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ABSTRACT
Photometric galaxy surveys constitute a powerful cosmological probe but rely on the accurate characterization of their redshift
distributions using only broad-band imaging, and can be very sensitive to incomplete or biased priors used for redshift calibration.
A hierarchical Bayesian model has recently been developed to estimate those from the robust combination of prior information,
photometry of single galaxies, and the information contained in the galaxy clustering against a well-characterized tracer
population. In this work, we extend the method so that it can be applied to real data, developing some necessary new extensions
to it, especially in the treatment of galaxy clustering information, and we test it on realistic simulations. After marginalizing
over the mapping between the clustering estimator and the actual density distribution of the sample galaxies, and using prior
information from a small patch of the survey, we find the incorporation of clustering information with photo-z’s tightens the
redshift posteriors and overcomes biases in the prior that mimic those happening in spectroscopic samples. The method presented
here uses all the information at hand to reduce prior biases and incompleteness. Even in cases where we artificially bias the
spectroscopic sample to induce a shift in mean redshift of !z̄ ≈ 0.05, the final biases in the posterior are !z̄ ! 0.003. This
robustness to flaws in the redshift prior or training samples would constitute a milestone for the control of redshift systematic
uncertainties in future weak lensing analyses.
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1 IN T RO D U C T I O N

Galaxy surveys provide key information about the large-scale struc-
ture of the Universe, constituting one of the most powerful probes
for testing cosmological models. There exist two main categories of
surveys. On one hand, spectroscopic surveys such as 2dF (Colless
et al. 2001), the VIMOS-VLT Deep Survey (Le Fèvre et al. 2005),
WiggleZ (Drinkwater et al. 2010), Baryon Oscillation Spectroscopic
Survey (Dawson et al. 2013), and Dark Energy Spectroscopic
Instrument (DESI Collaboration 2016) provide 3D information about
the galaxies they measure, but they are expensive in time and
resources. On the other hand, imaging or photometric surveys like the
Sloan Digital Sky Survey (York et al. 2000), PanSTARRS (Kaiser,
Tonry & Luppino 2000), the Kilo-Degree Survey (KiDS; de Jong
et al. 2013), the Dark Energy Survey (DES; Flaugher et al. 2015),
the Hyper-Suprime-Cam survey (HSC; Miyazaki et al. 2012), or the
Large Synoptic Survey Telescope (LSST; LSST Dark Energy Science
Collaboration 2012; Ivezić et al. 2019) use less time per galaxy, and
enable weak gravitational lensing measurements via galaxy shapes
– but provide only a crude view of the line-of-sight dimension of
the Universe, since galaxy redshifts are estimated from only their
observed broad-band fluxes.
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In order to perform unbiased cosmological analyses of imaging
surveys it is critical to characterize the redshift distributions n(z) =
dN/dz dA of the corresponding galaxy samples, and unaccounted er-
rors in such characterization will directly lead to biases in the cosmo-
logical parameter estimation (Huterer et al. 2006; Cunha et al. 2012;
Hildebrandt et al. 2012; Benjamin et al. 2013; Huterer, Cunha &
Fang 2013; Bonnett et al. 2016; Hildebrandt et al. 2017; Joudaki
et al. 2017a; Hoyle et al. 2018). Recently, there has been a number of
comparisons between cosmological parameters obtained from imag-
ing suveys (Hildebrandt et al. 2018; Troxel et al. 2018a; Hikage et al.
2019) and the cosmic microwave background (Planck Collaboration
VI 2018) which have claimed discrepancies of up to 3.2σ in their
results (Asgari et al. 2019). Even though such discrepancies could
be attributed to a failure of the $CDM model (Joudaki et al. 2017b),
such a claim would need significant evidence and thorough testing.
Some studies suggest it may instead be pointing to systematic biases
in the weak lensing analysis methodologies (Troxel et al. 2018b;
Asgari et al. 2019; Joudaki et al. 2019; Wright et al. 2020). Moreover,
such studies indicate that a major difference in analysis methodolo-
gies lies in the redshift calibration, and that this can produce such
discrepancy. Redshift calibration clearly needs substantial improve-
ment for the current- and next-generation photometric surveys.

Several techniques for estimating the redshift distributions of
imaging surveys have been developed in the last decades, which
can be broadly separated in three categories.
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(i) Direct spectroscopic measurement of redshifts is an obvious
tactic. Since spectroscopic redshifts are expensive, this method can
presently be applied to only a subset of the photometric galaxy
population. The resulting shot noise implies that O(105) unbiased
spectra must be obtained (Ma & Bernstein 2008) to reach the needed
precision in n(z) for current (Stage III), potentially lowered to O(104)
in future (Stage IV) surveys by careful targeting to span the galaxy
population (Masters et al. 2015). Such ‘direct’ calibration is also
subject to large-scale-structure (LSS) variance if (as is most practical)
it is conducted over a small sky area. Even if numerical requirements
are met, the direct method is subject to redshift biases because of
differential rates of success in obtaining a reliable redshift across the
redshift and magnitude range of the target population (Speagle et al.
2019). In this paper we will refer to information obtained through
direct spectroscopy (or many-band photometry) as the ‘spectroscopic
prior.’ It is essential that any n(z) estimation be robust to the noise
and biases that exist in real-life spectroscopic surveys.

(ii) Photometric redshifts compare a set of observed fluxes (or
colours or potentially other measurable features) Fi of source i to
those expected for galaxies at various redshifts to infer the redshift
of the individual target galaxy. The map z(F) is based on some mix of
theoretical models of galaxy spectra with empirical knowledge from
direct spectroscopy. The inference p(z|F) can be made using explicit
template-fitting methods (e.g. Hyperz, Bolzonella, Miralles & Pell
2000; BPZ, Benitez 2000; Coe et al. 2006; LePhare, Arnouts
et al. 2002; Ilbert et al. 2006; EAZY, Brammer, van Dokkum &
Coppi 2008), or machine-learning ‘training’ methods (e.g. ANNz,
Collister & Lahav 2004; ArborZ, Gerdes et al. 2010; TPZ, Carrasco
Kind & Brunner 2013; SkyNet, Bonnett 2015). The most basic,
completely empirical, form of photometric redshift determination
is to assign to each target the redshift of its nearest neighbour (by
some metric in colour/mag space) among a subset with spectroscopic
redshifts. This reweighting of the spectroscopy by imaging data was
proposed by Lima et al. (2008), and multiple current implementations
of it attain various levels of rigor in the treatment of observational
errors. Comparisons of different photometric methods have been
performed in simulated and real data (Hildebrandt et al. 2010; Dahlen
et al. 2013; Sánchez et al. 2014). The limitations of photometric meth-
ods are that the map z(F) can be ambiguous even with noiseless data,
therefore requiring that the correct p(z|F) incorporate accurate priors
on the relative abundance n(z, F). And of course the photometric
method inherits any biases or deficiencies of its theoretical/empirical
training basis.

(iii) Clustering redshifts use data coming from large-area surveys
to constrain n(z), i.e. using the observed sky positions θ i of the
sources in comparison to the positions of a tracer population with
secure redshifts. The simple principle is that the targets’ θ i will
show no correlation with the tracers unless they are physically
colocated, i.e. at a common redshift. The tracers need not be a
representative sampling of the targets. The weaknesses of this method
are that it will, of course, only provide information at redshifts where
abundant tracers are known; that the information per target is weak;
that the inference of n(z) is degenerate with a redshift dependence
of the ‘bias’, i.e. the relation between tracer space density and
target space density; and that lensing magnification can introduce
additional signal unrelated to the physical overlap between targets
and tracers. As a consequence, the accuracy of the clustering method
is enormously improved if photometric information can be used to
select subpopulations known to have narrow redshift range. The
application of this method is typically based on 2-point statistics
between the source population and tracer population. (Newman 2008;
Ménard et al. 2013; Schmidt et al. 2013).

Some recent analyses have attempted the combination of pho-
tometric and clustering constraints on the same survey data in the
presence of prior spectroscopic information (Davis et al. 2017; DES
Collaboration 2017; Hildebrandt et al. 2017; Gatti et al. 2018; Hoyle
et al. 2018), but the comparisons have been performed just by means
of basic visual cross-checks on the two independently derived n(z)’s,
or using some single summary statistic of n(z), such as its mean.

Sánchez & Bernstein (2019), hereafter SB19, present a framework
to combine these three pieces of information (prior, photometry, and
clustering) in a principled way to assign a posterior probability to n(z)
using a hierarchical Bayesian model (see also Leistedt, Mortlock &
Peiris 2016). The framework provides posterior samples of the
redshift distribution of a population constrained by all sources of
information, and SB19 demonstrated its performance on simple,
idealized simulations. In this work, we extend the method so that
it can be applied to real data from galaxy surveys, with the main
addition being a practical, realistic treatment of the galaxy clustering
information. Using the public MICE2 N-body simulations, we define
a galaxy subsample as tracers with known redshifts to develop a
clustering probability based on a kernel density estimator (hereafter
KDE). We incorporate a redshift-dependent biasing function that
maps the local tracer KDE output to the actual density distribution
of the target galaxies. The method includes marginalization over
the biasing functions’ parameters, since in data there will be no
sufficiently accurate prior on the biasing relations.

The methods developed in this work provide the necessary tools for
the application of the framework to real data. The simulation that is
used, even though it is not intended to completely mimic the real data,
has all of the parameters relevant to the n(z) accuracy in a realistic
range, i.e. galaxy and tracer density, clustering amplitudes and power
spectra, noise levels, and sizes of spectroscopic, wide, and deep
samples used in the application of the scheme to the DES. Therefore,
the methods and the results presented in this paper demonstrate the
capabilities of the framework in a realistic setting.

This paper is organized as follows. In Section 2 we present the
details of the methodology and the phenotype approach. Section 3
describes the simulated galaxy catalogue used to test the method-
ology. We follow with a description of the density estimation used
to incorporate the clustering information in Section 4. We describe
the Gibbs sampling technique used to sample the posterior on all the
model parameters in Section 5. Section 6 shows the main results in
this work, with priors coming from precise redshifts over a small
patch of sky. We examine three cases in which these spectroscopic
priors are biased, inspired by shortcomings in real data. Section 7
presents a discussion of the methodology and its application to real
data, and we summarize and conclude in Section 8.

