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ABSTRACT

Spatial data brings an important dimension to AI's quest for al-
gorithmic transparency. For example, data driven computer-aided
policy-decisions use measures of segregation (e.g., dissimilarity in-
dex) or income-inequality (e.g., Gini index), and these measures are
affected by space partitioning choice. This may lead policymakers
to underestimate the level of inequality or segregation within a
region. The problem stems from the fact that many segregation
based analyses use aggregated census data but do not report result
sensitivity to choice of spatial partitioning (e.g., census block, tract).
Beyond the well-known Modifiable Areal Unit Problem, this paper
shows (via mathematical proofs as well as case studies with census
data and census based synthetic micro-population data) that values
of many measures (e.g., Gini index, dissimilarity index) diminish
monotonically with increasing spatial-unit size in a hierarchical
space partitioning (e.g., block, block-group, tract), however the
ranking based on spatially aggregated measures remain sensitive to
the scale of spatial partitions (e.g., block, block group). This paper
highlights the need for social scientists to report how rankings of
inequality are affected by the choice of spatial partitions.
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1 INTRODUCTION

Spatial data raises special concerns for algorithmic transparency,
which calls for the factors influencing algorithmic decisions to be
made visible to users, regulators, policy makers, and people affected.
Computational operations (e.g., partitioning, ranking) which may
not affect the empirical analysis of non-spatial datasets can result
in empirically inconsistent spatial analysis. These operations are
often used for quantifying societal inequality, segregation, etc., to
be used by policymakers to assess and develop relevant policies.
Currently, issues such as reducing global inequality is part of the
UN Sustainability Development Goals (SDGs) [1] and a lack of
transparency in assessment may lead to inaccurate conclusions
with global ramifications. For example, measures of segregation
and income-inequality (e.g., dissimilarity index, Gini index) are
affected by the choice of spatial partitioning.

Most studies in the US, including Richard Florida and Charlotte
Millander’s notable book Segregated City [9], are based on data
aggregated from the US Census. However, these works often do
not report the sensitivity of their results to the spatial partitioning
(e.g., census tract, census block group). This raises questions about
the validity of the findings. Underestimation (or overestimation)
of income inequality can have implications for a region as policy-
makers rely on geographically aggregated data to assess subsidies
[16], health insurance policies [19], compute spatial risk adjustment
[33], etc. Therefore, knowing the sensitivity of inequality values at
different scales is useful to account for possible errors and assess
the need for additional data collection (e.g., random surveys) to
reduce the error.

Given a space partitioning, our goal in this work is to characterize
the sensitivity (e.g., change in rankings) of income inequality and
segregation measures computed on spatially aggregated data to the
choice of spatial unit. We illustrate the problem with the following
example. Figure 1 shows two cities (say C; and Cz2) having 10 parti-
tions each, where each partition has some income shown within
them. We can use these income values for ranking the two cities
based on their income inequality (e.g., Gini Index [11]). When the
income inequality is computed using fine-grained partitions, city Cy
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City |Fine grain Inequality Rank| Gini Index | Coarse Grain Inequality Rank| Gini Index
C 1 033 2 0.144
c, 2 03 1 0283

Figure 1: Example of inconsistent ranking at different scales.

is ranked higher than city C,. By contrast, when the partitions are
merged and income inequality is computed using coarse-grained
partitions, city Cy is ranked higher than city C;. The Gini index
values are shown in the table at the bottom of Figure 1.

This problem is challenging for the following reasons. First, it is
computationally expensive as the number of possible partitions is
exponential in the number of base units (e.g., households). Second,
we lack mathematical characterization to determine the sensitiv-
ity of various inequality or segregation measures to the unit of
analysis. Third, experimental validation of a mathematical charac-
terization is difficult as collecting household data is expensive and
may undermine confidentiality.

The change in values due to scale and zone (or shape of the par-
tition) is also known as the modifiable areal unit problem (MAUP).
First discussed in geography [20], MAUP, has also been applied
to socioeconomic models. Two studies found that MAUP signif-
icantly affected multivariate parameter estimates of census tract
employment [23] and mean family income models [10]. Studies on
inequality metric sensitivity to MAUP have also been done. In [4],
the authors showed that Gini moves in opposition to scale with sig-
nificant variation attributable to partition shape. Other inequality
measures have been analyzed to assess the zone effect [21]. Poten-
tial solutions to MAUP have included the use of T-communities [12],
which are realistic, highly segregated homogeneous communities
and can be a good proxy for the unit of analysis. However, to date
no studies have provided theoretical tools for managing the effect
of space partitioning on measures of inequality.

This work goes beyond MAUP in the following way. We study
the theoretical sensitivity and behavior of two income inequality
measures (Gini index and the income quintile share ratio (IQSR))
and one segregation measure (index of dissimilarity). Our mathe-
matical proofs as well as case studies with census data and census
based synthetic micro-population data show that values of all the
measures in this study diminish as the scale of partitioning increases.
We also provide theoretical bounds on IQSR. Through our results
we find that distortion is reduced by smaller spatial units, however
the ranking remains sensitive to the scale of spatial partitions (e.g.,
block, block group).

