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ABSTRACT
Cosmological analyses of galaxy surveys rely on knowledge of the redshift distribution of their galaxy sample. This is usually
derived from a spectroscopic and/or many-band photometric calibrator survey of a small patch of sky. The uncertainties in the
redshift distribution of the calibrator sample include a contribution from shot noise, or Poisson sampling errors, but, given the
small volume they probe, they are dominated by sample variance introduced by large-scale structures. Redshift uncertainties
have been shown to constitute one of the leading contributions to systematic uncertainties in cosmological inferences from weak
lensing and galaxy clustering, and hence they must be propagated through the analyses. In this work, we study the effects of
sample variance on small-area redshift surveys, from theory to simulations to the COSMOS2015 data set. We present a three-step
Dirichlet method of resampling a given survey-based redshift calibration distribution to enable the propagation of both shot
noise and sample variance uncertainties. The method can accommodate different levels of prior confidence on different redshift
sources. This method can be applied to any calibration sample with known redshifts and phenotypes (i.e. cells in a self-organizing
map, or some other way of discretizing photometric space), and provides a simple way of propagating prior redshift uncertainties
into cosmological analyses. As a worked example, we apply the full scheme to the COSMOS2015 data set, for which we also
present a new, principled SOM algorithm designed to handle noisy photometric data. We make available a catalogue of the
resulting resamplings of the COSMOS2015 galaxies.
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1 IN T RO D U C T I O N

Imaging (or photometric) galaxy surveys, such as the Sloan Digital
Sky Survey (SDSS; York et al. 2000), PanSTARRS (Kaiser, Tonry &
Luppino 2000), the Kilo-Degree Survey (KiDS; de Jong et al. 2013),
the Dark Energy Survey (DES; Flaugher et al. 2015), the Hyper-
Suprime-Cam survey (HSC; Miyazaki et al. 2012), or the Legacy
Survey of Space and Time (LSST; LSST Dark Energy Science
Collaboration 2012), provide key information about the large-scale
structure of the Universe using the weak gravitational lensing and
clustering of galaxies, and they constitute one of the most powerful
probes for testing cosmological models.

In order to perform unbiased cosmological analyses of imaging
surveys it is very important to characterize the redshift distributions
n(z) = dN/dz dA of the corresponding galaxy samples, and sys-
tematic errors in that characterization may directly lead to biases
in the cosmological parameter estimation (Huterer et al. 2006;
Cunha et al. 2012; Hildebrandt et al. 2012, 2017; Benjamin et al.
2013; Huterer, Cunha & Fang 2013; Bonnett et al. 2016; Samuroff
et al. 2017; Hoyle et al. 2018). Relatedly, recent comparisons
between cosmological parameters obtained from imaging surveys
(Hildebrandt et al. 2018; Troxel et al. 2018a; Hikage et al. 2019)
and the cosmic microwave background (Planck Collaboration VI
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2018) have claimed discrepancies of up to 3.2σ in their estimates
for the amplitude of density fluctuations in a Lambda cold dark
matter (#CDM) universe (Asgari et al. 2019). Even though such
discrepancies may be attributed to a failure of the #CDM model
(Joudaki et al. 2017), that claim would need significant evidence
and thorough testing. Alternatively, some studies suggest it may
instead be pointing to systematic biases in the weak lensing analysis
methodologies (Troxel et al. 2018b; Asgari et al. 2019; Joudaki et al.
2019; Wright et al. 2019). Moreover, such studies indicate that a
major difference in the methodologies of those analyses lies in the
redshift calibration, and that this has the potential to produce such
discrepancy. Redshift calibration requires substantial improvement
for the success of the current and next generations of imaging
surveys.

Redshift constraints in photometric surveys usually begin with
external data on the redshift distribution of their galaxy sample, which
can be considered as a prior on n(z) for subsequent survey analyses.
Because spectroscopic or high-quality photometric redshifts are very
costly in time and resources, such information typically comes from
a small area on the sky and therefore it is subject to both shot noise
and sample variance due to the large-scale structure of the Universe.
As redshift uncertainties can dominate the error budget in current
and future weak lensing analyses, it is very important to propagate
such sources of uncertainty into the derived cosmological constraints.
However, there is yet no clear way of sampling from that redshift
prior while including shot noise and sample variance as sources of
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Sample variance in redshift calibration 2985

Figure 1. Graphical representation of the redshift and phenotype description
of a galaxy population. The colour scale is the relative density fzt of galaxies
as each combination of redshift z and phenotype t. Apparent is the correlation
between phenotypes and redshifts: phenotypes are generally only allowed
in a certain redshift range, and some phenotypes will have a tighter redshift
distribution than others. This figure shows only a subsample of phenotypes,
for easier visualization. The ordering of phenotypes is arbitrary.

uncertainty, and hence these have been frequently overlooked or
estimated relying on simplified simulated galaxy catalogues.

There exist ways of estimating redshift distribution uncertainties
from the data themselves, using subsampling methods such as boot-
strapping. Such methods assume, however, that the subsamples are
independent draws of a given random field, which is not true if they
are correlated by large-scale structure fluctuations. Recently, some
studies have used the Dirichlet distribution to model the information
contained in the redshift calibration sample (Leistedt, Mortlock &
Peiris 2016; Alarcon et al. 2019; Sánchez & Bernstein 2019), as
a way to propagate uncertainties from the prior into a redshift
posterior. This is a good choice because the Dirichlet distribution
produces samples of a distribution which preserve normalization
and have positive elements, among other properties. But again, when
the redshift information comes from small patches of the sky, the
Dirichlet sampling is only propagating shot noise from the calibrator
survey, while if the patches are small enough, sample variance from
large-scale structure may be the dominant source of uncertainty
(Cunha et al. 2012).