2 FR A M EWO R K

We work under the framework presented in SB19, in which galaxy
‘types’ are defined by observed properties rather than rest-frame
properties, and we call them phenotypes. The individual galaxies
i are seen as being drawn from a pool of possible phenotypes ti,
redshifts zi, and angular positions θ i, with intrinsic mean density n(t,
z) on the sky. The ti and zi and n(t, z) are noiseless latent variables,
with the observations yielding a catalogue with the θ i and a noisy
set of observable features which will be denoted as Fi – namely
apparent magnitudes/colours. The clustering information is included
by considering that the sky density of galaxies of type t at redshift
z is modulated by some factor 1 + δt

z(θ ). In this paper, we will
simplify the galaxy density field to be type-independent, δt

z → δz.

The latent densities δt
z(θ ) will be constrained using a ‘tracer’ galaxy
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Table 1. Summary of the notation used throughout this paper.

F Galaxy set of observed features
t Galaxy phenotype (or simply type)
z Galaxy redshift
θ Galaxy angular position on the sky
s Indicator of successful detection/selection
Lit Probability of measuring galaxy i with Fi given t
F, t, z, θ Set of properties for all galaxies in the sample
N Number of galaxies in the sample
Nt Number of types
Nz Number of redshifts
A Effective area of the survey for source detection
n Mean galaxy density per unit solid angle
n(z) Mean galaxy density per unit solid angle per z

δz(θ ) Target density fluctuation at a given z and θ

δ̃z(θ ) Tracer density fluctuation at a given z and θ

δ̂z(θ ) Tracer density estimator at a given z and θ

πδ Density fluctuation field hyperparameters
δ Set of δz(θ ) for all redshifts and positions
B Mapping relation between estimated

density field and true clustering probability
bt

z Parameters of the B function for type t at redshift z

b Set of bt
z for all types and redshifts

fzt Joint type and redshift probability p(z, t)
f Set of fzt for all types and redshifts
Nzt Number of sources assigned to redshift z and type t
N Set of Nzt for all redshifts and types
Mzt Number of sources in the prior at redshift z and type t
M Set of Mzt for all redshifts and types
!z Difference between the means of

estimated and true n(z)’s
DKL Kullback–Leibler divergence between

estimated and true n(z)’s

population known to be at redshift z. Our notation will be that the
vector quantities F, t, z, and θ denote the full set of properties of all
selected galaxies, i.e. F = {F1, F2, . . . , FN } (a summary of all the
notation can be found in Table 1).

2.1 Generative model

As in SB19, the fundamental assumption of the method is that
galaxies are drawn from a Cox process (Cox 1955) or doubly
stochastic Poisson process, i.e. we assume that each galaxy is
Poisson sampled from a latent, stochastic density field. The problem
simplifies when considering the redshift z as an integer indexing a
set of finite-width redshift bins, where each bin has an independent
density fluctuation field δz(θ ), i.e. 〈δzi

(θ )δzj
(θ )〉 = 0 for zi &= zj. We

will also assume that we have a finite set of phenotypes indexed by
integer t. Each phenotype has a mean sky density of nt = nft, where
we place n as the total density of all detectable galaxy phenotypes,
and ft = p(t) being the fraction of the population in each type, with∑

tft = 1 as a constraint. Then the redshift distribution of type t will
be p(z|t) = f t

z , and we will also denote

ftz ≡ p(z, t) = p(z|t)p(t) = f t
z ft . (1)

We are considering the sky to be populated with galaxies with a
finite variety of redshifts and phenotypes, where phenotypes specify
a galaxy’s noiseless, observer-frame appearance. We assume there
is some selection function s with the probability of a galaxy being
selected, possibly depending on sky position, specified as a selection
function p(s|t, θ ). We will always assume that we know nothing about
the non-selected galaxies, not even that they exist; the observed data

are the positions θ and features F of the selected galaxies. All galaxies
of phenotype t observed under the same conditions are assumed to
have the same selection function p(s|t, θ ) and the same probability
p(F, s|t, θ ) of being selected and measured to have image features
F. Finally, we will allow for some local biasing function, Bt

z, with
parameters bt

z, depending on both redshift and phenotype, to relate
the galaxies’ spatial distribution to the underlying tracer density
fluctuation δ̃z. Now the selected galaxies can be considered as being
a Poisson sampling of the following density field:

ρ(z, θ, t |n, f , b, δ̃) = nftzBt
z

(
δ̃z(θ ), bt

z

)
p(s|t, θ ). (2)

The B term describes the spatial variation of the expected detection
rate due to density fluctuations. The last term describes density
fluctuations due to variable observing conditions. In this work,
we will consider the bias function to be independent of type, so
Bt

z → Bz, and the biasing parameters likewise are independent of t.
With knowledge of the survey noise properties and the noiseless

appearance of phenotype t, we can determine the likelihood p(F, s|t,
θ , z) of a galaxy of phenotype t at location θ , z being selected and
measured with features F. Note that this likelihood will not depend
on z since the phenotype’s observables are independent of z, by
construction. Therefore, for each observed galaxy i and phenotype t,
we can assign a feature/selection likelihood

Lit ≡ p(Fi, s|ti , θi). (3)

This function will depend on the quality of the observations at sky
position θ i and the measurement and selection algorithms. We will
assume that this likelihood is known a priori, e.g. by the result of
analysing the injection of artificial copies of the phenotype into the
real survey images (Suchyta et al. 2016).

Then the probability of selecting a set of galaxies i ∈ {1. . . N} at
positions θ with features F, types t, and redshifts z takes the standard
Poisson form:

p
(
F, θ , t, z|n, f , b, δ̃

)
= exp

[
−n

∑

t

ftA
t (f t , bt , δ̃)

]

×
∏

i

Lit nfti zi
Bti

zi

(
δ̃zi

(θi), bzi

)
. (4)

The exponentiated quantity is, as required for Poisson distributions,
the expected number of detections 〈N〉 for the entire sample. This
can be determined from knowledge of the survey properties:

At (f , b, δ̃) ≡
∑

z

∫
d2θ p(s|t, θ )f t

z Bt
z

(
δ̃z(θ ), bz

)

=
∫

d2θ p(s|t, θ )
∑

z

f t
z Bt

z

(
δ̃z(θ ), bz

)

≈
∫

d2θ p(s|t, θ ), (5)

where we have assumed that the clustering information integrated
over the mask of the survey approximately keeps its average value
of unity,

∫
d2θ p(s|t, θ )Bt

z

(
δ̃z(θ ), bz

)
≈ 1.

In order to provide the full generative model for the data, we must
also specify the process p(δ̃|πδ) generating the stochastic density
fluctuation fields given some hyperparameters πδ . For instance, that
could be a lognormal distribution where πδ specifies the power
spectrum. We also require priors p(b) and p(n), plus any prior
information on p(f ) aside from the constraint that

∑
tzftz = 1.
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2.2 Redshift inference

The principal quantity of interest is the underlying redshift
distribution

n(z) = n
∑

t

ftz. (6)

In most applications of redshift inference, we are only concerned with
the shape, not the normalization, of n(z), and therefore we will focus
here on the fractions f , rather than n. In addition, in many applications
it is also useful to know the individual redshifts of galaxies z, and
in order to enable a Gibbs sampling scheme, which is the simplest
way of sampling our posterior (see Section 5), we will need to keep
b and t as conditional variables. We can use Bayes’ theorem to write
down the posterior joint probability of these variables of interest:

p(f , z, t, b|F, θ , πδ) ∝
∫

dn dδ̃

p
(
F, θ , t, z|n, f , b, δ̃

)

p(δ̃|πδ) p(n) p(f ) p(b). (7)

We have already derived the first term under the integral in equa-
tion (4). In this paper, as in SB19, we will work with the approxi-
mation that we can replace the stochastic tracer density fluctuation
δ̃z(θ ) with some deterministic estimator δ̂z(θ ) of the realization of
the density fields in the generative probability of equation (4). Under
that approximation we can ignore the hyperparameters generating the
density field πδ but we lose the ability to use the information available
from the clustering of the target galaxies. Performing the marginal-
ization over n assuming the effective area of the survey is independent
of phenotype (see SB19 for more details), the posterior distribution
for redshift and phenotype information in equation (7) becomes

p(f , z, t, b|F, θ ) ∝ p(f )p(b)
∏

i

Liti fti zi
Bzi

(
δ̂izi

, bzi

)
, (8)

δ̂iz ≡ δ̂z(θi). (9)

The roles of the main three sources of information in redshift
estimation are clearly present and differentiated in the posterior of
equation (8). First, there is a term for the prior probability that any
galaxy is of phenotype t and redshift z, ftz. Secondly, the photometric
information for a galaxy is in Lit , which is the likelihood of galaxy i
resembling phenotype t and passing selection. Thirdly, clustering
information enters as the last term, describing the modification
of the probability by our estimator for the density fluctuation
field.

In more detail: the prior term can be estimated using a subset
of galaxies with well-characterized phenotypes and redshifts, which
we will call the spectroscopic sample. It requires deep (low-noise)
photometric data, plus either spectroscopic or high-quality photo-
metric redshifts, of a fair subsample of the sources. The clustering
information will require another galaxy subpopulation, the tracers,
having well-characterized redshift information and spanning a large
area and redshift range of the survey (but no need to span them
completely). This can be a population of galaxies with accurate
photometric redshift estimates, like e.g. luminous red galaxies
(LRGs). We will refer to all galaxies in the sample of interest as target
galaxies, for which we will only have the measurements of Fand θ .