Contributions:

Our main contributions in this paper are as follows:

e We highlight the spatial dimension of algorithmic trans-
parency with findings that reinforce the need to report the
sensitivity of results to the choice of spatial partitioning.

e Beyond MAUP, we show theoretically that some measures
(e.g., gini index, index of dissimilarity) of inequality decrease
monotonically with increasing scale of analysis. For exam-
ple, values calculated at the census tract level are always
higher than the values calculated at the census block level.
Distortion is reduced by using the smallest possible units.

e We provide formal proofs on the upper and lower bound of
the IQSR.

e A case study on various income inequality measures (Gini
Index, IQSR, Theil, and Atkinson) using a synthetic house-
hold level dataset supports the theoretical results on the Gini
index and IQSR.

o A case study on multi-scale ranking based on the index of dis-
similarity using a 2010 American Community Survey dataset.
It supports the theoretical results on the index of dissimi-
larity and re-enforces the need to report the sensitivity of
results to the choice of spatial partitioning.

o Our findings have broad implications for equity related pol-
icymaking (e.g. tax policies, gentrification, education pro-
grams). Policymakers should be cautious about the unit of
analysis when using existing equity indexes or conduct sen-
sitivity analysis with different spatial partitioning choices
to provide more comprehensive evidence to inform policies
that address equity issues.

Symposium Relevance: The work in this paper aligns with the
call for contributions, particularly to the topic of Fairness, Account-
ability, and Transparency. The paper provides a perspective on the
transparency of spatial analysis showing its implications for pol-
icymakers. The case studies on fine-scale census and census-like
dataset show how space partitioning can affect the understanding
of societal inequality and segregation.

Scope: We limit our study to mathematical analysis of an entropy
based inequality measure (Gini index), a ratio-based inequality
measure (IQSR), and a ratio-based segregation measure (Index of
Dissimilarity) and the case studies for validation. No computational
methods are proposed to measure transparency. Our analysis is
limited to the effect of changes in scale and zone; other relevant
issues related to spatial aggregation such as boundary effects are
not considered. Further, there may be situations where the base
data is given but we can consider some form of data clustering and
then form the partitions. However, here we assume the partitioning
is given and cannot be altered, which is the case for most studies
based on census-type data.

Organization: The paper is organized in the following manner.
Section 2 gives describes the application context. Section 3 presents
the problem formulation with illustration. Section 4 provides the
mathematical results of monotonic trend on the Gini Index, IQSR,
and Index of dissimilarity and bounds on IQSR. We provide a case
study on ranking US Metropolitan regions using ACS 2010 data
in Section 5. In Section 6, we describe the analytical evaluation
procedure and results. Section 7 discusses the spatial dimensions
of algorithmic transparency in policy-making and provides a brief
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review of other related work. Finally, we conclude and consider
future work in Section 8.

2 APPLICATION CONTEXT

Inequality has been found to be associated with a variety of social
problems. In Economic Growth and Income Inequality [15], Kuznets
suggested that a higher level of inequality is correlated with a
lower level of democracy or property rights, less redistribution, and
a higher level of ethnic heterogeneity. For developing countries,
high inequality threatens to stall future progress against poverty
by attenuating growth prospects, and the gap of living standards
between the rich and the poor is still increasing [24].

The study on inequality is typically about resource distribution
among different groups of population. The Gini index and the dis-
similarity index have been widely applied in policy analysis to
understand the extent of income inequality. A major contribution
of this paper is to illustrate the sensitivity of the dissimilarity index,
to spatial partitioning and its policy implications. We applied the
index of dissimilarity to study income inequality and racial segre-
gation. The index of dissimilarity has also been applied to study
inequalities in many other types. For example, Kangkang Tong et
al. (2021) [32] use disparity ratio to study energy consumption in-
equality between high and low income group (bottom 20% income
households and top 20% income households). Song et al. (2013) [30]
uses index of dissimilarity to study land mix.

As individual level data is rarely available to either preserve
household confidentiality or due to lack of resources [13, 31], schol-
arly work primarily relies on several levels of aggregated data from
the U.S. Census Bureau. Most researchers use data from the census
tract level.

Previous studies using aggregated data have found that income
inequality and social segregation have compound social effects
on vulnerable populations. Although city populations consist of
people with diverse backgrounds, they are becoming more and more
segregated and homogeneous by income, education, occupation [9].
Bishop [3] refers to the phenomenon as “the big sort”. Segregation
has gradually built up through the process of “filtering” in the
residential housing market, whereby well-off households tend to
move to newly developed, high priced communities, leaving older
communities to households with lower income levels [17]. Over
time, low income racial minorities and high income racial majorities
become geo-spatially segregated across the city [25]. As a result, low
income residents not only suffer from lack of financial resources,
but also from related neighborhood effects such as high rate of
crime, pollution and chronic disease. These challenges inevitably
interact with each other and have cumulative effects that prevent
disadvantaged groups from changing their status [28].

Although the narratives on inequality and social segregation
have been widely accepted in academia, the majority of these stud-
ies are built on highly aggregated data. We demonstrate in the
following sections that variation in the unit of analysis will dramat-
ically change the score of inequality (segregation) index.

3 PROBLEM FORMULATION

We have formulated the problem as two sub-problems correspond-
ing to the "scale" problem and the "zone" problem of MAUP.
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3.1 Assessment of the Scale Problem:
Input:

e Geo-located census records (X).

o Administratively-defined set of hierarchical spatial partitions
(e.g., census tracts, census block groups) as shape-files (P),
where, P € P is a space partitioning. Further, VP;, Py € P, P;
is hierarchically higher than Py, if all the partitions p; € P
are greater in size than psj € Ps.

e Existing inequality measures (e.g., index of dissimilarity)
denoted as M.

Output:

e Partitions’ (say p;j) rankings using metric M, where M is

computed for all hierarchies lower than P;.
Objective:

o Assess ranking sensitivity to the partition scale (e.g., tract to

block group).
Constraints:

e Spatial partitions are rigid at each hierarchical level.
o The smallest spatial unit of the census data.

Figure 1 illustrates the input and output of the scale problem,
where X = 1,2,...20,  has fine grain, coarse grain partitions,
and gini index is the inequality measure M. The output is a set of
rankings corresponding to each partition scale, as shown in the
table at the bottom of the figure.

3.2 Assessment of the Zone Problem:

Geolocated census records (X).

