related to the 
host, pathogen, or environment). Additionally, our model differs from the O’Regan et al. (2015) 
approach because each bat is represented as a separate individual within our IBM. However, 
our results are aggregated to the county level following O’Regan et al. (2015) and Maher et al. 
(2012), because it serves as the minimum mapping unit at which disease surveillance data are 
reported and management decisions are made. Our IBM is devised using the epidemiological 
triangle as a conceptual tool to categorize the decomposition of processes that interact to spread 
WNS across North America. The epidemiological triangle has three connected points describing 
the foundations for the spread of a disease: host, pathogen, and landscape. Interacting processes 
of the host, pathogen, and landscape are decomposed to identify latent process concurrency in 
the drivers that spread WNS. Once the processes have been enumerated, Petri networks are used 
to represent their order and interactions graphically. As a graphical language, Petri networks 
are well suited to identify regions of latent concurrency that can be represented and exploited in 
computation (Davis and Wang 2018).

The concurrent execution strategy of our IBM instantiated using the SPECS library is borne 
out of the Petri networks that represent the geoexpression (i.e., the structure of geographical pro-
cess concurrency) framework for WNS spread. Once instantiated, the model’s run-time perfor-
mance is collected for a series of tests that vary the number of roost sites (e.g., the landscape size) 
and the bat population size to demonstrate the utility of the parallel ECS and the gains provided 
by explicitly representing the geographical process concurrency. Finally, the output of the IBM’s 
WNS spread results, aggregated by county, is shown to demonstrate the utility and tractability of 
parallel ECS architecture for the IBMs.

Geoexpression
Dynamic geographical models are often composed of constituent computational processes that 
produce representative patterns observed in real-world geographical systems. The translation of 
model processes into computational processes requires new theoretical support, as the structure 
of how such processes interact is often fixed to represent a single order of events within the 
modeled world. However, fixed orders of events may not capture the inherent complexity of 
geographically concurrent processes. Geographically concurrent processes can become difficult 
to reason about and a theory that can represent this concurrency is sorely needed. Therefore, 
such a theory called geoexpression was proposed by Davis and Wang (2018) to relate model pro-
cesses to computational processes based on graphical primitives and a mathematical foundation 
adapted from the network sciences.

Geoexpression represents geographical process concurrency for modeling geospatial dy-
namics using Petri networks. Petri networks are bipartite, directed, acyclic graphs composed of 
State and Transition nodes, Edges, and Tokens. Tokens represent data transformations through a 
network. Transition nodes apply operations to the data. States represent the input and output con-
ditions of the Tokens as they pass into and out of Transition nodes. Edges link state nodes to tran-
sition nodes. Petri networks are able to represent the graphical structure and functioning of many 
operations (Peterson 1978). Intuitively rearranging the order of transition nodes changes the 
output. The graphical structure of geoexpression captures different orders to represent the same 
set of partially orderable components that produce a grander concurrent, geographical process.

The primary benefit that geoexpression provides is a representation theory for geographic 
processes, that when applied, captures different orderings of processes, which, in turn, leads 
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to different spatial patterns being produced. For example, multiple geographically concurrent 
processes function to spread WNS. Existing assumptions are that bats serve as the primary 
vector for disease spread geographically. The bats transport spores of Pd between roost sites, 
frequently during the swarm period when bats traditionally mate. The mechanisms involved 
in the geographical spread of Pd are dependent upon the life-cycle processes of the pathogen 
itself, the life-cycle activities of roosting bat populations, and suitable environmental conditions. 
Additionally, the human transmission of the spores on clothing and caving equipment is a sep-
arate vector, which spreads Pd spores to new roost sites. This secondary vector has motivated 
the need for extensive decontamination measures by cavers. However, current understanding 
of the seasonal transmission of spores, and whether or not transmission to a new locale is by 
bat or human vector, is not definitive. Modeling this aspect of WNS spread can naturally be 
understood as an orderability, or concurrency, problem in the way life-cycle and environmental 
processes exist concurrently on the landscape. By representing various orders in which different 
life-cycle and environmental processes interact using geoexpression, it becomes possible to un-
derstand how grander, geographical processes interact in a way mutually understandable by both 
a human and computational machine. In the Experiments section, an exploration of different 
orders through geoexpression manipulation is conducted to understand the effect that the lack of 
a definitive order has on our IBM’s outcome and demonstrate the utility of geoexpression as a 
theory of representing geographical process concurrency.

Model design
The epidemiological triangle denotes three categories necessary for an epidemic: the host, the 
pathogen, and the environment. Here, the bats are the host, the pathogen is Pd, and the envi-
ronment is the set of roost sites. In this section, each of the three epidemiological categories is 
decomposed into subsequent processes, described, represented mathematically, and structured 
using geoexpression in a graphical diagram.