2.3 Realistic set up: SOM implementation

To discretize the phenotypes for a general imaging survey, we pro-
pose to use a combination of wide and deep survey observations and
self-organizing maps (SOMs; Masters et al. 2015). Deep observations

are often available for surveys like the DES by summing observations
of fields being monitored for high-z SNe. These provide essentially
noiseless photometric measurements and observations in additional
filter bands for galaxies in specific fields (henceforth deep fields, or
simply DFs). The DFs provide an empirical sampling of the distribu-
tion of galaxies in feature (F) space. In turn, SOMs provide a data-
driven way of mapping and discretizing that feature space, so that
each cell c of the so-called deep SOM cell constitutes a phenotype t.

Another term that we will need in the data application is the
noise or measurement likelihood, Lit ≡ p(Fi, s|ti , θi). We follow
the approach of Buchs et al. (2019) and construct the measurement
likelihood by training another SOM on wide-field data of the galaxy
survey of interest; we will refer to this one as the wide SOM and
its cells, ĉ, span the space of features F observed in the wide-field
survey (i.e. every detected galaxy will be assigned to one wide cell,
ĉ). Crucially, it is possible to inject artificial copies of galaxies with
deep photometry, and hence well specified phenotypes, into the real
images of the survey, and measure their (noisy) wide-field properties
(Suchyta et al. 2016). Then, for a set of injected galaxies, we will
know both the cells in the deep and wide SOMs (ĉ and c), so that
we can construct the mapping between deep and wide SOMs which
corresponds to our measurement likelihood:

Lit ≡ p(Fi, s|ti , θi) ≡ p(ĉi , s|ci, θi). (10)

One other major part in the application of the method to data is
the addition of clustering information, that is, the construction of
the density field estimator using a tracer population and the creation
of biasing functions Bt

z relating that estimate to the true underlying
density fluctuation field of the selected galaxies. This will be treated
in Section 4.

3 SI M U L AT I O N S

SB19 demonstrated the performance of the hierarchical Bayesian
model (HBM) for redshift estimation described in the previous sec-
tion in a simplified simulation with idealized galaxy properties and
noise distributions, and perfect knowledge of the density fluctuation
field. Now, instead, we test our methodology on the public MICE2
simulation,1 a mock galaxy catalogue created from a light-cone of
a dark-matter-only N-body simulation that contains ∼200 million
galaxies over one sky octant (∼5000 deg2) and up to z = 1.4. Several
important differences with respect to the SB19 simulation make this
analysis more realistic and allow the method described herein to be
applicable to analysis of real data.

First, the MICE2 simulation has realistic clustering properties
given by a $CDM cosmology with parameters )m = 0.25, )b =
0.044, h = 0.7, ns = 0.95, )$ = 0.75, σ 8 = 0.8, and w = −1.
In addition, we do not assume true knowledge of the density field
but rather infer the clustering information from a set of galaxy
tracers, described below. Secondly, galaxies have realistic spectral
energy distributions (SEDs) assigned from the COSMOS catalogue
(Ilbert et al. 2009) that reproduce the observed colour–magnitude
distribution as well as clustering observations as a function of
colours and luminosity (see Crocce et al. 2015 for more details).
Once the galaxy SED is known, magnitudes are computed based on
the luminosity and redshift of the galaxy. The galaxy properties,
clustering, and lensing in the simulation have been thoroughly
validated in Carretero et al. (2015), Fosalba et al. (2015a,b), Crocce
et al. (2015).

1The data can be downloaded from CosmoHub (Carretero et al. 2017), https:
//cosmohub.pic.es/.
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3.1 Target and tracer sample selection

We select a galaxy sample within a square footprint defined by the
cuts 30 ≤ RA[deg] ≤ 60 and 0 ≤ Dec[deg] ≤ 35, representing an
area of around 1000 deg2, with the redshift range 0.2 ≤ z ≤ 1.2,
and we place a magnitude cut at iDES < 24, where iDES represents
the i photometric filter in DES (Flaugher et al. 2015). We use both
positions and fluxes without magnification, and we leave a thorough
study of magnification effects for future work. To reduce runtimes,
we cull the galaxy catalogue by a factor ∼2 by selecting only
those galaxies with a subset of SEDs. This downsampling retains a
representative sampling of populations (Elliptical, Spiral, Starburst)
and dust attenuation laws and values present in the simulation.2

The tracer sample is a subsample of the full population, randomly
drawn to maintain a constant comoving density similar to that of the
REDMAGIC DES Y1 galaxy sample in its first three lens bins (Elvin-
Poole et al. 2018). This choice is arbitrary, and perhaps unrealistic
at the higher end of our redshift range, but it is not a necessary
feature of the method. The target sample is defined as the galaxies
that are not selected as tracers. The upper panel of Fig. 1 shows the
redshift distributions of both samples. Tracers have a density between
0.015 (at z = 0.2) and 0.5 (at z = 1.2) times the target density. The
redshift binning is chosen to have 20 bins equally spaced in comoving
distance χ between the redshift limits of the catalogue, which makes
the tracer sample have a constant density per bin per unit comoving
surface area dA, dN ∝ dAdχ ∝ dA.

It is worth highlighting here some differences between this
simulation and a corresponding real data sample, in particular DES.
First, the simulation sample used in this work contains about 1/5 of
the total area in DES. This is relevant as we expect the clustering
information to grow more powerful as area grows, so the simulation
is a conservative estimate of the value of clustering, in that sense.
Secondly, the galaxy tracers used in adding clustering information in
this work are unbiased with respect to the total sample. A real data
application is likely to use luminous red galaxies (LRGs) or other
highly biased population as tracers. We have not, however, assumed
in this simulation that tracers are unbiased, but we have instead
marginalized over a biasing relation. The lower tracer bias (relative
to mass) in our simulation may be considered a conservative scenario,
in the sense that it will increase the impact of shot noise in the density
estimates compared to an LRG tracer sample. However, biased tracer
populations may also introduce more complicated evolution effects
in the biasing relation which may result in an increase in the number
of free parameters necessary to describe it, affecting how much
clustering information we can extract. The usage of biased tracers
for galaxy clustering is left for future work. Finally, we have used a
limited redshift range in this work, 0.2 < z < 1.2, and we have used
tracers spanning this entire redshift range. In the application to real
data, a more complete redshift range will have to be considered, and
tracers may be available just for a limited redshift range, but that can
be accommodated naturally in the method and was shown to work
as expected in SB19.

3.2 The phenotype approach: Deep and wide SOMs

The phenotype method described in Section 2 is then applied to
the simulation. As stated in Section 2.2, the approach can benefit
from a deep sample with deeper photometry and extra observed
wavelength bands than the target (or ‘wide’) sample, which helps

2The selection is defined as sed cos ≡ c ∈ 0, 1, 2, 5, 6, 7, 10, 11, 12,
15, 16, 17, 21, 22, 23, 24, 25, 29, 30, 35, 36, 37, 38, 39, 41, 42, 43.

Figure 1. Upper panel: Redshift distributions of the target and tracer samples.
The target sample contains the galaxies for which we want to find a redshift
distribution. The tracer sample contains galaxies with known redshifts that
are used to add the clustering information into the redshift estimation. Lower
panel: Redshift distribution of tomographic bins defined as in Section 3.3.

define galaxy phenotypes that individually span narrower redshift
ranges. We choose among the available bands in MICE2 the DES
g, r, i, z bands for both samples, and the additional CFHT u, DES
Y, and VHS J, H, K bands for the deep sample, mimicking the DES
wide and deep survey fields. For the deep sample, we use the true
fluxes from the simulation for simplicity (in reality these will still be
measured with some noise, making the relation between phenotype
and colour slightly more broad), while for the wide sample we add
Gaussian noise to the true fluxes by fitting a linear relation between
magnitude and logarithmic magnitude error for each band using
observed noise from the DES Year 1 public data.3 We produce deep
and wide photometries for all galaxies of the target sample. We finally
select only galaxies that have a signal to noise above 5 in each wide
band, g, r, i, z.4 We leave for future work an accurate abundance

3https://des.ncsa.illinois.edu/releases/y1a1/key-catalogs/key-mof
4Before adding the noise, we shift each galaxy’s magnitude by −1.2, to
increase the number density of our target sample passing S/N cuts to
4.7 galaxies arcmin−2, as observed in the DES Y1 Metacalibration source
sample (Troxel et al. 2018a). This counteracts the MICE catalogue culling
described in Section 3.1.
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Figure 2. Mean redshift and redshift dispersion of cells in deep and wide SOMs described in Section 3.2. The left and central columns show the SOM maps
populated with these quantities, while the plots in the right-hand column show the comparison of these distributions. These show how the deep SOM better
samples the redshift space of the simulation test, with a lower redshift scatter per cell.

matching of the colour and magnitude distributions of the simulation
to the observed ones from real galaxy surveys.

Following Section 2.2, we create two SOMs on square grids with
periodic boundary conditions, each similar to the SOM in Masters
et al. (2015). The deep SOM is trained with eight colours, defined as
mag − i, where mag = {u, g, r, z, Y, J, H, K}, in a 32 × 32 grid. The
wide SOM is trained with one magnitude, i, and three colours, g − i, r
− i , and z − i, in a 26 × 26 grid. Each colour is renormalized to span
the range [0, 1], while the magnitude spans the range [0, 0.1], i.e., we
give colours 10 × more weight than to the i magnitude in creating
the wide SOM (we also tested giving 100 × more weight and equal
weight, which performed worse). Also, to avoid noise influencing
the training of the wide SOM, we only use galaxies with an S/N >

10 to do so. In the simulation, we know the truth and an observed
magnitude for every galaxy in the target sample, so we can assign a ĉ

from the wide SOM and a c from the deep SOM to every galaxy (the
‘best-matching unit’, or BMU, in SOM parlance). From these we
can calibrate the probability p(ĉ|c). In the application of this method
to real data, the ‘truth’ (low-noise fluxes) are not available for every
target but only for a subset, so that only a wide-SOM assignment ĉ is
available for all targets. But p(ĉ|c) can be estimated through repeated
injection of deep-sample galaxies into the wide images, serving the
same purpose. Both methods should yield an accurate assessment of
p(ĉ|c), which is essential for success of any photometric approach
to redshift estimation from noisy fluxes.

