Learning Human Navigation Behavior Using Measured Human
Trajectories in Crowded Spaces

Muhammad Fahad!, Guang Yang?, and Yi Guo?

Abstract— As humans and mobile robots increasingly co-
exist in public spaces, their close proximity demands that
robots navigate following navigation strategies similar to those
exhibited by humans. This could be achieved by learning
directly from human demonstration trajectories in a machine
learning framework. In this paper, we present a method to
learn human navigation behaviors using an imitation learning
approach based on generative adversarial imitation learning
(GAIL), which has the ability of directly extracting navigation
policy. Specifically, we use a large open human trajectory
dataset that was experimentally collected in a crowded public
space. We then recreate these human trajectories in a 3D
robotic simulator, and generate demonstration data using a
LIDAR sensor onboard a robot with the robot following
the measured human trajectories. We then propose a GAIL
based algorithm, which uses occupancy maps generated using
LIDAR data as the input, and outputs the navigation policy
for robot navigation. Simulation experiments are conducted,
and performance evaluation shows that the learned navigation
policy generates trajectories qualitatively and quantitatively
similar to human trajectories. Compared with existing works
using analytical models (such as social force model) to generate
human demonstration trajectories, our method learns directly
from intrinsic human trajectories, thus exhibits more human-
like navigation behaviors.

I. INTRODUCTION

Artificial intelligence has received booming research in-
terest in recent years. Solving problems that are easy for
people to perform but difficult to describe formally is one
of the main challenges for artificial intelligence, such as
recognizing spoken words or faces in images [1]. The human
navigation problem falls directly in this category, where
it is hard to define a universal set of rules to navigate
in an environment with other humans and static obstacles.
Robots will become part of the social fabric with increasing
applications in our daily lives, for example, they are used in
public spaces such as museums [2], supermarkets [3], and
offices [4], and co-occupy the environment with humans.
When navigating in human-centered environments, robots
need to comprehend and comply with rules that humans
follow, more than just avoiding collisions with other humans
and obstacles, such as maintaining a comfortable distance
from other humans, avoiding collisions, and maintaining

The work was partially supported by the US National Science Foundation
under Grant CMMI-1825709.

1 Muhammad Fahad, is with the Department of Robotics and New
Product Development, National Oilwell Varco, Houston, TX, USA 77042
Email: muhammad.fahad@nov.com. The work was done during
Muhammad’s Ph.D. study at Stevens.

2Guang Yang and Yi Guo are with the Department of Electrical and
Computer Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
07030 Emails:{gyangll,yguol} @stevens.edu.

coherency with the crowd [5]. Another challenge faced by
existing robot navigation algorithms is failure to produce
admissible trajectories, resulting in problems such as “robot
freezing” [6]. Humans on the other hand are experts at gen-
erating admissible trajectories in even the most challenging
conditions. Thus the best approach to navigation could be
learning navigation from humans and then using it on a robot
for conforming to desired characteristics such as comfort,
naturalness and sociability [7] in addition to the ability of
generating admissible trajectories.

Deep reinforcement learning (DRL) based approaches
have received increasing research attention to solve robot
navigation problems. Several studies (e.g. Chen et. al. [8],
Long et. al. [9] and Everret et. al. [10]), investigated DRL
approaches to develop control policies in the presence of
other static and dynamic obstacles. The aforementioned DRL
methods rely on handcrafted reward functions, which can
only capture a finite number of rules, so only these rules are
ingrained in the navigation policy.