Host processes
The life-cycle of bats can be generalized into three distinct tri-annual biological seasons: a 
Summer maternity season, a Swarm mating season, and a season for Winter hibernacula. During 
the summer months, females form maternity colonies to birth and raise their pups. At the end 
of the maternity season, juvenile and mature bats will leave the maternity colonies and begin to 
swarm. The swarm season is the primary mating period and is characterized by substantial ac-
tivity occurring spatially on the landscape. Each individual bat will frequent multiple roost sites 
during the swarm period. During swarm, bats are likely to transport spores of Pd from infectious 
roost sites to the roost sites later used as hibernacula (which may or may not have been already 
exposed to Pd). Female bats exhibit delayed fertilization after mating with males during swarm 
and conceive a pup the following spring. Upon the conclusion of swarm, bats select a specific 
roost site to form a winter hibernacula. Many bat species exhibit fidelity toward roost sites and 
will return to the same winter hibernacula. Once the hibernacula is formed, the bats enter tor-
por and become susceptible to White-Nose Syndrome. During the winter hibernacula, if Pd is 
present at the roost site and is of sufficient bio-mass to produce infection, bats are very likely 
to become infected and exhibit disease-related mortality. If exposed bats survive the infection, 
the infection is cleared as they migrate to form summer maternity colonies. Bat populations are 
moderated by natural mortality. Natural mortality is more common during the winter hibernation 
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season, but can occur any time of the year. Natural mortality effects juveniles differently from 
mature bats and is caused by many factors.

A mathematical generalization of the host processes that are instantiated within our IBM is 
listed in Table 1. These expressions were derived through the generalization of the differential 
equations provided by Lilley, Anttila, and Ruokolainen’s (2018) work. However, our model 
maintains the logistic population growth and mortality factors. Each expression is used to control 
a separate process related to the host’s biology. These mathematical expressions are instantiated 
in the Systems of the parallel ECS to represent bats’ biological processes. Each of the biological 
processes can be represented as geoexpression (aka. a graphical representation of the structure 
of interacting processes that represent geographical process concurrency) of the host processes.

Figure 1 depicts the geoexpression of the host’s processes. It represents the interactions be-
tween host processes within the model and is used in the implementation of the model to identify 
areas of latent concurrency and guide the parallel execution of Systems.

Pathogen processes
Lilley, Anttila, and Ruokolainen’s (2018) work focused on the understanding of intra- 
hibernacula disease spread through bat populations using a Susceptible Infected Recovered 
(SIR) state model. The SIR model instantiated a set of interacting differential equations from 
available literature to capture the parameters relevant to the interaction of bats with the WNS 
pathogen. The SIR model demonstrated that bats are more susceptible to WNS df4uring winter 
torpor because their suppressed immune systems render them vulnerable to fungal infection. 
Bats contract spores of Pd at roost sites of winter hibernacula. Pd is a cold-loving fungus that 
typically takes a year before it has grown to sufficiently infect the roosting bat population. If a 
bat is exposed to a roost site during Swarm with infectious levels of Pd, it can spread spores of 
Pd to its winter hibernacula before the bat enters torpor. Once established at a roost site, Pd can 
gain a permanent foothold that can reinfect future colonies of susceptible bats.

Figure 2 displays the structure of the pathogen’s processes within our IBM. Two pathogenic 
processes occur: the growth of the fungal pathogen and the shedding of Pd spores. If bats have 
been exposed to spores and arrive at winter hibernacula, they shed spores into the roost site. 
The spores of Pd then grow over the course of a year to render the roost site infectious to the 
roosting bat population. If the mean annual temperature is too warm, the spores will not grow 
due to climatic constraints, and the roost site is not rendered infectious (Reynolds 2010). Due 
to the invasiveness of Pd, if spores are shed into a hibernaculum with acceptable temperature 
conditions, the spores will grow.

Geographical processes
Lilley, Anttila, and Ruokolainen (2018) developed an ecological model to investigate disease 
spread in spatially abstract networks using random clusters of hibernacula assigned to arbitrary 
distances sampled from a Poisson distribution. Their result demonstrated comparable disper-
sion rates as documented through disease surveillance data at varying levels of geographical 
proximity. Here, the intra-hibernacula infection of bats is adapted from the Lilley, Anttila, and 
Ruokolainen (2018) epidemiological model. While individual bat-to-bat exposure of Pd can be 
separated from bat-to-substrate exposure to Pd, it occurs at a spatial scale that is best approxi-
mated over for the IBM. The effect of White-Nose Syndrome is so extreme that if Pd has grown 
to viably infect local bat populations at a given roost site, the exact method of transmission 
(bat-to-bat or bat-to-substrate) for any given bat is of less relevant concern to species managers.
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Figure 1. Geoexpression of Host’s Processes: States are drawn as circles. Transition nodes are 
drawn as squares. The sets of T, R, and W represent the tokens of data used by the transitions. 
T is Component data; R is globally accessible attribute data; W is a world update function that 
allows entities to be added or removed.
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Figure 2. Geoexpression of Pathogen’s Processes: A depiction of the geoexpression representing 
the simple life-cycle of the pathogen, Pd.
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A function that approximates the distribution of pathogen pores.
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d��(
ninj

) +�2

Figure 3. Connector Petri-Network between Host and Pathogen Processes: A depiction of how 
the Host’s and Pathogen’s geoexpressions can be linked through the use of a connector.
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Our IBM represents the geographical transmission of the disease using an emergent strat-
egy. Individual bats within the model interact with the roost sites and the pathogen to spread 
WNS across the landscape. The inter-hibernacula distribution of spores by bats can be approx-
imated for use here, using equation (1), as demonstrated by Maher et al. (2012). Fij represents 
the volume of Pd spores transmitted between two hibernacula, ni and nj, over distance, dij. β0 
represents a constant spread rate. β1 represents the distance between pairs of hibernacula. β2, a 
negative term, represents the effect of temperature on the spread of Pd. Within the IBM, Fij is 
always greater than or equal to 0. Figure 3 displays a Connector Petri Network structure that 
unites the host and pathogen process expressions. Connector Petri networks were introduced 
by Pouyan and Reeves (2004) and are intended to capture the bi-directional interaction between 
multiple Petri networks. As WNS is spreading geographically, the processes that comprise the 
geographical context suitably connect the pathogens to the hosts to spread WNS. In the IBM, the 
total Petri Network structure, inclusive of the Connector Petri Networks, is used as a blueprint 
for model implementation based on the parallel ECS.

