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ABSTRACT

Spatial data brings an important dimension to AI’s quest for al-

gorithmic transparency. For example, data driven computer-aided

policy-decisions use measures of segregation (e.g., dissimilarity in-

dex) or income-inequality (e.g., Gini index), and these measures are

affected by space partitioning choice. This may lead policymakers

to underestimate the level of inequality or segregation within a

region. The problem stems from the fact that many segregation

based analyses use aggregated census data but do not report result

sensitivity to choice of spatial partitioning (e.g., census block, tract).

Beyond the well-known Modifiable Areal Unit Problem, this paper

shows (via mathematical proofs as well as case studies with census

data and census based synthetic micro-population data) that values

of many measures (e.g., Gini index, dissimilarity index) diminish

monotonically with increasing spatial-unit size in a hierarchical

space partitioning (e.g., block, block-group, tract), however the

ranking based on spatially aggregated measures remain sensitive to

the scale of spatial partitions (e.g., block, block group). This paper

highlights the need for social scientists to report how rankings of

inequality are affected by the choice of spatial partitions.
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ing.
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1 INTRODUCTION

Spatial data raises special concerns for algorithmic transparency,

which calls for the factors influencing algorithmic decisions to be

made visible to users, regulators, policy makers, and people affected.

Computational operations (e.g., partitioning, ranking) which may

not affect the empirical analysis of non-spatial datasets can result

in empirically inconsistent spatial analysis. These operations are

often used for quantifying societal inequality, segregation, etc., to

be used by policymakers to assess and develop relevant policies.

Currently, issues such as reducing global inequality is part of the

UN Sustainability Development Goals (SDGs) [1] and a lack of

transparency in assessment may lead to inaccurate conclusions

with global ramifications. For example, measures of segregation

and income-inequality (e.g., dissimilarity index, Gini index) are

affected by the choice of spatial partitioning.

Most studies in the US, including Richard Florida and Charlotte

Millander’s notable book Segregated City [9], are based on data

aggregated from the US Census. However, these works often do

not report the sensitivity of their results to the spatial partitioning

(e.g., census tract, census block group). This raises questions about

the validity of the findings. Underestimation (or overestimation)

of income inequality can have implications for a region as policy-

makers rely on geographically aggregated data to assess subsidies

[16], health insurance policies [19], compute spatial risk adjustment

[33], etc. Therefore, knowing the sensitivity of inequality values at

different scales is useful to account for possible errors and assess

the need for additional data collection (e.g., random surveys) to

reduce the error.

Given a space partitioning, our goal in this work is to characterize

the sensitivity (e.g., change in rankings) of income inequality and

segregation measures computed on spatially aggregated data to the

choice of spatial unit. We illustrate the problem with the following

example. Figure 1 shows two cities (say C1 and C2) having 10 parti-

tions each, where each partition has some income shown within

them. We can use these income values for ranking the two cities

based on their income inequality (e.g., Gini Index [11]). When the

income inequality is computed using fine-grained partitions, cityC1
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review of other related work. Finally, we conclude and consider

future work in Section 8.

2 APPLICATION CONTEXT

Inequality has been found to be associated with a variety of social

problems. In Economic Growth and Income Inequality [15], Kuznets

suggested that a higher level of inequality is correlated with a

lower level of democracy or property rights, less redistribution, and

a higher level of ethnic heterogeneity. For developing countries,

high inequality threatens to stall future progress against poverty

by attenuating growth prospects, and the gap of living standards

between the rich and the poor is still increasing [24].

The study on inequality is typically about resource distribution

among different groups of population. The Gini index and the dis-

similarity index have been widely applied in policy analysis to

understand the extent of income inequality. A major contribution

of this paper is to illustrate the sensitivity of the dissimilarity index,

to spatial partitioning and its policy implications. We applied the

index of dissimilarity to study income inequality and racial segre-

gation. The index of dissimilarity has also been applied to study

inequalities in many other types. For example, Kangkang Tong et

al. (2021) [32] use disparity ratio to study energy consumption in-

equality between high and low income group (bottom 20% income

households and top 20% income households). Song et al. (2013) [30]

uses index of dissimilarity to study land mix.

