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North American bat species have been undergoing extreme population declines due
to the White-Nose Syndrome (WNS) epidemic caused by the spread of its pathogen,
Pseudogymnoascus destructans. Existing models that represent the spread of the disease
are limited in their scalability for use in management decisions or lacked the sophistication
necessaryto capture the complexity of WNS spread. Groundedin the theory of geoexpression,
we exploit the latent structure of geographical process concurrency by implementing
our modeling software using a concurrent Entity Component System architecture. We
demonstrate our model’s computational tractability for millions of individual bats. This
work is significant because it lays the foundation for the use of advanced cyberinfrastructure
and cyberGIS to address challenges in geographical wildlife epidemiology that can be
understood using dynamic geographical Individual-Based Models.

Introduction

Wildlife epidemiology is a frequent subject of dynamic environmental modeling motivating
geographical discovery. Understanding the interactions of epidemiological, biological, and en-
vironmental processes that affect disease spread leads to more effective treatment methods and
species conservation (Maher et al. 2012; Hammerson et al. 2017; White, Forester, and Craft
2017). North American bat species have been undergoing extreme population declines due to the
White-Nose Syndrome (WNS) epidemic (Foley et al. 2011; Maher et al. 2012; Thogmartin et al.
2012). The first documented outbreak of WNS occurred at a winter hibernaculum in Schoharie
County, New York, during the 2005-2006 winter hibernation (Blehert et al. 2009). WNS is
caused by a fungal pathogen, Pseudogymnoascus destructans (Pd), which is commonly spread
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Highlights

* The spread of White-Nose Syndrome in North American bat populations is challenging.
* White-Nose Syndrome spreads geographically due to geographical process concurrency.
* Geoexpression provides a framework to represent geographical process concurrency.

* We implement a model based on geoexpression and demonstrate its tractability.

between winter hibernacula by bats (Trivedi et al. 2017). Since the winter of 2005, the disease
has spread throughout much of the East-Central United States and portions of Canada (Dzal
et al. 2011; White-Nose Syndrome Response Team 2018). In the first six years of the White-
Nose Syndrome epidemic, 6.7 million bats died of the disease (White-Nose Syndrome Response
Team 2018). Victims of the disease, contracted within hibernacula, present white fungal growth
over the nostrils and wings accompanied by life-threatening physical function changes. Bat
biologists and natural resource managers currently conduct monitoring and surveillance efforts
to assess the continued expansion of the epidemic (Bat Conservation International 2019). Many
treatment approaches have been evaluated, but the effectiveness of these approaches relies upon
a greater understanding of how the disease spreads geographically.

Colonial cave roosting vespertilionid species face greater risk due to increased interaction
with the WNS pathogen and conspecifics (Ihlo and Baker 2013). Since the initial outbreak in
2005, due to massive population declines of multiple species, a significant amount of spatial
epidemiological WNS modeling has been conducted on vespertilionid bats. Maher et al. (2012)
constructed a statistical model to predict WNS spread. To address the limitations of the statistical
model as a decision aid, Ihlo and Baker (2013) used spatial analysis to tie the spread of WNS to a
set of geographical variables. O’Regan et al. (2015) introduced a dynamic spatial epidemiologi-
cal model as a series of differential equations to address the lack of dynamic representation in the
prior efforts, but represented bat species without the ability to recover. In 2018, Lilley, Anttila,
and Ruokolainen developed a set of mean-field (not individual-based) models to represent WNS
spread. The Lilley, Anttila, and Ruokolainen model does not represent the spread of WNS across
different species of bats and treats the population as a single generic species even though dif-
ferent bat species are known to have different infection potentials. A model that represents the
geographical spread of WNS with different parameters for different species of bats, over large
numbers of roost sites, is needed to address the shortcomings of prior studies. Our study builds
upon existing research efforts and aims to develop a computational Individual-Based Model
(IBM) that represents the spread of WNS by exploiting geographical process concurrency.

As cyberinfrastructure has advanced, the geographical sciences have sought to exploit more
of its capabilities. Investigations into the exploitation and latent parallelism of computationally
intensive geographical analysis have only been possible with advancements in computer hard-
ware, new theoretical approaches, and computational methods (Wang and Armstrong 2009).
Previous research has pursued the adaptation of existing geographic problem-solving tools into
cyberGIS components known as spatial middleware (Wang 2010). These investigations evolved
to discern how cyberinfrastructure can serve as a basis for further inquiry toward the influence
of space-time pattern representation using epidemiological modeling as a case study (Shook and
Wang 2015). The next logical step, explored first in the work of Davis and Wang (2018) and now
here, is the investigation of how cyberinfrastructure motivates the need to expand the theory of
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geographic process representation; specifically, to understand and exploit geographic process
concurrency.

High-performance parallel computing can enhance the computational performance of spa-
tial epidemiological modeling (Shook, Wang, and Tang 2013). Developing modeling software
that exploits high-performance computing power is an important step toward the seamless inte-
gration of cyberGIS and spatial modeling based on advanced cyberinfrastructure (Wang et al.
2013; Lin et al. 2015). The geographical process concurrency between biological and epidemi-
ological processes is a key aspect of the WNS epidemic. Geographical process concurrency is
the decomposability of geographical processes into a structure of partially orderable components
that take place within spatial and temporal configurations to represent geospatial dynamics. Once
this system of concurrent processes is structured graphically, as examined by Davis and Wang’s
(2018) geoexpression, it can be used to exploit computationally performant software to represent
latent concurrency in geographical processes.

Geographic representation is segmented into the representation of pattern and the repre-
sentation of the process. Research has focused heavily on the representation of the pattern and
very little on the representation of the process (Goodchild, Yuan, and Cova 2007). However, as
introduced in Davis and Wang (2018), cyberinfrastructure has motivated the need to explore a
new process representation theory that captures and exploits the notion of geographical process
concurrency. Geographical process concurrency is an underexplored frontier in geographical
theories; especially as it relates to the representation of processes using computational machines.
Here we demonstrate that geographical process concurrency can be exploited to identify a latent
structure of concurrency to construct a geographical model. The geoexpression is a framework
that structures geographical process concurrency using a graphical representation to express the
relationships between a set of related geographical processes in a way that is mutually under-
standable by a human and computational machine. Davis and Wang (2018) conceptualize geo-
graphical process concurrency through geoexpression using a graphical language, Petri-net, to
represent the concurrent execution order of a set of processes. Once the concurrent execution
order is structured, it is feasible to identify regions within the model and software that are condu-
cive to parallel execution, which cyberinfrastructure is well suited to support.