Population limit of each zone (n).

Zone generator (Z), where Z(X,n) — P;.

Existing income inequality measures (e.g., Gini, IQSR) as M.
Output:

e Upper and lower bound of the measure (M) for a given par-
tition scale governed by the parameter n.

Objective:

o Assess the sensitivity of inequality measurements to changes
in partition zone (e.g., census tracts to county subdivisions).

Constraints:

e Random spatial partitions are subject to a population limit.
o The smallest spatial unit of the census data.

Figure 2 illustrates the the zone problem. As shown, census
records are given at a fine grain scale which are inputs to a zone
generator with population (or record) limit of 2. The figure shows
two of the possible partitioning P;, P, where Z(C1,2) — Py, Ps.
The partitioning merge to form the coarse grain partitions each with
different gini index (M) values (shown in the bottom left table of the
figure). The potential output would be the lower-bound (LB) and
upper-bound (UB) of the measure for all the possible partitioning
at this scale.

4 MATHEMATICAL CHARACTERIZATION

In this section, we characterize results on two types of inequality
measures and one type of segregation measure: an entropy based
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Fine grain

Partitions Merge Coarse grain

P, 18

P2

Partitioning (Zone) | Gini Index
P, 0.144
P, 0.256
LB <0.144<0.256 <UB

Figure 2: Illustration of the zone problem.

inequality measure (Gini index), a ratio-based inequality measure
(IQSR), and a ratio-based segregation measure (Index of Dissimilar-
ity). Three of our results are related to the assessment of the scale
problem for Gini (Theorem 4.1), IQSR (Theorem 4.2), and Index
of dissimilarity (Theorem 4.4). The remaining result is related to
the assessment of the zone problem for IQSR (Theorem 4.3). For
readability, the theorem proofs are moved to Appendix A.

Gini Index: The Gini coefficient is a measure of inequality de-
veloped by Corrado Gini in 1912 as an extension of work by Max
Lorenz [11]. Assuming x; is the income value for a population of
size N. Gini can be calculated by taking the absolute sum of all the
values normalized by a factor of the average value as shown below,

where x is the average income of the population. Theorem 4.1
gives the relation between the aggregated Gini Index (G) and the
non-aggregated Gini Index (Gn).

Aggregated Gini Index: Gy = m Zfil Zj]\il |x; — xj], where
%; is the average income of the partition which contains the i’ h
person.

THEOREM 4.1. Gini produces a lower-bound estimate of overall
inequality when calculated on group averages i.e., Gy <= Gy.

Proof. Proof in Appendix A. O

Income Quintile Share Ratio (IQSR): IQSR is the ratio of the total
income received by the highest 20% of income earners and income
received by the lowest 20% of income earners.

Theorem 4.2 gives the relation between this metric calculated
on aggregated units (IQSR(Ap)) to the metric calculated without
aggregation (IQSR(X)). This result focuses on a special case where
all partitions have the same size. Theorem 4.3 provides bounds on
IQSR in the general case i.e., arbitrary space partitioning.

THEOREM 4.2. IQSR(Ap) < IQSR(X), where X is a set of numbers
with equi-cardinality partitioning, P = {p1, p2, ..., pc(p)}, where pi’s
are pairwise disjoint and their union yields X and Ap = {Avg(p1),
Avg(pz), ..., Avg(pcp))}> where Avg(p;) is the arithmetic average of
items in partition p;, and C(P) is the cardinality of P.

Proof. Proof in Appendix A. O

THEOREM 4.3. IQSR(X) is lower bounded by the sum of C(X)/5
smallest values divided by the sum of C(X)/5 largest values and upper

bounded by the sum of C(X)/5 largest values divided by the sum of
C(X)/5 smallest values, where C(X) is the cardinality of the given set
X of incomes.

Proof. Proof in Appendix A. ]

Index of Dissimilarity (D): The index of dissimilarity [18] com-
pares the distribution of a selected group of people (say X) with all
others in that location (say Y). The more evenly distributed a group
is compared to the rest of the population, the lower is the level of
segregation. The index value range from 0 to 1, where 0 reflects no
segregation and 1 reflects complete segregation. The dissimilarity
index D can be expressed as follows,

Zu———

where x; is the number of individuals in the selected group in
sub-partition i, X is the number of selected groups in the whole
partition, y; is the number of "others" in the sub-partition, and Y
is the corresponding number in the whole partition. N is the total
number of sub-partitions.

Assume that the sub-partitions are aggregated to N partitions
and D is the index of dissimilarity for the new set of partitions as

follows,
1 N x y
1
2 21 X Y

Then, the following theorem holds.

D

THEOREM 4.4. The index of dissimilarity diminishes as the scale
of aggregation increases i.e., D < D.

Proof. Proof in Appendix A. ]

The results show that the value of all the measures decrease
monotonically with an increase in scale of the spatial unit. In addi-
tion, one of the results (Theorem 4.3) gives mathematical bounds
as a function of the partition with the smallest and the largest sum
of values. The results can help determine possible distortion for a
set of partitions.

5 CASE STUDY: MULTI-SCALE RANKING
BASED ON SEGREGATION INDEX

We used the index of dissimilarity (IOD) to conduct a small study
on wealth segregation in the US at two different levels of analysis.
We then compared our results with results from similar work pub-
lished in the well-received book Segregated City: The Geography of
Economic Segregation in America’s Metros by Richard Florida and
Charlotte Mellander [9].

Dataset: For this study we used 2010 American Community Survey
(ACS) 5-Year Estimate data (2006-2010) [5] available in TIGER/Line
shapefile format and metropolitan and micropolitan statistical areas
(MMSA) shapefile [6]. The ACS publishes small area data using sur-
vey responses pooled over 5 years. The MMSA shapefile contains
a simplified representation of 955 micropolitan and metropolitan
regions.