In this paper, we will study the problem of sample variance in
redshift estimation in detail, and introduce a number of advancements
on several fronts. So far, this problem has mostly been studied in
simulations (e.g. Cunha et al. 2012). That has some drawbacks,
such as the limitations in redshift range (N-body simulations are
typically not reliable in a broad redshift range like 0 < z < 5), the
fixed cosmology, and the associated statistical uncertainties for the
simulation volume. In this work, for the first time, we develop a
theoretical estimate of the sample variance contribution to redshift
uncertainties, and we validate that using N-body simulations. The
theoretical estimation has some advantages, such as the unlimited

redshift range and the possibility to explore the effects of supersample
covariance, cosmological model dependencies, or redshift-space
distortions and lensing magnification. We then introduce a novel
sampling method based on the Dirichlet distribution which takes as
input the theoretical estimate of sample variance and the redshift-
survey catalogue, then produces samples of n(z) distribution that
draw from uncertainties due to both the shot noise and the sample
variance in the catalogues. This yields the correct sampling of
uncertainties in the prior for n(z) and hence propagation of those into
cosmology analyses of a photometric survey. The method is based on
the phenotype approach described in Sánchez & Bernstein (2019) and
Alarcon et al. (2019). Additionally, in our application of the method
to the COSMOS2015 data sample (Laigle et al. 2016), we present a
new SOM algorithm designed to handle noisy photometric data, to
be used in the phenotype characterization of a galaxy population.

This paper is organized as follows. In Section 2, we describe
the simulations used in this work and the phenotype approach
we will work with throughout the paper. In Section 3, we use
those simulations to characterize the shot noise and sample vari-
ance uncertainties in the redshift distribution, and write down a
parametrization that separates the two contributions. We develop
the sample variance contribution from a theoretical perspective in
Section 4. In Section 5, we present a sampling scheme that can
produce realizations of a redshift distribution including shot noise
and sample variance uncertainties. Finally, in Section 6 we validate
the results in simulations, and we apply them to real data in Section 7
(using an SOM algorithm described in Appendix A). Conclusions are
presented in Section 8.

2 FR A M E WO R K A N D SI M U L ATE D DATA

We will work in the context of the phenotype redshift approach
(Alarcon et al. 2019; Buchs et al. 2019; Sánchez & Bernstein 2019),
in which we model the galaxy population as a 2D histogram in
redshift z and phenotype t (see Fig. 1 for a graphical description),
such that p(z, t) ≡ fzt gives the fraction of the population in each
(z, t) bin. Nzt will be the counts on that histogram for a finite
realized galaxy sample. For the implementation of this scheme,
we will use a combination of deep survey observations and self-
organizing maps (SOMs). Deep observations are often available
for surveys like the DES, Euclid, or LSST via searches for SNe
(Abbott et al. 2018; Inserra et al. 2018; Scolnic et al. 2018), and
these provide essentially zero-noise photometric measurements and
additional filters for galaxies in specific fields (henceforth deep
fields, or simply DFs), and provide an empirical sampling of the
distribution of galaxies in the observed photometric space. In turn,
SOMs provide a data-driven way of mapping and discretizing that
observed photometric space (Masters et al. 2015), so that we can
use the cells in an SOM trained in the DFs as the definition of our
galaxy phenotypes t. In addition, SOMs have been extensively used
for redshift studies in the past years (Alarcon et al. 2019; Buchs
et al. 2019; Hemmati et al. 2019; Wright et al. 2019), and hence all
the results presented in this work can be easily accommodated in all
of the current redshift calibration efforts that utilize SOMs for the
purpose of redshift calibration.

In this work, as in Alarcon et al. (2019), we will use the public
MICE2 simulation,1 a mock galaxy catalogue created from a
light-cone of a dark-matter-only N-body simulation that contains

1The data can be downloaded from CosmoHub (Carretero et al. 2017), https:
//cosmohub.pic.es/.
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Figure 2. Effects of sample variance and shot noise in the redshift distribution of galaxies, as determined from the variation of Nz among the healpixel and
random-equivalent sets of simulated spectroscopic surveys, respectively. (Upper-left panel): Violin plots with the distribution of each redshift bin in the redshift
distributions. (Lower-left panel): Distribution of the mean redshifts of each sample redshift distribution. (Upper-right panel): Normalized variance in the redshift
distributions as a function of redshift. (Lower-right panel): Sample variance as a function of redshift, as parametrized in equation (2).

∼200 million galaxies over one sky octant (∼5000 deg2) and up to
z = 1.4. The MICE2 simulation has realistic clustering properties
given by a #CDM cosmology with parameters $m = 0.25, $b =
0.044, h = 0.7, ns = 0.95, $# = 0.75, σ 8 = 0.8 and w = −1. The
galaxies in the simulation have realistic spectral energy distributions
(SEDs) assigned from the COSMOS catalogue (Ilbert et al. 2009)
that reproduce the observed colour–magnitude distribution as well
as clustering observations as a function of colours and luminosity
(see Crocce et al. 2015 for more details). Once the galaxy SED
is known, magnitudes are computed based on the luminosity and
redshift of the galaxy. The galaxy properties, clustering and lensing
in the simulation have been thoroughly validated in Carretero et al.
(2015), Fosalba et al. (2015b), Crocce et al. (2015), Fosalba et al.
(2015a).

To define phenotypes in the simulation, we create an SOM on a
square grid with periodic boundary conditions (the map resembles
a torus), similar to the SOM in Masters et al. (2015). The SOM is
trained with eight colours, defined as mag − i, where mag = {u, g,
r, z, Y, J, H, K}, in a 32 × 32 grid, and presents a median redshift
dispersion of 0.030 per cell. This is the same SOM as the deep SOM
described in Alarcon et al. (2019); please refer to fig. 2 in that work
for a graphical representation. For the redshift part, we discretize the
redshift space of the simulation in 42 redshift bins of width 0.03 in
the redshift range 0.15 ≤ z ≤ 1.41.

3 SH OT N O I S E A N D S A M P L E VA R I A N C E :
C H A R AC T E R I Z I N G T H E U N C E RTA I N T I E S

The characterization of redshift distributions in large imaging surveys
relies on prior information coming from smaller spectroscopic or
many-band, deep photometric surveys – we will refer to those as

calibration samples. In order to perform accurate cosmological
analyses using such information, those calibration samples should be
representative of the entire target population. However, that is very
difficult to achieve in practice. Assuming that the calibration samples
have the same selection and completeness as the entire survey, there
are two statistical reasons why they will still be different than the full
sample:

(i) Shot noise: Calibration samples are costly in time and re-
sources, which makes the number of galaxies in them very small
compared to the total number of galaxies in a survey. Therefore,
Poisson fluctuations are significant for them.

(ii) Sample variance: Calibration samples are typically from small
sky patches subject to large fluctuations due to the large-scale
structure of the Universe, i.e. they may be sitting on some void
or cluster of galaxies at a given z and not be a fair representation
of the Universe. This effect is known as sample variance, and can
introduce fluctuations which are an order of magnitude larger than
shot noise (Van Waerbeke et al. 2006; Cunha et al. 2012).