Software
The software accepts a single input configuration file formatted using Tom’s Obvious Minimal 
Language (Preston-Werner 2019). The information contained in the input configuration file is 
given in Table 2. The input configuration file allows users to specify a set of controls for how 
the software should operate the IBM. Using the configuration, the user can set whether or not 
concurrent execution is preferred, what the maximum population of bats the IBM can support 
is, how many model-years to run, the seed value for the random number generator to make re-
peatable runs, what set of input data to use, and where to store the model’s outputs. The IBM is 
constructed using roost, bat, and species parameter data provided as a series of input files spec-
ified in a Comma Separated Value (CSV) format. The roost CSV file contains the parameters 
for every roost represented within the IBM. The bat CSV file contains the parameters for each 

Table 2. Input Configuration File

Configuration attribute Data type Purpose

Dispatch Boolean If true, use a concurrent execution pattern; 
otherwise, use a sequential execution 
pattern

Max_pop Unsigned 32-bit 
Integer

The maximum population size that the model 
can represent

Years Unsigned 32-bit 
Integer

The number of model years to run the model

Seed Unsigned 64-bit 
Integer

The seed value for the ISAAC random 
number generator

Roost_csv String The input file containing the roost site 
parameters

Bats_csv String The input file containing individual 
parameters of the initial bat population

Species_csv String The input file containing species parameters
Output_directory String The output directory to store the model’s 

output files



Geographical Analysis

14

individual bat that is used to represent the initial population of the IBM. The species CSV file 
contains species parameters for the bat population. A summary of the fields of the input CSV 
files is listed in Table 3.

Our IBM software constructs the model using a parallel ECS architectural pattern. Each 
entity represents a single individual bat. Each bat entity is associated with its unique set of 
Components as listed in Table 4. The Components are stored in contiguous memory arrays to re-
duce the cache miss rate when the parallel ECS operates on Component data. The biological and 

Table 3. Input Configuration Attributes

Configuration type Attribute Purpose

Bat Species The name of the bat species
Bat Gender The gender of the bat as male (M) or female (F)
Bat Age The initial age of the bat in years
Bat Initial infection state The initial infection state of the bat; true if 

infected, false if not infected
Bat Roost Id The roost id the bat currently occupies
Roost Latitude The roost site’s latitude
Roost Longitude The roost site’s longitude
Roost FIPS The federal information processing standard 

county unique identifier
Roost Maximum population The maximum population the roost site can 

sustain
Roost Initial infection state The initial infectious state of the roost; true if 

infected, false if not infected
Roost Mean temperature Annual mean temperature. If the mean 

temperature is too warm, then Pd cannot grow
Roost Visitation multiplier A value assigned to a given roost to make it 

more or less likely that a given roost will be 
visited by bats. It defaults to 1 in all of the 
models executed in this work

Species Species name The name of the species
Species Maximum age The maximum age these bats species can live
Species Fecundity The probability that females of this species will 

be successful in reproduction
Species Migration distance The maximum migration distance of bats of this 

species
Species Infection rate The infection probability of bats of this species 

when exposed to Pd
Species Fidelity The probability of winter hibernacula fidelity of 

this bat species
Species Visitation rate The probability of adjacent roost sites that will 

be visited during swarm
Species Disease mortality rate The probability at which bats of this species will 

die as a result of WNS
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pathogenic processes enumerated within the IBM are instantiated as Systems using the SPECS 
library. The Roost and Species data are common to all entities and are stored as Resources within 
the parallel ECS.

O’Regan et al. (2015) use a graph representation of the roost site landscape that uses a 
gravity dispersal kernel to weight the probability of transmission between counties based on 
spatial heterogeneity. In our model, the edges between roost sites are built using the maximum 
migration distance specified in the input species configuration file. Our model diverges from the 
approach by O’Regan et al. (2015) to enable the spread of WNS to be observed in the model as 
emergent phenomena. Each of the roost sites are stored as a node within a graph data structure 
provided by the Petgraph library (Sverdrup 2019). Petgraph is a Rust library that contains graph 
data structures. The edges of the roost site graph are established if the haversine distance between 
a pair of roost sites is less than or equal to the maximum migration distance attribute supplied in 
the species input configuration file. The roost site graph is added as the Landscape Resource to 
the parallel ECS.

Our model requires a few other Resources for the parallel ECS. First, a Clock that tracks the 
current season (Winter, Summer, Swarm) and year the model is currently in. Second, a species 
lookup table, indexed by SpeciesKey that is used to store species parameters provided by the 
species configuration file. Third, a counter for the total population of bats currently active in the 
model.