As individual level data is rarely available to either preserve

household confidentiality or due to lack of resources [13, 31], schol-

arly work primarily relies on several levels of aggregated data from

the U.S. Census Bureau. Most researchers use data from the census

tract level.

Previous studies using aggregated data have found that income

inequality and social segregation have compound social effects

on vulnerable populations. Although city populations consist of

people with diverse backgrounds, they are becomingmore andmore

segregated and homogeneous by income, education, occupation [9].

Bishop [3] refers to the phenomenon as łthe big sortž. Segregation

has gradually built up through the process of łfilteringž in the

residential housing market, whereby well-off households tend to

move to newly developed, high priced communities, leaving older

communities to households with lower income levels [17]. Over

time, low income racial minorities and high income racial majorities

become geo-spatially segregated across the city [25]. As a result, low

income residents not only suffer from lack of financial resources,

but also from related neighborhood effects such as high rate of

crime, pollution and chronic disease. These challenges inevitably

interact with each other and have cumulative effects that prevent

disadvantaged groups from changing their status [28].

Although the narratives on inequality and social segregation

have been widely accepted in academia, the majority of these stud-

ies are built on highly aggregated data. We demonstrate in the

following sections that variation in the unit of analysis will dramat-

ically change the score of inequality (segregation) index.

3 PROBLEM FORMULATION

We have formulated the problem as two sub-problems correspond-

ing to the "scale" problem and the "zone" problem of MAUP.

3.1 Assessment of the Scale Problem:

Input:

• Geo-located census records (X ).

• Administratively-defined set of hierarchical spatial partitions

(e.g., census tracts, census block groups) as shape-files (P),

where, P ∈ P is a space partitioning. Further, ∀P1, P2 ∈ P, P1
is hierarchically higher than P2, if all the partitions p1j ∈ P1
are greater in size than p2j ∈ P2.

• Existing inequality measures (e.g., index of dissimilarity)

denoted asM .

Output:

• Partitions’ (say pi j ) rankings using metric M , where M is

computed for all hierarchies lower than Pi .

Objective:

• Assess ranking sensitivity to the partition scale (e.g., tract to

block group).

Constraints:

• Spatial partitions are rigid at each hierarchical level.

• The smallest spatial unit of the census data.

Figure 1 illustrates the input and output of the scale problem,

where X = 1, 2, ...20, P has fine grain, coarse grain partitions,

and gini index is the inequality measureM . The output is a set of

rankings corresponding to each partition scale, as shown in the

table at the bottom of the figure.

3.2 Assessment of the Zone Problem:

Input:

• Geolocated census records (X ).

• Population limit of each zone (n).

• Zone generator (Z ), where Z (X ,n) → Pi .

• Existing income inequality measures (e.g., Gini, IQSR) asM .

Output:

• Upper and lower bound of the measure (M) for a given par-

tition scale governed by the parameter n.

Objective:

• Assess the sensitivity of inequality measurements to changes

in partition zone (e.g., census tracts to county subdivisions).

Constraints:

• Random spatial partitions are subject to a population limit.

• The smallest spatial unit of the census data.

Figure 2 illustrates the the zone problem. As shown, census

records are given at a fine grain scale which are inputs to a zone

generator with population (or record) limit of 2. The figure shows

two of the possible partitioning P1, P2, where Z (C1, 2) → P1, P2.

The partitioningmerge to form the coarse grain partitions eachwith

different gini index (M) values (shown in the bottom left table of the

figure). The potential output would be the lower-bound (LB) and

upper-bound (UB) of the measure for all the possible partitioning

at this scale.