Fig. 2 shows the mean redshift and redshift dispersion of the cells in
the deep and wide SOMs described above (left and central columns).
From the plots, one can note the smoother redshift distribution and
the lower redshift dispersion in the deep SOM compared to the wide

SOM. This is even more evident from the comparison plots in the
right-hand column of Fig. 2: the distribution of the mean redshift per
cell in the deep SOM is more uniform and better samples the redshift
space of the simulation (0.2 < z < 1.2), and the redshift dispersion
per cell in the deep SOM is significantly lower (median σ (z) of 0.030
for the deep SOM versus 0.086 for the wide SOM).

3.3 Tomographic bins

Tomographic redshift bins are defined as groups of wide-SOM cells.
We first find the mean expected redshift for each wide cell as

zmean(ĉ) =
∫

dz z

[
∑

c

p(z|c)p(c|ĉ)

]
, (11)

where p(z|c) is also estimated using all galaxies in the target sample.
We sort the wide SOM cells by their zmean, then split them into five
contiguous redshift bins with equal number of galaxies. The true
redshift distribution of each tomographic bin is shown in the lower
panel of Fig. 1. The estimation of n(z) presented in this work can be
applied to any subset of the target galaxies defined by the features Fi,
but here we will use as an example the determination of n(z) for Bin
3 of this scheme. To do so, we first retrain the wide and deep SOMs
using only those target galaxies whose noisy photometry places them
into this bin. This choice potentially avoids some biases that can arise
from differential bin selection within the finite range of redshifts in
individual deep-SOM cells, as highlighted by Wright et al. (2020)
and other works. This step can be executed on real data using the
deep sample.
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3.4 Spectroscopic sample

To determine a prior p(t, z), we will make use of a spectroscopic
sample for which both t and z are assumed to be known definitively
for each galaxy passing target-sample cuts. In the simulation, the truth
values are known exactly; in reality, they will typically come from a
spectroscopic or high-quality photo-z sample, and span a small area
of the sky and are hence subject to sample variance. They are intended
to be representative of the full galaxy population, but can be subject
to incompleteness and biases. Our simulated spectroscopic sample
consists of all target galaxies from one HEALPIX sky pixel (Górski
et al. 2005; Zonca et al. 2019) of the simulation (with NSIDE = 25),
which has an area of ∼3.5 deg2. The same tomographic bin selection
as made on the target sample is applied to the noisy versions of the
photometry for the spectroscopic galaxies, leaving around 11 000
objects having spectra, in comparison to 3.3 × 106 galaxies in this
bin from the full 1000 deg2 target sample.

In Section 6, we will investigate sample variance by choosing
different regions for the spectroscopic sample, and also investigate
the effects of placing measurement biases on the redshifts assumed
for this sample.

4 A D D I N G T H E C L U S T E R I N G IN F O R M AT I O N

As described in Section 2, we will work under the approximation
that we can replace the latent density field of the tracer population
with a set of deterministic estimators δ̂z(θ ) discretized in redshift
space. We also assume that these tracers are drawn from the same
generative model as the targets, up to some local biasing relation B
with parameters b, so that we are assuming p(θ |z) ∝ Bz[δ̂z(θ ), bz].

Before proceeding to describe the density estimators and biasing
functions used in this simulation, we pause to note that we do not
require the resultant p(θ |z) to be perfect or unbiased. The correlation
redshift method uses the density estimator p(θ |z) to inform us
whether galaxies are more likely to truly be at z than to be at
some z

′ &= z. In the latter case, the target galaxies are distributed
essentially randomly in θ with respect to p(θ |z). A useful figure of
merit (FoM) for our density estimator is therefore the mean boost in
(log) likelihood that a galaxy gets if it is assigned to its true redshift:

FoMz = 〈log p(θi |z)〉i∈z − 〈log p(θi |z)〉i /∈z (12)

=
〈
log Bz

[
δ̂z(θi), bz

]〉
i∈z

−
〈
log Bz

[
δ̂z(θi), bz

]〉
i∈r

, (13)

where the first term is evaluated for galaxies truly at z, and the second
term is for a population of galaxies randomly distributed across the
footprint. In the simulations we can evaluate this FoM over the full
footprint, as a guide for good choices to make for the KDE and bias
parameters. In real data, this estimation is possible only over the
smaller spectroscopic sample.

4.1 Density estimation

The tracer population, described in 3.1, is split in 20 redshift bins
equally spaced in comoving distance in the range z ∈ [0.2, 1.2] using
the true redshift from the simulation. The redshift bins are wider
than the typical RMS redshift uncertainty of photometric LRGs in
DES, which have, σ z ∼ 0.015(1 + z) (Rozo et al. 2016; Vakili et al.
2019), and also wide enough to make their projected density fields
nearly independent from each other. We will defer to future work
any attempt to include photo-z errors in the tracer sample.

Several methods exist to reconstruct the surface density of galaxies
(see e.g. Cautun & van de Weygaert 2011; Darvish et al. 2015) from a

point sample. In this work, we will use a KDE to estimate the density
field at any position of the field, using a circular kernel function
K(r):

δ̂z(x) ≡
1

NT

∑
T K(θxT )

1
NR

∑
R K(θxR)

− 1. (14)

Here θ xT runs over the distances between our sample point x and each
of the NT tracers at redshift z, while θ xR runs over the pairs with a
random sample of size NR that describes the selection function of the
tracer sample. The KDE is seen to be equivalent to the weighted two-
point functions used in conventional clustering-z redshift techniques.
We presume NR / NT such that the dividing term can be considered
a measure of the area surrounding x, taking into account the selection
function and mask effects.

Choosing the shape and extent of the kernel K is important.
Fig. 3 shows the effect that different kernel shapes have on the
field estimate. The top left-hand panel shows a top-hat kernel of size
rmax = 30 Mpc. Such a large kernel smooths the density field too
much and cannot resolve massive structures well, underestimating
the density in cluster regions. The top right-hand panel shows a small
top-hat KDE with rmax = 3 Mpc. This KDE can better resolve dense
structures, although it will still underestimate high-density regions,
is more affected by shot noise, and indicates zero density in a large
fraction of the sky. SB19 show that, in simplified limits, the most
informative kernel will match the angular correlation function of the
galaxies, so that K ∝ r−0.8.

Many cosmological applications of redshift inference will also
use statistics of the tracer sample as part of their constraining data.
Allowing large scales into the KDE can improve its estimation,
but will also correlate our resultant n(z) with the observables
being used for cosmology, which will complicate the derivation of
cosmological parameter constraints. Yet using only very small scales
(< 3 Mpc) lowers the S/N of the density estimator and the accuracy
of n(z) inferences. We compromise by using a kernel that is zero
for r > rmax = 15 Mpc, although we also explore rmax = 10 Mpc
for comparison. Note that DES Y1 cosmological analyses used
correlations only above 8 − 12 Mpc h−1 (e.g. Krause et al. 2017).
The bottom left-hand panel shows a power law K(r) ∝ r−0.8, truncated
at 15 Mpc.

4.2 Biasing relation

In the simulation, we can calculate the true relation between galaxy
density at some redshift z and the KDE estimator δ̂z(θ ) by calculating
the true source density:

Btrue
z (δ̂) ≡

1
NT

nT (δ̂)
1

NR
nR(δ̂)

, (15)

where nT (δ̂) and nR(δ̂) are the number of galaxies and randoms in
sky regions with some (small range of) KDE value.

Fig. 4 shows, for each redshift bin (colour coded), the relation
between this average density of targets as a function of KDE value
with a power-law KDE with rmax = 10 Mpc. If the KDE delivered
a perfectly unbiased field estimation, this would yield the dashed
line. In general, the KDE estimate will not deliver such an estimate,
both because the KDE yields a biased estimate of tracer density, and
because the tracer will be a biased tracer of the target galaxies. There
is always a Btrue which will optimize the performance of a given
KDE. In real data we will not know this function in advance, so we
propose a parametric form for the true probability p(θ |z) of a target
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Figure 3. Density field estimation using different kernel density estimators from a tracer sample population. Shows the field estimate for a small patch in the
highest redshift bin. The black dots show the position of the tracer galaxies, and the background colours show the estimated value of the density field at different
positions. The top panels show a flat kernel with a large size (rmax = 30 Mpc, left-hand panel) and a small size (rmax = 3 Mpc, right-hand panel). The bottom
left-hand panel shows the density with a power-law kernel that better resolves the structures. The bottom right-hand panel shows a field estimated with an
optimized kernel, which is our default density field estimate. Note the change in colour scales in different panels, with white always corresponding to the mean
density.

galaxy being at position θ i and redshift z,

p(θi |z) = B
(
δ̂z(θi), {bz

k}
)
, (16)

where {bz
k} are the parameters of B at redshift z. This is an

approximation of a more general approach where the density field is
updated locally by the targets as part of the hierarchical model. The
parameters {bz

i } are part of the framework parameters (see Section 2)
and they will be sampled along with the other parameters in the
HBM (see Section 5). We choose a polynomial of degree four as our
mapping function B, such that

log10(p(θ |z)) = log10 Bz

[
δ̂z(θ )

]
=

4∑

k=0

bz
k log10(1.1 + δ̂z)k, (17)

with the additional constraints that
∫

p(θ |z)dθ = 1 and that the
derivative must always be positive. Note the use of (1.1 + δ̂z) on the
right-hand side to avoid singularities when the KDE yields δ̂ = −1.

The use of a parametric biasing function adds another criterion
to the choice of KDE kernel, because we will prefer a kernel which
yields a more linear, less complex biasing function which we can

expect to require fewer parameters and less variation with redshift.
These characteristics will improve our ability to fit optimal biasing
functions to the KDE output.

While the biasing relation in general depends on both redshift
and phenotype (see Section 2), we are neglecting the phenotype
dependence throughout this work. The redshift determination could
potentially be improved by, for example, allowing red galaxies a
distinct bias from blue galaxies. There will be potential degradation,
though, as more free parameters are introduced into the model. We
defer an attempt at using this information for a future work.

