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Abstract

We show that a general algorithm for efficient

computation of outside values under the min-

imum of superior functions framework pro-

posed by Knuth (1977) would yield a subexpo-

nential time algorithm for SAT, violating the

Strong Exponential Time Hypothesis (SETH).

1 Introduction

Weighted deduction systems are used in a number

of NLP applications, including parsing for context-

free grammars (Shieber et al., 1995; Sikkel, 1997;

Nederhof, 2003; Eisner and Satta, 1999) and ma-

chine translation (Melamed et al., 2004; Lopez,

2009). In these applications, the inside-outside al-

gorithm enables efficient calculation of the total

weight of all derivations passing through a specific

item in the weighted deduction system by comput-

ing tables of inside and outside values. Goodman

(1999) develops a generalized inside-outside algo-

rithm that can be used with any commutative semir-

ing. Applying the sum-product semiring results

in the standard inside-outside algorithm used as a

subroutine in Expectation Maximization (Dempster

et al., 1977). Applying the max-product semiring

results in an efficient algorithm for finding, for ex-

ample, the best tree that incorporates a specified

constituent covering a specified span of the input

string.

The minimum of superior functions framework

of Knuth (1977) is an alternative to the semiring

framework for analyzing weighted deduction sys-

tems. Knuth’s framework is more general than

semirings in that it allows more general functions

to be used for combining the weights of subderiva-

tions. Knuth’s framework has the advantage that

it allows for best-first search with a generalization

of Dijkstra’s algorithm, as well as for A∗ search

(Nederhof, 2003).

Given that Knuth’s framework guarantees effi-

cient inside computation, does it also guarantee

w1: [A, i, j]
w2: [B, j, k]

FR(w1, w2): [S, i, k]

Figure 1: A rule R for CFG parsing in weighted de-

duction notation for production S → AB. The goal

item for CFG parsing with start symbol S and sentence

length n is [S, 0, n].

efficient outside computation, allowing for a gener-

alized inside-outside algorithm? In this paper, we

answer this question in the negative. We prove that

a general algorithm for efficient outside computa-

tion in this framework would imply the existence

of a subexponential time algorithm for satisfiability

of boolean formulas in conjunctive normal form

(SAT), violating the Strong Exponential Time Hy-

pothesis (SETH) (Impagliazzo and Paturi, 1999)

which postulates that no such algorithms exist. This

result may be counterintuitive, because one might

expect efficient outside computation to be possible

whenever efficient inside computation is possible.

We believe this result to be the first formal hard-

ness proof for outside computation in weighted

deduction systems.

2 Background

A weighted deduction system (Nederhof, 2003)

has rules of the form X1,...,Xn

Y
where X1, ..., Xn

are items forming the antecedents of the rule and

item Y is the consequent of the rule. A derivation

of item X is a tree of rules where the antecedents

of each rule are the consequents of its children, and

X is the consequent of the root of the tree. The

leaves of this tree are rules with zero antecedents,

called axioms. Each rule R is also associated with

a rule weight function FR which takes as input the

weights of the antecedents and calculates a new

weight for the consequent. The weight of a deriva-

tion is the weight of the rule serving as the root of

the tree, calculated by recursively evaluating the



rule weight functions FR; that is, for a derivation

D formed by applying rule R to antecedent deriva-

tions D1, ..., Dn:

weight(D) = FR(weight(D1), ...,weight(Dn))

To show both the rule and the weights of the an-

tecedents and consequent, we use a notation where

each item’s weight is written to its left. This is ex-

emplified in Figure 1, which shows an example rule

for CFG parsing with items of the form [A, i, j],
representing a subtree rooted by nonterminal A and

spanning input tokens i+ 1 through j.

One item in the weighted deduction system is

designated as the goal item, and the fundamen-

tal problem is to calculate the total weight of all

derivations of this item, where the total weight is

calculated using a generalized sum operation, writ-

ten
⊕

. An extension of this is to calculate the

total weight of all derivations of the goal item G

that also contain item X , written γ(X) (Goodman,

1999):

γ(X) =
⊕

D:X,G∈D

weight(D)

where X,G ∈ D means that item X and goal item

G are each the consequent of some rule in D (for

G, this is specifically the root rule). These γ values

are a core component of the inside-outside Expec-

tation Maximization (EM) algorithm for unsuper-

vised probabilistic context-free grammar (PCFG)

induction (Baker, 1979), where γ(X) is calculated

by combining a corresponding inside value (total

weight of subtrees rooted at X) and outside value

(cost of completing a derivation containing X). For

the purposes of the EM algorithm, the ⊕ operation

is standard addition, and FR computes the product

of its arguments. If we define the ⊕ operation to

be max, γ(X) corresponds to the value of the best

parse tree subject to the constraint that a particular

constituent X be included. This value can be found

by combining an inside and outside value, using the

same procedure as is used for EM, but substituting

max for addition.

Gildea (2020) discussed classes of weighted de-

duction system where computation of outside val-

ues (and by extension, γ values) can be done effi-

ciently. Formally, they were interested in systems

where γ(X) can (or cannot) be calculated for every

item X in time O(|E|γ), where |E| is the number

of rules in the system, and γ = maxX |γ(X)| is

the largest number of bits required to represent the

total weight of an item. They termed this “efficient

outside computation."