We used the ACS table of household income data (B19001E),
which reports the number of households divided into 16 income
brackets for a given geographical unit [5]. Here, the smallest ge-
ographical unit was a census block group. Income data and the
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boundary shapefiles were processed (Section 5.1) to calculate binned
household income data across 366 metropolitan statistical areas
at two scales: block group and census tract. Data for micropolitan
areas was removed to be consistent with the methodology of the
Segregated City study [9]. We took the Segregated City data for our
study from several tables or “exhibits” in the book. The Segregated
City results were based on census data aggregated at the census
tract level.

Ranking: The binned income data was used to compute the total
number of households in two categories, wealthy and non-wealthy,
for each geographical unit. The two categories were used to rank
the metropolitan areas based on their index of dissimilarity repre-
senting segregation of the wealthy. The ranking was limited to a
single index of segregation simply to highlight the need for report-
ing rankings at multiple geographical scales.

Difference in ranking: The data analysis at two different scales
(i.e., block group and census tracts) generated two sets of rankings.
The rankings were then used to calculate the changes in ranking
across the two scales.

5.1 Data processing

The ACS data files were divided by state. The initial processing
involved reading the file for each state and dropping non-relevant
tables. The filtered files were then merged to get the nationwide
data. This data was spatially joined with MMSA shapefiles using
the HAVE_THEIR_CENTER_IN spatial operation using ArcGIS Pro.
The resulting file had the census data mapped to census blocks,
tracts, counties, metropolitan areas and states.

Data aggregation: At the block group level, no aggregation was
required to compute the index values. At the census tract level,
household values were aggregated to compute the indexes.
Group definitions A wealthy household was defined as having an
annual income greater than $200,000 which was calculated using
column BI9001E17 or its aggregate at the census tract level. A non-
wealthy household was the complement to a wealthy household and
was calculated by subtracting it from the total number of households
(Column B19001E1) in the corresponding spatial unit.

5.2 Results

Figure 3 shows US Metropolitan regions color coded based on
their level of segregation. Dark blue indicates the highest levels
of segregation, and yellow indicates the lowest levels. The levels
were derived from their rankings based on the index of dissimilarity.
The rankings were calculated at two different scales as described
earlier. We find that there was a significant shift in ranking for the
metropolitan regions when the analysis was done at the block level
compared to the census tract level. The shift becomes more evident
when the results are observed in a tabular form.

Table 1 shows three rankings of the ten most wealth segregated
metro areas in the US with their IOD values. The first ranking was
taken from Exhibit 2.2 (p. 18) in Segregated City [9] calculated at the
‘census tract’ level. The second and third rankings are the results
of our case-study calculated at the census tract and block group
level respectively. A comparison of the first and second rankings
shows a high overlap of results, which indicates the use of similar
methodology. However, there is only a 20% overlap between the
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Figure 3: US Metropolitan regions color coded based on their lvel of
segregation of the wealthy. Dark blue color indicates higher segrega-
tion whereas the pale Yellow color indicates low segregation. (Best
in color)

second and third rankings (highlighted in bold). This indicates
that the rankings are highly susceptible to the base spatial-unit of
analysis. Also, IOD values at the census block level (3" ranking)
are always higher than IOD values at the census tract level in
accordance with our theoretical results (Theorem 4.4). Table 2 shows

Table 1: Three rankings of the ten most wealth segregated metro
areas in the US with their spatial unit of analysis.

Rank Census Tract 10D Census Tract 10D  Census Block 10D
1 Laredo, TX 0.646  Laredo, TX 0.646 Mansfield, OH 0.786
2 Jackson, TN 0.617  Jackson, TN 0.617 Wheeling, WV 0.752
3 El Paso, TX 0.611  ElPaso, TX 0.612 ElPaso, TX 0.738
4 Great Falls, MT 0.601 Great Falls, MT 0.601 Terre Haute, IN 0.732
5 Memphis, TN-MS-AR 0.582  Memphis, TN-MS-AR 0.582 Laredo, TX 0.730
6 Tucson, AZ 0.581  Tucson, AZ 0.581 Longview, TX 0.725
7 Columbus, GA-AL 0578 Columbus, GA-AL 0.578 Sioux City, IA 0.712
8 Birmingham-Hoover, AL 0576  Birmingham-Hoover, AL 0.576  Pine Bluff, AR 0.710
9 Louisville-Jefferson 0.575  Louisville-Jefferson 0.575 Steubenville- 0.701
County, KY-IN County, KY-IN Weirton, WV-OH
10 San Antonio, TX 0.567  San Antonio, TX 0.567 Valdosta, GA 0.700

three rankings of large metropolitan areas (i.e., over one million
people) having the highest level of wealth segregation by IOD score.
Again, the first ranking is from Segregated City (Exhibit 2.1, p. 18)
[9] and based on census tract level analysis. The second and third
rankings are the results of our case-study calculated at the census
tract and block group level respectively.

A high overlap of the first and second rankings indicates a sim-
ilarity of methodology. More importantly, a comparison of the
second and third rankings shows a significant empirical change
in the rankings when the unit of analysis changes. For example,
the Mempbhis region was ranked 5 based on the analysis at the cen-
sus tract level but ranked 54 at the census block group level. Such
changes can significantly impact the interpretation of rankings
across the scale.

It is critical to note that even if there is a decline in the rankings
at the block group level the corresponding IOD values are higher.
Thus, if policymakers solely rely on rankings for interpretation
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Table 2: Three rankings of ten large metros. The metros are the 10
most wealth segregated large metro regions taken from Exhibit 2.1
(p. 18) in Segregated City [9].