A natural way to overcome the limitations of hand-
crafted reward functions for reinforcement learning is to
learn directly from human examples to capture human-like
behaviors. A maximum entropy IRL approach was used by
Henrik et. al. to predict human trajectories in a controlled
environment for navigation behavior between fixed points
[5]. Alahi et. al. formulated the human navigation as a pattern
recognition problem and adopted a Long Short Term Mem-
ory (LSTM) model to predict the sequence of actions, based
on the past positions of the humans and their surrounding
[11]. In our earlier work [12], we proposed to learn the
reward function using IRL, and approximated the reward as
a non-linear function of the input features including Social
Affinity Map, density, distance and default cost features.
This method required pre-processing of sensor information
to extract meaningful features, before it could be used by the
agent for navigation. Tai et. al. [13] presented a Generative
Adversarial Imitation Learning (GAIL) based method to
learn socially compliant navigation using simulations in a
Gazebo based environment, where the Social Force Model
(SFM) [14] was used to simulate the trajectory of humans.
Although SFM has been commonly used for simulations of
human crowds in existing studies, it is parameter sensitive,
and could limit the learned behaviors to only those exhibited
by the SFM. Human behaviors on the contrary are much
more diverse, learning from which benefits robot navigation,
which is the main goal of this work.

In this paper, we focus on learning how humans navigate
in crowds, and propose a GAIL based method to learn human

navigation behaviors. The use of GAIL forgoes the reward
function learning step required in IRL formulations, instead,
it directly learns the control policy from demonstration data.
We use a large open human trajectory dataset collected
in a real-world business center [15], integrate it with a
3D robot simulator (V-Rep), and collect a training dataset,
containing raw robot exteroceptive sensor measurements, that
are obtained using the robot following the same trajectory
as that followed by the human. We adopt learning from
demonstrations approach, since human navigation behaviors
draw from many complex experiences, thus it is challenging
to manually craft a reward function for RL that captures
all the behaviors exhibited by humans. Using real human
trajectories, rather than those generated from analytical meth-
ods such as social force model (SFM) [14], the trained
policy learns from human experiences rather than existing
analytical models. The learned policy uses occupancy maps
generated from a LIDAR sensor onboard the robot as input,
and generates robot motion control directly. We compare
the performance of the learned policy with the human
demonstration trajectory and find them to be qualitatively
and quantitatively similar.

II. PROBLEM FORMULATION

In this section, we first present the robot motion model
considered in this work. Then we present the formulation
of the navigation problem in the Markov Decision Process
(MDP) framework, followed by the formal problem state-
ment.

A. Robot Motion Model

Intuitively considering, the motion of a human from its
known initial position to a known desired destination can be
obtained by integrating its velocity in the discretized time
domain. At each time step, the human makes a decision to
change its velocity, taking into account other humans, static
and dynamic obstacles in the environment. We consider this
decision of velocity change as the action in a Markov Deci-
sion Process (MDP). The human uses an unknown policy 7,
to make these decisions. Similar to the motion of a human,
a robot’s motion between its initial location and desired final
position is controlled by a 2-D vector, (v, ¢), that encodes
the robot’s linear velocity and heading respectively. Thus the
complete trajectory of the robot from its starting position to
its destination is obtained by integrating the robot’s velocity
over time. This robot motion has been illustrated in Fig. 1,
where at each time step, the robot changes its velocity and
heading and moves to a new position, at which, it performs
the same process to continue its motion. In this work, we aim
to learn a robot motion planning policy 7y, that allows the
robot to move in a crowded space in a way that mimics the
unknown human motion planning policy mg. The robot has
been modeled as an agent whose decision making process,
while navigating in a crowded space, follows an MDP.

B. Markov Decision Process (MDP)

In this section, we formalize the robot motion model in
the MDP framework. An MDP is a probabilistic sequential

EH H m
b, 00 6 220 20

o

Fig. 1: Robot motion model as a sequence of headings and
speed measurements. The complete trajectory of the robot is
obtained by integrating its velocity over time.

\

decision making process where each decision, more formally
an action, depends only on the agent’s current state and is
thus memoryless. The robot motion in a finite state MDP,
with discrete time steps ¢ = {1,2,..., T}, can be defined
as a tuple (S, o;, A, T, 7, R). The state space of the
robot, .S, at any time instance consists of the robot’s current
location x=(zx,,y,), the linear velocity and heading (v, ¢),
and the desired heading to the destination ¢, at that time
instance. The environment observation o; at any time ¢ is a
2-D occupancy map obtained from the point cloud measured
using a LIDAR mounted on the robot. The occupancy
map from the current time instance ¢ and previous 3 time
instances, t-1, ¢-2, and ¢-3, are stacked together to form o
for the current time step. More details about the occupancy
map are presented in Section IV-B. The action space A is
the robot’s linear acceleration and angular velocities (v', w),
which are obtained from expert trajectories during training.
The state transition probabilities are denoted by T', while
~ denotes the discount factor and R denotes the reward
function. Each demonstration trajectory (is obtained as a
time series of tuples (oq, X, (v, @), (v, w), ¢g). The complete
set of expert demonstration trajectory D, is thus defined as

