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Abstract

We show that a general algorithm for efficient
computation of outside values under the min-
imum of superior functions framework pro-
posed by Knuth (1977) would yield a subexpo-
nential time algorithm for SAT, violating the
Strong Exponential Time Hypothesis (SETH).

1 Introduction

Weighted deduction systems are used in a number
of NLP applications, including parsing for context-
free grammars (Shieber et al., 1995; Sikkel, 1997;
Nederhof, 2003; Eisner and Satta, 1999) and ma-
chine translation (Melamed et al., 2004; Lopez,
2009). In these applications, the inside-outside al-
gorithm enables efficient calculation of the total
weight of all derivations passing through a specific
item in the weighted deduction system by comput-
ing tables of inside and outside values. Goodman
(1999) develops a generalized inside-outside algo-
rithm that can be used with any commutative semir-
ing. Applying the sum-product semiring results
in the standard inside-outside algorithm used as a
subroutine in Expectation Maximization (Dempster
etal., 1977). Applying the max-product semiring
results in an efficient algorithm for finding, for ex-
ample, the best tree that incorporates a specified
constituent covering a specified span of the input
string.

The minimum of superior functions framework
of Knuth (1977) is an alternative to the semiring
framework for analyzing weighted deduction sys-
tems. Knuth’s framework is more general than
semirings in that it allows more general functions
to be used for combining the weights of subderiva-
tions. Knuth’s framework has the advantage that
it allows for best-first search with a generalization
of Dijkstra’s algorithm, as well as for A* search
(Nederhof, 2003).

Given that Knuth’s framework guarantees effi-
cient inside computation, does it also guarantee
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Figure 1: A rule R for CFG parsing in weighted de-
duction notation for production S — A B. The goal
item for CFG parsing with start symbol S and sentence
length n is [S, 0, n].

efficient outside computation, allowing for a gener-
alized inside-outside algorithm? In this paper, we
answer this question in the negative. We prove that
a general algorithm for efficient outside computa-
tion in this framework would imply the existence
of a subexponential time algorithm for satisfiability
of boolean formulas in conjunctive normal form
(SAT), violating the Strong Exponential Time Hy-
pothesis (SETH) (Impagliazzo and Paturi, 1999)
which postulates that no such algorithms exist. This
result may be counterintuitive, because one might
expect efficient outside computation to be possible
whenever efficient inside computation is possible.
We believe this result to be the first formal hard-
ness proof for outside computation in weighted
deduction systems.

2 Background

A weighted deduction system (Nederhof, 2003)
has rules of the form % where X1, ..., X,
are items forming the antecedents of the rule and
item Y is the consequent of the rule. A derivation
of item X is a tree of rules where the antecedents
of each rule are the consequents of its children, and
X is the consequent of the root of the tree. The
leaves of this tree are rules with zero antecedents,
called axioms. Each rule R is also associated with
a rule weight function F'r which takes as input the
weights of the antecedents and calculates a new
weight for the consequent. The weight of a deriva-
tion is the weight of the rule serving as the root of
the tree, calculated by recursively evaluating the



rule weight functions F'g; that is, for a derivation
D formed by applying rule R to antecedent deriva-
tions Dy, ..., Dy:

weight(D) = Fr(weight(Dy), ..., weight(D,,))

To show both the rule and the weights of the an-
tecedents and consequent, we use a notation where
each item’s weight is written to its left. This is ex-
emplified in Figure 1, which shows an example rule
for CFG parsing with items of the form [A, i, j],
representing a subtree rooted by nonterminal A and
spanning input tokens ¢ + 1 through j.