4.3 Optimizing the estimator

We can go one step further and try to optimize the shape of the
KDE kernel, assuming we have a small calibration patch where the
redshifts of the target galaxies are known. For this purpose, we define
a KDE with shape

KDE ∝ rα exp
[
−
( r

r∗

)γ ]
, (18)
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Figure 4. Upper panel: Ratio between the abundance of target galaxies and
random points as a function of estimated KDE density, for a power law
KDE r ∝ r−0.8 and rmax = 10 Mpc. The different redshift bins are colour
coded. If the KDE delivered a perfectly unbiased field estimate of the target
galaxies, we would expect to find the dashed line relation. All galaxies have
been used without tomographic bin selection to obtain a better estimate.
The true redshift of all the target galaxies was used, while in a real data
scenario one could only estimate this relation in the smaller calibration fields.
Lower panel: Same as upper panel, but using an optimized KDE with rmax =
15 Mpc. The KDE is optimized from a function that combines a power law
and an exponential truncation at small scales to deal with shot noise effects
(see Fig. 5). The optimal parameters are found from a calibration field from
∼3.5 deg2 where redshifts for the target galaxies are known. It shows a more
linear relation, although remains substantially non-linear at the extremes of
density.

which combines a power law with exponent α and an exponential
truncation of the power law at scale r∗ with width parameter γ .
Fig. 5 compares this kernel shape to a power law. The motivation for
allowing a truncation at small scales is to reduce the effect of shot
noise for sparse tracer samples.

The optimization of the KDE works as follows. We write the
probability of the optimized KDE parameters for redshift z as

p(αz, r
∗
z , γz|θ, z) ∝ p(θ |z,αz, r

∗
z , γz) p(αz, r

∗
z , γz|z), (19)

Figure 5. Comparison between a power-law KDE and a KDE with a power
law that truncates at some scale r∗. Such truncation reduces the impact of shot
noise in smaller scales and naturally adds a small exclusion region around the
positions of tracers.

where the last term is the prior on the parameters. Given a sample of
targets with known redshifts from a calibration field,

p(θ |z,αz, r
∗
z , γz) ∝

∏

i∈z

p(θi |z, αz, r
∗
z , γz)

=
∏

i∈z

B
(
δ̂z(θi , αz, r

∗
z , γz), {bz

k}
)
, (20)

where p(θi |z, αz, r
∗
z , γz) is the probability of the ith galaxy at redshift

z from the calibration sample. We obtain this probability by biasing
the KDE estimate δ̂z(θi) using the Btrue

z from equation (15), estimated
using only the galaxies from the calibration sample. Note that since
we know the true redshifts in the calibration sample, we do not need
to use the parametric form from equation (16) but directly use the
estimate from equation (15).

When using a small patch of ∼3.5 deg2 to optimize the kernel pa-
rameters, we take the average of the maximum-posterior parameters
across all redshift bins as an estimate for the optimized KDE, since
the constraining power in each redshift bin is weak. We use top hat
priors αz ∈ [ − 2, −0.5], r∗

z ∈ [0.001, 0.1], and γ z ∈ [ − 10, −2]. The
γ parameter has little effect on the posterior so we fix it to its mean
value of γ = −4 and run again. For a kernel limited to rmax = 15 Mpc
we find <αz >=− 1.15 and < r∗

z >= 0.018Mpc. For a KDE limited
to rmax = 10 Mpc we find <αz > = − 1.0 and < r∗

z >= 0.010Mpc.
Note how a more aggressive power law is preferred when the size
of the KDE is larger. The lower panel of Fig. 4 shows the biasing
relation (estimated using all target galaxies in the simulation) for the
optimized kernel with rmax = 15 Mpc, which is much closer to the
ideal relation than the α = −0.8, rmax = 10 Mpc power-law kernel
shown in the upper panel. This is both a consequence of having
2.25 × more area and of optimizing the kernel shape. The bottom
right-hand panel of Fig. 3 shows the density field estimated with the
optimized KDE with rmax = 15 Mpc. This will be our default kernel
for further testing.

We compute the FOM of equation (13) for several choices of
kernel. For this purpose (but not for the results in Section 6), we use
the Btrue biasing function estimated using all galaxies. The median
FOM value across redshift for the optimized kernel with rmax =
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15 Mpc is 0.263, while for the power law we measure 0.240. For
rmax = 10 Mpc, we find a median FOM of 0.266 for the optimized
kernel and 0.219 for the power law. The average information gain per
galaxy from optimizing the KDE is 2 − 5 per cent, and we find the
information to be similar for both rmax limits once the kernel shape
has been optimized. We select as our default the optimized kernel
with rmax = 15 Mpc since it has a more linear and easier-to-model
B shape. In general, the shape of the optimal KDE and the shape of
the biasing relation (Fig. 4) depend on the tracer sample density per
unit comoving surface area, among other factors. Here we choose a
tracer sample with constant comoving density, which minimizes the
variation from this effect across redshift.

5 SA M P L I N G

Now we turn to the problem of sampling over the redshift and
type probability distributions of populations of galaxies and their
individual constituents, in the framework of the hierarchical Bayesian
model described in the previous sections. It is complicated to simulta-
neously sample all variables from the joint posterior p(f , z, t, b|F, θ )
in equation (8). We will show, however, that it is feasible to draw
samples from this posterior using a three-step Gibbs sampler. This
is because the conditional posterior distributions of interest can be
easily written and sampled. In SB19, the true values of the density
field at each position were known, and hence there was no need
to sample over the parameters {bk} defining the biasing function
B
(
δ̂z(θi), {bz

k}
)

relating the true galaxy density to the KDE (see
Section 4). This paper’s implementation executes sampling over
bias parameters, including the development of some key sampling
strategies that will enable a future application to real data.

We use information from all galaxies in the target sample to
constrain the redshift and type probability distributions of the galaxy
population. Additionally, the fully Bayesian nature of this scheme
allows us to make use of prior information on the relevant quantities,
when available. In this work, we will assume that we have access
to a ‘spectroscopic sample’ of the galaxies with known z, t, e.g.
from a complete spectroscopic survey of a random subsample of
targets in a small region of the sky. We will also assume that we can
identify a tracer population among the spectroscopic sample, with
the same selection as the corresponding tracers in the full sample.
These subsamples will place an informative prior on the coefficients
f , and will also be important in sampling over the biasing function
parameters described in Section 4.

5.1 Three-step Gibbs sampler

Each iteration of the Gibbs sampler comprises three steps which are
(i) drawing a sample of f from p(f |z, t, b, F, θ ), (ii) drawing pairs of
zi, ti for each galaxy i from p(zi, ti |f , b, Fi, θi) using the newly drawn
f , and (iii) drawing a sample of the biasing function parameters b for
each redshift bin from p(bz|f , z, t, F, θ ) given the zi assignments in
step (ii). The conditional distributions can be derived from the joint
distribution in equation (8). The first two steps of the sampler are as
in SB19 and hence we skip the full derivation for brevity (see SB19
for more details), and the third step is new and is considered in more
detail.

(i) The conditional posterior on f depends on the counts of sources
of z and t (in the last iteration), N = {Nzt } where Nzt is the number
of sources assigned to redshift z and phenotype t, and it also depends

on the prior information on f , p(f ):

p(f |z, t, b, F, θ ) ∝ p(f )
∏

z,t

f
Nzt
zt . (21)

The prior condition that
∑

fzt = 1, and 0 ≤ fzt ≤ 1, allows us to write
the conditional posterior on f as a Dirichlet distribution. Following
the derivation in SB19, if M = {Mzt } are the counts of the prior
sample found at each z, t pair, and we assume that each spectroscopic
galaxy has been drawn independently from the distribution, then the
prior distribution of f follows a Dirichlet distribution with parameters
M. In this case the conditional posterior follows a Dirichlet on the
data counts from the last iteration plus the prior counts:

p(f |N) ∼ Dir(N + M), (22)

with Dir(N) ≡ (N + NzNt − 1)! δD

(
1 −

∑

zt

fzt

)

×
Nz∏

z=1

Nt∏

t=1

-(fzt )f
nzt
zt

nzt !
. (23)

An important shortcoming of our scheme is that the spectroscopic
sample will not usually satisfy the condition that all galaxy draws
are independent, because it is taken from a limited sky area and thus
subject to large-scale-structure variance. The posterior will therefore
not sample this form of variance. The addition of sample variance
uncertainties into the prior sampling will be explored in a future
publication.

(ii) For each galaxy, the posterior for the zi, ti pair conditioned on
fand b is

p(zi, ti |f , b, Fi, θi) ∝ Liti fti zi
B
(
δ̂izi

(θi), bzi

)
, (24)

where apart from using the f obtained in the first step of the sampler
(i), we make use of the measurement likelihood Liti and the clustering
terms B discussed above. The sampling in this step (ii) will produce
pairs of z, t for each galaxy that constitute the next realization of
N = {Nzt }, to be used in the step (i) of the next iteration of the Gibbs
sampler.

(iii) After we have z assignments for all galaxies in the sample
from step (ii), we can now separate galaxies into redshift bins
according to those assignments. Then, for each redshift bin, the
posterior on the biasing function of that bin conditioned on all other
variables looks like:

p(bz|f , z, t, F, θ ) = p(bz|z, θ )

∝
∏

i:zi=z

B
(
δ̂izi

(θi), bzi

)
. (25)

With the choice of parametric biasing function in equation (17), there
is no direct sampling algorithm for this conditional posterior. We
therefore use the following procedure: first, we run a Metropolis–
Hastings (MH) Markov Chain Monte Carlo (MCMC) sampler for
the conditional posterior in equation (25) for each redshift bin
where we restrict the galaxies to the spectroscopic sample. Since
the spectroscopic sample have fixed zi, this chain can be run once,
before the Gibbs sampling commences, and yields a sampling of
the prior on bias parameters inferred from the spectroscopic sample
(see Appendix A). Next, at each iteration of the Gibbs sampler,
we return the 5000th sample from an MH MCMC chain run on
equation (25) using all target galaxies currently assigned to a given
redshift (we have performed this step with MCMC chains longer
than 5000 steps, with consistent results). The proposal distribution
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for this MH sampler is to draw at random from the output sampling of
the prior. Effectively we are using the target sample for importance-
sampling of the prior sample. This procedure is a robust way to
combine the prior and target conditionals without the need to tweak
the proposal distributions or the parameter limits of the MCMC
chains. It is also very fast compared to step (ii) of the Gibbs
sampler.