Dt = {<17<27"'7CN}‘

C. Problem Statement

We formally state our learning problem as: Given a set of
expert demonstrations D; = {(1,(2,...,(n} generated by
measured human trajectories, find the policy 7y, which can
closely replicate the demonstration trajectories in D;.

III. PROPOSED METHOD

This section presents the proposed approach for learn-
ing the robot motion planning policy 7y, using the expert
training samples generated by the robot following the hu-
man demonstration trajectory where the human motion is
controlled by the unknown expert policy mg. This can be
cast as an imitation learning problem. The imitation learning
framework used in this work is based on GAIL [16], which is
an extension of generative adversarial networks (GAN) [17].
In contrast to Inverse Reinforcement Learning (IRL) used
in our previous work [12], it forgoes the step of explicitly
learning the reward function, but instead extracts the policy
directly from the expert demonstrations. It trains a generator
network G that learns the policy 7y, parametrized by network

parameters 6, which in turn tries to confound the discrim-
inator network D, parametrized by network parameters w.
The goal of D is to distinguish between the data distribution
of the observations and actions generated by the policy my,
with the data distribution of the expert demonstrations Dy
generated by the unknown expert human motion policy 7g.
The discriminator in GAIL framework is optimized using
the loss function in (1), where AH () represents the causal
entropy of the policy,

Er,log(Dy (s, a))]4+Ex, [log(1—Dy (s, a))]—AH (7). (1)

The policy g, is trained using a pseudo-reward function
7 generated from the discriminator defined as

7(s,a;w + 1) = —log(Dyt1(s,a)) (2)

which approaches infinity, as observations, state and actions
sampled using my become indistinguishable from D;. The
policy 7y in this work is updated using PPO, which is a
policy gradient method. PPO trains two networks that share
parameters, namely an actor and a critic, where the actor is
the generator in GAIL framework. Due to space limitation,
we will not go into the inner workings of PPO and refer
the reader to [18]. The overview of the training procedure

—log(Dy41(s,a))

Discriminator
(Syn-Reward)

Generator
(Policy)

Expert

Observations Expert
and State Actions (a)
o, (v, ¢), ba,x v, 0

Fig. 2: The overview of training the policy network using the
proposed learning framework. The discriminator learns from
the expert dataset and generates synthetic rewards for updat-
ing the policy network using Proximal Policy Optimization
(PPO).

in this proposed framework is shown in Fig. 2. At each
update iteration, the agent interacts with the environment
using the current policy 7y to generate observations, states
and corresponding actions. The generator training mini-batch
T¢ 1s obtained from these interactions. The discriminator
expert mini-batch 7p is randomly sampled from D;. The
discriminator weights w are updated to (w + 1) to optimize
loss function in (1) using Adam optimizer. The updated
discriminator network is used to generated 7(s,a;w + 1).
The generator weights 6 are updated using PPO with 74 and
7(s,a;w—+1). Note here that the environment is only used to
generate the environment observations as a result of actions
taken by the actor network and not the reward value. Also
7(s, a;w) is different from the reward under which the expert
demonstrations were generated, but it can be used to drive
T into regions of the state-action space similar to that of
TE.

IV. EXPERT DATASET GENERATION

In this section, we present the details of the dataset used
as expert dataset, and the method used to generate D; for
training and validation of the learned policy y.