The Systems of the parallel ECS reflect the processes that act to spread WNS. The processes 
correspond to transition nodes of geoexpression, while the data types that each transition uses 
are represented as Petri network tokens. The explicit demarcation of mutability and immutability 
is a central feature of Rust programming. Each System of the parallel ECS is granted mutable 
(Write) or immutable (Read) access to the Component or Resource data necessary for its opera-
tion. As a good practice, any given System of the parallel ECS should not require access to every 
Component; the benefits rendered by the parallel ECS approach are maximized by accessing 
subsets of Components.

The list of Systems instantiated within the model is listed in Table 5. Each of the Systems, 
except the Census System, corresponds to transition nodes of geoexpression used to represent 
the concurrency within the IBM. The Census System does not correspond to any transition node 
because it does not serve any biological or pathogenic process within the IBM. Instead, the 
Census System is called after the Clock updates to Winter to log how many bats are located at 
each roost site.

Table 4. Bat Entity Components

Component name Purpose

SpeciesKey An identifier for the species of the bat entity.
Gender The gender of the bat entity as male or female
Infected A state machine to track whether or not the bat entity has been 

exposed to Pd, infected by WNS, or recovered from WNS
Lifecycle Tracks the current age of the bat entity and whether or not it is a 

juvenile or mature
RoostID The id of the current roost site the bat entity occupies
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Model execution
In this study, we evaluate the scalability and tractability of our IBM implemented using a 
parallel ECS architectural pattern for a range of roost counts and bat population sizes to 
represent the spread of WNS. Measurements are made of the wall clock execution time. 
The SPECS library provides easy parallelism on shared memory machines, multiple compo-
nent storage structures, and documented high performance in real-world applications (Specs, 
2019). SPECS enables the scheduling of systems to be defined sequentially or through the 
dispatch of an execution hierarchy. Repeatable stochasticity within the model is provided 
through the use of the ISAAC random number generator (Jenkins Jr. 1993) provided by the 
rand_isaac library (rand_isaac, 2018) authored in Rust. SPECS also supports the exploitation 
of data parallelism.

Table 5. Systems that Contain the Logic of the WNS Spread Model

System name
Corresponding transition 
node Purpose

Census system – Counts the number of bats in each roost 
site and updates the total population count 
resource

Disease infection 
system

Disease infection Determines if a bat will become infected 
with WNS after being exposed to Pd

Senesence system Senescence Increments the ages of all bat by 1 year
Age mortality system Age mortality Determines if a bat will die as a function of 

its current age
Resource starvation 

system
Resource starvation 

mortality
Determines if a bat will die as a result of 

overpopulation at a given roost site
Disease mortality 

system
Disease mortality Determines if a bat will die as a result of 

WNS infection
Removal system Removal Removes entities that have been killed by 

the model
Movement system Movement The movement system tracks the movement 

of bats to new winter hibernacula 
depending upon the species roost fidelity

Recovery system Disease recovery If bats survive a winter infection, the 
recovery system clears them of the 
infection

Reproduction system Reproduction Produces new entities into the model during 
Summer based on the fecundity of females 
of each species

Shed spore system Shed spores If a bat entity has been exposed to Pd during 
Swarm, it will shed spores of Pd into its 
Winter hibernacula

Grow pathogen system Grow spores If a roost site has been exposed to Pd, it will 
become infectious the following year

Clock system Clock Updates the current season and year
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Results

Data
To evaluate the computational performance of our IBM we prepared a set of input roost 
site data, data for an initial bat population, and species data. To generate the roost sites on 
the landscape, we filtered Karst Map Project data (The National Cave and Karst Research 
Institute 2002) to produce a shapefile of cave bearing surficial geology, which are regions 
likely to support cave roosting bats. We bounded our input area to the contiguous United 
States. Regions without caves may still have bat roosts, therefore, the distances from coun-
ties without surficial karst features were calculated using the NNJoin plugin in QGIS (QGIS 
Development Team, 2018). A normalized inverse distance was computed based on the result 
using the QGIS Field Calculator. Cave counts aggregated by county were extracted from 
O’Regan et al.’s (2015) Supplementary Data are used to compute a roost count heuristic for 
each county within the contiguous United States. A set of random locations for each county 
was computed based on the value of its roost count heuristic using the Random Points tool in 
QGIS. The mean annual temperature was computed by averaging the mean monthly tempera-
tures provided by Worldclim (Hijmans et al. 2005) on a 5 arc-minute grid, which is a spatial 
resolution sufficient for determining mean annual temperature as a surrogate for cave tem-
perature as reported in the work of Ihlo and Baker (2013). The Sample Raster Tool in QGIS 
was used to extract mean annual temperatures from the mean annual temperature raster for 
each roost site location. The mean annual temperature is used as a proxy for cave temperature 
following the approach of Ihlo and Baker (2013). Roost sites outside of the mean annual tem-
perature data area were removed from further consideration. The resulting set of roost sites 
was stored as a shapefile for use by subsequent R scripts to further prepare the input data.