The primary objective of this research is to demonstrate and evaluate the performance of a
software solution that implements an IBM of WNS spread using an Entity Component System
(ECS) architectural pattern based on geoexpression. IBM is a modeling strategy that can be used
to investigate how individual interactions produce a collective outcome. Our approach applies
an IBM and geoexpression to capture geographical concurrency in WNS spread to support man-
agement decision making. Improvement in WNS spread modeling is important to develop better
surveillance strategies, efficacious treatment techniques, and more effective disease response
and species recovery plans. The implementation of our IBM WNS spread modeling software is
informed by geoexpression to tractably structure computational and geographical concurrency
within the software.

ECS is an architectural pattern drawn from the data-oriented design paradigm of software
development (Danielsson and Bohlin 2015; Majerech 2015). Traditional object-oriented design
constructs software by focusing on the structure of the code into classes, inheritance relation-
ships, and abstractions. Data-oriented design views programs from the perspective of how com-
putation transforms data. Data-oriented design is focused on reducing the hazard of cache misses
to support more performant code execution (Fabian 2013). In modern computers, data in the
main memory are hundreds of clock cycles away from the processing unit. Data that resides
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within a processing unit’s cache take significantly fewer clock cycles to access; and modern
computer hardware will preload data from main memory to cache based on the principle of local-
ity. Therefore, computer performance is heavily affected by data locality issues (Fabian 2013).

ECS structures data by composition rather than inheritance to improve the cache performance
of the software by exploiting the principle of locality heuristics. Entities are represented using a
single integer identifier for each entity. Components are stored in disparate arrays of memory in-
dexed by the Entity integer value and describe the attributes of each entity, and Systems contain
the logical operations of the program. ECS also has Resources that serve as accessible storage for
global attributes. Our IBM is instantiated using a parallel ECS that allows multiple Systems to be
ordered for concurrent execution. Additionally, a parallel ECS enables data-parallel computation
to occur on Component data within a System. In our IBM, geoexpression is used to order the
Systems for concurrent execution within the parallel ECS to model the spread of WNS.

Our modeling software uses the SPECS Parallel Entity Component System (SPECS) library
authored in Rust (Klabnik & Nichols 2019). Rust was sponsored in 2009 as a systems language
by the Mozilla Foundation. Rust includes many features, including guaranteed memory safety
and concurrency without data races. Its guarantees are enforced at compile time and it imple-
ments a static garbage collector. The language’s ownership model guides a static analysis made
by the compiler to determine and enforce its guarantees. The Rust compiler reaches an interme-
diate representation language before the final compilation that runs on a virtual machine. It has
cross-platform support, a supportive user community, an excellent build system, and growing
user groups focused on extending its capabilities to advanced cyberinfrastructure (Blandy 2015;
Scull 2015).

This research demonstrates the performance of IBM software that is built using a parallel
ECS for modeling the geographical spread of WNS through North American bat populations.
Prior modeling efforts have either been too abstract for spatial representation or lacked the so-
phistication necessary to capture the complexity of WNS spread (Ihlo and Baker 2013; O’Regan
et al. 2015). During the initial outbreak, limited data availability, a lack of understanding of the
pathogen’s spread, and limited knowledge of how WNS affects the life cycle of multiple bat
species constrained related methodologies to understand the hazard posed by the disease and
predict its spread. We introduce a straightforward IBM of WNS spread based on existing litera-
ture, implement the model using an existing parallel ECS library, and evaluate its computational
tractability for different landscape and population configurations. We conclude with a discussion
of the importance of capturing geographic process concurrency, present and future benefits of
using a parallel ECS for instantiating a wildlife epidemiological IBM, and remark on the use of
Rust as a language for environmental modeling.

Methods

O’Regan et al. (2015) were the first to demonstrate the utility of emergent modeling to under-
stand the spatial spread of WNS. Their approach built on the findings of the statistical model
developed by Maher et al. (2012) that categorizes the processes that spread WNS into a multi-
scale hierarchy: (1) bat-to-bat, individual scale, transmission processes; (2) transmission be-
tween hibernacula; and (3) transmission over large distances on the landscape. Our model builds
on the work by O’Regan et al. (2015) to understand how individual movement across landscape
causes the emergent spread of WNS through the interaction of biological, epidemiological, and
geographical processes.



Austin V. Davis and Shaowen Wang A Case for Geoexpression

Instead of categorizing processes that spread WNS into a multi-scale hierarchy, our model
categorizes processes based on the epidemiological triangle (a process is either related to the
host, pathogen, or environment). Additionally, our model differs from the O’Regan et al. (2015)
approach because each bat is represented as a separate individual within our IBM. However,
our results are aggregated to the county level following O’Regan et al. (2015) and Maher et al.
(2012), because it serves as the minimum mapping unit at which disease surveillance data are
reported and management decisions are made. Our IBM is devised using the epidemiological
triangle as a conceptual tool to categorize the decomposition of processes that interact to spread
WNS across North America. The epidemiological triangle has three connected points describing
the foundations for the spread of a disease: host, pathogen, and landscape. Interacting processes
of the host, pathogen, and landscape are decomposed to identify latent process concurrency in
the drivers that spread WNS. Once the processes have been enumerated, Petri networks are used
to represent their order and interactions graphically. As a graphical language, Petri networks
are well suited to identify regions of latent concurrency that can be represented and exploited in
computation (Davis and Wang 2018).

The concurrent execution strategy of our IBM instantiated using the SPECS library is borne
out of the Petri networks that represent the geoexpression (i.e., the structure of geographical pro-
cess concurrency) framework for WNS spread. Once instantiated, the model’s run-time perfor-
mance is collected for a series of tests that vary the number of roost sites (e.g., the landscape size)
and the bat population size to demonstrate the utility of the parallel ECS and the gains provided
by explicitly representing the geographical process concurrency. Finally, the output of the IBM’s
WNS spread results, aggregated by county, is shown to demonstrate the utility and tractability of
parallel ECS architecture for the IBMs.

Geoexpression

Dynamic geographical models are often composed of constituent computational processes that
produce representative patterns observed in real-world geographical systems. The translation of
model processes into computational processes requires new theoretical support, as the structure
of how such processes interact is often fixed to represent a single order of events within the
modeled world. However, fixed orders of events may not capture the inherent complexity of
geographically concurrent processes. Geographically concurrent processes can become difficult
to reason about and a theory that can represent this concurrency is sorely needed. Therefore,
such a theory called geoexpression was proposed by Davis and Wang (2018) to relate model pro-
cesses to computational processes based on graphical primitives and a mathematical foundation
adapted from the network sciences.