Large Metro Rank 10D Rank 10D Rank 10D
Memphis, TN-MS-AR 5 0.582 5 0.582 54 0.648
Birmingham-Hoover, AL 8 0.576 8 0.576 58 0.645
Louisville-Jefferson County, KY-IN 9 0.575 9 0.575 47 0.650
San Antonio-New Braunfels, TX 10 0.567 10 0.567 49 0.650
Cleveland-Elyria-Mentor, OH 13 0.560 12 0.561 97 0.624
Detroit-Warren-Livonia, MI 17 0.552 16 0.555 79 0.632
Nashville-Davidson-Murfreesboro-Franklin, TN 23 0.549 21 0.549 145 0.605
Columbus, OH 25 0.547 24 0.547 93 0.626
Charlotte-Gastonia-Rock Hill, NC-SC 29 0.541 29 0.541 151 0.603
Miami-Fort Lauderdale-Pompano Beach, FL 31 0.540 54 0.522 122 0.616

they may overlook the issue of segregation. Supporting IOD values
may give a more realistic picture.

A particularly striking example concerns the city of Tallahassee,
Florida (not shown in Table 2). Exhibit 3.2 (p. 23) in Richard Florida’s
book [9] ranked Tallahassee as the most segregated city in the U.S.
on a measure of overall segregation. In our study it ranked 14 based
on the segregation of the wealthy at the census tract level. And it
ranked 92 based on the segregation of wealthy at the block group
level. The IOD index in our study measures only one part of overall
segregation. However, if a change in the scale of analysis changes
the IOD value, then it must also change the ranking of overall
segregation. As we will see next, this effect has many implications
for policy-making.

5.3 Policy Implications

Our findings suggest that calculating a segregation index using dif-
ferent levels of spatial data may lead to significantly different con-
clusions about a city’s segregation status and ranking. This can have
broad social and political impacts on citizen satisfaction, turnover of
public officials, and allocation of public resources. Richard Florida’s
report [9] on Tallahassee aroused intense discussion and debate
among political leaders, city/county administration, and the public
on whether the ranking of Tallahassee’s economic segregation was
fair [14]. The report investigated 350 metropolitan areas in the
US and found that many small and medium sized cities suffered
from high segregation because they were college towns and the
university community was segregated from the service workers in
the rest of the city.

Based on Florida and Mellander’s calculation using census tract
level data, Tallahassee, a mid-sized college town and the capital
city of Florida, ranked as the most overall economically segregated
metro in the US. City leaders refuted the report and argued for pro-
moting the economic vitality of all communities. They called for a
better way to measure income and economic segregation. The high
ranking of economic segregation also made Tallahassee residents
question the city’s 30-year gentrification project for poor neigh-
borhoods of the city. They also questioned whether the additional
tax revenue that had been used to develop multi-use residential
property in these neighborhoods should be shifted towards creat-
ing new job opportunities to reduce poverty and segregation. Our
findings, however, show that when the finer block group level is
used to calculate the segregation index, Tallahassee has relatively
less wealth segregation than Richard Florida’s study suggests. In
fact, block group data may benefit larger cities even more due to
an increased amount of aggregation at the census tract level.

6 CASE STUDY: MULTISCALE, MULTIZONE
INCOME INEQUALITY ANALYSIS

In the second case study, we evaluated the effects of aggregation
on income inequality statistics. First, we evaluated four different
income inequality metrics at different scales. Then, we simulated
different partitions constrained to a population limit. The purpose
was to validate our mathematical characterization of inequality
measures and to show the effect of MAUP on additional income
inequality measures namely, Theil’s index and Atkinson’s index.

6.1 Data Sources

We used a highly granular synthetic dataset, generated from 2010
U.S. census income distributions at the block group level. The house-
holds were geo-located randomly within block groups while avoid-
ing major bodies of water [34]. Location for each household was
determined in two steps. First, each household was assigned to a
block group based on a likelihood determined by 2010 block group
median income. It was ensured that the block group lay within the
household’s Public Use Microdata Area (PUMA). Then, the assigned
distribution was sampled to generate the final dataset [2].

In addition to geolocated income data, we used the standard hier-
archy of spatial partitions from the 2010 U.S. Decennial Census. The
dataset is in a shapefile format containing polygons representing
census blocks. Each polygon contains the details of its block group,
tract, county, and state ID, allowing aggregation to the necessary
level [7]. This file contains over 11 million polygons representing
the entire United States; however, we restricted our analysis to the
state level and provide results for the state of Minnesota (approx-
imately 260,000 census blocks). Household income data was also
limited to Minnesota households, which numbered a little over 2
million in the dataset.

6.2 Hierarchical Aggregation

First, we calculated the Gini coefficient, IQSR, Theil’s L, Theil’s T,
and Atkinson indexes with inequality aversion values of 0.25, 0.50,
and 0.75. This was done for data within the state of Minnesota, aver-
aged at different scales. At the smallest scale, ungrouped household
median income was used as the income variable. These points were
then spatially joined and assigned to census blocks, and income
inequality statistics were calculated using the arithmetic mean of
incomes within each block as the income variable. The process was
repeated by taking the mean of incomes within block groups, tracts,
and counties, resulting in 30 total inequality measures.

Computationally, this work was done in Python using the propri-
etary library “ArcPy” from the company Esri; NumPy and pandas
were used for data processing. Special care was taken to avoid nu-
merical overflow, which is probable when adding many five and
six-figure integers, especially in the case of the Atkinson index. The
income statistics were computationally efficient, all running in O(n)
time except for Gini, which can be implemented with O(n log(n))
complexity [29].

6.3 Effects of Hierarchical Aggregation

Table 3 shows the values for various income inequality metrics
for Minnesota at the various aggregation levels. As shown in the
first two columns the income inequality reported by Gini and IQSR
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Table 3: Minnesota income inequality indexes at various levels of aggregation.