6 R ESULTS

We use the simulation described in Section 3 to test the methodology
developed throughout this work. The target sample for this section
is the third tomographic bin in Fig. 1, which contains ∼3.3 × 106

objects. The spectroscopic sample, for which redshift and type are
assumed known, consists of all 11 000 target galaxies from one patch
of sky with area ∼3.5 deg2. These objects are used to estimate the
prior probability p(z, c) and obtain the sampled prior on the mapping
function parameters B(δ̂, {bi}) (see Section 5 for details about the
sampling).

The HBM method yields samples of the redshift and type posterior
for each individual galaxy; the redshift and type posterior of the
population; and the posterior of the biasing function parameters.
We focus on the redshift population posterior, marginalizing over all
other parameters, since this is what is usually needed in cosmological
analyses of galaxy surveys. In particular, current and future weak
lensing analyses are very sensitive to small biases in the mean
redshift of the distribution, which can become the leading systematic
uncertainty. Therefore, in analysing our results, we define one quality
metric to be the difference between the mean of each sample j of our
redshift posterior and the true mean from all the target galaxies,

!zj = 〈zest,j〉 − 〈ztrue〉 . (26)

Since we draw samples of the full redshift distribution posterior fz,
another useful metric that is sensitive to the distribution shape is the
Kullback–Leibler divergence (DKL) between each sample and the
true redshift distribution,

DKL(f est
z,j ||f true

z ) =
∑

z

f est
z,j log

(
f est

z,j

f true
z

)
. (27)

This is a measurement of the relative entropy between the true
distribution and the recovered distribution, and can be used to see
how much information the photometry and density estimates are
adding with respect to the prior knowledge. A Kullback–Leibler
divergence of 0 indicates that the two distributions in question are
identical, and the lower and closer to 0 its value gets the more similar
the two distributions are, as it shows the expected value of the log
differences between two distributions. Therefore, if the distributions
have an expected divergence of one order of magnitude (i.e. are really
different), the DKL will have a value of log (10) ≈ 2.30, whereas if
they differ by 0.1 orders of magnitude, DKL ≈ 0.23.

For each case we investigate, we sample n(z) from three dis-
tributions: (1) the prior only; (2) the posterior from an HBM that
only includes photometry information; and (3) the posterior from
an HBM that includes both photometry and clustering information,
marginalizing over the biasing parameters. We denote the HBM
with photometry as F (feature) and the HBM with photometry
and clustering as F + δ. The F inference is essentially a rigorous
application of the reweighting method of Lima et al. (2008).

In the first part of this section, we look into the impact of sample
variance in the prior coming from the calibration sample. In the
second part, we study how the method performs when the prior on the

p(z, t) probability from a calibration sample is modified and biased.
For each case, we will show a violin plot of the posterior redshift
distribution compared to the true distribution, the distribution of !zj

differences, and the distribution of DKL divergences.

6.1 Sample variance in the prior

As noted in Section 5.1, we have adopted a Dirichlet prior on p(z,
c) that assumes that galaxies drawn from the small spectroscopic-
sample patch of sky have independent phenotypes and redshifts.
This neglects sample variance from large-scale structure (hereafter
just ‘sample variance’), which adds noise to the estimated relative
density of galaxies at given redshift and type ftz (Cunha et al. 2012).
This effect is larger at lower redshifts, where the volume is smaller.

Sample variance most importantly affects the density of types p(t),
where p(z, t) = p(z|t)p(t), since the same phenotype would yield the
same redshift regardless of where it is observed, provided the redshift
distributions of phenotypes are narrow. However, we have seen in
Fig. 2 that there are some phenotypes (deep cells) with wider redshift
distributions, mostly due to colour–redshift degeneracies. As a result,
the redshift distribution p(z|t) of these phenotypes is also affected by
sample variance. The Dirichlet sampling of the prior, as presented in
Section 5, neglects sample variance uncertainty, but we expect the
HBM method to reduce the effect of sample variance in the prior
since the target population is much larger than the prior sample.
Nevertheless, limited sampling or shot noise from the prior in any of
the phenotypes can lead to a noise bias of p(z|t), and make the HBM
reconstruction imperfect.

To assess this sample variance, we randomly choose 11 calibration
samples of ∼3.5 deg2 each, and apply the HBM method to each, with
and without using clustering information. In Fig. 6, we show the
results of these runs in the two metrics defined above, i.e. the mean of
the redshift distribution and the KL divergence compared to the truth.
For each method of inference (prior-only, F, and F + δ), we show
the mean of both metrics over the 11 distinct spectroscopic patches,
with three different uncertainty estimations: (1) the total standard
deviation among all MCMC samples of all spectroscopic patches;
(2) the standard deviation of the means of the 11 different prior
patches; and (3) the standard deviation within the MCMC samples
of one patch. The figure shows that:

(i) The sample variance among patches (2) dominates the total
uncertainty budget (1) in every case.

(ii) The HBM (F) reduces the uncertainty in the estimation of
the mean redshift, i.e. lessens the impact of spectroscopic sample
variance, and also improves the N(z) shape reconstruction (lower KL
divergence values) compared to the prior-only inferences.

(iii) The addition of the clustering further reduces the uncertainty
in the mean redshift and improves the N(z) reconstruction.

The HBM mean redshift uncertainty goes from (0.0 ± 4.2) × 10−3 in
the prior to (1.0 ± 1.6) × 10−3 for HBM (F) and (0.8 ± 1.2) × 10−3

for HBM (F + δ). The shape improves from a log10(DKL) divergence
of 4.69 ± 0.17 in the prior to 4.40 ± 0.17 and 4.11 ± 0.23 for HBM
(F) and HBM (F + δ), respectively.

In Fig. 7 we randomly choose one of the spectroscopic-sample
patches for the prior, and compare the posterior from running an
HBM with photometry alone (F, blue), an HBM with photometry
and clustering (F + δ, red) and samples drawn from the Dirichlet
prior on p(z, t) (orange). The prior p(z, t) has a mean redshift bias
of !z = (− 1.0 ± 0.1) × 10−2, arising from LSS sample variance
in this single sky patch. When running the HBM, we find the bias
reduced to !z = (−7.2 ± 4.4) × 10−4 with photometry alone and
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Figure 6. Performance on the posterior redshift probability distribution
for a hierarchical Bayesian model (HBM) with photometry and clustering
information. Two metrics are shown, the bias in mean redshift distribution !z

(upper panel) and the Kullback–Leibler divergence DKL between the posterior
samples and the true distribution (lower panel). The prior information comes
from a small patch of ∼3.5 deg2. We show results grouped in three blocks
which show the results from drawing Dirichlet samples directly from the
prior (labelled as Prior), from drawing samples using an HBM with only
photometry (F) and from an HBM with both photometry and clustering (F
+ δ). The total error budget (blue) is estimated from the standard deviation
of samples drawn from HBM chains run in 11 randomly distributed patches
of the same size. We also show the contribution to the total error of the
sample variance (yellow, Patch-to-patch) and the mean internal variance of
each chain (red, Within patch), finding the former one dominates the error
budget in every case. The HBM reduces the sample variance uncertainty from
the prior and significantly improves the recovered shape when also adding
the clustering.

a bias of !z = (−6.7 ± 3.2) × 10−4 when adding clustering. In
agreement with Fig. 6, we find the HBM with photometry alone,
i.e. reweighting (Lima et al. 2008; Sánchez et al. 2014), to be
able to correct redshift biases that come from an LSS-biased type
probability p(t) (SB19). Since sample variance mostly changes p(t),
having feature information is enough to remove most of the redshift
bias. In this case that an unbiased spectroscopic sample is available
for ≈104 galaxies, the addition of clustering information has little
impact on the overall redshift bias. Adding the clustering information
does, however, further tighten the !z posterior distribution and also
improves the shape of the redshift posterior, leading to a smaller DKL

divergence.

6.2 Biases in the prior

So far we have assumed our prior is an unbiased estimate of the
underlying distribution in the spectroscopic patch, so it was only
affected by sample variance. We now introduce several possible
biases in the spectroscopic prior, mimicking some effects that we
could find in real data, and analyse the ability of the HBM to
overcome these biases. We will use same spectroscopic patch used
in creating Fig. 7.

Figure 7. Posterior redshift probability distribution, marginalized over type
and when including clustering marginalizing over mapping function parame-
ters. The prior is obtained from a small calibration patch with 10 758 objects
over an area of ∼3.5 deg2. The three plotted distributions are obtained from:
the prior; the posterior for an HBM with photometry only, F; and the posterior
for an HBM with photometry and clustering F + δ. Top: Shows violin plots
for each distribution compared to the true redshift distribution (grey). Middle:
Shows the posterior distribution of redshift bias !z values. Bottom: Shows
the distribution of Kullback–Leibler divergence (DKL) between each sample
and the true redshift distribution. The HBM (F) removes most of the redshift
bias, since in this case the prior’s redshift bias is primarily caused by biases
in the type density p(t) caused due to the sample variance of the calibration
patch. The addition of clustering sharpens the distribution and improves the
overall shape, reducing the DKL divergence.