To study the sources of uncertainties that go into redshift priors we
construct two sets of simulated spectroscopic redshift samples: each
sample in the first set consist of all galaxies from one healpy sky pixel
of the simulation (with nside = 25), which has an area of ∼3.5deg2.
We use 247 of those patches, with a mean number of galaxies of
≈ 56 000, and standard deviation of ≈3000. We will refer to these as
the healpixel samples. Additionally, we construct a set of random-
equivalent samples (Cunha et al. 2012), by drawing 247 samples,
each with 56 000 galaxies drawn at random from the full simulation.
Each of the random-equivalent spectroscopic samples has the same
shot noise as the previous case, but without the variance induced by
large-scale structure. In the simulation we assume the redshift and
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photometry of each galaxy are known exactly, i.e. we use the true
values, and then phenotype comes from an SOM cell assignment
using that true photometry. In reality, redshifts will typically come
from a spectroscopic or high-quality photo-z sample, and phenotype
will come from an SOM cell placement using deep photometry of
those galaxies, so both estimates will have some additional noise in
redshift and photometry.

Next, we characterize the imprint that sample variance leaves in
redshift constraints coming from calibration samples. This will allow
us to develop ways to include such effects into the sampling of the
redshift distribution n(z), which will be the subject of Section 5. We
will split this section in two parts, separating the effects of sample
variance in redshift from those in phenotype.

3.1 Effects in redshift

There is one critical difference between the two sources of uncer-
tainty considered here, especially regarding their importance for
redshift inference and calibration. Shot noise depends solely on the
number of galaxies in a given redshift bin of the redshift sample,
whereas sample variance has additional explicit dependence on
redshift due to evolution of the volume elements and the large-scale
clustering strength.

We parametrize the redshift distribution of a given patch in the sky
by including the contributions from shot noise (Poisson) and sample
variance as follows:

Nz = Poisson[N̄fz(1 + %z)]. (1)

Here, Nz is the number of galaxies from the sample in redshift
bin z, N̄ is the angular average galaxy density, fz is the shape of the
redshift distribution for the whole galaxy population, and %z captures
variations in source density at z due to the sample variance effect. If
we look at the (normalized) variance of an ensemble of patches due
to these effects, we find

Var(Nz)
〈Nz〉

= 1 + Nfz Var(%z), (2)

where 〈Nz〉 is the average Nz for different patches. The term Var(%z)
corresponds to the contribution from sample variance alone, and is
defined to not depend on the galaxy number counts.

Fig. 2 shows the shot noise and sample variance redshift un-
certainties for the simulated calibration samples described at the
beginning of this section: healpixel samples are shown in red and
random-equivalent samples in blue. While the random-equivalent
samples only contain shot noise, the healpixel samples also include
the contribution from sample variance. In the upper-left panel, we
show violin plots with the distribution of Nz’s for each redshift bin. In
the upper-right panel we show the normalized variance, equation (2),
as a function of redshift for the two sets. As it is clear from the plot,
the case with sample variance shows a >10 × larger normalized
variance compared to shot noise. The shot noise contribution to
the normalized variance shows a flat behaviour in redshift and a
steady value of the normalized variance around 1, as expected for a
Poisson distribution. Related to this, the lower-right panel of Fig. 2
shows the contribution from sample variance alone, as parametrized
in equation (2) by Var(%z). For this term, the shot noise case is
consistent with zero, as expected, and the sample variance case shows
a decreasing trend with redshift, as expected for equally sized redshift
bins.

From these two different sources of uncertainty, shot noise and
sample variance, and the corresponding sets of redshift distributions
derived from them, we can compare the uncertainty they introduce

in recovering the mean redshift of the population, as this is a very
important quantity for weak lensing analyses. We calculate the mean
z for each simulated spectroscopic survey, and the lower-left panel
of Fig. 2 plots the histogram of mean z’s for the members of the
healpixel and random-equivalent samples. The healpixel set, which
includes sample variance, presents a scatter on the mean redshift
of the distribution that is ≈10× larger than that of the random-
equivalent sample, which has only shot noise.

3.2 Effects in phenotype

The left-hand panel of Fig. 3 presents the correlation matrix of Nt, the
number of spectroscopic galaxies per phenotype t in a spectroscopic
survey, for the healpixel simulation set. We observe a strong pattern
of correlations between phenotypes, which must be caused by sample
variance (i.e. coming from different patches in the sky), since shot
noise will induce no inter-phenotype correlations. Sample variance
will produce physical clustering of galaxies in redshift, but due to
the intrinsic correlation between phenotype and redshift, it will also
result in a correlation among different phenotypes that live at similar
redshifts.

Since we know that types being at similar redshifts is the cause
of their correlation induced by sample variance, we segment the
phenotypes into groups with similar redshifts, which we will call
superphenotypes (T). We do this by assigning each phenotype t to
one of the 42 redshift bins z (as defined in Section 2) according to the
mean of the p(z|t) as determined by spectroscopy. In the right half of
Fig. 3, we show the correlation matrices of superphenotypes T that
are constructed by joining all phenotypes t that are assigned to groups
of one, two, three, or six redshift bins (left to right, top to bottom in
the figure). That is, in the first case we have as many superphenotypes
as redshift bins, in the second case we have half that amount, and
so on (as can be seen by the dimension of the correlation matrices).
As expected, the correlation matrices look much more diagonal than
that in the left half of the figure.

In order to choose a prescription for joining phenotypes to make
superphenotypes that are disjoint in redshift, and hence independent
under sample variance, we devise the following metric Ôz. For a
given superphenotype definition T, i.e. a number of phenotypes with
the same mean redshift that are joined into one superphenotype, we
estimate the corresponding redshift overlap matrix Oz

ij from their
redshift distribution p(z, T) as

Oz
ij =

∑
z p(z|Ti)p(z|Tj )

√(∑
z p(z|Ti)2

) (∑
z p(z|Tj )2

) (3)

and compute its determinant corrected by a dimensional factor:

Ôz = Det
(
Oz

ij

)NT /Nz

. (4)

This metric Ôz, defined to be between 0 and 1, will become closer
to unity if the superphenotypes present small overlap in redshift, and
will be smaller otherwise. Fig. 4 shows the redshift distributions of
superphenotypes in three different prescriptions (joining one, three
and six redshift bins), and the corresponding values of the metric.
We can see how the metric becomes close to unity for the case
where superphenotypes are well separated in redshift. Later on, we
will also use this mechanism for devising a sampling method that
includes sample variance uncertainties in Section 5.
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Figure 3. (Left half): Correlation matrix of the phenotype distribution in different patches of the simulation, showing that sample variance produces strong
correlation among phenotypes. The plot shows only a subset (200 out of 1024) of phenotypes, for easier visualization. (Right half): Correlation matrices of
superphenotypes that are constructed by joining phenotypes with mean p(z|t) that lie within one, two, three and six redshift bins (left to right, top to bottom).