Once the roost site locations, shown in Figure 4, were generated, the generate-roost-sites-
from-shp.R R script is used to generate the input roost site data file for the IBM. The R (R Core 
Team, 2018) script sets the maximum population capacity of each roost site and its initial in-
fection state. The initial infection state is set by passing the script with a set of county Federal 
Information Processing Standards (FIPS) codes. All of the roost sites in the counties specified 
will be initially infected. The maximum population capacity of each roost site is estimated by 
sampling over a uniform distribution of 10 to 1,000 times the cave count in the roost site’s county 
to represent the known preference for bats roosting in cave bearing surficial geology. The script 
outputs the roost CSV data file to be used as an input to our IBM.

The initial bat population is constructed using the entity-spawner.R R script. The number 
of bats in the initial population is provided as an argument to the script. For each bat, the script 
determines each bat’s species, age, roost site, gender, and infection state. None of the bats are 
set to be initially infected with WNS. The script outputs the bat CSV data file to be used as an 
input in our IBM.

The initial species data is created manually in a text editor and stored in CSV format to be 
provided as the species data input for the IBM. Species parameters were approximated from the 
available literature. The visitation_rate parameter is difficult to parameterize from the literature 
and will be used in future studies to evaluate the effect of inter-roost migration patterns on the 
spread of WNS. Because the purpose of this investigation focuses on computational performance 
evaluation, the visitation probability is arbitrarily set to 0.1 for all species; meaning that a given 
individual bat can visit up to 10% of its neighboring roost sites during swarm.
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Computational performance evaluation
A set of experiments were conducted to evaluate the performance of the software. The exper-
iments demonstrate the speedup and efficiency of the parallel ECS IBM, implemented on a 
foundation of geoexpression. All tests were executed using an Intel i5-8350U processor with 16 
gigabytes of RAM. Each test is executed with the parallel ECS in parallel dispatch mode. We 
evaluated two population size conditions, 10,000 and 100,000 bats, for each of three roost size 
conditions, 10, 100, 1,000 roosts. For each test, the IBM was provided a thread count represent-
ing the number of threads to balance the workload of the IBM. We replicated the execution of 
the model 30 times for each set of input conditions and thread count and used the meantime for 
evaluation.

Relative Scaled Speedup Formula

The Relative Scaled Speedup metric measures how the execution time is affected by an 
increasing number of cores for a fixed problem size and is computed as shown in equation (2): 
where t1 is the execution time on a single thread, n is the number of threads, and tn is the execu-
tion time for n threads (Amdahl 1967).

The results of the parallel scalability testing are shown in Figure 5. As the thread count is in-
creased, the IBM execution time speeds up relative to the single thread speed until eight threads. 
Worse performance is observed beyond eight threads because the hardware used to evaluate 
the model has a single quad-core architecture that supports two threads per core. Efficiencies 
degrade when the number of threads exceeds 8, because the processor must actively park and 
switch between threads.

(2)
RSS=

100×
t1

tn

n

Figure 4.  Generated roost locations: a depiction of the distribution of generated roost site 
locations that represent the landscape within the IBM.



Austin V. Davis and Shaowen Wang A Case for Geoexpression

19

Wang and Armstrong (2009) present a theoretical underpinning for relating computational 
intensity to spatial characteristics of data and computation. The theoretical foundation of geo-
expression is based on Petri nets. Timing each execution of each transition node for a specific 
volume of tokens can establish a relationship of computational intensity. Additionally, the spatial 
distribution of where computation is occurring varies as the infection spreads across the set of 
roost sites.

To evaluate the computational intensity of the IBM, another test was established using 
a subset of the generated roost sites taken from the problem size experiments and arbitrarily 
down-selected to Susquehanna, Pennsylvania. A separate branch of the code was created called 
intensity-tracking that produces the runtime of each System’s execution. The maximum popu-
lation of these roost sites was increased to 1,000 and the migration distance of the species was 
reduced to 20 km and the visitation probability was increased to 0.6. The model was executed 
for 15 years with a single roost being initially infected with Pd. These changes were made to 
slow the propagation of WNS to demonstrate the relationship of each System’s execution time 
to the model year, population size, and the number of infected roost sites to different dimensions 
of the problem within a smaller spatial region. The IBM scales near linearly as population size 
is increased, exponentially as roost counts are increased, and logistically as species migration 
distance is increased. The compute-plots.R script was used to graphically depict the relationships 
between each System’s execution time and the problem size it operated over. Figure 6 depicts the 
relationship between each System’s compute time and the model year. As the model progresses 
from year to year the computational intensity is affected by different population levels and the 
infectious conditions of roost sites. For example, as Pd is spread by bats to new roosts the num-
ber of infected roosts increases and the amount of time for the Shed Spore System to infect an 
uninfected roost site decreases. The Human Movement System operates independently of the 
population and number of infected roosts and exhibits very little change in its execution time.

Figure 7 depicts the relationship between each System’s compute time and the total pop-
ulation size operating within the IBM over the 15 model years. The Removal System assesses 

Figure 5. Relative Scaled Speedup: a depiction of the scalability for different problem sizes and 
thread counts.
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the number of bats that have died, its intensity increases as the total population increases. The 
Reproduction System and Disease Infection System exhibit similar behaviors.

Figure 8 depicts the relationship between each System’s compute time and the total number 
of infected roost sites. The computational intensity of the Shed Spore System is inversely related 
to the number of the infected roost site. This is because the System does not operate on a roost 
site if it is already infected. Therefore, significant computational time is expended when the 
number of infected roost sites is low and much less for larger numbers of infected roost sites.