A. Human Trajectory Dataset

In Section III, we presented a GAIL based approach to
train the policy 7y, to enable a robot to navigate in the way
a human would in crowded spaces. Any imitation learning
method requires a training dataset, that consists of samples
obtained when the agent we want to mimic, is performing the
task that we aim to learn to perform. For the problem studied
in this paper, the task is a human navigating in the presence
of other humans, static and dynamic obstacles. Thus a human
trajectory dataset is required to enable the method proposed
in the previous section. The human trajectory dataset used
in this work, is an open human trajectory dataset' collected
in the “ATC” business center in Osaka, Japan [15]. The
provided dataset is a time series that includes a unique
ID used to identify the human during its tracked lifetime,
its spatial location, and its velocity at each measurement
time instance. The measurement frequency of the recorded
data is approximately 25 Hz. The environment in which the
human is tracked is shown in Fig. 3a. A total of 49 range
sensors were installed above human height to cover this area
of approximately 900 m?. The complete dataset consists
of tracking data collected for approximately 3.25 million
humans, over a period of 92 days, with combined track length
of 128,692 kms. We assume that each tracked agent in this
database was planning its motion using the unknown policy
TE.

B. Synthetic 3D Data Generation

The original dataset is in the form of a time series, with
spatial location, velocity and acceleration of each human in
the environment, measured at each time instance. However,
our formulation requires the state space, the action and most
importantly the occupancy map o, at each time step. The
occupancy map o, is created using robot exteroceptive sen-
sors such as LIDAR. This training data could be collected by
manually driving the robot in a human occupied environment
and collecting the state space, the action and observations oy.
In that case, collecting such a large dataset would require a
lot of effort and the collected data would be affected in two
ways. Firstly, trajectories of the humans in the environment
would be affected by the presence of the robot, since humans
would behave differently in the presence of a robot than
they would in the presence of a human [19]. Secondly, the
trajectories thus generated would be from the third person
perspective rather than the first person perspective, since the
human controlling the robot would have a third person view
of the robot’s environment.

Our approach to overcome these challenges is to convert
the 2D environment shown in Fig. 3a to a 3D environment
and use simulated humans that follow the measured human

Thttp://www.irc.atr.jp/crest2010_HRI/ATC _dataset/

Fig. 3: Overall process used for creating the environment for expert demonstration generation and policy evaluation. The
original 2D environment is shown in (a) along-with five minute persistent trajectory tracklets in green color. The region
marked with red rectangle is the area inside which the trajectories were selected for expert training. The 3D V-rep environment
with human and robot models, and LIDAR measurement field are shown in (b). The occupancy map generated from the

LIDAR are shown in (c).

trajectories in the datasets to collect the expert data. The
scaled 2D image file shown in Fig. 3a, was first extended
in the z direction to a fixed height, and saved as an STL
Mesh file. The mesh file was imported into V-Rep?, a
3D robotics simulation software, is shown in Fig. 3b. The
humans in the environment were simulated using built-in
V-Rep human models, which were controlled to follow the
measured trajectories of the humans in the dataset in this 3D
environment. A LIDAR equipped Pioneer 3DX chassis was
added in the simulator to produce oy.

Each tracked human for which training episode ¢ was to
be obtained, was selectively replaced by the robot model. The
robot was then controlled to follow the measured trajectory
of this human. The remaining human models in the environ-
ment were kept the same and were controlled to follow their
real trajectories in the dataset. The observations o;, robot
state (v,9), ¢4, X, and actions (v',w) were then collected and
stored for training.

The observations o; were stored as occupancy maps,
created by converting the point cloud from the LIDAR, to
grid locations plotted on a scaled monochromatic image
shown in Fig. 3c. Here it is worth mentioning that the
complete LIDAR scan was not used, instead the 360 degree
scan, along the horizontal direction was used. Using just the
horizontal scan ensures that our method is not affected by
factors such as orientation of the neighboring human relative
to the robot as long as at least one beam of the LIDAR is
reflected by the neighboring human.

V. PoLICY TRAINING AND EVALUATION METHOD

In this section, we present the procedure used to train both
the policy and the discriminator network, and the procedure
to infer trajectories using the trained policy network.