Figure 4. Redshift distributions for different superphenotype prescriptions
used in Fig. 3. The superphenotypes are constructed by joining phenotypes
that share one, three, and six average redshift values (top to bottom), and we
show the corresponding values of the overlap metric of equation (4). As ex-
pected, superphenotypes that show small redshift overlap between them have
a metric values close to unity, while overlaping ones show a smaller value.

4 TH E O R E T I C A L E S T I M ATE O F SA M P L E
VA R I A N C E

In the last section, we characterized the effects of sample variance
in redshift priors from calibration samples. Equation (2) describes
that variance in the redshift distribution of sky patches given the
galaxy density in them, an estimate of the shape of the distribution,
and an estimate of the sample variance contribution, independent of

galaxy density. The first two of these ingredients can be obtained
directly from the data, while the sample variance term, which can
be the leading contribution to the redshift uncertainty of calibration
patches, cannot be obtained from the data itself, and has only been
estimated with simulations so far.

In this section, we discuss how to compute this sample variance
contribution for a given cosmological model.

We want to compute the variance of number density fluctuations
over the entire calibrator sample that we assume covers a fraction
of sky fsky = A/4π given its area of A. To simplify the calculation
we assume that the calibrator survey geometry is circular so that
the angular scale of the survey is related to its area by Af = 2π (1 −
cos (θ f)). This approximation works well in practice and the results of
this section can be straightforwardly extended to more complicated
survey geometries if necessary.

The galaxy fluctuation field, coarse grained over an angular scale
θ f, is the spherical convolution of the fluctuation field with an angular
smoothing filter W:

%̂z(n) =
∫

W (n · n′) %z(n′) d$′, (5)

that we assumed depends only on angular separation cos(θ ) = n · n′

between two points.
In this case, similarly to the flat case, the convolution of two

functions is equivalent to the product of their Fourier transforms.
If we expand the smoothing filter in a Fourier–Legendre series
W (x) =

∑
( W̃(P((x), in terms of Legendre polynomials P(, it can

be shown that the smoothed density field can be decomposed in
spherical harmonics as

%̂z(n) =
∑

(

4π

2( + 1
W̃(

(∑

m=−(

a(mY(m(n), (6)

where Y(m are spherical harmonics with coefficients a(m. Since the
smoothing filter depends only on angular separation we can centre
the reference vector at the north pole p and compute the coefficients

MNRAS 498, 2984–2999 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/2/2984/5895985 by U
niversity of Pennsylvania Library user on 20 August 2021



Sample variance in redshift calibration 2989

of the Fourier–Legendre expansion as

W̃( =
√

2( + 1
4π

∫
W ( p · n) Y(0(n) d$. (7)

Here, we are interested in an angular top-hat smoothing filter,
W(x) ∝ )(θ f − arcos(x)) where θ f is the angular aperture of the top-
hat. The Fourier–Legendre coefficients can be computed and result
in

F( ≡ 4π

2( + 1
W̃( = 2π

Af

P(−1(cos θf ) − P(+1(cos θf )
2( + 1

. (8)

With these we can compute the angular correlation function of the
smoothed galaxy density field at two different redshifts z and z

′
:

〈%̂z(n) %̂z′ (n′)〉 =
∑

(

2( + 1
4π

P((n · n′) F 2
( Czz′

( , (9)

which is very similar to the standard result for the correlation
function in terms of the harmonic power spectrum, C(, of galaxy
number counts fluctuations with the difference that multipoles are
here weighted differently because of the smoothing filter.

The covariance of the smoothed field is given by equation (9) at
zero angular separation:

SV(z, z′) ≡ Cov(%̂z, %̂z′ ) =
∑

(

2( + 1
4π

F 2
( Czz′

( , (10)

which is the equation that we use to compute the sample variance
term once the harmonic power spectra are computed for a given
cosmological model. For the calculation of the theory galaxy number
counts power spectrum we use CAMB (Lewis, Challinor & Lasenby
2000) and follow the discussion in Challinor & Lewis (2011) for the
different effects to include in the calculation. We treat the modelling
of bias and its redshift dependence separately, as discussed in the
next sections, and assume that it is scale independent.

The simulation from which we extract the sample variance
measurement that we seek to match is run with a finite volume.
This means that part of the sky is masked and we need to include this
effect in the theory calculation. The power spectrum for the masked
fluctuations, C̃(, is computed as C̃( =

∑
(′ M((′C(′ (Hivon et al. 2002)

where the mode-coupling matrix, M((′ is computed with Alonso,
Sanchez & Slosar (2019).

4.1 Comparison with simulation

From the MICE2 simulation, discussed in Section 2, we can extract
redshifts and positions of galaxies in their rest frame, hence ne-
glecting line-of-sight effects distorting both. In this situation sample
variance is only sourced by CDM fluctuations.

We start the comparison by considering the ratios of sample
variance for different scales of the calibrator survey. With the
approximation that bias between CDM and galaxy number-count
fluctuations is scale independent, these ratios do not depend on the
modeling of bias and in particular do not depend on its redshift
evolution.

We consider four areas for the calibrator survey: 13.4, 3.36, 0.893,
and 0.21 deg2, which corresponds to healpix nside values of 16, 32,
64, and 128, respectively.