IBM results
Further tests were conducted using generic parameters derived from the literature to demonstrate 
the efficacy and tractability of our IBM. Our species parameters were adopted from Reynolds 

Figure 6.  System execution time versus model year: a depiction of the variability in system 
execution time for a given set of model years. The performance of each system is provided to 
show how each differs in its scalability.
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(2010); Fenton and Barclay (1980); Lilley, Anttila, and Ruokolainen (2018), and the visitation 
probability was estimated to be 0.8. A subset of 40,000 roosts was selected to serve as the roost 
sites of the landscape. A population of 1,000,000 bats was generated to initially populate the 
landscape. Once the input files were prepared the model was executed for 6 model-years.

Figure 9 shows the modeled potential spread of WNS by the initial year it occurred in the 
county. Figure 10 shows the increasing number of roost sites infected with Pd and the popula-
tion decline in the initial county (Schoharie County, NY). Admittedly, these are straightforward 
results not designed to demonstrate the robustness of a well-parameterized model. However, the 
results do demonstrate that a WNS spread IBM implemented using a parallel ECS is entirely 
tractable. The total execution time of the single run was approximately 30 minutes on commod-
ity laptop hardware.

Figure 7. System execution time versus total population: a depiction of the variability in system 
execution time as total population changes. The performance of each system is provided to show 
how each differs in its scalability.
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Extending the IBM through the manipulation of geoexpression
Here we revisit the case of human transmission of WNS and demonstrate how the IBM can be 
extended and adapted to other situations. The use of geoexpression as a framework for struc-
turing the model allows different component orderings to be evaluated to repeatedly assess the 
effects of non-determinism in the real-world spread of WNS. Human transmission is less season-
ally dependent compared to bats (humans do not hibernate) so we construct two geoexpressions 
that capture human transmission: one where humans transmit the disease during winter as shown 
in Figure 11; and one where humans transmit the disease during summer as shown in Figure 12.

The geoexpressions guide the modification of the model’s code. Specifically, a new 
Resource, System, and extension to the configuration are added to represent the human popula-
tion size and movement probability within the model. The Human Movement Resource stores 

Figure 8. System execution time versus number of infected roosts: a depiction of the variability 
in system execution time as the number of infected roosts changes. The performance of each 
system is provided to show how each differs in its scalability.
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the size of the human population that moves between random pairs of roost sites. The additional 
parameter added to the configuration is the total human population size, where each human case 
serves as a transmission vector. When called, the Human Movement System iteratively selects 
a source and a destination roost for each human case. If the source roost is infected, the human 
case will expose the destination roost to the infection. The Human Movement System is then 
structured using SPECS to reflect the concurrency structure of the winter and summer geoex-
pressions being evaluated. Separate runs of the model are used to generate results for the winter 
and summer geoexpressions, respectively.

Once the IBM has been extended to support human transmission based on the structure de-
fined in our geoexpressions it is executed using the parameters in the IBM Results section. The 
human population size parameter is set to 10,000. The results of the winter and summer human 
WNS transmission and transmission of WNS by bats only are shown in Figure 13.

Discussion

Our IBM was developed through the lens of geographical process concurrency. The geoexpres-
sion that represents the interactions between disparate geographical processes was developed 
using the epidemiological triangle as a guide. Transition nodes were denoted with the sets of 
Component data necessary for its operation. The geoexpression represented the concurrency 
inherent in WNS spread and was used to order the execution of Systems within our parallel 
ECS-based IBM. The use of geoexpression supports the exploitation of parallelism for resolving 
computational intensity, and the ability to identify the processes that drive model outcomes.

Geoexpression and parallelism
Our IBM exhibited increased run-time as the number of threads was increased until the com-
putational hardware was fully utilized with eight threads. The use of ECS architectural patterns 
for IBM construction led to more efficient use of the computer’s memory access. Our results 
demonstrate that a reasonably large population of individual entities can be represented using 

Figure 9. Modeled spread of WNS by year: the initial year that White-Nose Syndrome is detected 
summarized by county.
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commodity hardware. Admittedly the computational complexity of the algorithms instantiated 
using a specific programming language ultimately limit the tractability of a problem. In our IBM, 
the pairwise distances between each bat, an O(n log n) process, are not computed on demand. 
Instead, the pairwise distances between roost sites are initially computed and then stored within a 
graph data structure to quickly look up “landscape” distances for each individual bat’s migration. 
This approach is reasonable because disease transmission is understood to largely occur within 
the roost regardless of whether or not the mode of transmission is bat-to-bat or bat-to-substrate; 
the effect of spreading the pathogen is the same. The ECS is known to have greater efficacy when 
entities are of different types (represented using different sets of Components); however, our IBM 
does not (yet) distinguish different classes of entities. All of the entities within the IBM are bats.

While geoexpression ordered the execution of Systems, data-parallel operations on 
Component data within Systems were also exploited. For example, the Senescence System in-
crements the Component representing the age of every bat (entity) by time. This operation is data 
parallel, because, at the same time step within the IBM, the age of one bat has no bearing on the 

Figure 10.  (Left) population declines in schoharie county, N.Y. (right) Increase in infectious 
roost sites by year: a depiction of the population declines in a county exposed to WNS and also 
how the number of roost sites infected increases.
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age of another. The senescence operation can then be distributed across multiple idling threads. 
Therefore, our IBM exploits geographical process concurrency through geoexpression and data 
parallelism.