One item in the weighted deduction system is
designated as the goal item, and the fundamen-
tal problem is to calculate the total weight of all
derivations of this item, where the total weight is
calculated using a generalized sum operation, writ-
ten €. An extension of this is to calculate the
total weight of all derivations of the goal item G
that also contain item X, written (X)) (Goodman,
1999):

YX)= € weight(D)

D:X,GeD

where X, G € D means that item X and goal item
G are each the consequent of some rule in D (for
G, this is specifically the root rule). These  values
are a core component of the inside-outside Expec-
tation Maximization (EM) algorithm for unsuper-
vised probabilistic context-free grammar (PCFG)
induction (Baker, 1979), where (X)) is calculated
by combining a corresponding inside value (total
weight of subtrees rooted at X') and outside value
(cost of completing a derivation containing X'). For
the purposes of the EM algorithm, the & operation
is standard addition, and F'r computes the product
of its arguments. If we define the ¢ operation to
be max, (X)) corresponds to the value of the best
parse tree subject to the constraint that a particular
constituent X be included. This value can be found
by combining an inside and outside value, using the
same procedure as is used for EM, but substituting
max for addition.

Gildea (2020) discussed classes of weighted de-
duction system where computation of outside val-
ues (and by extension, y values) can be done effi-
ciently. Formally, they were interested in systems
where (X)) can (or cannot) be calculated for every
item X in time O(|E|y), where |E| is the number
of rules in the system, and v = maxx |y(X)]| is
the largest number of bits required to represent the

total weight of an item. They termed this “efficient
outside computation."

One important class of weighted deduction sys-
tem is the minimum of superior functions (Knuth,
1977). In this framework, each rule weight function
Fr is a superior function, meaning that it is mono-
tonically increasing in each argument and the result
is always greater than or equal to each of its argu-
ments. The generalized sum @ in this framework
used for calculating total weight is the minimum
operation:

YX)= € weight(D)
D:X,GeD
= D:%gleD weight (D)

Best-first search is possible in this framework us-
ing a generalization of Dijkstra’s algorithm (Neder-
hof, 2003). It is interesting to ask whether efficient
outside computation is always possible within this
framework, and even more generally, whether the
conditions necessary for best-first search are suf-
ficient for efficient outside computation. The A*
parsing system of Klein and Manning (2003) is
an instance of the minimum of superior functions
framework! that uses best-first search. Outside val-
ues are of particular interest for A* parsing because
they can be used as admissible search heuristics
(Pauls and Klein, 2009a), and to efficiently find
the k best parses (Pauls and Klein, 2009b). When
the function Fr simply takes a product of its ar-
guments, as in Pauls and Klein (2009b), efficient
outside computation is possible. In this paper, we
address the question of whether this is guaranteed
by the minimum of superior functions framework
or merely an artifact of this particular system.

Gildea (2020) pointed out that there is no known
efficient algorithm for outside computation in the
minimum of superior functions framework. How-
ever, they did not present a formal hardness result.
In this work, we prove that general efficient out-
side computation in this framework would yield
a subquadratic time algorithm for the Orthogonal
Vectors Problem, violating the Orthogonal Vectors
Conjecture (Williams, 2005; Vassilevska Williams,
2015), which states that no such algorithms exist
because their existence would violate the Strong
Exponential Time Hypothesis (SETH) (Impagli-
azzo and Paturi, 1999) and yield a subexponential

'To see this, simply negate the log probabilities and replace

max with min in their system. The superior function F'r is
addition for all R.



Figure 2: Graphical representation of the different
paths through the weighted deduction system.

time algorithm for SAT. The Strong Exponential
Time Hypothesis, a somewhat stronger assumption
than P#£NP, is widely conjectured to be true, and
has been used as an assumption in a number of
recent hardness results, including the result that
string edit distance cannot be computed in strongly
subquadratic time, unless SETH is false (Backurs
and Indyk, 2015).

3 Reduction

We begin with the Orthogonal Vectors Problem:
given sets A, B C {0,1}? where |A| = |B| =
n, determine whether there exist vectors ¢ € A
and b € B such that their dot product a - b =
Zzzl arby is 0. We now reduce this problem to
a weighted deduction system in the minimum of
superior functions framework.