Sample variance estimated from the simulations is expected to
be noisy and we can compute the expected covariance of sample

Figure 5. Ratio of sample variance at different angular scales. Theory
predictions (continuous line) are computed with equation (10) and their
variance is computed with equation (11). Measurements from simulation
are shown as dots with bootstrap error bars, as discussed in Section 2. Notice
that the results shown in this plot are independent of the modeling of bias.
Moreover, since cosmological parameters of the simulation are known, there
is no free parameter to optimize to obtain these results.

variance as

Cov(SV(z1, z2), SV(z3, z4))

=
∑

(1,(2

(2(1 + 1)(2(2 + 1)
(4π )2

F 2
(1

F 2
(2

Cov
(
C

z1z2
(1

, C
z3z4
(2

)
. (11)

In the following we neglect, for simplicity, any non-Gaussian
component to the power spectrum covariance that is then given by

Cov
(
C

z1z2
(1

, C
z3z4
(2

)
= δ(1,(2

Cz1z3
(1

Cz2z4
(1

+ Cz1z4
(1

Cz2z3
(1

fsky(2(1 + 1)
, (12)

where fsky is the sky fraction covered by the simulation.
In Fig. 5, we show the ratio of sample variances with respect to

sample variance at the largest scale. This is a quantity of particular
interest since it does not depend on the treatment of linear bias.
As we can see all panels show agreement with the theoretical
prediction (10), within the error bars, at the 10–15 per cent level.
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Notice that there are no free parameters to obtain these results since
the cosmology in the simulation is known and (scale-free) galaxy
bias cancels in the ratio.

Some of the discrepancy between the theory prediction and the
simulation measurement in Fig. 5, especially at high redshift, is due to
the approximation that we have made about survey geometry. To test
this we have computed the sample variance term with equation (10)
but using the harmonic power spectra measured from the simulation
finding better agreement.

To compute the full theory prediction of the sample variance we
need to model bias and its redshift dependence (one bias value per
redshift bin), between galaxies and CDM. This step is crucial to get
a reliable estimate of sample variance and hence we devise two ways
of doing it that are complementary and can be used to check the
reliability of the theoretical prediction.

The first method consists in computing bias from the halo model
(see Cooray & Sheth (2002) for a review). Since we do not have
very strict accuracy requirements we model the halo mass function
following Sheth & Tormen (1999). To connect this to galaxy
counts for our magnitude-limited simulation we need to model
the conditional luminosity function that we coarsely approximate
by assuming that galaxy luminosity is proportional to halo mass.
In this case the halo model gives a prediction for the number of
galaxies as a function of redshift that depends on two parameters:
the proportionality constant between halo mass and luminosity and
the effective mass cut of the simulation M∗. We fit the simulation
N̄ (z) to get the best estimate for these two parameters and compute
bias as the logarithmic derivative of the N̄ (z) as a function of the mass
cut-off

The second method consists in measuring bias within the calibra-
tion survey. To do so we compute the correlation function of galaxies
within the small patch and compare it with the theory prediction, after
subtracting shot noise from the measured correlation function. If the
theory power spectrum is computed with unit bias and assuming that
the measured a(m are Gaussian distributed then the estimate of bias
at each redshift zi is given by

b2(zi) =
∑

((2( + 1) Czi zi obs
( /Czi zi

(∑
((2( + 1)

, (13)

where, for simplicity, we have neglected the correlation between
the power spectra at different redshifts that is negligible for non-
neighbouring redshift bins.

The error on the bias determination can be easily computed from
the covariance of the observed power spectra in equation (12).

Comparing the two approaches we find that they agree at the
10 per cent level which is sufficient for our application. Better
agreement can be likely achieved by refining the theoretical modeling
of bias.

With a model for bias we can compute the complete theory
prediction for sample variance which, for the four angular sizes that
we consider, is shown in Fig. 6. As we can see the agreement between
the measurement and theoretical prediction is good at the 10–20
per cent level. The theory line slightly overestimates the measurement
mostly due to the modeling of bias.

4.2 Dependence on finite simulation volume

With the theory prediction for sample variance at hand we can test
the impact of fluctuations above the scale of the MICE simulation.
To do so we need to compute the theory sample variance neglecting
the impact of the simulation mask and the way in which it suppresses
power.

The result is shown in Fig. 7 along with the previous result for
comparison, for one of the calibrator survey scale in particular. As we
can see the effect of these large-scale modes can be significant and
in particular the estimate of sample variance from the simulation,
in this case, underestimates it by about 30 per cent. It is therefore
advisable to use the theoretical prediction than the simulation values
for sample variance when analysing real data.

4.3 Dependence on cosmological model

In this section, we discuss the dependence of sample variance
on cosmological parameters. We test the impact of all relevant
#CDM parameters: matter density $m, the amplitude and tilt of
the primordial scalar power spectrum, As and ns respectively, and the
Hubble constant H0. We find that $m and As influence it the most, as
shown in Fig. 8. Note that a variation in As, in Fig. 8a), is not simply
rescaling the entire theory prediction. This happens because bias is
not kept fixed. We fix the halo model parameters that produce the
bias prediction that would then take into account the variation of the
number of observed objects when varying cosmological parameters.
A similar effect happens for a variation in $m.

Given the dependence of sample variance on cosmological param-
eters we recommend using this theory estimate iteratively. At first
using a sensible parameter choice to produce the first sample variance
estimate. This can be included in parameter estimation pipelines to
obtain the cosmological parameters from the probe of interest. These
can be used to recompute sample variance and iterate this process to
convergence.

4.4 Other effects

In this section, we discuss the dependence of sample variance on
other modeling assumptions that we have made.

First of all we consider the impact of non-linear growth of matter
perturbations. We show in Panel (a) of Fig. 9 the difference in the SV
prediction when using the non-linear modeling in Takahashi et al.
(2012) and only linear perturbation theory. As we can see SV in linear
theory would be in general smaller and the difference between the
two theory predictions increases as redshift decreases as we would
expect. As expected this discrepancy strongly depends on the size of
the calibrator patch. For small areas the effect is large and between
50 per cent and 10 per cent for the redshifts that we consider. At
the two largest scales instead the effect is very small and in general
sub per cent.

Then we consider other effects that were neglected in the com-
parison with simulations in the previous section. These include
all relativistic corrections to galaxy number counts fluctuations,
discussed in Challinor & Lewis (2011). In particular, these include
lensing magnification and redshift space distortions. Magnification
bias in this case can be easily extracted from the MICE simulation
and included in the calculation of the theory power spectra. As we
can see in Panel (b) of Fig. 9 the combination of these effects is
negligible for our purposes. Note that the theory prediction is noisy
because magnification bias extracted from the simulation is noisy.