Zhttp://www.coppeliarobotics.com/

A. Policy Training Algorithm

As discussed in Section III, the proposed problem solution
requires two parametrized models, namely, the actor/critic
(generator) and discriminator. The critic network, referred
to as the value network, is required to learn the policy 7y
using PPO, but neither this network, nor the discriminator
network are used once training is complete. The param-
eters of these models have been designated by 6 and w
respectively. These two models have been implemented using
deep feed forward networks consisting of Convolutional
Neural Network (CNN) layers, followed by fully connected
layers. The CNN layers extract the necessary features for
both the action/critic network and the discriminator network.
Dense fully connected layers are used due to their ability to
represent highly nonlinear functions through the composition
and reuse of the results of many nonlinearities in the layered
structure and are regarded as umiversal approximator [20],
[21].

As shown in Fig. 4, both deep neural networks consist of
three CNN layers, with kernel sizes, 5, 5 and 3 respectively,
stride 2 and Rectifier Linear Units (ReLU) activation func-
tions. These are followed by fully connected layers with 512
hidden units each, which use RelLU activation functions, with
the main difference in the output layers. The output layers
of actor and critic networks have linear activation functions,
while the discriminator uses Sigmoid activation function. The
complete training procedure is listed in Algorithm 1. The
weights 6 and w are randomly initialized. For each training
episode the expert training mini-batch 7p is sampled from
Dy. The current policy 7y is used by the robot to interact
with the environment to obtain generator samples. A subset
of these are selected as 7. The discriminator weights w are
updated to w + 1 according to (1) using Adam Optimizer.
The updated discriminator D, is used to generate syn-

Algorithm 1 Algorithm For Policy Network Training

Input Demonstration trajectories Dy
Output Policy 7y weights 60

1: Randomly initialize policy network my weights 6
2: Randomly initialize discriminator network D,, weights

w

3: form = 1:Mdo

4. forn = 1:Ndo

5 Sample 7p consisting of o, (v,9), ¢g, X, and (v',w)
from demonstration trajectories Dy

6: Sample 7g consisting of o;, (v,0), ¢4, X, (V' W),
7(s,a;w+ 1) and V (s) after robot interaction with
the environment with current version of my

7: Update the discriminator parameters from w,, to
wWp41 according to (1) using Adam Optimizer

8: Update policy parameters 6,, to 6,,.1 using the PPO

rule with synthetic reward —log(D.,11(s,a))
9: end for
10: end for

thetic rewards —log(D,,+1(s, a)) and update policy network
weights 6,, to 6,11 using the PPO. These interleaved Adam
Optimizer and PPO iterations are performed for the N expert
episodes and M epochs.

200x200x4 200x200x4
¥ v

| 32|5x5|2|RelU ‘ ‘ 32|5x5|2|ReLU |
v v
’ 32|5x5|2|ReLU ‘ ‘ 32|5x5|2|ReLU ‘
3
’ 32|3x3|2|ReLlU ‘ ‘ 32|3x3|2|ReLU
— —
State Flatten State/Act Flatten
— —
512|RelU 512|RelU 512 |RelU
2 ¥ 2
512|RelU 512|RelU 512 |RelU
+ v +
V(s) @', w) D

Value Actor Discriminator

Fig. 4: The network architectures used for actor/critic and
discriminator networks, where inputs are occupancy maps,
current states and additionally actions for the discriminator.

B. Evaluation Experiments

The learned policy mg is used to generate evaluation
trajectories by randomly selecting a human trajectory in the
measurement dataset, not included in the training trajectories.
The initial location of the robot is set to be the same as
the initial location of the selected human. The motion of
the robot model is controlled using 7g. The positions of the
remaining humans in the environment are updated according
to their respective measured positions in the dataset at each
time step. A new LIDAR scan is obtained with each time step
and the position of the robot is updated. This is continued for
the same duration as the duration of the human trajectory in
the original dataset. The trajectory in the original dataset is
referred to as the measured trajectory and the one inferred by

the robot using 7y is referred to as the simulated trajectory.

1P

Initial Location__

Fig. 5: Comparison of measured trajectory (green), of the
human and simulated trajectory (red) of the robot generated
using the trained control policy. Initial location and the final
destination are also shown.