Geoexpression represents geographical process concurrency for modeling geospatial dy-
namics using Petri networks. Petri networks are bipartite, directed, acyclic graphs composed of
State and Transition nodes, Edges, and Tokens. Tokens represent data transformations through a
network. Transition nodes apply operations to the data. States represent the input and output con-
ditions of the Tokens as they pass into and out of Transition nodes. Edges link state nodes to tran-
sition nodes. Petri networks are able to represent the graphical structure and functioning of many
operations (Peterson 1978). Intuitively rearranging the order of transition nodes changes the
output. The graphical structure of geoexpression captures different orders to represent the same
set of partially orderable components that produce a grander concurrent, geographical process.

The primary benefit that geoexpression provides is a representation theory for geographic
processes, that when applied, captures different orderings of processes, which, in turn, leads
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to different spatial patterns being produced. For example, multiple geographically concurrent
processes function to spread WNS. Existing assumptions are that bats serve as the primary
vector for disease spread geographically. The bats transport spores of Pd between roost sites,
frequently during the swarm period when bats traditionally mate. The mechanisms involved
in the geographical spread of Pd are dependent upon the life-cycle processes of the pathogen
itself, the life-cycle activities of roosting bat populations, and suitable environmental conditions.
Additionally, the human transmission of the spores on clothing and caving equipment is a sep-
arate vector, which spreads Pd spores to new roost sites. This secondary vector has motivated
the need for extensive decontamination measures by cavers. However, current understanding
of the seasonal transmission of spores, and whether or not transmission to a new locale is by
bat or human vector, is not definitive. Modeling this aspect of WNS spread can naturally be
understood as an orderability, or concurrency, problem in the way life-cycle and environmental
processes exist concurrently on the landscape. By representing various orders in which different
life-cycle and environmental processes interact using geoexpression, it becomes possible to un-
derstand how grander, geographical processes interact in a way mutually understandable by both
a human and computational machine. In the Experiments section, an exploration of different
orders through geoexpression manipulation is conducted to understand the effect that the lack of
a definitive order has on our IBM’s outcome and demonstrate the utility of geoexpression as a
theory of representing geographical process concurrency.

Model design

The epidemiological triangle denotes three categories necessary for an epidemic: the host, the
pathogen, and the environment. Here, the bats are the host, the pathogen is Pd, and the envi-
ronment is the set of roost sites. In this section, each of the three epidemiological categories is
decomposed into subsequent processes, described, represented mathematically, and structured
using geoexpression in a graphical diagram.

Host processes

The life-cycle of bats can be generalized into three distinct tri-annual biological seasons: a
Summer maternity season, a Swarm mating season, and a season for Winter hibernacula. During
the summer months, females form maternity colonies to birth and raise their pups. At the end
of the maternity season, juvenile and mature bats will leave the maternity colonies and begin to
swarm. The swarm season is the primary mating period and is characterized by substantial ac-
tivity occurring spatially on the landscape. Each individual bat will frequent multiple roost sites
during the swarm period. During swarm, bats are likely to transport spores of Pd from infectious
roost sites to the roost sites later used as hibernacula (which may or may not have been already
exposed to Pd). Female bats exhibit delayed fertilization after mating with males during swarm
and conceive a pup the following spring. Upon the conclusion of swarm, bats select a specific
roost site to form a winter hibernacula. Many bat species exhibit fidelity toward roost sites and
will return to the same winter hibernacula. Once the hibernacula is formed, the bats enter tor-
por and become susceptible to White-Nose Syndrome. During the winter hibernacula, if Pd is
present at the roost site and is of sufficient bio-mass to produce infection, bats are very likely
to become infected and exhibit disease-related mortality. If exposed bats survive the infection,
the infection is cleared as they migrate to form summer maternity colonies. Bat populations are
moderated by natural mortality. Natural mortality is more common during the winter hibernation
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season, but can occur any time of the year. Natural mortality effects juveniles differently from
mature bats and is caused by many factors.

A mathematical generalization of the host processes that are instantiated within our IBM is
listed in Table 1. These expressions were derived through the generalization of the differential
equations provided by Lilley, Anttila, and Ruokolainen’s (2018) work. However, our model
maintains the logistic population growth and mortality factors. Each expression is used to control
a separate process related to the host’s biology. These mathematical expressions are instantiated
in the Systems of the parallel ECS to represent bats’ biological processes. Each of the biological
processes can be represented as geoexpression (aka. a graphical representation of the structure
of interacting processes that represent geographical process concurrency) of the host processes.

Figure 1 depicts the geoexpression of the host’s processes. It represents the interactions be-
tween host processes within the model and is used in the implementation of the model to identify
areas of latent concurrency and guide the parallel execution of Systems.

Pathogen processes

Lilley, Anttila, and Ruokolainen’s (2018) work focused on the understanding of intra-
hibernacula disease spread through bat populations using a Susceptible Infected Recovered
(SIR) state model. The SIR model instantiated a set of interacting differential equations from
available literature to capture the parameters relevant to the interaction of bats with the WNS
pathogen. The SIR model demonstrated that bats are more susceptible to WNS df4uring winter
torpor because their suppressed immune systems render them vulnerable to fungal infection.
Bats contract spores of Pd at roost sites of winter hibernacula. Pd is a cold-loving fungus that
typically takes a year before it has grown to sufficiently infect the roosting bat population. If a
bat is exposed to a roost site during Swarm with infectious levels of Pd, it can spread spores of
Pd to its winter hibernacula before the bat enters torpor. Once established at a roost site, Pd can
gain a permanent foothold that can reinfect future colonies of susceptible bats.

Figure 2 displays the structure of the pathogen’s processes within our IBM. Two pathogenic
processes occur: the growth of the fungal pathogen and the shedding of Pd spores. If bats have
been exposed to spores and arrive at winter hibernacula, they shed spores into the roost site.
The spores of Pd then grow over the course of a year to render the roost site infectious to the
roosting bat population. If the mean annual temperature is too warm, the spores will not grow
due to climatic constraints, and the roost site is not rendered infectious (Reynolds 2010). Due
to the invasiveness of Pd, if spores are shed into a hibernaculum with acceptable temperature
conditions, the spores will grow.