Figure 11.  Human Winter Transmission: A geoexpression of WNS spread adding human 
transmission during winter.
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Geoexpression, concurrency, and computational intensity
As introduced by Wang and Armstrong (2009) the computational intensity can be unevenly dis-
tributed across a spatial domain. In our IBM, computational intensity varies across the locations 

Figure 12.  Human Summer Transmission: A geoexpression of WNS spread adding human 
transmission during summer.
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Figure 13.  Outcomes of different geoexpressions: (top) initial infection year aggregated by 
county resulting from the addition of human transmission during the winter; (middle) initial 
infection year aggregated by county resulting from the addition of human transmission during 
the summer; (bottom) initial infection year aggregated by county for bat only transmission.
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of roost sites depending upon the population at the roost site, the number of infected bats within 
the population, and the current infectious state of the roost site. The Systems of the ECS that rep-
resent the transition nodes of geoexpression are applied differently depending upon these condi-
tions at each location. In Figure 9, the spread of WNS geographically coincides with the Disease 
Infection System, Shed Spore System, and Grow Pathogen System activating and deactivating 
based on local conditions. Additionally, the Movement System is dependent upon the number of 
spatially near roost sites and processes greater amounts of data in areas with higher roost density.

The IBM’s Systems are concurrently executed based on an order guided by the geoexpres-
sion to produce the WNS spread outcome. The implementation of the inherent concurrency 
causes contention for specific roost sites and bat entities depending upon their infectious state, 
location, and the current model year. The geoexpression theory makes it possible to trace indi-
vidual entities through the Petri network and identify which transition nodes operate on it each 
model year, based upon its spatial location, and internal and external parameters. Therefore, 
throughout the duration of a model’s execution, the use of geoexpression enables tracing how 
computational intensity changes for specific entities and how different processes contend to con-
currently apply various transformations to the entity’s data.

Geoexpression and ecological prediction
Frequently, ecologists are asked to make predictions about the potential effects that specific envi-
ronmental changes have on a specific ecosystem or landscape. Understanding the consequences 
of each change in the community dynamics of an ecosystem has proven to be challenging. When 
models implemented using ordinary differential equations, assessments of potential outcomes 
resulting from specific changes are somewhat manageable to determine. However, when IBMs 
are used, the assessment of potential outcomes resulting from specific changes has proven to 
be a daunting task because the methodology of IBMs can represent significantly greater details 
and emergent phenomena (Colon, Claessen, and Ghil 2015). This study uses geoexpression to 
provide a graphical representation of the processes and their interrelationships. Using geoex-
pression we identify how frequently specific transition nodes of geoexpression are activated and 
the computational intensity of each process. This leads to the comparable understanding of the 
effects each process has on the model’s outcomes without needing a separate model based on 
ordinary differential equations.

WNS spread IBM
Computationally tractable and high-performance epidemiological models that can simulate large 
populations are important to understand how different diseases spread spatially. Wildlife ep-
idemiology serves as an important subject of inquiry to better understand, by corollary, dis-
ease transmission in human populations and disease transmission between wildlife and humans. 
While our approach focuses on the WNS epidemic, human epidemics can readily benefit from 
geoexpression-based IBM methodology.

Following Lilley, Anttila, and Ruokolainen (2018), our model does not capture relative hu-
midity due to its high variability within individual cave sites; however, it is an important climatic 
parameter for the growth of Pd. Our IBM currently abstracts over the volume of spores a bat can 
carry (a parameter of the O’Regan et al. (2015) model). In the future, this addition could improve 
our representation of how spores are spread, and the concentration level necessary to become 
viable at a new roost site.While prior studies use a daily time step, our IBM operates on a tri- 
annual time step based on bat function. We chose this temporal granularity because it represents 
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the biological phases of bat activities where disease response efforts and treatment plans could 
be implemented. While treatment is not a current component of our IBM, we expect to incor-
porate treatment in future efforts. Our IBM requires further sensitivity testing of its spatial and 
non-spatial parameters. With comprehensive sensitivity testing, proper parameterization of the 
model to represent the dynamics of WNS spread can be completed. Properly parameterized, our 
approach can be used to predict the spread of WNS into the future following the work of Maher 
et al. (2012); O’Regan et al. (2015); Ihlo and Baker (2013). Notwithstanding the lack of param-
eterization of the model and a more rigorous validation effort (to be pursued in future work), the 
results provided by our IBM are comparable to those produced in the aforecited literature.