4 MATHEMATICAL CHARACTERIZATION

In this section, we characterize results on two types of inequality

measures and one type of segregation measure: an entropy based
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Table 2: Three rankings of ten large metros. The metros are the 10

most wealth segregated large metro regions taken from Exhibit 2.1

(p. 18) in Segregated City [9].

Large Metro Rank IOD Rank IOD Rank IOD

Memphis, TN-MS-AR 5 0.582 5 0.582 54 0.648
Birmingham-Hoover, AL 8 0.576 8 0.576 58 0.645
Louisville-Jefferson County, KY-IN 9 0.575 9 0.575 47 0.650
San Antonio-New Braunfels, TX 10 0.567 10 0.567 49 0.650
Cleveland-Elyria-Mentor, OH 13 0.560 12 0.561 97 0.624
Detroit-Warren-Livonia, MI 17 0.552 16 0.555 79 0.632
Nashville-Davidson-Murfreesboro-Franklin, TN 23 0.549 21 0.549 145 0.605
Columbus, OH 25 0.547 24 0.547 93 0.626
Charlotte-Gastonia-Rock Hill, NC-SC 29 0.541 29 0.541 151 0.603
Miami-Fort Lauderdale-Pompano Beach, FL 31 0.540 54 0.522 122 0.616

they may overlook the issue of segregation. Supporting IOD values

may give a more realistic picture.

A particularly striking example concerns the city of Tallahassee,

Florida (not shown in Table 2). Exhibit 3.2 (p. 23) in Richard Florida’s

book [9] ranked Tallahassee as the most segregated city in the U.S.

on a measure of overall segregation. In our study it ranked 14 based

on the segregation of the wealthy at the census tract level. And it

ranked 92 based on the segregation of wealthy at the block group

level. The IOD index in our study measures only one part of overall

segregation. However, if a change in the scale of analysis changes

the IOD value, then it must also change the ranking of overall

segregation. As we will see next, this effect has many implications

for policy-making.

5.3 Policy Implications

Our findings suggest that calculating a segregation index using dif-

ferent levels of spatial data may lead to significantly different con-

clusions about a city’s segregation status and ranking. This can have

broad social and political impacts on citizen satisfaction, turnover of

public officials, and allocation of public resources. Richard Florida’s

report [9] on Tallahassee aroused intense discussion and debate

among political leaders, city/county administration, and the public

on whether the ranking of Tallahassee’s economic segregation was

fair [14]. The report investigated 350 metropolitan areas in the

US and found that many small and medium sized cities suffered

from high segregation because they were college towns and the

university community was segregated from the service workers in

the rest of the city.

Based on Florida and Mellander’s calculation using census tract

level data, Tallahassee, a mid-sized college town and the capital

city of Florida, ranked as the most overall economically segregated

metro in the US. City leaders refuted the report and argued for pro-

moting the economic vitality of all communities. They called for a

better way to measure income and economic segregation. The high

ranking of economic segregation also made Tallahassee residents

question the city’s 30-year gentrification project for poor neigh-

borhoods of the city. They also questioned whether the additional

tax revenue that had been used to develop multi-use residential

property in these neighborhoods should be shifted towards creat-

ing new job opportunities to reduce poverty and segregation. Our

findings, however, show that when the finer block group level is

used to calculate the segregation index, Tallahassee has relatively

less wealth segregation than Richard Florida’s study suggests. In

fact, block group data may benefit larger cities even more due to

an increased amount of aggregation at the census tract level.

6 CASE STUDY: MULTISCALE, MULTIZONE
INCOME INEQUALITY ANALYSIS

In the second case study, we evaluated the effects of aggregation

on income inequality statistics. First, we evaluated four different

income inequality metrics at different scales. Then, we simulated

different partitions constrained to a population limit. The purpose

was to validate our mathematical characterization of inequality

measures and to show the effect of MAUP on additional income

inequality measures namely, Theil’s index and Atkinson’s index.