Aggregation Level | Gini IQSR | Theil’s L | Theil’s T | Atkinson (¢ = 0.25) | Atkinson (¢ = 0.5) | Atkinson (¢ = 0.75)
None 0.3146 | 4.7691 | 0.4352 0.3415 0.0836 0.1652 0.2505
Census Block 0.2381 | 3.3535 | 0.1520 0.1390 0.0343 0.0683 0.1031
Census Tract 0.1847 | 2.546 0.0550 0.0545 0.0136 0.0270 0.0403
County 0.0821 | 1.5104 | 0.0125 0.0135 0.0033 0.0065 0.0095

always decreases as the basic units of income merged with their 16

3 3 icic i : - Mean: 0.2029
nelghbqrs and are rep%aced with group averages. This is in align Ay
ment with the theoretical results (Theorem 4.1, 4.2). We also find Min:  0.1993

that the reduction in metrics is not equivalent across each aggre-
gation step. For Gini, the largest reduction is at the county level
whereas for IQSR the largest reduction is from no-aggregation to
the census block level. However, in both cases not much inequal-
ity is lost by aggregating from blocks to tracts, suggesting little
difference in income distribution between blocks.

6.4 Population Constrained Spatial Partitions

We considered the same inequality measurements as the first. Rather
than strictly hierarchical spatial partitions, we generated a random
sample of partitions at each scale in order to isolate the zone prob-
lem of the MAUP from the scale problem. Scale in this context refers
to the approximate population size of a subgroup, and it acts as a
constraint which limits the search space by which new partitions
are selected.

Given an objective population size p, we used a genetic algorithm
to construct a set of spatial partitions using census blocks as basic
units. The algorithm works by first selecting a random block as a
partition seed [8]. Partitions grow by agglomerating blocks with
contiguous edges (a distance metric could also be used if growing
from points) until the sum of block populations reaches p. This
process repeats until every block is assigned to a partition, and
the fitness of the zoning scheme is calculated using the sum of the
squared population error:

N _n\2
Fitnessz = Z (p—pl)
i=1 p

This process repeats 200 times, and all 200 solutions are ranked
from lowest to highest fitness. The fittest 100 solutions are dupli-
cated, and their duplicates have their partition seeds randomly
crossed like chromosomes, with duplicate seeds removed and new
seeds randomly selected. This results in 200 solutions at each gen-
eration, whereupon the growth process begins again. New seeds
are randomly selected only if all the seeds inherited by the parent
are claimed by grown partitions. The algorithm ends at the end of
20 generations, and the fittest solution is returned. We performed
three simulations, each generating 100 sets of spatial partitions for
population constraints of p € {2000, 4000, 6000}. For each set of
partitions, we calculated the arithmetic means of incomes within
all zones, and used these as income variables for the four income
inequality measures.

Computationally, the genetic algorithm was implemented using
the “Build Balanced Zones” tool of the ArcPy python library. Addi-
tional data processing was done with pandas and NumPy. Each sim-
ulation was fairly expensive, with complexity O(n;ngncny) where
n; is the number of iterations, or number of zonations sampled, ng

12 0.2067

104

Frequency
o

0.200 0.202 0.204

Gini index

Figure 4: Histogram of 100 randomly-sampled Gini indices subject
to a population constraint of 4,000.

is the number of generations, n. is the number of candidate zona-
tions per generation, and n,, is the average number of partitions
generated, approximately equal to the ratio of the Total Population
and Objective Population .

6.5 Effects of Constrained Spatial Partitions

We first focus on the distribution of the Gini coefficient under a
simulated population constraint of 4, 000 individuals, which is the
optimal population suggested by the Census Bureau for census
tracts. Actual average tract population according to the dataset is
3,854. We first checked the effects of the optimization process on
the samples. We assumed at least one globally optimal organization
of partitions. If the algorithm finds this solution every time, then
the distribution of Gini will have 0 variance. In fact, we found that
no two Gini measurements out of 100 iterations were the same,
meaning no solution was ever repeated. This suggests that the
search space of the algorithm is sufficiently large for our purposes.

A histogram of Gini samples is shown in Figure 4, with sam-
ple statistics inlaid. The mean of the sample distribution is 0.2029 ,
lower than the observed Gini on census tracts for Hennepin County
(0.2187). In fact, assuming that Gini is asymptotically normal, we
can set up a hypothesis test. Let Hy be that the Gini observed on
Hennepin County census tracts is drawn from the simulated dis-
tribution of partitions with similar population constraints. We use
a p-value of 0.001 , requiring very strong evidence against H in
order to reject it. Then z = W is drawn from Z ~ N(0, 1).
2% Pr(Z < z) = 7.3 x 10727, This is much smaller than our accep-
tance criteria, so we reject Hy and are left with the conclusion that
census tracts are not drawn by the same process as the population-
optimizing algorithm.

The shape of the histogram is relatively normal, with some dis-
tortion due to bin size, and a somewhat surprisingly small standard
deviation. The presence of any variation suggests that aggregation
effects are at play, but the correlation between Gini and average par-
tition population across each simulation is —0.07 , making the scale
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Figure 5: Histogram based on IQSR values for all the possible equi-
cardinality partitions subject to a population constraint of 10 and
partition size of 2.

problem of the MAUP an unlikely culprit. A more likely conclusion
is that Gini is sensitive to the zone problem of the MAUP.

Nevertheless, it seems clear that the sensitivity of Gini to the zone
problem is secondary to its sensitivity to the scale problem. This is
further illustrated by Table 4, which shows the distribution means
for all income inequality measures as the population constraint
increases. The results also show that the variation in sample means
due to scaling population +50% is 4-5x greater than the standard
deviation at each aggregation level.