6.2.1 Prior p(z, t) with a redshift bias

We add a systematic redshift bias for each phenotype/deep cell by
altering its redshift distribution to

p′(z|t) ∝ p(z|t) ∗ (21 − z), z = 1, 2, . . . , 20. (28)

Therefore, the prior p(z, t) = p
′
(z|t)p(t) now has a systematic bias

towards low redshift. Fig. 8 shows the HBM results for such a prior.
Drawing only from the prior, the mean redshift bias is !z = (−
1.4 ± 0.1) × 10−2. The HBM with only photometry has a mean
posterior redshift bias of !z = (−4.3 ± 0.4) × 10−3, while an HBM
with photometry and clustering yields !z = (−1.8 ± 0.3) × 10−3.
Note that the F-only HBM has corrected the same amount of redshift
bias as in the previous case with unbiased prior (∼0.01 in !z), i.e.
the sample variance, but cannot correct any of the systematic bias
introduced in p(z|t). The F + δ HBM, however can use the clustering
information to further improve the p(z|t) probability and reduce the
total redshift bias. It also reduces the DKL divergence, improving the
overall shape.
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Figure 8. Similar to Fig. 7. The prior, which is obtained from the same
small calibration patch, is systematically biased in the conditional redshift
probability of each type p(z|t) towards low redshift as per equation (28). The
HBM with photometry alone reduces the redshift bias by the same amount as
in Fig. 7, since it only corrects redshift biases produced by a bias in p(t). The
remaining bias can only be corrected with the addition of clustering, which
further reduces this bias and improves the redshift posterior shape.

6.2.2 Prior p(z, t) with a redshift efficiency drop

Spectroscopic surveys usually present sharp selection effects in
redshift due to their limited wavelength coverage of the spectra.
Using such surveys to estimate the prior probability can bias the
whole posterior redshift distribution of the weak lensing samples. In
this section we use a prior p(z, t) from a hypothetical spectroscopic
survey with an efficiency drop above redshift z > 0.8 (the seven
highest-redshift bins). We assume only 20 per cent of the galaxies
in the last seven redshift bins have been successfully measured with
the failed measurement being simply discarded from the catalogue,
which we implement by multiplying by 0.2 the prior p(z, t) in those
bins.

Fig. 9 shows that this efficiency drop creates a huge redshift bias
in the prior of !z = (−5.3 ± 0.1) × 10−2. For the F HBM we find
a redshift bias of !z = (− 9.9 ± 0.7) × 10−3, while for the F +
δ HBM we find !z = (−2.6 ± 0.4) × 10−3. The F HBM is able
to successfully correct redshift bins which are far away from where
the efficiency drop happens (z ∼ 0.8) since there are many deep
cells with a very tight redshift-type relation. However, it has more
difficulty recovering the redshift distribution closer to the drop, since
it cannot update p(z|t). Adding the clustering significantly improves
the recovered shape, finding a much better DKL divergence, and
eliminates 95 per cent of the redshift bias from the prior.

Figure 9. Similar to Fig. 7. The prior mimics a hypothetical spectroscopic
efficiency drop above redshift z > 0.8 by reweighting the prior with a factor
0.2 in the seven highest-redshift bins. The HBM with photometry is able
to correct the redshift posterior in redshift bins far away from z ∼ 0.8,
where the drop happens, by changing the density of deep cells whose redshift
probability p(z|t) does not cross z ∼ 0.8. It increasingly fails to correct the
redshift distribution around z ∼ 0.8 since it cannot modify p(z|t). Adding
clustering significantly improves the redshift distribution, removing most of
the redshift bias and largely improving the redshift distribution shape.

6.2.3 Prior p(z, t) with degraded z − t correlation and biased

So far we have assumed we have a calibration field with spectroscopic
data that provide a tight redshift–colour relation. Now we explore
what happens if we loosen this assumption and pretend that the
redshift information in the prior does not come from spectroscopy
but from a hypothetical photometric redshift sample. This can be of
interest in real data when spectroscopic redshifts can only sparsely
populate the prior on p(z, t). To mimic this effect, we convolve
the conditional redshift probability for each type p(z|t) with a top
hat function with width of seven redshift bins, which smooths the
redshift probability. The median redshift dispersion of the deep cells
goes from σ (z) = 0.025 to σ (z) = 0.1, significantly reducing the
correlation between types and redshift. Furthermore, we add the
same systematic redshift bias to each p(z|t) as in Section 6.2.1. Note
the sample variance in p(t) is left unchanged.

Fig. 10 shows the broadening effect in the prior, which now has
a redshift bias of !z = (−3.9 ± 0.1) × 10−2. The HBM with
photometry alone, which can only modify the density of types, is
barely able to change the redshift distribution since the correlation
between redshift and type has been degraded, finding a redshift bias
of !z = (−3.0 ± 0.1) × 10−2, and a very similar DKL divergence.
In contrast, adding the clustering remarkably improves the redshift
bias and shape, leading to a very large decrease in both DKL and !z
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Figure 10. Similar to Fig. 7. The prior is smoothed by convolving p(z|t)
with a top hat function of size seven redshift bins, increasing the median
redshift dispersion of the deep cells goes from σ (z) = 0.025 to σ (z) = 0.1,
which reduces the correlation between type and redshift for all deep cells.
In this case, the HBM with photometry alone can barely modify the redshift
distribution, since there is little correlation between type and redshift. In
contrast, adding the clustering information remarkably improves the redshift
distribution recovery and reduces most of the redshift bias. This shows that
photometric redshift surveys with wider p(z|t) estimation can be used instead
of spectroscopic surveys when clustering is available.

metrics. In this case, we find a redshift bias of !z = (−3.4 ± 0.3) ×
10−3. This result shows that, when clustering information is used
in the HBM, photometric redshift estimates can be used instead
of spectroscopic measurements, even if such photo-z estimates are
imprecise and are systematically biased.

7 D ISCUSSION

Fig. 11 presents a visual comparison of the two performance
metrics (!z and DKL) obtained with three different inferences:
(spectroscopic) prior from a small patch on the sky; the F HBM
with photometric information on the full sample; and the F + δ

HBM including photometric information and clustering against a
tracer population. In the first case (‘Sample Var.’ in the plot), where
the prior has no biases but just sample variance, the F and F + δ HBM
methods show comparable results in terms of the mean redshift bias,
but the clustering method performs better in recovering the shape
of the redshift distribution (lower DKL metric). In the other three
cases, where biases are introduced in the prior, the HBM method
with clustering always performs better in both metrics. Remarkably,
for that method, the mean of the redshift distribution is always
recovered with a precision of around 3 × 10−3 or better, even when
the redshift biases in the prior are larger than 5 × 10−2. That is a

Figure 11. A summary of the quality of n(z) inferences obtained in this work.
Upper: the absolute redshift bias in the mean posterior redshift |!z|. Lower:
the Kullback–Leibler divergence DKL between the posterior samples of n(z)
and the true distribution. We show the performance metrics are grouped in
blocks of three, showing samples from: (1) the Dirichlet prior (labelled as
‘Prior’) obtained directly from a spectroscopic survey of ∼3.5 deg2; (2) from
an HBM MCMC with only photometric information (‘F’); and (3) from an
HBM with both photometry and clustering (‘F + δ’). The four cases studied
are shown, one where the prior only has sample variance from the small patch,
and three where the prior is further modified to introduce redshift biases. In all
cases, the HBM remarkably improves both the bias and shape of the posterior,
and the best results are found with the addition of clustering information.

very important result since accurate characterization of the mean of
redshift distributions is critical to cosmological analyses of weak
gravitational lensing in imaging surveys. Furthermore, the addition
of clustering in the method always improves the reconstructed shape
of the redshift distribution (lower DKL), which can also be very
important for cosmology analyses: mischaracterization of the width
or tails of a redshift distribution can be a source of systematic error
for both weak lensing and galaxy clustering studies.

Our results demonstrate the robustness of this method to several
types of biases in the prior, chosen to mimic known shortcomings
in real calibration samples. There is an ongoing discussion among
the imaging surveys community about the reliability of different
redshift samples and how biases in them are propagating into
cosmological analyses and creating artificial tension with other
cosmological probes (Troxel et al. 2018b; Asgari et al. 2019; Joudaki
et al. 2019; Wright et al. 2020). Some groups have relied on
spectroscopic samples for their redshift calibration while others
have used high-quality, many-band photometric redshifts instead.
Spectroscopic samples provide accurate redshift information but can
suffer from selection effects and efficiency problems, while high-
quality photometric redshifts can have significant biases, especially
at high redshift. We have demonstrated how the F + δ HBM method is
robust to any of these effects, providing a rigorous way to propagate
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known priors into the posterior, as well as letting the clustering
information overcome the priors and their potential inaccuracies.

The success of this method in estimating redshift distributions to
the accuracy needed for large cosmological surveys will still depend
on the details of the survey. For reference, weak lensing tomography
in Y1 LSST and Euclid will require a systematic uncertainty in
the mean redshift of the redshift distribution below <0.002(1 + z)
(Laureijs et al. 2011; The LSST Dark Energy Science Collaboration
2018). It is useful here to discuss how the application of this method
to real data might differ from the simulations in this paper. First, in
this work we have limited the redshift range of interest to be 0.2 <

z < 1.2, while in reality we will need to consider a larger redshift
range (Wright et al. 2020). It could also be possible to consider an
additional tracer sample at high redshifts, e.g. an emission line galaxy
(ELG) sample or a quasar sample. Secondly, the tracer sample used
in this work is idealized in that it spans the entire redshift range of
interest, and that we have assumed true redshifts for their galaxies.
The latter assumption is not a problem as LRG samples have typical
redshift errors of σ z ∼ 0.02 (Rozo et al. 2016), smaller than the
redshift bin size chosen in our work (∼0.05). Having a tracer sample
not spanning the entire redshift range will reduce the constraining
power of the method at the redshifts where we do not have tracers,
but it will not result in any additional redshift bias, as demonstrated
in SB19. Thirdly, the photometric noise likelihood function p(F|t,
θ ) has been determined comparing the truth to ‘observed’ values
in the full simulated target population, whereas in real data this
function might be determined from injection simulations with a
smaller number of realizations. Real data might therefore have
weaker F-only reconstruction from added shot noise in p(F|t, θ ),
which would probably increase the degree of improvement that
clustering information would yield. Fourthly, we did not include
magnification effects in this work. Density fluctuations in foreground
galaxies lens the images of background sources, locally stretching
them. The increase of area reduces the galaxy density, but at the
same time it increases the apparent flux of individual galaxies,
making it more likely to detect intrinsically fainter galaxies. The
net effect depends on the slope of the luminosity function of the
target and tracer populations, and introduces density fluctuations
unrelated to their physical overlap. The effect is typically smaller
than the clustering signal, but can become significant at the tails
of the recovered redshift distribution (e.g. Gatti et al. 2018) and
also impact the recovered mean redshift of the redshift distribution.
Therefore, lensing magnification might complicate our density field
biasing relation, and we defer any extensive investigation to future
work. Finally, one other difference is the area used in the application
of the method. In this paper, we have used a sample of 1000 deg2

of sky, while in the application of the method to data we can expect
larger areas (e.g. 5000 deg2 in DES). A larger area overlap between
the target and the tracer population will increase the constraining
power of the method in the redshift range of overlap between these
two samples, driving the biases of the F + δ HBM to lower levels
than in our simulations.