A sample trajectory thus generated is shown in Fig. 5, in
which the robot navigates from its initial location to its final
destination. The measured trajectory is marked with green
color while the generated trajectory is shown in red. The
initial and final locations are marked with orange and blue
markers respectively. The location of other humans in the
environment is shown by yellow disks, while the location of
static obstacles is shown by white color. The same coloring
convention is used for the remainder of this work. A total
of 200 such trajectories were generated using my for the
performance evaluation discussed in the next section.

VI. PERFORMANCE EVALUATION

In this section, we present the results of the performance
evaluation of the learned control policy both qualitatively
and quantitatively, and compare these with current state of
the art methods.

A. Quantitative Performance Evaluation

The measured trajectories of 200 randomly selected
humans in the dataset, not part of D;, were quantitatively
compared to their respective simulated trajectories on
three metrics, namely, Average Displacement Error (ADE),
Average Non-Linear Displacement Error (ANLDE) and
Final Displacement Error (FDE). These metrics have
been previously used in similar studies [11], [12]. ADE
and ANLDE are the Mean Square Error (MSE), for the
complete and non-linear sections of the measured and
simulated trajectories respectively. Non-linear sections are
defined as time steps where w is greater than 0.01 rads.
FDE is the error between the simulated and measured final
positions of the robot and the corresponding human.

TABLE I: Performance comparison of proposed algorithm
with existing state of the art methods.

Our IRL . .
Performance Metrics Method| [12] Algorithms in [11]

Avg Avg | Min Avg
Average Displacement Er- 0.09m(O- 0.27m(S-
ror e 0.28m | 0.12m 1 o) LSTM)
Final Displacement Error 0.58m | 0.27m| 0.43m(IGP)| 0.6m(SFM)
Average Non-Linear Dis- 029m | 0.11m 0.06m(O- 0.15m(S-
placement Error : ’ LSTM) LSTM)

The comparison of these metrics with our earlier IRL
based method [12], and other existing state of the art methods
[11] is shown in Table. I. To keep a consistent comparison

" Average Non-Linear Displacement Erfor

I — eee -

mean
029m[I

Final Displacement Error

mean
e R

Average Displacement Error
mean

0.28m[}"Dj‘""'"""{ o

o o5 1
Error (meters)
Fig. 6: Boxplot of the error metrics of the simulated trajecto-
ries and measured of humans. The trajectories are compared
for average displacement error, final displacement error and
average non-linear displacement error.

basis with those existing works, the maximum trajectory
duration is truncated to 4.8 secs. The average length of
trajectories is 6.3 meters. Our proposed method’s average
errors are quantitatively similar to the methods detailed in
[11]. The error metrics are slightly higher compared to our
IRL based approach which uses the same dataset, but the
main difference in this work is the use of direct sensor
measurements, rather than discretized, calculated features as
in our IRL based work. The aim of this comparison is not
to claim the superiority of one method over the other, since
methods in [11] use different training datasets. The goal of
this quantitative comparison is to show similar error metrics
of our proposed approach with existing methods.

The boxplot of the 200 simulated human trajectories is
shown in Fig. 6. The mean ADE is 0.29 m, the mean FDE
is 0.58 m, while the mean ANLDE is 0.28 m. The box plot
shows that the ADE of all the trajectories evaluated is within
0.8 meters of the measured pedestrian trajectory. These
results also show that the robot controlled by the learned
my, reaches within 1 meters of the measured final position
of the pedestrian 86% of the times, and within 1.5 meters
100% of the times. The ANLDE is less than 0.7 meters for
100 % of the trajectories. This is significant, since according
to [11] (and also intuitively, since an agent only changes
its heading from a straight line path to its destination to
avoid collisions with other static and dynamic obstacles), the
non-linear sections of trajectories mark the instances where
the agent changes its heading, due to interaction with other
humans and obstacles.

B. Individual Trajectory Analysis

In this section, we analyze certain qualitative behaviors
exhibited by humans in measured trajectories, which are
captured in the learned policy.