Geographical processes

Lilley, Anttila, and Ruokolainen (2018) developed an ecological model to investigate disease
spread in spatially abstract networks using random clusters of hibernacula assigned to arbitrary
distances sampled from a Poisson distribution. Their result demonstrated comparable disper-
sion rates as documented through disease surveillance data at varying levels of geographical
proximity. Here, the intra-hibernacula infection of bats is adapted from the Lilley, Anttila, and
Ruokolainen (2018) epidemiological model. While individual bat-to-bat exposure of Pd can be
separated from bat-to-substrate exposure to Pd, it occurs at a spatial scale that is best approxi-
mated over for the IBM. The effect of White-Nose Syndrome is so extreme that if Pd has grown
to viably infect local bat populations at a given roost site, the exact method of transmission
(bat-to-bat or bat-to-substrate) for any given bat is of less relevant concern to species managers.
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Figure 1. Geoexpression of Host’s Processes: States are drawn as circles. Transition nodes are
drawn as squares. The sets of T, R, and W represent the tokens of data used by the transitions.
T is Component data; R is globally accessible attribute data; W is a world update function that
allows entities to be added or removed.

10



Austin V. Davis and Shaowen Wang A Case for Geoexpression

grow spores

spores

deposited

shed spores
{Tf’Tr}
{R, R}

Figure 2. Geoexpression of Pathogen’s Processes: A depiction of the geoexpression representing
the simple life-cycle of the pathogen, Pd.
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Table 2. Input Configuration File

Configuration attribute Data type Purpose
Dispatch Boolean If true, use a concurrent execution pattern;
otherwise, use a sequential execution
pattern
Max_pop Unsigned 32-bit ~ The maximum population size that the model
Integer can represent
Years Unsigned 32-bit ~ The number of model years to run the model
Integer
Seed Unsigned 64-bit ~ The seed value for the ISAAC random
Integer number generator
Roost_csv String The input file containing the roost site
parameters
Bats_csv String The input file containing individual
parameters of the initial bat population
Species_csv String The input file containing species parameters
Output_directory String The output directory to store the model’s

output files

Our IBM represents the geographical transmission of the disease using an emergent strat-
egy. Individual bats within the model interact with the roost sites and the pathogen to spread
WNS across the landscape. The inter-hibernacula distribution of spores by bats can be approx-
imated for use here, using equation (1), as demonstrated by Maher et al. (2012). F; represents
the volume of Pd spores transmitted between two hibernacula, n; and n;, over distance, dl.j. N
represents a constant spread rate. 3, represents the distance between pairs of hibernacula. f,, a
negative term, represents the effect of temperature on the spread of Pd. Within the IBM, F; is
always greater than or equal to 0. Figure 3 displays a Connector Petri Network structure that
unites the host and pathogen process expressions. Connector Petri networks were introduced
by Pouyan and Reeves (2004) and are intended to capture the bi-directional interaction between
multiple Petri networks. As WIS is spreading geographically, the processes that comprise the
geographical context suitably connect the pathogens to the hosts to spread WNS. In the IBM, the
total Petri Network structure, inclusive of the Connector Petri Networks, is used as a blueprint
for model implementation based on the parallel ECS.

Software

The software accepts a single input configuration file formatted using Tom’s Obvious Minimal
Language (Preston-Werner 2019). The information contained in the input configuration file is
given in Table 2. The input configuration file allows users to specify a set of controls for how
the software should operate the IBM. Using the configuration, the user can set whether or not
concurrent execution is preferred, what the maximum population of bats the IBM can support
is, how many model-years to run, the seed value for the random number generator to make re-
peatable runs, what set of input data to use, and where to store the model’s outputs. The IBM is
constructed using roost, bat, and species parameter data provided as a series of input files spec-
ified in a Comma Separated Value (CSV) format. The roost CSV file contains the parameters
for every roost represented within the IBM. The bat CSV file contains the parameters for each
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Table 3. Input Configuration Attributes

Configuration type  Attribute Purpose

Bat Species The name of the bat species

Bat Gender The gender of the bat as male (M) or female (F)

Bat Age The initial age of the bat in years

Bat Initial infection state The initial infection state of the bat; true if
infected, false if not infected

Bat Roost Id The roost id the bat currently occupies

Roost Latitude The roost site’s latitude

Roost Longitude The roost site’s longitude

Roost FIPS The federal information processing standard
county unique identifier

Roost Maximum population ~ The maximum population the roost site can
sustain

Roost Initial infection state The initial infectious state of the roost; true if
infected, false if not infected

Roost Mean temperature Annual mean temperature. If the mean
temperature is too warm, then Pd cannot grow

Roost Visitation multiplier A value assigned to a given roost to make it
more or less likely that a given roost will be
visited by bats. It defaults to 1 in all of the
models executed in this work

Species Species name The name of the species

Species Maximum age The maximum age these bats species can live

Species Fecundity The probability that females of this species will
be successful in reproduction

Species Migration distance The maximum migration distance of bats of this
species

Species Infection rate The infection probability of bats of this species
when exposed to Pd

Species Fidelity The probability of winter hibernacula fidelity of
this bat species

Species Visitation rate The probability of adjacent roost sites that will
be visited during swarm

Species Disease mortality rate  The probability at which bats of this species will

die as a result of WNS

individual bat that is used to represent the initial population of the IBM. The species CSV file
contains species parameters for the bat population. A summary of the fields of the input CSV
files is listed in Table 3.

Our IBM software constructs the model using a parallel ECS architectural pattern. Each
entity represents a single individual bat. Each bat entity is associated with its unique set of
Components as listed in Table 4. The Components are stored in contiguous memory arrays to re-
duce the cache miss rate when the parallel ECS operates on Component data. The biological and
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Table 4. Bat Entity Components

Component name Purpose

SpeciesKey An identifier for the species of the bat entity.

Gender The gender of the bat entity as male or female

Infected A state machine to track whether or not the bat entity has been
exposed to Pd, infected by WNS, or recovered from WNS

Lifecycle Tracks the current age of the bat entity and whether or not it is a
juvenile or mature

RoostID The id of the current roost site the bat entity occupies

pathogenic processes enumerated within the IBM are instantiated as Systems using the SPECS
library. The Roost and Species data are common to all entities and are stored as Resources within
the parallel ECS.