5 SA M P L I N G OV E R A R E D S H I F T P R I O R

In the previous sections, we have studied shot noise and sample
variance as sources of uncertainty in the characterization of a redshift
distribution coming from observations in a limited area in the sky. We
have found sample variance to be the dominant source of uncertainty,
and we have characterized its effects in redshift priors using simulated
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Figure 6. Sample variance at different angular scales for the MICE simulation. Theory predictions (continuous line) are computed with equation (10) and their
variance is computed with equation (11). Measurements from simulation are shown as dots with bootstrap error bars, as discussed in Section 2.

Figure 7. Sample variance computed with and without the contribution of
modes larger than the MICE simulation box, as shown in legend.

calibration samples and theoretical estimation. In this section we will
present a method to sample the redshift information from a calibration
survey that manifests the proper level of sample variance. In the next
two sections we will validate this method in simulations and apply it
to data.

We will make extensive use of the Dirichlet distribution for sam-
pling our priors. The Dirichlet distribution is a family of continuous
multivariate probability distributions parametrized by a vector of
positive reals, or integers, in our case. They are commonly used

as prior distributions in Bayesian statistics, exploiting the fact that
the Dirichlet distribution is the conjugate prior of the multinomial
distribution. This means that when we have a multinomial likelihood
and choose the prior to be Dirichlet distributed, the posterior will
also be Dirichlet distributed. This makes the posterior sampling
straightforward.

In a general example where N is a vector with M elements ni,
i = 1, . . . , M, the corresponding fractions fi given the ni values are
Dirichlet distributed as

p({fi}|{ni}) = Dir({fi}; {ni}) ∝
M∏

i=1

f
ni−1
i . (14)

N can, for example, be the redshift distribution of a galaxy sample
coming from a patch in the sky, and then we can say the prior prob-
abilities on p(z) = fz from that patch follow a Dirichlet distribution
Dir(N). Conveniently, the Dirichlet sampling will yield samples of fz
that fulfill two required properties of redshift probabilities, namely
fz > 0 ∀z and

∑
zfz = 1.

It is also important to note that the Dirichlet model does not carry
any assumption on the nature of the bins of the input vector, so the
bins can be of an arbitrary width in z or have different physical
interpretations – they are just different categories in our model.
None the less, once such categories are defined, for instance in the
prior term, they should be kept consistent for the estimation of the
posterior.

Two properties of the Dirichlet distribution will be of particular
use: first, 〈fi〉 = ni/ntot, with ntot ≡

∑
jnj, such that the expectation
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Figure 8. Relative differences in sample variance estimates as a result of
variations of cosmological parameters. Different lines show different angular
scales, as shown in legend.

Figure 9. Relative differences in sample variance estimates using the linear
and non-linear matter power spectrum, Panel (a), and magnification, redshift
space distortion and other relativistic effects along the observer line of sight,
Panel (b). Different lines show different angular scales, as shown in legend.

value is equal to the distribution of the sample set. Second, the
variance of fi is approximately ni/n

2
tot. The latter means that if we

rescale all of the ni → ni/λ, then the mean of the Dirichlet distribution
is unchanged, but Varfi → λ Varfi . We will make use of this property
below as a means to inflate the shot-noise variation intrinsic to the
Dirichlet distribution so that it approximates sample variance plus
shot noise. Next we will describe three ways of sampling a redshift
distribution: the first two will not be able to capture the uncertainties
from sample variance, while the third one will be designed for that
purpose.

5.1 Bootstrap sampling (BT)

We can produce samples of a prior p(z, t) distribution by using the
bootstrap resampling scheme on a redshift sample with known z, t
pairs. We can produce an arbitrary number of calibration samples
which are just random resamplings, with repetition, of the original
one. Bootstrap resampling will treat galaxies at all redshifts in the
same way, and will not resample the sample variance. We will use
the label ‘BT’ for bootstrap resampling.

5.2 Basic Dirichlet sampling (Dir)

In the past (Alarcon et al. 2019; Sánchez & Bernstein 2019), we
have drawn samples from the prior using a Dirichlet distribution on
the counts Mzt of calibration galaxies in joint bins of redshift and
phenotype. The Dirichlet distribution treats the 2d array of counts as
a single 1d array of categories, so that

Dir({fzt }; {Mzt }) ∝
Nz∏

z=1

Nt∏

t=1

f
Mzt −1
zt . (15)

When doing this, we are assuming all redshifts and phenotypes
have the same uncertainties, uncorrelated beyond the constraint∑

ftz = 1, i.e. we are not considering sample variance. This ‘Dir’
case assumes that the prior information on redshift and on phenotype
both arise from the same calibration sample. We might, however,
often have stronger prior information on the phenotype distribution
compared to the redshift distribution, i.e. we have more galaxies
with definitive phenotypes (using high-quality photometry) than have
definitive redshifts (using spectroscopic or many-band photometric
information).

5.3 Three-step Dirichlet sampling (3sDir)

Now we will construct a sampling method based on the Dirichlet
model but using the characterization of sample variance from
Section 3. Instead of considering the redshift (z) and phenotype
(t) parts together as in Section 5.2, now we will also make use of
superphenotypes (T) and we will split the problem by making use of
the following relations:

p(z, t) = p(t |z, T )p(z|T )p(T ), (16)

fzt = f zT
t f T

z fT , (17)

where the mean of each fraction f in the second row is given by its
corresponding term in the first row. All f’s must be non-negative, and
there are sum constraints

∑
zt fzt =

∑
t f zT

t =
∑

z f T
z =

∑
T fT =

1.
The three-step Dirichlet sampling method consists of drawing, in

sequence, values of fT, then f T
z , then f zT

t from individual Dirichlet
distributions, using appropriate source counts from the calibration
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survey to define the ni in each. When sampling distributions that
span multiple redshifts (namely f T

z and fT) we will, however, rescale
the ni so as to inflate the variance of the Dirichlet distribution to the
level expected for the sum of shot noise and sample variance. The
key input is the normalized variance from equation (2) which we will
label as λz ≡ Var(Nz)/Nz. The terms on the right-hand side of the
equation can be estimated from theory as in Section 4.

The first sampling step is to draw a set of fT given the counts MT of
each superphenotype in the calibration sample. For this purpose we
define λ̄ = 〈λz〉 as the mean ratio of (shot+sample) variance to shot
noise. We then draw fT from a Dirichlet distribution that scales the
observed counts in a manner that generates the desired total noise:

(i) fT ← Dir(MT /λ̄).