6.1 Data Sources

We used a highly granular synthetic dataset, generated from 2010

U.S. census income distributions at the block group level. The house-

holds were geo-located randomly within block groups while avoid-

ing major bodies of water [34]. Location for each household was

determined in two steps. First, each household was assigned to a

block group based on a likelihood determined by 2010 block group

median income. It was ensured that the block group lay within the

household’s Public Use Microdata Area (PUMA). Then, the assigned

distribution was sampled to generate the final dataset [2].

In addition to geolocated income data, we used the standard hier-

archy of spatial partitions from the 2010 U.S. Decennial Census. The

dataset is in a shapefile format containing polygons representing

census blocks. Each polygon contains the details of its block group,

tract, county, and state ID, allowing aggregation to the necessary

level [7]. This file contains over 11 million polygons representing

the entire United States; however, we restricted our analysis to the

state level and provide results for the state of Minnesota (approx-

imately 260,000 census blocks). Household income data was also

limited to Minnesota households, which numbered a little over 2

million in the dataset.

6.2 Hierarchical Aggregation

First, we calculated the Gini coefficient, IQSR, Theil’s L, Theil’s T,

and Atkinson indexes with inequality aversion values of 0.25, 0.50,

and 0.75. This was done for data within the state of Minnesota, aver-

aged at different scales. At the smallest scale, ungrouped household

median income was used as the income variable. These points were

then spatially joined and assigned to census blocks, and income

inequality statistics were calculated using the arithmetic mean of

incomes within each block as the income variable. The process was

repeated by taking the mean of incomes within block groups, tracts,

and counties, resulting in 30 total inequality measures.

Computationally, this work was done in Python using the propri-

etary library łArcPyž from the company Esri; NumPy and pandas

were used for data processing. Special care was taken to avoid nu-

merical overflow, which is probable when adding many five and

six-figure integers, especially in the case of the Atkinson index. The

income statistics were computationally efficient, all running in O(n)

time except for Gini, which can be implemented with O(n log(n))

complexity [29].

6.3 Effects of Hierarchical Aggregation

Table 3 shows the values for various income inequality metrics

for Minnesota at the various aggregation levels. As shown in the

first two columns the income inequality reported by Gini and IQSR
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Table 4: Sample averages for all six statistics under increasing population constraints.

Target Population Gini Theil’s L Theil’s T Atkinson (ϵ = 0.25) Atkinson (ϵ = 0.5) Atkinson (ϵ = 0.75)

2000 0.2125 0.0766 0.0706 0.0179 0.0361 0.0548

4000 0.2029 0.0696 0.0643 0.0163 0.0329 0.0499

6000 0.1962 0.0648 0.0601 0.0152 0.0307 0.0466
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A MATHEMATICAL PROOFS

Theorem 4.1. Gini produces a lower-bound estimate of overall

inequality when calculated on group averages i.e., ḠN <= GN .

Proof. As the normalization term (i.e., 1
2N 2x̄

) is same for both GN

and ḠN , it is sufficient to prove that,

N
∑

i=1

N
∑

j=1

�

�x̄i − x̄ j
�

�

=

∑

p,q∈P

∑

xi ∈p

∑

x j ∈q

�

�x̄i − x̄ j
�

� ≤

N
∑

i=1

N
∑

j=1

�

�xi − x j
�

�

where, P is the set of partitions (or groups).

Case 0. When xi , x j are within the same partition they have the

same mean, then,
�

�x̄i − x̄ j
�

� ≤
�

�xi − x j
�

�.

Case 1. When xi , x j are in different equi-cardinal partitions (say

p, q), which is having the same population (size = n). Then, the

aggregated Gini can be written as,

∑

p,q∈P

∑

xi ∈p

∑

x j ∈q

�

�x̄i − x̄ j
�

�

=

∑

p,q∈P

∑

xi ∈p

∑

x j ∈q

�

�

�

�

�

∑

xi ∈p xi

n
−

∑

x j ∈q x j

n

�

�

�

�

�

.