Figure 5 shows the histogram on IQSR values for all possible
equi-cardinality partitions subject to a population constraint of 10
and partition size of 2. As shown, the value of IQSR is always within
the theoretical bounds of 1 and 6.33 (Theorem 4.3). We also observe
that a majority of the partitions favor lower IQSR values and the
resultant inequality value is usually an underestimate.

7 DISCUSSION

When using Al to inform policy-making, transparency refers to
providing enough information on how different measurements or
indicators are calculated, their performance and limitations, so that
policymakers can better select and use these measures. There’s no
single best solution. However, transparency is an important value
in policy-making to allow stakeholders understand the strengths
and weakness of each option so that they can make a decision after
weighing the trade-offs of different options.

There could be different ways to address the impact of parti-
tions on different measures and resultant rankings. The first is to
acknowledge the issue. This can be done in different ways, for ex-
ample, by showing the change in rankings with change in partitions
if it is clear there is a significant change in rankings, policymakers
would need to go back to the base data which is accessible at census
enclaves.

Another option is to use different measures and potentially se-
lect the measures with lower variability across different choices of
partitioning. However, this may raise other macroeconomic issues
regarding how effective the measures are. The overall effectiveness
of different measures of inequality is a much debated topic in the
field of public policy and any choice will involve trade-offs.

Policymaking involves various stages, one of which is studying
rankings based on socio-economic measures. Here, we argue that

comparisons (e.g., rankings) based on socio-economic measures for
a given set of partitions may not be accurate. Policymakers need
to be made aware of this and researchers (supplying the rankings)
need to report their spatial unit of analysis towards mitigating the
effects of inaccurate rankings.

It may be intuitive that well-behaved measures (e.g., Gini func-
tion) are smooth as granularity becomes smoother for hierarchically
partitioned datasets such as the census. However, the impact of this
smoothing on ranking is not intuitive. For example, Tallahassee
ranked 14 on segregation of the wealthy at the census tract level,
but ranked 92 at the block group level. In addition, there are ratio-
based measures (e.g., disparity ratios) which are not monotonic
with the change in spatial scale of the space partitions [32].
Other Related Work: Some previous work has analyzed the sen-
sitivity of income inequality measures in particular to space par-
titioning. Portnov and Felsenstein [21] addressed the sensitivity
of various income inequality measurements, including both un-
weighted and population-weighted Gini, to changes in aggregate
zone construction objectives. They conducted a controlled experi-
ment to compare Gini, Theil, Atkinson, and other indices’ reaction
to the zone problem, but did not address the scale issue or verify
on a realistic dataset. Briant et al. [4] showed that the unweighted
Gini coefficient is sensitive to scale and zoning problems in one ex-
periment, but did not provide a theoretical explanation and invited
future work to confirm their findings on data outside of the French
zoning system. Our work takes up this call. Finally, Rey [26] con-
firmed the issue of MAUP while calculating regional inequality and
later with Smith [27] provided a spatial decomposition of the Gini
index to better capture the spatial variation across partitions. In
contrast, our work proposes sensitivity analysis on the Gini Index
and IQSR.

8 CONCLUSION AND FUTURE WORK

Spatial data brings an important dimension to algorithmic trans-
parency. Many inequality and segregation based analyses use ag-
gregated census data but do not report the sensitivity of results
to choice of spatial partitioning (e.g., census block group, census
tract). We show that values of many measures (e.g., Gini index,
dissimilarity index) diminish monotonically with increasing unit
size in a hierarchical space partitioning (e.g., block, block-group,
tract), however the ranking remains sensitive to the scale of spatial
partitions (e.g., block, block group). Our findings highlight the im-
portance of collecting and using fine-scale data to inform policies
that address various social equity issues.

In the future, we plan to analyze the sensitivity of other mea-
sures of income inequality and segregation to choice of spatial
partitioning. Further, we plan to investigate computational meth-
ods to address the spatial dimensions of algorithmic transparency.
In addition, we plan to consider other aggregation problems such as
boundary effects. Computationally, random partitioning techniques
can be improved to reduce complexity and produce more optimal
zones. Other techniques such as Monte Carlo simulations can be
used to estimate the effects of space partitioning for different zones.
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Table 4: Sample averages for all six statistics under increasing population constraints.

Target Population | Gini | Theil’s L | Theil’s T | Atkinson (e = 0.25) | Atkinson (¢ =0.5) | Atkinson (e = 0.75)

2000 0.2125 | 0.0766 0.0706 0.0179 0.0361 0.0548

4000 0.2029 | 0.0696 0.0643 0.0163 0.0329 0.0499

6000 0.1962 | 0.0648 0.0601 0.0152 0.0307 0.0466
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A MATHEMATICAL PROOFS

Theorem 4.1. Gini produces a lower-bound estimate of overall
inequality when calculated on group averages i.e, Gy <= Gy.
Proof. As the normalization term (i.e., ﬁ) is same for both Gn
and Gy, it is sufficient to prove that,

N N

i - Z Z Z\xl—xj|<22|xl—x]|

i=1 j=1 P.qEP Xi€p xj€q i=1j=1

where, P is the set of partitions (or groups).

Case 0. When x;, x; are within the same partition they have the
same mean, then, ‘J?i — J_Cj‘ < ’xi — xj’.