1) Collision Avoidance - Static Obstacles: A demonstra-
tion of the collision avoidance behavior with static obstacles,
learned by the policy can be observed in Fig. 7. It can be
seen that the robot model has learned to move around the
pillar of the business center to avoid colliding with it in the
same way a human would.

2) Collision Avoidance - Humans: The trained model
exhibits collision avoidance behavior with other humans,
as shown in Fig. 8. The simulated robot model’s trajectory
deviates slightly from the measured trajectory of the human.

Final
Destination

Initial
Location

Fig. 7: The simulated robot model moves around a static
obstacle to avoid colliding with it.

Despite this deviation, the simulated model starts to move
upwards at 8.6 secs, to avoid collision with the oncoming
human. At 9.28 secs, once the oncoming human has passed
the robot, the robot starts to move downwards again towards
it original position. This behavior shows that the simulated
model took successful evasive action and was able to avoid
collision with the oncoming human.

Fig. 8: Collision avoidance behavior exhibited by the trained
model in response to an oncoming human. The simulated
trajectory deviates from the measured trajectory, but the
simulated model still moves upwards to avoid collision with
the oncoming human.

In general, we analyzed collisions with both static and
dynamic obstacles for all 200 trajectories and found only
one instance of collision with a static obstacle. During the
analysis, we also observed that at that instance, there was sig-
nificant change in the measured trajectory of the pedestrian,
likely due to noise in sensor measurement. Otherwise, the
policy 7y can generate collision free trajectories, even when
quantitatively ADE, FDE and ANLDE values are high.

Fig. 9: The simulated robot model forms a leader follower
formation with a neighboring human while moving towards
its destination. The locations of simulated robot and neigh-
boring human are marked at 4 sec intervals by red and yellow
disks respectively.

3) Leader Follower Behavior: The ability of the learned
policy to perform formation control in the form of leader
follower behavior can be observed in Fig. 9 where the robot
model controlled by 7y follows a human and adjusts its
motion to achieve smooth navigation as expected from a
human. The measured trajectory of the human is shown in
green color, while the simulated trajectory generated by the
learned policy is shown in red color. The locations of the
robot and the neighboring human that it forms the leader

follower formation with, are shown by red and yellow discs
respectively, at 4 sec intervals. It can be seen that the learned
policy is able to maintain a leader follower formation with
the human ahead of it which is typically formed by humans
even without knowing each while moving in close proximity
[22].

C. Discussion

In this section, we validated the presented algorithm statis-
tically, for quantitative metrics and qualitatively for different
interaction scenarios. The primary goal of this paper is to
develop and validate a GAIL-based algorithm capable of
learning human navigation behaviors. The occupancy map
used in the training phase can be generated using any
physical LIDAR sensor, as long as the maximum range
of the LIDAR is truncated to the maximum range used
during training, and the scale of the occupancy map is kept
the same as in the training phase. Thus the learned policy
7 in simulation can be used and validated in real world
experiments, which is part of our future work.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an algorithm based on GAIL
to learn human navigation behaviors in a crowded space.
We used an existing open human trajectory dataset col-
lected inside a mall environment as expert samples. We
developed a novel method to convert this dataset into a 3D
environment and collected robot exteroceptive sensor data.
An imitation learning based method is proposed to learn
human navigation behaviors in the presence of other humans
and static obstacles. The proposed method was evaluated
for quantitative similarity of trajectories generated with the
learned policy and the corresponding measured trajectories
of the humans. The performance of the proposed algorithm in
this work was shown to be quantitatively similar to existing
works. We also evaluated the ability of the learned policy to
capture behaviors of the humans such as collision avoidance
with static obstacles and other humans and leader follower
behaviors.

In the future, we plan to extend this work by using
multiple training datasets to train the navigation policy and
evaluate these trained policies without retraining in com-
pletely unforeseen datasets. In addition, we plan to conduct
experiments with real robots and evaluate the performance of
the trained policy in real world experiments. We also plan
to make the 3D simulation environment and the collected
datasets open for community use to advance research in robot
social navigation.

REFERENCES

[1] 1. Goodfellow, Y. Bengio, and A. Courville in Deep Learning, ch. 1,
pp. 1-2, Cambridge, MA: The MIT Press, 2016.