O’Regan et al. (2015) use a graph representation of the roost site landscape that uses a
gravity dispersal kernel to weight the probability of transmission between counties based on
spatial heterogeneity. In our model, the edges between roost sites are built using the maximum
migration distance specified in the input species configuration file. Our model diverges from the
approach by O’Regan et al. (2015) to enable the spread of WNS to be observed in the model as
emergent phenomena. Each of the roost sites are stored as a node within a graph data structure
provided by the Petgraph library (Sverdrup 2019). Petgraph is a Rust library that contains graph
data structures. The edges of the roost site graph are established if the haversine distance between
a pair of roost sites is less than or equal to the maximum migration distance attribute supplied in
the species input configuration file. The roost site graph is added as the Landscape Resource to
the parallel ECS.

Our model requires a few other Resources for the parallel ECS. First, a Clock that tracks the
current season (Winter, Summer, Swarm) and year the model is currently in. Second, a species
lookup table, indexed by SpeciesKey that is used to store species parameters provided by the
species configuration file. Third, a counter for the total population of bats currently active in the
model.

The Systems of the parallel ECS reflect the processes that act to spread WNS. The processes
correspond to transition nodes of geoexpression, while the data types that each transition uses
are represented as Petri network tokens. The explicit demarcation of mutability and immutability
is a central feature of Rust programming. Each System of the parallel ECS is granted mutable
(Write) or immutable (Read) access to the Component or Resource data necessary for its opera-
tion. As a good practice, any given System of the parallel ECS should not require access to every
Component; the benefits rendered by the parallel ECS approach are maximized by accessing
subsets of Components.

The list of Systems instantiated within the model is listed in Table 5. Each of the Systems,
except the Census System, corresponds to transition nodes of geoexpression used to represent
the concurrency within the IBM. The Census System does not correspond to any transition node
because it does not serve any biological or pathogenic process within the IBM. Instead, the
Census System is called after the Clock updates to Winter to log how many bats are located at
each roost site.
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Table 5. Systems that Contain the Logic of the WNS Spread Model

System name

Corresponding transition

node

Purpose

Census system

Disease infection
system

Senesence system

Age mortality system

Resource starvation
system

Disease mortality
system

Removal system

Movement system

Recovery system

Reproduction system

Shed spore system

Disease infection

Senescence
Age mortality

Resource starvation
mortality
Disease mortality

Removal

Movement

Disease recovery

Reproduction

Shed spores

Grow pathogen system Grow spores

Clock system

Clock

Counts the number of bats in each roost
site and updates the total population count
resource

Determines if a bat will become infected
with WNS after being exposed to Pd

Increments the ages of all bat by 1 year

Determines if a bat will die as a function of
its current age

Determines if a bat will die as a result of
overpopulation at a given roost site

Determines if a bat will die as a result of
WNS infection

Removes entities that have been killed by
the model

The movement system tracks the movement
of bats to new winter hibernacula
depending upon the species roost fidelity

If bats survive a winter infection, the
recovery system clears them of the
infection

Produces new entities into the model during
Summer based on the fecundity of females
of each species

If a bat entity has been exposed to Pd during
Swarm, it will shed spores of Pd into its
Winter hibernacula

If a roost site has been exposed to Pd, it will
become infectious the following year

Updates the current season and year

Model execution

In this study, we evaluate the scalability and tractability of our IBM implemented using a
parallel ECS architectural pattern for a range of roost counts and bat population sizes to
represent the spread of WNS. Measurements are made of the wall clock execution time.
The SPECS library provides easy parallelism on shared memory machines, multiple compo-
nent storage structures, and documented high performance in real-world applications (Specs,
2019). SPECS enables the scheduling of systems to be defined sequentially or through the
dispatch of an execution hierarchy. Repeatable stochasticity within the model is provided
through the use of the ISAAC random number generator (Jenkins Jr. 1993) provided by the
rand_isaac library (rand_isaac, 2018) authored in Rust. SPECS also supports the exploitation

of data parallelism.
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Results

Data

To evaluate the computational performance of our IBM we prepared a set of input roost
site data, data for an initial bat population, and species data. To generate the roost sites on
the landscape, we filtered Karst Map Project data (The National Cave and Karst Research
Institute 2002) to produce a shapefile of cave bearing surficial geology, which are regions
likely to support cave roosting bats. We bounded our input area to the contiguous United
States. Regions without caves may still have bat roosts, therefore, the distances from coun-
ties without surficial karst features were calculated using the NNJoin plugin in QGIS (QGIS
Development Team, 2018). A normalized inverse distance was computed based on the result
using the QGIS Field Calculator. Cave counts aggregated by county were extracted from
O’Regan et al.’s (2015) Supplementary Data are used to compute a roost count heuristic for
each county within the contiguous United States. A set of random locations for each county
was computed based on the value of its roost count heuristic using the Random Points tool in
QGIS. The mean annual temperature was computed by averaging the mean monthly tempera-
tures provided by Worldclim (Hijmans et al. 2005) on a 5 arc-minute grid, which is a spatial
resolution sufficient for determining mean annual temperature as a surrogate for cave tem-
perature as reported in the work of Thlo and Baker (2013). The Sample Raster Tool in QGIS
was used to extract mean annual temperatures from the mean annual temperature raster for
each roost site location. The mean annual temperature is used as a proxy for cave temperature
following the approach of Ihlo and Baker (2013). Roost sites outside of the mean annual tem-
perature data area were removed from further consideration. The resulting set of roost sites
was stored as a shapefile for use by subsequent R scripts to further prepare the input data.

Once the roost site locations, shown in Figure 4, were generated, the generate-roost-sites-
from-shp.R R script is used to generate the input roost site data file for the IBM. The R (R Core
Team, 2018) script sets the maximum population capacity of each roost site and its initial in-
fection state. The initial infection state is set by passing the script with a set of county Federal
Information Processing Standards (FIPS) codes. All of the roost sites in the counties specified
will be initially infected. The maximum population capacity of each roost site is estimated by
sampling over a uniform distribution of 10 to 1,000 times the cave count in the roost site’s county
to represent the known preference for bats roosting in cave bearing surficial geology. The script
outputs the roost CSV data file to be used as an input to our IBM.

The initial bat population is constructed using the entity-spawner.R R script. The number
of bats in the initial population is provided as an argument to the script. For each bat, the script
determines each bat’s species, age, roost site, gender, and infection state. None of the bats are
set to be initially infected with WNS. The script outputs the bat CSV data file to be used as an
input in our IBM.

The initial species data is created manually in a text editor and stored in CSV format to be
provided as the species data input for the IBM. Species parameters were approximated from the
available literature. The visitation_rate parameter is difficult to parameterize from the literature
and will be used in future studies to evaluate the effect of inter-roost migration patterns on the
spread of WNS. Because the purpose of this investigation focuses on computational performance
evaluation, the visitation probability is arbitrarily set to 0.1 for all species; meaning that a given
individual bat can visit up to 10% of its neighboring roost sites during swarm.
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Roost Site Location

Figure 4. Generated roost locations: a depiction of the distribution of generated roost site
locations that represent the landscape within the IBM.