Recall that the superphenotypes were chosen to span large enough
redshift ranges that their counts are nearly uncorrelated by sample
variance. Thus, this noise-inflated Dirichlet draw will approximate
the conjugate to the true distribution for MT, which is essentially a
coarse redshift binning of the sources. The method is not exact, in
the sense that the real λz do change with z (Fig. 2, upper right), while
our Dirichlet partition must assume a fixed λ̄ over the full range.

One important facet of this stage is that it does not require
redshift information. The counts MT can be made over all calibration
fields with deep photometry sufficient to assign (super)-phenotypes,
without the need for redshift assignments. This allows reduction of
shot noise and sample variance in this step – which was noted by
Buchs et al. (2019) as the largest noise source in their implementation
of phenotypic redshifts.

The next step is to draw values of f T
z , i.e. distribute the probabil-

ities fT into redshift bins. We compute for every superphenotype T
the noise excess λT =

∑
zλz p(z|T) ≈

∑
zλzMzT/MT. A sample of the

fzT = f T
z fT are then generated by

(ii) fzT ← Dir(MzT /λT ) fT .

Here, MzT are the counts of calibration survey galaxies in both
redshift bin z and superphenotype T. These counts must be drawn
from a calibration field with high-quality redshift assignment. A
shortcoming of this step is that the Dirichlet distribution assumes
no correlation between fluctuations in distinct z bins (except those
induced by the

∑
f = 1 constraint), whereas we know that sample

variance does have a finite correlation length in z. Fig. 14 shows
inter-bin density correlations are <0.1 at %z ≥ 0.05 for z ! 1 in
the COSMOS2015 fields. Our method will hence not sample the
large-scale structure faithfully on scales below %z ≈ 0.05.

Finally, we wish to draw a sample of the f zT
t probabilities,

i.e. to distribute the probability of a given redshift bin among the
phenotypes t at that redshift. Because the superphenotypes T are
nearly disjoint in redshift, we opt to simplify this process at some
small loss in accuracy by summing over superphenotypes, and using
f z

t ≡ p(t |z) instead of p(t|z, T) by executing the following step for
each redshift bin z:

(iii) ftz ← Dir(Mtz) fz; with fz =
∑

T

fzT .

In this case Mtz are the galaxy counts in joint redshift-phenotype
space, which again requires a high-quality redshift calibration field.

Note that there is no sample-variance inflation factor λ in the final
sampling step, since we are assuming that the sample variance is
strictly a redshift phenomenon – within a redshift bin, the phenotype
assignments are assumed to have only shot noise. This also means
that our sampling method is thus assuming that all phenotypes have
the same bias.

In summary, this sampling method for fzt works by splitting the
redshift and phenotype parts of the problem and takes advantage of
our knowledge of sample variance across redshift from the previous
Sections by inflating the variance in the redshift axis. This ‘3sDir’
method reduces to the basic Dir method described above when λT =
1 at all T.

The splitting into z and t samplers enables lower noise for the case
where one has more calibration data with high-quality photometry
than with high-quality redshift information. One could generalize
this method to allow, for each phenotype, combining calibration
fields with differing levels of redshift uncertainty (e.g. spectroscopic
versus many-band photometric redshifts). This is left for future work.

6 VA L I DAT I O N IN SI M U L AT I O N S

We apply the three sampling strategies described in Section 5 (BT,
Dir, and 3sDir) to the sky patches defined on the MICE simulation
and we test their accuracy in reproducing the true uncertainties from
sample variance. We use the 247 patches of the simulation (described
in Section 2). For any single patch, each of the three methods is able
to produce a number of realizations of the fz = p(z) function, and
we can test if those realizations accurately describe the uncertainties
of the redshift distribution coming from that patch. For the 3sDir
method, we utilize the sample variance theory characterization of
Section 4 as an input to the method.

As a first test of the sampling methods, we randomly choose
two patches from the simulation, and produce realizations of fz
from them using the three different sampling schemes (BT, Dir,
and 3sDir). In Fig. 10, the three panels on the left-hand column show
the true redshift distribution of the galaxy population (in grey) and
violin plots for the sampling of the redshift distribution from the two
random patches by the three different methods, BT, Dir, and 3sDir,
in the upper, centre, and lower panels, respectively. For the first two
cases, bootstrap and basic Dirichlet, the uncertainties coming from
the sampling are underestimated and do not cover the true redshift
distribution of the population, and both methods perform similarly.
The 3sDir method does a much better job, with the sampling
containing the true distribution. The panels in the right-hand column
show the distribution for the mean of each of the samples of the
redshift distribution produced by the three schemes, minus the true
mean redshift of the population. The BT and Dir methods yield
very tight distributions for the mean redshift difference, but not
containing the truth value of zero. In contrast, the 3sDir method
shows wider distributions of the mean redshift, containing the truth
for both patches.

A more quantitative test of the fidelity of the sampler of fz is to
compute the pull distribution of the mean-z errors. For each simulated
patch i, we generate 100 samples j = 1. . . 100 of fz, then calculate
the mean redshift z̄ij for each distribution. For a given patch we
can then calculate a mean error z̄i over the samples and a standard
deviation %(z̄)i . The ‘pull’ (ztrue − z̄i)/%(z̄)i for the 247 patches
should approach a Normal distribution N (0, 1) if the sampler is
properly estimating the total uncertainty in the redshift distribution,
and is unbiased, and if the uncertainties are Gaussian. Similarly, we
can compute the standard deviation σ z of the redshift distribution for
each sample from each patch; and we can plot the pull distribution
of this summary statistic of p(z).

Fig. 11 shows the pull distribution of both z̄ and σ z for each of the
three sampling methods. As expected from the test in Fig. 10, both
the bootstrap and the basic Dirichlet method perform poorly in the
comparison with a Gaussian N (0, 1). On the other hand, the 3sDir
method performs very well in that comparison (see inset panels
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Figure 10. Two random patches chosen from the simulation. We show, for each sampling method (BT, Dir and 3sDir), the sampling of the redshift distribution
of the patches (left) and its mean redshift relative to the true mean (right). The true redshift distribution of the population is shown in grey, and the true mean
redshift as the vertical dashed line. Clearly only the 3sDir method generates samples with uncertainties large enough to include the truth values.