Model validation
The development of a fully validated WNS model has challenged many previous efforts in the 
literature. Prior models with validation methods have ultimately fallen well short of their pre-
dictive capabilities. The goal of this specific study has been the implementation of a model 
built on geoexpression, based on modeling information found in published work. We readily 
admit that to apply our WNS IBM will require more rigorous validation efforts and extensive 
parameterization, especially as our model relates to the roost-site landscape network. To tackle 
the validation challenge, we have focused on a critical metric our model provides, the average 
distance of WNS spread per year, against the average historical distance of WNS spread captured 
by the WNS disease surveillance data disseminated by the WNS Response Team (White-Nose 
Syndrome Response Team 2018). The specific measure is the set of distances, as measured 
between Schoharie County, NY (where WNS began in North America), and the counties that 
became infected each year, correlated with the same distance measures computed from the WNS 
Response Team surveillance data. Our bat-only geoexpression captures 60% of the observed 
WNS average distance spread per year. The geoexpressions that include human summer and 
winter transmission capture 70% and 84% of the observed WNS average distance spread per 
year, respectively. While these results may seem low at first glance, they are not indicative of ar-
tificial geographical constraints that have been imposed by others. Existing studies impose geo-
graphical restrictions to only those counties with known caves (Lilley, Anttila, and Ruokolainen 
2018), while our study endeavors to capture a broader landscape. Furthermore, our approach 
shows how different patterns of geographical concurrency can lead to significantly different 
modeling results.

Rust in environmental modeling
Many have remarked on the steepness of Rust’s learning curve (Blandy 2015). Much of the diffi-
culty revolves around developing a thorough understanding of Rust’s ownership model. Leaders 
within the Rust community of practice have worked to make many pain points of the language 
much less painful and have future improvements planned to reduce the steepness of Rust’s learn-
ing curve (Blandy 2015). Overall, we found Rust and the SPECS library to be approachable; 
albeit more difficult to learn than the less stringently typed languages Java, R, and Python. The 
execution time of interpreted languages like R and Python is a noted shortcoming for their use in 
simulation. Rust has a comparable syntax to higher level languages, but compiles into a binary 
executable as opposed to being interpreted. Rust’s compiler enforces its memory safety guaran-
tees, which means that if the code compiles, in all likelihood, the executable will not be plagued 
by many classes of errors that are common in C or C++ (Klabnik & Nichols 2019).
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Software accessibility
The WNS IBM software is maintained in a Bitbucket repository that interested researchers may 
access and adapt for their own purposes. A set of scripts has been created to support the auto-
matic generation of the input configuration files. The model may be extended to support greater 
complexity of WNS spread by adding new Systems, Components, and Resources based on a new 
geoexpression and then implement it using the SPECS dispatch ordering rules.

While the software can be used to represent other spreading diseases, it would require sig-
nificant changes to make it disease-specific. However, the use of geoexpression to structure the 
order of process components in a model and the use of SPECS to implement the execution of the 
model has flexible applicability to other environmental modeling domains.

As demonstrated in our results, a System can be added to extend the functionality of the 
WNS IBM. The System can be scheduled for dispatch in a specific order using SPECS. Each 
System can be named by a researcher. An array of 0 or more System names can be passed to the 
SPECS dispatcher and associated with a specific System. A System will not be executed until all 
of the names in the aforementioned array are completed. This approach allows SPECS to support 
the concurrency graphically represented using geoexpression.

Conclusions

WNS is a serious epidemic. Much prior work has sought to model the spread of the epidemic 
through statistical, dynamic, and mean-field models. We build on prior studies to develop an 
IBM from the perspective of geographical process concurrency. Using the epidemiological tri-
angle to guide the process decomposition, we construct Petri network representations of the 
process interactions. These processes map cleanly onto the ECS architectural pattern through 
geoexpression to order the concurrent execution of Systems. Next, we demonstrate the computa-
tional performance of our ECS approach using the SPECS library, authored in Rust, to instantiate 
the IBM.

Our contributions demonstrate that the use of geoexpression enables geographical process 
models to be developed for enhancing geographical discovery, specifically related to geograph-
ical process concurrency. We achieve our objective by implementing an IBM of WNS spread 
leveraging previous WNS modeling work using an ECS architectural pattern. The processes of 
our IBM are represented graphically using Petri networks in a way mutually comprehensible by a 
human and computational machine. Next, we evaluate the performance of our software solution 
to demonstrate the tractability of our approach and its utility in showing how modifications to a 
geoexpression alter the geographical patterns being produced.

WNS modeling research benefits from geoexpression that sheds light on how the life-cycle 
of Pd and bats interact concurrently under a set of environmental conditions to produce the epi-
demic. Different structures of geoexpression used to model the spread of WNS lead to different 
spatial outcomes, with varying levels of correlation to observed spread, despite the fact that 
the modeled processes themselves are unchanged. As disease intervention technologies become 
more mature, species management decisions about where to field these technologies will become 
more important. Improved spatial modeling, that captures the interplay between concurrent pro-
cesses can help isolate the mechanisms of spread biologically and geographically to achieve 
desirable impacts.

While this work relies on commodity computing hardware, our next step is to increase 
the population size and roost count by leveraging advanced cyberinfrastructure. On advanced 
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cyberinfrastructure, the same code should become readily tractable for tens of millions of bats 
over a roost network of a few hundred thousand roosts. The ability to simulate a North American 
bat population of 50 million bats with a roost network of 250,000+ nodes with well-defined 
WNS spread parameters to demonstrate the emergent spread of WNS across the landscape would 
be extremely valuable to tackle related public health challenges. Such a simulation is made pos-
sible through the exploitation of geographical process concurrency based on a geoexpression 
framework. While much work remains to be done to develop an IBM that accurately models 
WNS spread, our geoexpression approach implemented on ECS represents a novel contribution 
to advancing an important branch of geographical analysis—one not limited to spatial epide-
miology, but applicable to many situations where geographical process concurrency is present.
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