One important class of weighted deduction sys-

tem is the minimum of superior functions (Knuth,

1977). In this framework, each rule weight function

FR is a superior function, meaning that it is mono-

tonically increasing in each argument and the result

is always greater than or equal to each of its argu-

ments. The generalized sum
⊕

in this framework

used for calculating total weight is the minimum

operation:

γ(X) =
⊕

D:X,G∈D

weight(D)

= min
D:X,G∈D

weight(D)

Best-first search is possible in this framework us-

ing a generalization of Dijkstra’s algorithm (Neder-

hof, 2003). It is interesting to ask whether efficient

outside computation is always possible within this

framework, and even more generally, whether the

conditions necessary for best-first search are suf-

ficient for efficient outside computation. The A*

parsing system of Klein and Manning (2003) is

an instance of the minimum of superior functions

framework1 that uses best-first search. Outside val-

ues are of particular interest for A* parsing because

they can be used as admissible search heuristics

(Pauls and Klein, 2009a), and to efficiently find

the k best parses (Pauls and Klein, 2009b). When

the function FR simply takes a product of its ar-

guments, as in Pauls and Klein (2009b), efficient

outside computation is possible. In this paper, we

address the question of whether this is guaranteed

by the minimum of superior functions framework

or merely an artifact of this particular system.

Gildea (2020) pointed out that there is no known

efficient algorithm for outside computation in the

minimum of superior functions framework. How-

ever, they did not present a formal hardness result.

In this work, we prove that general efficient out-

side computation in this framework would yield

a subquadratic time algorithm for the Orthogonal

Vectors Problem, violating the Orthogonal Vectors

Conjecture (Williams, 2005; Vassilevska Williams,

2015), which states that no such algorithms exist

because their existence would violate the Strong

Exponential Time Hypothesis (SETH) (Impagli-

azzo and Paturi, 1999) and yield a subexponential

1To see this, simply negate the log probabilities and replace
max with min in their system. The superior function FR is
addition for all R.





chain from Y to G consists of exactly d edges,

the weight of any item in the chosen chain will

never be more than d greater than the weight of the

edge from the chosen Xi to Y . Because each of

those edges’ weights is a distinct multiple of d+ 1,

the choice of the starting point (and corresponding

vector in A) can be recovered by each FB
j,k in the

chain using the index(w) function. This allows

each chain to effectively calculate the dot product

between its respective vector in B and the chosen

vector in A.

In the superior function framework of Knuth

(1977), the total weight of an item C (referred to

as γ(C)) is the minimum weight over complete

derivations D containing C and the goal item G:

γ(C) = min
D:C,G∈D

weight(D)

where weight(D) is the result of the rule weight

function for the (unique) rule producing G in

derivation D.

For the purposes of the reduction, we are inter-

ested in the n total weights γ(Xi). Note that every

derivation containing Xi defines a path from Xi to

G, and there are exactly n such paths for a given Xi:

one for each chain from Y to G, each correspond-

ing to a vector Bj . Recalling that weight(Xi) = 0,

we can rewrite γ(Xi) as follows:

γ(Xi) = min
j

[(

d−1

k=0

FB
j,d−k

)

(

FA
i (weight(Xi))

)

]

= min
j

[(

d−1

k=0

FB
j,d−k

)

(

FA
i (0)

)

]

= min
j

[(

d−1

k=0

FB
j,d−k

)

((d+ 1)i)

]

= min
j

[(

d−1
∑

k=0

Ai,d−kBj,d−k

)

+ (d+ 1)i

]

= min
j

[(Ai ·Bj) + (d+ 1)i]

where represents repeated function composition.

We can use the values of γ(Xi) to solve the

Orthogonal Vectors Problem. Because Ai ·Bj is at

most d, γ(Xi) is evenly divisible by (d+ 1) if and

only if there is a vector in B that is orthogonal to

Ai:

γ(Xi) ≡ 0 (mod d+ 1) ⇐⇒ ∃j (Ai ·Bj = 0)

The complete algorithm for solving the problem

using this technique is as follows:

1. Construct the deduction system as described

above. (O(nd) time)

2. Calculate γ(Xi) for all i ∈ [1, n].

3. Check whether γ(Xi) ≡ 0 (mod d + 1) for

any i. If yes, then there exist vectors Ai ∈ A

and Bj ∈ B such that Ai ·Bj = 0. Otherwise,

no such vectors exist. (O(n) time)

If all values γ(Xi) could be calculated in lin-

ear time with respect to the number of edges

|E| ∈ O(nd), then the Orthogonal Vectors Prob-

lem could be solved in time O(nd), violating the

Orthogonal Vectors Conjecture which states that

there is no strongly subquadratic time algorithm

for this problem, and by extension violating the

Strong Exponential Time Hypothesis (SETH) (Im-

pagliazzo and Paturi, 1999). Because the proposed

deduction system is an instance of the superior

functions framework of Knuth (1977), we conclude

that efficient outside computation is not possible

in general under that framework unless SETH is

false.

4 Conclusion

This work provides a formal proof that efficient out-

side computation is not possible in general for the

minimum of superior functions framework (Knuth,

1977) (unless the Strong Exponential Time Hypoth-

esis is false). This indicates that the conditions

necessary for best-first search are not sufficient for

efficient outside computation. It remains an open

problem to characterize the class of functions for

which best-first search and efficient outside compu-

tation are both always possible.
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