[2] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert,
D. Fox, D. Hahnel, C. Rosenberg, N. Roy, J. Schulte, et al., “MIN-
ERVA: A second-generation museum tour-guide robot,” in Proceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA), vol. 3, 1999.

[3]

[4]

[5]

[6]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

H.-M. Gross, H. Boehme, C. Schroeter, S. Miiller, A. Konig, E. Ein-
horn, C. Martin, M. Merten, and A. Bley, “TOOMAS: Interactive
shopping guide robots in everyday use-final implementation and
experiences from long-term field trials,” in Proceedings of the IEEE
International Conference on Intelligent Robots and Systems (IROS),
pp. 2005-2012, 2009.

H. Huttenrauch and K. S. Eklundh, “Fetch-and-carry with CERO:
Observations from a long-term user study with a service robot,” in
Proceedings of the IEEE International Workshop on Robot and Human
Interactive Communication (RO-MAN), pp. 158-163, 2002.

H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially
compliant mobile robot navigation via inverse reinforcement learning,”
The International Journal of Robotics Research (IJRR), vol. 35, no. 11,
pp. 1289-1307, 2016.

P. Trautman and A. Krause, “Unfreezing the robot: Navigation in
dense, interacting crowds,” in Proceedings of the IEEE International
Conference on Intelligent Robots and Systems (IROS), pp. 797-803,
Oct 2010.

T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-aware
robot navigation: A survey,” Robotics and Autonomous Systems (RAS),
vol. 61, no. 12, pp. 1726-1743, 2013.

Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware
motion planning with deep reinforcement learning,” in Proceedings of
the IEEE International Conference on Intelligent Robots and Systems
(IROS), pp. 1343-1350, Sep. 2017.

P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “To-
wards optimally decentralized multi-robot collision avoidance via deep
reinforcement learning,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pp. 6252-6259, May
2018.

M. Everett, Y. F. Chen, and J. P. How, “Motion planning among
dynamic, decision-making agents with deep reinforcement learning,”
in Proceedings of the IEEE International Conference on Intelligent
Robots and Systems (IROS), pp. 3052-3059, Oct 2018.

A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social LSTM: Human trajectory prediction in crowded
spaces,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 961-971, June 2016.

M. Fahad, Z. Chen, and Y. Guo, “Learning how pedestrians navigate:
A deep inverse reinforcement learning approach,” in Proceedings of
the IEEE International Conference on Intelligent Robots and Systems
(IROS), pp. 819-826, Oct 2018.

L. Tai, J. Zhang, M. Liu, and W. Burgard, “Socially compliant navi-
gation through raw depth inputs with generative adversarial imitation
learning,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pp. 1111-1117, 2018.

D. Helbing and P. Molnar, “Social force model for pedestrian dynam-
ics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.

D. Brscic, T. Kanda, T. Ikeda, and T. Miyashita, “Person tracking in
large public spaces using 3-D range sensors,” in IEEE Transactions
on Human-Machine Systems, vol. 43, pp. 522-534, 2013.

J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Advances In Neural Information Processing Systems, pp. 4565-4573,
2016.

1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems, pp. 2672-2680,
2014.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

Z. Chen, C. Jiang, and Y. Guo, “Pedestrian-robot interaction exper-
iments in an exit corridor,” in IEEE International Conference on
Ubiquitous Robots (UR), pp. 29-34, June 2018.

M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I. Posner,
“Large-scale cost function learning for path planning using deep
inverse reinforcement learning,” The International Journal of Robotics
Research (IJRR), vol. 36, no. 10, pp. 1073-1087, 2017.

Y. Bengio, Y. LeCun, et al., “Scaling learning algorithms towards Al,”
Large-scale kernel machines, vol. 34, no. 5, pp. 1-41, 2007.

M. Moussaid, N. Perozo, S. Garnier, D. Helbing, and G. Theraulaz,
“The walking behaviour of pedestrian social groups and its impact on
crowd dynamics,” PLOS ONE, vol. 5, pp. 1-7, April 2010.