Case 1. When x;, x;j are in different equi-cardinal partitions (say
P, q), which is having the same population (size = n). Then, the
aggregated Gini can be written as,

5 S Skl ) 53 [Een T

p.qEP Xi€p xj€q p.qEP Xi€p X €q

As, there are n? pairwise subtractions in the inner two double
summation, the aggregated gini can be further simplified as,

3w | DiepXi — LjeqXj ): 3
n

p-q€P p.qeP  iep Jjeq

Xi —

"

By triangle inequality of absolute numbers [22], we know that
la+ b| < |a| + |b|, where a,b € R. Now, if we denote any pair of
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(xi — x;j) as y;j, then, the aggregated gini can be written as,

N N

Dion| D vyl lwijl =6n.
p.qeP |iep.jeq i=1 j=1

= GN <Gn

Case 2. When x;, x; are in different non-equi-cardinal partitions

(say p, q), with the cardinality of p = m and q = n. The aggregated

gini can be simplified as follows,

Z Zlel_x] Z ZZ‘ZlEP‘xl Z]qu]|

p.qeP i€p jeq p.qeP i€p jeq
DI ES
p.qeP i€p jeq
| nZiepxl —ijquj |
= mn
plaep mn
> [n3-m Y|
p.q€P iep Jj€q

Again, aggregated gini can be written in terms of y;; as follows,

Z ‘Zyll‘ ZZW:H GN.

p.qeP lEp i=1 j=1
Jjeq

ol GN <GnN |
Theorem 4.2. IQSR(Ap) < IQSR(X), where X is a set of numbers
with equi-cardinality partitioning, P = {p1,p2, ....pc(p)}, Where
pi’s are pairwise disjoint and their union yields X and Ap =
Avg(pz), ..., Avg(pc(py)}, where Avg(p;) is the arithmetic average
of items in partition p;, and C(P) is the cardinality of P.

Proof. Let,

C(X) be the cardinality of X.

S1(X) be the sum of —~* ( ) Jowest values in X.
Sy (X) be the sum of % highest values in X.

By definition,
IQSR(X) =
C(Ap) = Cardmahty of Ap = C(P)(i.e., Number of partitions).
Clpi) = Cardinality(p1) = ... = Cardinality(p) = Sy
Sr(Ap) = Sum of C(?‘P) lowest values in Ap.

Sg(Ap) = Sum of C(?P) highest values in Ap.
For readability, if C(Ap) is used as a subscript, we denote it by K.
The proof has three parts:
Lemma 1. For equi-cardinality spatial partitioning P of set X, nu-
merator IQSR(Ap) = C(p;) is upper bounded by numerator IQSR(X),
ie., Sg(Ap) * C(pi) < SH(X).
Proof sketch. Without loss of generality assume that the parti-
tion set P is sorted by Avg(p;), i.e., Avg(p1) > Avg(ps) > ... >
Avg(pk ). For simplicity, assume C(Ap) is divisible by 5. In this case,
Su(Ap) * C(pi) = (Avg(p1) + Avg(pz) + ... + Avg(px)) * Clpi) =
(Sum(py) + Sum(pz) + ... + Sum(px )) < Sg(X).
Lemma 2. For equi-cardinality speitial partitioning P of set X, de-
nominator IQSR(Ap) * C(p;) is lower bounded by denominator
IQSR(X), i.e., SL.(Ap) * C(p;) = SL(X).

SH(X)

{Avg(p1),

Proof sketch. Without loss of generality assume that the parti-
tion set P is sorted by Avg(p;), ie., Avg(p1) = Avg(pz) > ... =
Avg(pg). For simplicity, assume C(Ap) is divisible by 5. In this case,
SL(Ap)*C(pi) = (Avg(pk)+Avg(pr-1)+.. +AU9(P%+1))*C(Pi) =
(Sum(Pg) + Sum(Pg—1) + ... + Sum(P41<+1)) > Sp(X).
Lemmas 1 and 2 imply that equl—cardlnahty partitioning diminishes
Su(Ap) _
SH(ARIC(pr) _ Su(X) e
ScArCp) < 5,00 = [OSRX). D
Theorem 4.3. IQSR(X) is lower bounded by the sum of C(X)/5
smallest values divided by the sum of C(X)/5 largest values and
upper bounded by the sum of C(X)/5 largest values divided by the
sum of C(X)/5 smallest values, where C(X) is the cardinality of the
given set X of incomes.
Proof. Let,

C(X) be the cardinality of X.

S1.(X) be the sum of =~ ( ) Jowest values in X.

SH(X) be the sum of (5 ) highest values in X.
The proof has two parts:
Lemma 1. IQSR(X) is upper bounded by the sum of C(X)/5 largest
values divided by the sum of C(X)/5 smallest values.

Proof sketch. By definition,

IQSR(X) = Sf&()).

Then, Numerator (IQSR(X)) < Sy (X) and Sz (X) < Denominator
(IQSR(S)). Therefore, if;gg > IQSR(X).

Lemma 2. IQSR(X) is lower bounded by the sum of C(X)/5 smallest
values divided by the sum of C(X)/5 largest values.

Proof sketch. As, S;(X) < Numerator (IQSR(X)) and Denominator

(IQSR(X)) < Sz (X). Therefore, g;gg < IQSR(X). o
Theorem 4.4. The index of dissimilarity diminishes as the scale of
aggregation increases i.e., D < D.

Proof. Let there be two partitions p and g where {xp, x4}, {yp, yq}
are the distributions of the selected group and “others” respectively.

Then,

IQSR and can never increase it because IQSR(Ap) =

=‘_P_y_f"+ Xa _Ya
X XY

If the partitions are merged, the new dissimilarity index D is

g YY) %o _Yp  *a_Ya
X Y X Y X Y
By triangle inequality of absolute numbers [22], we know that
la+ b| < |a| + |b|, where a,b € R. Therefore,
X X X X _
_p_y_p+_q_y_q < _P_y_P + _q_y_q) — D<D
X Y X Y X Y X Y
The proof holds true for any set of partitions P aggregated to a set
of partitions P, where p; € P are pairwise disjoint and their union
yields P. O
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