Computational performance evaluation

A set of experiments were conducted to evaluate the performance of the software. The exper-
iments demonstrate the speedup and efficiency of the parallel ECS IBM, implemented on a
foundation of geoexpression. All tests were executed using an Intel i5-8350U processor with 16
gigabytes of RAM. Each test is executed with the parallel ECS in parallel dispatch mode. We
evaluated two population size conditions, 10,000 and 100,000 bats, for each of three roost size
conditions, 10, 100, 1,000 roosts. For each test, the IBM was provided a thread count represent-
ing the number of threads to balance the workload of the IBM. We replicated the execution of
the model 30 times for each set of input conditions and thread count and used the meantime for
evaluation.

Relative Scaled Speedup Formula

100x &

RSS=—=* @
n

The Relative Scaled Speedup metric measures how the execution time is affected by an
increasing number of cores for a fixed problem size and is computed as shown in equation (2):
where 7, is the execution time on a single thread, 7 is the number of threads, and 7, is the execu-
tion time for n threads (Amdahl 1967).

The results of the parallel scalability testing are shown in Figure 5. As the thread count is in-
creased, the IBM execution time speeds up relative to the single thread speed until eight threads.
Worse performance is observed beyond eight threads because the hardware used to evaluate
the model has a single quad-core architecture that supports two threads per core. Efficiencies
degrade when the number of threads exceeds 8, because the processor must actively park and
switch between threads.
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Figure 5. Relative Scaled Speedup: a depiction of the scalability for different problem sizes and
thread counts.

Wang and Armstrong (2009) present a theoretical underpinning for relating computational
intensity to spatial characteristics of data and computation. The theoretical foundation of geo-
expression is based on Petri nets. Timing each execution of each transition node for a specific
volume of tokens can establish a relationship of computational intensity. Additionally, the spatial
distribution of where computation is occurring varies as the infection spreads across the set of
roost sites.

To evaluate the computational intensity of the IBM, another test was established using
a subset of the generated roost sites taken from the problem size experiments and arbitrarily
down-selected to Susquehanna, Pennsylvania. A separate branch of the code was created called
intensity-tracking that produces the runtime of each System’s execution. The maximum popu-
lation of these roost sites was increased to 1,000 and the migration distance of the species was
reduced to 20 km and the visitation probability was increased to 0.6. The model was executed
for 15 years with a single roost being initially infected with Pd. These changes were made to
slow the propagation of WNS to demonstrate the relationship of each System’s execution time
to the model year, population size, and the number of infected roost sites to different dimensions
of the problem within a smaller spatial region. The IBM scales near linearly as population size
is increased, exponentially as roost counts are increased, and logistically as species migration
distance is increased. The compute-plots.R script was used to graphically depict the relationships
between each System’s execution time and the problem size it operated over. Figure 6 depicts the
relationship between each System’s compute time and the model year. As the model progresses
from year to year the computational intensity is affected by different population levels and the
infectious conditions of roost sites. For example, as Pd is spread by bats to new roosts the num-
ber of infected roosts increases and the amount of time for the Shed Spore System to infect an
uninfected roost site decreases. The Human Movement System operates independently of the
population and number of infected roosts and exhibits very little change in its execution time.

Figure 7 depicts the relationship between each System’s compute time and the total pop-
ulation size operating within the IBM over the 15 model years. The Removal System assesses
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Figure 6. System execution time versus model year: a depiction of the variability in system
execution time for a given set of model years. The performance of each system is provided to
show how each differs in its scalability.

the number of bats that have died, its intensity increases as the total population increases. The
Reproduction System and Disease Infection System exhibit similar behaviors.

Figure 8 depicts the relationship between each System’s compute time and the total number
of infected roost sites. The computational intensity of the Shed Spore System is inversely related
to the number of the infected roost site. This is because the System does not operate on a roost
site if it is already infected. Therefore, significant computational time is expended when the
number of infected roost sites is low and much less for larger numbers of infected roost sites.

IBM results
Further tests were conducted using generic parameters derived from the literature to demonstrate
the efficacy and tractability of our IBM. Our species parameters were adopted from Reynolds
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Figure 7. System execution time versus total population: a depiction of the variability in system
execution time as total population changes. The performance of each system is provided to show
how each differs in its scalability.

(2010); Fenton and Barclay (1980); Lilley, Anttila, and Ruokolainen (2018), and the visitation
probability was estimated to be 0.8. A subset of 40,000 roosts was selected to serve as the roost
sites of the landscape. A population of 1,000,000 bats was generated to initially populate the
landscape. Once the input files were prepared the model was executed for 6 model-years.

Figure 9 shows the modeled potential spread of WNS by the initial year it occurred in the
county. Figure 10 shows the increasing number of roost sites infected with Pd and the popula-
tion decline in the initial county (Schoharie County, NY). Admittedly, these are straightforward
results not designed to demonstrate the robustness of a well-parameterized model. However, the
results do demonstrate that a WNS spread IBM implemented using a parallel ECS is entirely
tractable. The total execution time of the single run was approximately 30 minutes on commod-
ity laptop hardware.
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Figure 8. System execution time versus number of infected roosts: a depiction of the variability
in system execution time as the number of infected roosts changes. The performance of each
system is provided to show how each differs in its scalability.

Extending the IBM through the manipulation of geoexpression
Here we revisit the case of human transmission of WNS and demonstrate how the IBM can be
extended and adapted to other situations. The use of geoexpression as a framework for struc-
turing the model allows different component orderings to be evaluated to repeatedly assess the
effects of non-determinism in the real-world spread of WNS. Human transmission is less season-
ally dependent compared to bats (humans do not hibernate) so we construct two geoexpressions
that capture human transmission: one where humans transmit the disease during winter as shown
in Figure 11; and one where humans transmit the disease during summer as shown in Figure 12.
The geoexpressions guide the modification of the model’s code. Specifically, a new
Resource, System, and extension to the configuration are added to represent the human popula-
tion size and movement probability within the model. The Human Movement Resource stores
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Figure 9. Modeled spread of WNS by year: the initial year that White-Nose Syndrome is detected
summarized by county.

the size of the human population that moves between random pairs of roost sites. The additional
parameter added to the configuration is the total human population size, where each human case
serves as a transmission vector. When called, the Human Movement System iteratively selects
a source and a destination roost for each human case. If the source roost is infected, the human
case will expose the destination roost to the infection. The Human Movement System is then
structured using SPECS to reflect the concurrency structure of the winter and summer geoex-
pressions being evaluated. Separate runs of the model are used to generate results for the winter
and summer geoexpressions, respectively.