As, there are n2 pairwise subtractions in the inner two double

summation, the aggregated gini can be further simplified as,

∑

p,q∈P

n2
�

�

�

∑

i ∈p xi −
∑

j ∈q x j

n

�

�

�
=

∑

p,q∈P

n
�

�

�

∑

i ∈p

xi −
∑

j ∈q

x j

�

�

�
.

By triangle inequality of absolute numbers [22], we know that

|a + b | ≤ |a | + |b |, where a,b ∈ R. Now, if we denote any pair of
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(xi − x j ) as yi j , then, the aggregated gini can be written as,

∑

p,q∈P

n

�

�

�

�

�

�

∑

i ∈p, j ∈q

yi j

�

�

�

�

�

�

≤

N
∑

i=1

N
∑

j=1

|yi j | = GN .

=⇒ ḠN ≤ GN

Case 2. When xi , x j are in different non-equi-cardinal partitions

(say p, q), with the cardinality of p =m and q = n. The aggregated

gini can be simplified as follows,

∑

p,q∈P

∑

i ∈p

∑

j ∈q

|x̄i − x̄ j | =
∑

p,q∈P

∑

i ∈p

∑

j ∈q

�

�

�

∑

i ∈p xi

m
−

∑

j ∈q x j

n

�

�

�

=

∑

p,q∈P

∑

i ∈p

∑

j ∈q

�

�

�

n
∑

i ∈p xi −m
∑

j ∈q x j

mn

�

�

�

=

∑

p,q∈P

mn
�

�

�

n
∑

i ∈p xi −m
∑

j ∈q x j

mn

�

�

�

=

∑

p,q∈P

�

�

�
n
∑

i ∈p

xi −m
∑

j ∈q

x j

�

�

�

Again, aggregated gini can be written in terms of yi j as follows,

∑

p,q∈P

�

�

�

∑

i ∈p
j ∈q

yi j

�

�

�
≤

N
∑

i=1

N
∑

j=1

|yi j | = GN .

=⇒ ḠN ≤ GN □

Theorem 4.2. IQSR(AP ) ≤ IQSR(X), where X is a set of numbers

with equi-cardinality partitioning, P = {p1,p2, ...,pC(P )}, where

pi ’s are pairwise disjoint and their union yieldsX andAP = {Avд(p1),

Avд(p2), ...,Avд(pC(P ))}, where Avд(pi ) is the arithmetic average

of items in partition pi , and C(P) is the cardinality of P.

Proof. Let,

C(X) be the cardinality of X.

SL(X ) be the sum of
C(X )
5 lowest values in X.

SH (X ) be the sum of
C(X )
5 highest values in X.

By definition,

IQSR(X) =
SH (X )
SL (X )

.

C(AP ) = Cardinality ofAP =C(P)(i.e., Number of partitions).

C(pi ) = Cardinality(p1) = ... = Cardinality(pK ) =
C(X )
C(AP )

.

SL(AP ) = Sum of
C(AP )

5 lowest values in AP .

SH (AP ) = Sum of
C(AP )

5 highest values in AP .

For readability, if C(AP ) is used as a subscript, we denote it by K .

The proof has three parts:

Lemma 1. For equi-cardinality spatial partitioning P of set X, nu-

merator IQSR(AP ) ∗C(pi ) is upper bounded by numerator IQSR(X),

i.e., SH (AP ) ∗C(pi ) ≤ SH (X ).

Proof sketch. Without loss of generality assume that the parti-

tion set P is sorted by Avд(pi ), i.e., Avд(p1) ≥ Avд(p2) ≥ ... ≥

Avд(pK ). For simplicity, assumeC(AP ) is divisible by 5. In this case,

SH (AP ) ∗ C(pi ) = (Avд(p1) + Avд(p2) + ... + Avд(p K
5
)) ∗ C(pi ) =

(Sum(p1) + Sum(p2) + ... + Sum(p K
5
)) ≤ SH (X ).