First, define n axiom items Xj, ¢ € [1,n], and
construct n corresponding rules Rf‘ leading from
X; toitem Y:

w: Xz
FA(w): Y
where F(w) = w+(d+1)i. The weight for each
axiom item X; is defined to be 0. The intuition
here is that the index ¢ refers to a specific vector
A; € A, and the resulting weight will allow later
rule weight functions to identify the starting point
for the derivation and thus which vector in A to
compare to a vector in B. This is possible because
all derivations from Y to the goal item will add
no more than d to F/*(weight(X;)) = (d + 1)i,
making the value of 7 uniquely recoverable.

Next, we construct n rules R_fl .7 € [1,n] of the
form:

w: Y
FS(w): Zja

where each F7B1 is the rule weight function corre-
sponding to the first dimension of vector B; € B.
We define the rule weight functions used here and
those in the upcoming rules in the following way:
F_]ék(w) =w+ Aindex(w),kBj,k

where index(w) = | 777 ]. Intuitively, these func-
tions “look up” the choice of which vector A; was
used to begin the computation using index(w), and
multiply the k-th dimension of that vector with the
k-th dimension of B;.

Note that while item Y could be removed by
defining a rule deriving each Z;; from each X;
directly with an appropriately-defined rule weight
function, this would require n? rules, whereas intro-
ducing the intermediate item Y provides the same
connectivity with only 2n rules while using the
weight to keep track of which X; was chosen. This
is important because our proof requires that the
deduction system used for the reduction be con-
structed in subquadratic time.

Now we construct n(d —2) rules Rfk, Jj € [1,n],
k € [2,d — 1] of the form:

w: Zjk—1
F JBIC (w) A 4,k

where ka was defined above. The intuition is that
each family of Z; j, items for a particular j forms
a chain that eventually covers all d dimensions of
B;.

So far we have not covered the final dimension
of the B vectors, so we do so now by constructing
n rules Rfd of the form:

w: Zde_l
Fhw): G
where G is the goal item of the weighted deduction

system.

We now discuss properties of the resulting sys-
tem, a graphical representation of which is pre-
sented in Figure 2.

Every computation begins at one of the axiom
items X; corresponding to A; and always passes
through Y. The computation then proceeds down
one of n chains, each corresponding to a vector
in B. Because the rule weight function ka(w)
applied at each edge adds at most 1 to w and each



chain from Y to G consists of exactly d edges,
the weight of any item in the chosen chain will
never be more than d greater than the weight of the
edge from the chosen X; to Y. Because each of
those edges’ weights is a distinct multiple of d + 1,
the choice of the starting point (and corresponding
vector in A) can be recovered by each ka in the
chain using the index(w) function. This allows
each chain to effectively calculate the dot product
between its respective vector in B and the chosen
vector in A.

In the superior function framework of Knuth
(1977), the total weight of an item C' (referred to
as y(C)) is the minimum weight over complete
derivations D containing C' and the goal item G:

v(C) = min weight(D)

D:C,GeD
where weight(D) is the result of the rule weight
function for the (unique) rule producing G in
derivation D.

For the purposes of the reduction, we are inter-
ested in the n total weights (X;). Note that every
derivation containing X; defines a path from X to
G, and there are exactly n such paths for a given X:
one for each chain from Y to (7, each correspond-
ing to a vector 3. Recalling that weight(X;) = 0,
we can rewrite y(X;) as follows:

T
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where O represents repeated function composition.

We can use the values of v(X;) to solve the
Orthogonal Vectors Problem. Because A; - B is at
most d, y(X;) is evenly divisible by (d + 1) if and
only if there is a vector in B that is orthogonal to
Aii

The complete algorithm for solving the problem
using this technique is as follows:

1. Construct the deduction system as described
above. (O(nd) time)

2. Calculate v(X;) for all i € [1,n].

3. Check whether y(X;) = 0 (mod d + 1) for
any 1. If yes, then there exist vectors 4; € A
and B; € B such that A;- B; = 0. Otherwise,
no such vectors exist. (O(n) time)

If all values ~y(X;) could be calculated in lin-
ear time with respect to the number of edges
|E| € O(nd), then the Orthogonal Vectors Prob-
lem could be solved in time O(nd), violating the
Orthogonal Vectors Conjecture which states that
there is no strongly subquadratic time algorithm
for this problem, and by extension violating the
Strong Exponential Time Hypothesis (SETH) (Im-
pagliazzo and Paturi, 1999). Because the proposed
deduction system is an instance of the superior
functions framework of Knuth (1977), we conclude
that efficient outside computation is not possible
in general under that framework unless SETH is
false.