Once the IBM has been extended to support human transmission based on the structure de-
fined in our geoexpressions it is executed using the parameters in the IBM Results section. The
human population size parameter is set to 10,000. The results of the winter and summer human
WNS transmission and transmission of WNS by bats only are shown in Figure 13.

Discussion

Our IBM was developed through the lens of geographical process concurrency. The geoexpres-
sion that represents the interactions between disparate geographical processes was developed
using the epidemiological triangle as a guide. Transition nodes were denoted with the sets of
Component data necessary for its operation. The geoexpression represented the concurrency
inherent in WNS spread and was used to order the execution of Systems within our parallel
ECS-based IBM. The use of geoexpression supports the exploitation of parallelism for resolving
computational intensity, and the ability to identify the processes that drive model outcomes.

Geoexpression and parallelism

Our IBM exhibited increased run-time as the number of threads was increased until the com-
putational hardware was fully utilized with eight threads. The use of ECS architectural patterns
for IBM construction led to more efficient use of the computer’s memory access. Our results
demonstrate that a reasonably large population of individual entities can be represented using
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Figure 10. (Left) population declines in schoharie county, N.Y. (right) Increase in infectious
roost sites by year: a depiction of the population declines in a county exposed to WNS and also
how the number of roost sites infected increases.

commodity hardware. Admittedly the computational complexity of the algorithms instantiated
using a specific programming language ultimately limit the tractability of a problem. In our IBM,
the pairwise distances between each bat, an O(n log n) process, are not computed on demand.
Instead, the pairwise distances between roost sites are initially computed and then stored within a
graph data structure to quickly look up “landscape” distances for each individual bat’s migration.
This approach is reasonable because disease transmission is understood to largely occur within
the roost regardless of whether or not the mode of transmission is bat-to-bat or bat-to-substrate;
the effect of spreading the pathogen is the same. The ECS is known to have greater efficacy when
entities are of different types (represented using different sets of Components); however, our IBM
does not (yet) distinguish different classes of entities. All of the entities within the IBM are bats.

While geoexpression ordered the execution of Systems, data-parallel operations on
Component data within Systems were also exploited. For example, the Senescence System in-
crements the Component representing the age of every bat (entity) by time. This operation is data
parallel, because, at the same time step within the IBM, the age of one bat has no bearing on the
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Figure 11. Human Winter Transmission: A geoexpression of WNS spread adding human

transmission during winter.

age of another. The senescence operation can then be distributed across multiple idling threads.
Therefore, our IBM exploits geographical process concurrency through geoexpression and data

parallelism.
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Figure 12. Human Summer Transmission: A geoexpression of WNS spread adding human

transmission during summer.
Geoexpression, concurrency, and computational intensity

As introduced by Wang and Armstrong (2009) the computational intensity can be unevenly dis-
tributed across a spatial domain. In our IBM, computational intensity varies across the locations
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Modeled WNS Spread using Winter Geoexpression
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Figure 13. Outcomes of different geoexpressions: (top) initial infection year aggregated by
county resulting from the addition of human transmission during the winter; (middle) initial
infection year aggregated by county resulting from the addition of human transmission during
the summer; (bottom) initial infection year aggregated by county for bat only transmission.
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of roost sites depending upon the population at the roost site, the number of infected bats within
the population, and the current infectious state of the roost site. The Systems of the ECS that rep-
resent the transition nodes of geoexpression are applied differently depending upon these condi-
tions at each location. In Figure 9, the spread of WNS geographically coincides with the Disease
Infection System, Shed Spore System, and Grow Pathogen System activating and deactivating
based on local conditions. Additionally, the Movement System is dependent upon the number of
spatially near roost sites and processes greater amounts of data in areas with higher roost density.

The IBM’s Systems are concurrently executed based on an order guided by the geoexpres-
sion to produce the WNS spread outcome. The implementation of the inherent concurrency
causes contention for specific roost sites and bat entities depending upon their infectious state,
location, and the current model year. The geoexpression theory makes it possible to trace indi-
vidual entities through the Petri network and identify which transition nodes operate on it each
model year, based upon its spatial location, and internal and external parameters. Therefore,
throughout the duration of a model’s execution, the use of geoexpression enables tracing how
computational intensity changes for specific entities and how different processes contend to con-
currently apply various transformations to the entity’s data.

Geoexpression and ecological prediction

Frequently, ecologists are asked to make predictions about the potential effects that specific envi-
ronmental changes have on a specific ecosystem or landscape. Understanding the consequences
of each change in the community dynamics of an ecosystem has proven to be challenging. When
models implemented using ordinary differential equations, assessments of potential outcomes
resulting from specific changes are somewhat manageable to determine. However, when IBMs
are used, the assessment of potential outcomes resulting from specific changes has proven to
be a daunting task because the methodology of IBMs can represent significantly greater details
and emergent phenomena (Colon, Claessen, and Ghil 2015). This study uses geoexpression to
provide a graphical representation of the processes and their interrelationships. Using geoex-
pression we identify how frequently specific transition nodes of geoexpression are activated and
the computational intensity of each process. This leads to the comparable understanding of the
effects each process has on the model’s outcomes without needing a separate model based on
ordinary differential equations.

WNS spread IBM

Computationally tractable and high-performance epidemiological models that can simulate large
populations are important to understand how different diseases spread spatially. Wildlife ep-
idemiology serves as an important subject of inquiry to better understand, by corollary, dis-
ease transmission in human populations and disease transmission between wildlife and humans.
While our approach focuses on the WNS epidemic, human epidemics can readily benefit from
geoexpression-based IBM methodology.