Lemma 2. For equi-cardinality spatial partitioning P of set X, de-

nominator IQSR(AP ) ∗ C(pi ) is lower bounded by denominator

IQSR(X), i.e., SL(AP ) ∗C(pi ) ≥ SL(X ).

Proof sketch. Without loss of generality assume that the parti-

tion set P is sorted by Avд(pi ), i.e., Avд(p1) ≥ Avд(p2) ≥ ... ≥

Avд(pK ). For simplicity, assumeC(AP ) is divisible by 5. In this case,

SL(AP )∗C(pi ) = (Avд(pK )+Avд(pK−1)+...+Avд(P 4K
5 +1

))∗C(pi ) =

(Sum(PK ) + Sum(PK−1) + ... + Sum(P 4K
5 +1

)) ≥ SL(X ).

Lemmas 1 and 2 imply that equi-cardinality partitioning diminishes

IQSR and can never increase it because IQSR(AP ) =
SH (AP )
SL (AP )

=

SH (AP )∗C(pi )
SL (AP )∗C(pi )

≤
SH (X )
SL (X )

= IQSR(X ). □

Theorem 4.3. IQSR(X) is lower bounded by the sum of C(X )/5

smallest values divided by the sum of C(X )/5 largest values and

upper bounded by the sum of C(X )/5 largest values divided by the

sum ofC(X )/5 smallest values, whereC(X ) is the cardinality of the

given set X of incomes.

Proof. Let,

C(X) be the cardinality of X.

SL(X ) be the sum of
C(X )
5 lowest values in X.

SH (X ) be the sum of
C(X )
5 highest values in X.

The proof has two parts:

Lemma 1. IQSR(X) is upper bounded by the sum of C(X )/5 largest

values divided by the sum of C(X )/5 smallest values.

Proof sketch. By definition,

IQSR(X) =
SH (X )
SL (X )

.

Then, Numerator (IQSR(X)) ≤ SH (X ) and SL(X ) ≤ Denominator

(IQSR(S)). Therefore,
SH (X )
SL (X )

≥ IQSR(X ).

Lemma 2. IQSR(X) is lower bounded by the sum ofC(X )/5 smallest

values divided by the sum of C(X )/5 largest values.

Proof sketch. As, SL(X ) ≤ Numerator (IQSR(X)) and Denominator

(IQSR(X)) ≤ SH (X ). Therefore,
SL (X )
SH (X )

≤ IQSR(X ). □

Theorem 4.4. The index of dissimilarity diminishes as the scale of

aggregation increases i.e., D̄ ≤ D.

Proof. Let there be two partitions p and q where {xp ,xq }, {yp ,yq }

are the distributions of the selected group and łothersž respectively.

Then,

D =
�

�

�

xp

X
−
yp

Y

�

�

�
+

�

�

�

xq

X
−
yq

Y

�

�

�

If the partitions are merged, the new dissimilarity index D̄ is

D̄ =

�

�

�

�

xp + xq

X
−
yp + yp

Y

�

�

�

�

=

�

�

�

xp

X
−
yp

Y
+

xq

X
−
yq

Y

�

�

�

By triangle inequality of absolute numbers [22], we know that

|a + b | ≤ |a | + |b |, where a,b ∈ R. Therefore,
�

�

�

xp

X
−
yp

Y
+

xq

X
−
yq

Y

�

�

�
≤

�

�

�

xp

X
−
yp

Y

�

�

�
+

�

�

�

xq

X
−
yq

Y

�

�

�
=⇒ D̄ ≤ D

The proof holds true for any set of partitions P aggregated to a set

of partitions P̄ , where pi ∈ P̄ are pairwise disjoint and their union

yields P . □
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