4 Conclusion

This work provides a formal proof that efficient out-
side computation is not possible in general for the
minimum of superior functions framework (Knuth,
1977) (unless the Strong Exponential Time Hypoth-
esis is false). This indicates that the conditions
necessary for best-first search are not sufficient for
efficient outside computation. It remains an open
problem to characterize the class of functions for
which best-first search and efficient outside compu-
tation are both always possible.

Acknowledgments This work was funded by
NSF awards I1S-1813823 and CCF-1934985.

References

Arturs Backurs and Piotr Indyk. 2015. Edit distance
cannot be computed in strongly subquadratic time
(unless SETH is false). In Proceedings of the forty-
seventh annual ACM Symposium on Theory of Com-
puting (STOC), pages 51-58.

J. K. Baker. 1979. Trainable grammars for speech
recognition. In Speech Communication Papers for
the 97th Meeting of the Acoustical Society of Amer-
ica, pages 547-550.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Soci-
ety, 39(1):1-21.



Jason Eisner and Giorgio Satta. 1999. Efficient pars-
ing for bilexical context-free grammars and head
automaton grammars. In Proceedings of the 37th
Annual Conference of the Association for Compu-
tational Linguistics (ACL-99), pages 457-464, Col-
lege Park, Maryland.

Daniel Gildea. 2020. Efficient outside computation.
Computational Linguistics, 46(4):745-762.

Joshua Goodman. 1999. Semiring parsing. Computa-
tional Linguistics, 25(4):573-605.

R. Impagliazzo and R. Paturi. 1999. Complexity of k-
SAT. In Proceedings of Fourteenth Annual IEEE
Conference on Computational Complexity, pages
237-240.

Dan Klein and Christopher D. Manning. 2003. A*
parsing: Fast exact Viterbi parse selection. In Pro-
ceedings of the 2003 Meeting of the North American
chapter of the Association for Computational Lin-
guistics (NAACL-03), pages 119-126.

Donald E. Knuth. 1977. A generalization of Dijkstra’s
algorithm. Info. Proc. Letters, 6(1):1-5.

Adam Lopez. 2009. Translation as weighted deduction.
In Proceedings of the 12th Conference of the Euro-
pean Chapter of the ACL (EACL 2009), pages 532—
540, Athens, Greece.

I. Dan Melamed, Giorgio Satta, and Ben Wellington.
2004. Generalized multitext grammars. In Proceed-
ings of the 42nd Annual Conference of the Associa-
tion for Computational Linguistics (ACL-04), pages
661-668, Barcelona, Spain.

M.-J. Nederhof. 2003. Weighted deductive parsing
and Knuth’s algorithm. Computational Linguistics,
29(1):135-144.

A. Pauls and D. Klein. 2009a. Hierarchical Search for
Parsing. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 557-565.

A. Pauls and D. Klein. 2009b. K-Best A* Parsing. In
Proceedings of the 2009 Annual Conference of the
Association for Computational Linguistics, pages

958-966.

Stuart M. Shieber, Yves Schabes, and Fernando C. N.
Pereira. 1995. Principles and implementation of de-
ductive parsing. The Journal of Logic Programming,
24(1-2):3-36.

Klaas Sikkel. 1997. Parsing Schemata. Springer Ver-
lag, Berlin.

Virginia Vassilevska Williams. 2015. Hardness of Easy
Problems: Basing Hardness on Popular Conjectures
such as the Strong Exponential Time Hypothesis (In-
vited Talk). In 10th International Symposium on Pa-
rameterized and Exact Computation (IPEC 2015),

volume 43 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 17-29, Dagstuhl, Ger-
many. Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik.

Ryan Williams. 2005. A new algorithm for optimal
2-constraint satisfaction and its implications. Theor.
Comput. Sci., 348(2):357-365.