Following Lilley, Anttila, and Ruokolainen (2018), our model does not capture relative hu-
midity due to its high variability within individual cave sites; however, it is an important climatic
parameter for the growth of Pd. Our IBM currently abstracts over the volume of spores a bat can
carry (a parameter of the O’Regan et al. (2015) model). In the future, this addition could improve
our representation of how spores are spread, and the concentration level necessary to become
viable at a new roost site.While prior studies use a daily time step, our IBM operates on a tri-
annual time step based on bat function. We chose this temporal granularity because it represents
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the biological phases of bat activities where disease response efforts and treatment plans could
be implemented. While treatment is not a current component of our IBM, we expect to incor-
porate treatment in future efforts. Our IBM requires further sensitivity testing of its spatial and
non-spatial parameters. With comprehensive sensitivity testing, proper parameterization of the
model to represent the dynamics of WNS spread can be completed. Properly parameterized, our
approach can be used to predict the spread of WNS into the future following the work of Maher
et al. (2012); O’Regan et al. (2015); Thlo and Baker (2013). Notwithstanding the lack of param-
eterization of the model and a more rigorous validation effort (to be pursued in future work), the
results provided by our IBM are comparable to those produced in the aforecited literature.

Model validation

The development of a fully validated WNS model has challenged many previous efforts in the
literature. Prior models with validation methods have ultimately fallen well short of their pre-
dictive capabilities. The goal of this specific study has been the implementation of a model
built on geoexpression, based on modeling information found in published work. We readily
admit that to apply our WNS IBM will require more rigorous validation efforts and extensive
parameterization, especially as our model relates to the roost-site landscape network. To tackle
the validation challenge, we have focused on a critical metric our model provides, the average
distance of WNS spread per year, against the average historical distance of WNS spread captured
by the WNS disease surveillance data disseminated by the WNS Response Team (White-Nose
Syndrome Response Team 2018). The specific measure is the set of distances, as measured
between Schoharie County, NY (where WNS began in North America), and the counties that
became infected each year, correlated with the same distance measures computed from the WNS
Response Team surveillance data. Our bat-only geoexpression captures 60% of the observed
WNS average distance spread per year. The geoexpressions that include human summer and
winter transmission capture 70% and 84% of the observed WNS average distance spread per
year, respectively. While these results may seem low at first glance, they are not indicative of ar-
tificial geographical constraints that have been imposed by others. Existing studies impose geo-
graphical restrictions to only those counties with known caves (Lilley, Anttila, and Ruokolainen
2018), while our study endeavors to capture a broader landscape. Furthermore, our approach
shows how different patterns of geographical concurrency can lead to significantly different
modeling results.

Rust in environmental modeling

Many have remarked on the steepness of Rust’s learning curve (Blandy 2015). Much of the diffi-
culty revolves around developing a thorough understanding of Rust’s ownership model. Leaders
within the Rust community of practice have worked to make many pain points of the language
much less painful and have future improvements planned to reduce the steepness of Rust’s learn-
ing curve (Blandy 2015). Overall, we found Rust and the SPECS library to be approachable;
albeit more difficult to learn than the less stringently typed languages Java, R, and Python. The
execution time of interpreted languages like R and Python is a noted shortcoming for their use in
simulation. Rust has a comparable syntax to higher level languages, but compiles into a binary
executable as opposed to being interpreted. Rust’s compiler enforces its memory safety guaran-
tees, which means that if the code compiles, in all likelihood, the executable will not be plagued
by many classes of errors that are common in C or C++ (Klabnik & Nichols 2019).
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Software accessibility

The WNS IBM software is maintained in a Bitbucket repository that interested researchers may
access and adapt for their own purposes. A set of scripts has been created to support the auto-
matic generation of the input configuration files. The model may be extended to support greater
complexity of WNS spread by adding new Systems, Components, and Resources based on a new
geoexpression and then implement it using the SPECS dispatch ordering rules.

While the software can be used to represent other spreading diseases, it would require sig-
nificant changes to make it disease-specific. However, the use of geoexpression to structure the
order of process components in a model and the use of SPECS to implement the execution of the
model has flexible applicability to other environmental modeling domains.

As demonstrated in our results, a System can be added to extend the functionality of the
WNS IBM. The System can be scheduled for dispatch in a specific order using SPECS. Each
System can be named by a researcher. An array of 0 or more System names can be passed to the
SPECS dispatcher and associated with a specific System. A System will not be executed until all
of the names in the aforementioned array are completed. This approach allows SPECS to support
the concurrency graphically represented using geoexpression.

Conclusions

WNS is a serious epidemic. Much prior work has sought to model the spread of the epidemic
through statistical, dynamic, and mean-field models. We build on prior studies to develop an
IBM from the perspective of geographical process concurrency. Using the epidemiological tri-
angle to guide the process decomposition, we construct Petri network representations of the
process interactions. These processes map cleanly onto the ECS architectural pattern through
geoexpression to order the concurrent execution of Systems. Next, we demonstrate the computa-
tional performance of our ECS approach using the SPECS library, authored in Rust, to instantiate
the IBM.

Our contributions demonstrate that the use of geoexpression enables geographical process
models to be developed for enhancing geographical discovery, specifically related to geograph-
ical process concurrency. We achieve our objective by implementing an IBM of WNS spread
leveraging previous WNS modeling work using an ECS architectural pattern. The processes of
our IBM are represented graphically using Petri networks in a way mutually comprehensible by a
human and computational machine. Next, we evaluate the performance of our software solution
to demonstrate the tractability of our approach and its utility in showing how modifications to a
geoexpression alter the geographical patterns being produced.

WNS modeling research benefits from geoexpression that sheds light on how the life-cycle
of Pd and bats interact concurrently under a set of environmental conditions to produce the epi-
demic. Different structures of geoexpression used to model the spread of WNS lead to different
spatial outcomes, with varying levels of correlation to observed spread, despite the fact that
the modeled processes themselves are unchanged. As disease intervention technologies become
more mature, species management decisions about where to field these technologies will become
more important. Improved spatial modeling, that captures the interplay between concurrent pro-
cesses can help isolate the mechanisms of spread biologically and geographically to achieve
desirable impacts.

While this work relies on commodity computing hardware, our next step is to increase
the population size and roost count by leveraging advanced cyberinfrastructure. On advanced
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cyberinfrastructure, the same code should become readily tractable for tens of millions of bats
over a roost network of a few hundred thousand roosts. The ability to simulate a North American
bat population of 50 million bats with a roost network of 250,000+ nodes with well-defined
WNS spread parameters to demonstrate the emergent spread of WNS across the landscape would
be extremely valuable to tackle related public health challenges. Such a simulation is made pos-
sible through the exploitation of geographical process concurrency based on a geoexpression
framework. While much work remains to be done to develop an IBM that accurately models
WNS spread, our geoexpression approach implemented on ECS represents a novel contribution
to advancing an important branch of geographical analysis—one not limited to spatial epide-
miology, but applicable to many situations where geographical process concurrency is present.
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