Finally, we discuss the details of our implementation and the
corresponding computational needs. For the run on the simulation,
we define a total of 20 redshift bins equally spaced in comoving
distance between z ∈ [0.2, 1.2], as well as 1024 phenotypes defined
with an SOM from a 32 × 32 grid, so fzt has a total of 20 480 free
parameters. Then, we have 100 free parameters in a biasing function
with five parameters per redshift bin. And furthermore, for each target
galaxy i, we have zi and ti as parameters, which amounts to 2 × 3 ×
106 free parameters. To save memory and improve speed, we do not
save the individual z, t pairs for each target galaxy at every MCMC

sample – the individual (zi, ti) samples are aggregated into the number
counts Nzt necessary for the Gibbs sampling of fzt. We parallelize the
sampling of the individual z, t of each galaxy in 334 chunks defined
by healpy pixels of NSIDE = 25, and we parallelize the MCMC chain
for the biasing parameters by assigning each redshift bin to its own
thread. On average, a full iteration of the chain which samples all
parameters using the three Gibbs intermediate steps takes 9 s using
334 parallel jobs, which gives about 400 iterations per hour. The
method can be parellelized further for more speed, as that step is the
limiting factor. Overall, the Gibbs sampling scheme is simple but
has the drawback of yielding long correlation lengths, so that more
iterations are needed to get a given number of independent samples.
A Hamiltonian Monte Carlo (HMC) implementation is possible, and
would yield practically independent samples which would result in a
speed up of the method. This HMC implementation may be needed
to make the method scalable for next-generation surveys such as
LSST.

8 SU M M A RY A N D C O N C L U S I O N S

SB19 presented a hierarchical Bayesian model which can naturally
combine the three main sources of information for estimating the
redshift probability distributions of galaxies and samples of galaxies
in a wide-field survey. These three main sources of information
are: prior information, which comes from a subset of galaxies with
well measured photometric and (typically) spectroscopic properties;
broad-band photometry for the galaxies in the wide-field sample; and
the clustering of such galaxies against a tracer population with precise
and accurate redshift estimates. All these sources of information have
been used separately in the past, but this is the first method to combine
them in a unified and consistent way. In SB19, the main features and
potential advantages of the method were demonstrated on a simple
set of simulations, but the actual capabilities of it were not assessed,
as they depend upon some important pieces that are needed for its
application to real data, like realistic clustering properties and the
marginalization over biasing functions in the usage of that clustering
information.

In this work, we have expanded the HBM approach of SB19
to include the additional methods needed for its application to the
analysis of galaxy survey data. The HBM assumes that the galaxies
come from a Poisson sampling of an underlying density field; in
this work, we characterize this field as a kernel density estimator
δ̂(θ ) applied to a tracer galaxy population with known redshifts,
then modified by some parametric biasing function B(δ̂, b). We have
detailed here how such a biasing function can be constructed, with
appropriate freedom to vary with redshift, and how we can sample
and marginalize over it using prior information from spectroscopic
information over a limited area of the sky.

Moving beyond the simplistic simulations in SB19, we have now
tested the methodology on the public MICE2 simulation, a mock
galaxy catalogue created from a light-cone of a dark-matter-only N-
body simulation with ≈200 million galaxies over an octant of the
sky. This simulation features realistic galaxy clustering and galaxy
properties, and this allows us to work in a scheme where we can
fully employ the phenotype approach proposed in SB19. Under that
approach, we assume we have a sample with deep photometry and
extra bands to define galaxy phenotypes, and a wide sample with
noisier photometry and only a subset of optical bands as observations.
We use two SOMs to characterize the properties of these samples,
and we use galaxies with best-matching cells in both SOMs to
accurately calibrate the likelihood probability that relates wide-field
observations and phenotypes, as we would do in real data.
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In applying the method to a tomographic bin defined in the
simulation, we always assume there is a small region of the sky
(of about 3 deg2) for which the galaxy properties, phenotype, and
redshift, are well known. We use this set of galaxies as a prior,
both for the phenotype and redshift probability distribution and
for the biasing function needed for the addition of clustering
information from a tracer population. With this setup, we apply the
methodology under different cases, comparing the results obtained
with and without clustering information in the method and those
from just the prior information. As metrics, we use the difference
in the mean of the derived and true redshift distributions for the
sample, which is arguably the most important quantity for weak
lensing analyses, as well as the Kullback–Leibler divergence, which
measures the differences in the shapes of the true and recovered
redshift distributions.

When the prior comes with perfect knowledge of a small patch
of sky, i.e. unbiased but with sample variance, the HBM method
both with and without clustering information perform similarly well
in terms of the mean redshift of the population. This is expected,
also consistent with SB19, as sample variance mostly changes the
phenotype distribution, and that can be recovered in the HBM
without the need of clustering information. The shape of the redshift
distribution is, however, better recovered when using clustering
information.

Clustering information is shown to be very powerful when the
redshift information from the small area is biased or incomplete, as
is happening in real spectroscopic samples. In such tests, the addition
of clustering to the HBM improves both the mean and the shape of
redshift distributions. We have demonstrated this with simulations
of a gentle coherent bias in the redshift assignments, in the case of
uncompensated high-redshift incompleteness of spectroscopy, and
in a case with spuriously broad spectroscopic assignments (as one
might expect from photometric reference samples). In these cases the
HBM with clustering reduced the bias in the sample’s mean redshift
by a factor of 2–10 compared to photometry-only constraints. The
error in the full redshift distribution n(z) is reduced by factors of
3–20, as measured by the Kullback–Leibler divergence.

One shortcoming of the current implementation of the HBM
is that we do not account for correlations between the redshifts
and phenotypes of the spectroscopic sample induced by large-scale
structures in the spectroscopic sample patch, what is also known
as sample variance (Cunha et al. 2012). Recently, Sánchez et al.
(2020) have developed a way to add sample variance uncertainties
into the redshift prior sampling, which will enable the HBM method
in this work to also account for that source of uncertainty in future
applications. Alternatively, future renditions of the HBM could also
be able to treat the density fluctuation field as a stochastic variable
and hence include the LSS correlations in a natural way.

The tests performed in this work provide demonstration that
the method depicted in SB19, with the generalizations presented
here, can be used in realistic conditions, and it can still be very
powerful at resolving biases that are potentially present in prior
samples, even after marginalizing over biasing functions in the
addition of clustering information. The method does not guarantee
an unbiased posterior, but it uses all the information at hand to
reduce prior biases, and even in all tests performed here, some
of which are extreme cases of biased priors, the final biases in
the posterior are of the order of 10−3 in the mean of redshift
distributions. Obtaining a trustworthy n(z) estimation of this accuracy
in real survey data would be a milestone for the control of redshift
systematic uncertainties in future weak lensing and galaxy clustering
analyses.
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Carretero J., Castander F. J., Gaztañaga E., Crocce M., Fosalba P., 2015,

MNRAS, 447, 646
Carretero J. et al. 2017, Proceedings of The European Physical Society

Conference on High Energy Physics, EPS-HEP2017: https://pos.sissa.
it/cgi-bin/reader/conf.cgi?confid=314, p. 488

Cautun M. C., van de Weygaert R., 2011, Astrophysics Source Code Library,
preprint (arXiv:1105.0370)

Coe D., Benı́tez N., Sánchez S. F., Jee M., Bouwens R., Ford H., 2006, Astron.
J., 132, 926

Colless M. et al., 2001, Mon. Not. R. Astron. Soc., 328, 1039
Collister A. A., Lahav O., 2004, Publ. Astron. Soc. Pacific, 116, 345
Cox D. R., 1955, J. R. Stat. Soc. B, 17, 129
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A P P E N D I X A : P R I O R A N D P O S T E R I O R O F
K D E B I A S I N G F U N C T I O N S

In this work, we use a galaxy tracer population to estimate the
density field from which target galaxies are drawn from, using a
kernel density estimation (Section 4). However, as tracer and target
populations can be different, and because of effects such as shot noise
in the tracer population, we need a mapping function that relates the
field estimated from tracers and the field from which target galaxies
have been drawn from. As outlined in Section 5, the biasing functions
need to be sampled and marginalized over in the Gibbs process of
the HBM. For that sampling, we use information from a small set
of galaxies with true redshift information as a prior for the Gibbs
sampling. In this work, in order to avoid being limited by sample
variance in the estimation of this prior for biasing functions, we
assume such functions have a smooth redshift dependence and we
join four redshift bins from that prior sample at the time of running
the corresponding MCMC chains. Then, we effectively use the same
prior for four adjacent redshift bins in the Gibbs sampling process.
Other than reducing sample variance, this procedure also makes the
prior more robust to biases in the redshift estimation of the galaxies
used in the prior. Fig. A1 shows an example of the prior and posterior
of such biasing functions, parametrized as in equation (17), in one
random redshift bin. One can see the posterior given by the HBM
chain to be much tighter than the prior, showing how the HBM
method is self-calibrating the biasing functions from the wide data
in the simulation. The figure here shows one example redshift bin,
but this is generally true for all bins considered in this work.
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Figure A1. Prior and posterior of the biasing functions, parametrized as in equation (17), in one random redshift bin (bin 4). The posterior appears to be tighter
than the prior, showing how the HBM method uses information from the entire sample to characterize these mapping functions.
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