Figure 11. (Left-hand panel): Pull distribution for the mean of the redshift distribution z̄ for each of the three sampling methods. If uncertainties are well
behaved, pulls should approach a Gaussian N(0, 1) (in grey). Inset shows a zoom in for the 3sDir method. (Right-hand panel): Same as in left-hand panel, but
for the standard deviation of the redshift distribution.

in Fig. 11), demonstrating that the method properly captures the
sample variance uncertainties in the mean and width of the redshift
distributions. Both the mean and the width of redshift distribution
are key properties for galaxy clustering and cosmic shear studies.

Another quantity that we would like our sampling scheme to
reproduce well is the (normalized) redshift variance Var(Nz)/Nz as
a function of z. That is, we would like the samples to span the
same range of Nz as is expected from the combination of shot and

sample variance. As seen in Figs 2 and 6, this quantity has significant
redshift dependence in both simulations and theory. Fig. 12 shows the
3sDir method succeeds in producing samples that follow the expected
redshift dependence in normalized variance. On the contrary, the BT
and Dir methods yield variances consistent with pure shot noise, far
below the sample variance level.

With this we have shown how the proposed three-step Dirichlet
sampling scheme can reproduce the uncertainties from sample
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Figure 12. Normalized variance in the samples of the redshift distribution as
a function of redshift, Var(Nz)/Nz, for the three sampling methods (violins).
Sample variance and shot noise estimates are shown in grey and black.

variance in the redshift distribution, its mean, its width, and its
variance as a function of redshift.

7 A P P L I C AT I O N TO TH E C O S M O S 2 0 1 5 DATA
SET

We now apply the methods of the previous sections to real data,
namely the COSMOS2015 catalogue (Laigle et al. 2016), which pro-
vides high-quality redshift estimates at high completeness over the
colour–magnitude space down to faint magnitudes. COSMOS2015
has played a key role in the redshift characterization of many past
and current cosmological analyses using lensing surveys (Bonnett
et al. 2016; Hildebrandt et al. 2018; Hoyle et al. 2018; Hamana et al.
2019; Hikage et al. 2019). We produce resamplings of this catalogue
(reweightings) that realize uncertainties from both shot noise and
sample variance.

7.1 Redshift estimates

The COSMOS2015 catalogue from Laigle et al. (2016) provides
photometry in 30 different UV/visible/IR bands, and probability
distribution functions (PDFs) p(z) for the redshift of each galaxy
based on this photometry using the LePhare template-fitting code
(Arnouts et al. 1999; Ilbert et al. 2006). Due to the extensive
photometric coverage of the catalogue, the redshift performance is
very good: For bright galaxies, the typical p(z) widths are ∼0.01(1
+ z), with outlier rates around 0.5 per cent, while for fainter, high-
redshift galaxies it goes to p(z) widths of ∼0.023(1 + z) and
outlier rates of about 13 per cent. For the results in this work, we
use the redshift estimates of ZMINCHI2, which is the 30-band
photometric redshift point prediction corresponding to the minimum
χ2 fit between fluxes and templates, and throughout this section, we
use a redshift binning of width 0.05 between redshift 0.06 and 5.01,
what makes a total of 99 redshift bins.

Figure 13. (Upper panel): Redshift distribution for the COSMOS2015
galaxies used in this section. (Lower panel): Redshift distributions for the
different superphenotypes made for the COSMOS2015 data. This is similar
to Fig. 4 in the simulation. The overlap metric of equation (4) for this case is
Ôz = 0.93.

7.2 Phenotype characterization

Similar to our treatment of the MICE2 simulations, phenotypes for
COSMOS2015 are defined as cells in an SOM which is trained on
photometric data. In this case, we use the following photometric
bands: {u, B, V, r, ip, zp, J, H, Ks}. We limit our sample to
galaxies with mag(ip) < 25.5. Quality cuts on the data2 yield a
total of 305,835 galaxies placed in the SOM. For classifying the
COSMOS2015 catalogue, we make substantial changes to the SOM
algorithm with the purpose of improving the classification of galaxies
of modest S/N, and to allow magnitude information (not just colours)
to be used in redshift estimation. These improvements to the SOM
algorithm are detailed in Appendix A. For present purposes it suffices
to note that the COSMOS2015 galaxies are each assigned to one of
64 × 64 = 4096 phenotypes defined by an SOM cell.

As described for the MICE simulation in Section 3.2 and Fig. 4, we
divide the COSMOS2015 phenotypes into six superphenotypes by
partitioning a list of all phenotypes ordered by their mean redshifts.
Due to the large redshift range of the COSMOS2015 galaxy sample,
we create four equally spaced superphenotypes between redshift 0
and 1.75, and then two-equally spaced high-redshift superphenotypes
between redshift 1.75 and 5. The phenotypes resulting from this
prescription are shown in Fig. 13, and they have an overlap metric of
0.93, computed as in equation (4).

7.3 Sample variance estimation

We produce a theoretical estimate for sample variance (SV) using
the methods of Section 4. For simplicity we fix all cosmological
parameters to their best-fitting Planck 2018 values, as obtained
by fitting the #CDM model to the combination of the Planck
measurements of CMB temperature and polarization, Planck CMB

2We select objects with TYPE= = 0, FLAG PETER= = 0,
B IMAFLAGS ISO= = 0, B FLUXERR APER3>0, where B runs over all
photometric bands we use.
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Figure 14. Theory prediction of sample correlation as a function of redshift
separation for the COSMOS sample. Different colours represent different
redshifts, as indicated in the legend.

lensing reconstruction and Baryon Acoustic Oscillations measure-
ments (Aghanim et al. 2018). Specifically these are physical baryon
density $bh2 = 0.02242, physical CDM density $ch2 = 0.11933, the
reduced Hubble constant h = 0.676, the amplitude of the primordial
scalar spectrum 109As = 2.105 and its tilt ns = 0.9665. The crucial
part in the prediction of SV is the modeling of galaxy bias. As in
Section 4.1 we first extract bias from the COSMOS data by fitting the
amplitude of the measured correlation function at different redshifts.
Then we use the halo model and we fit its parameters to reproduce the
observed COSMOS redshift distribution so that we can predict the
value and redshift evolution of bias. We find that these two procedures
produce results that match to satisfactory accuracy.

After the recipe for galaxy bias is obtained we proceed with
the estimate of SV following equation (10) with a smoothing filter
obtained assuming circular survey geometry matching the area of the
COSMOS field. In this case, since we are not matching a simulation,
we produce an estimate of the full sky SV, taking into account
contributions coming from all scales bigger than the COSMOS patch.
The resulting SV qualitatively follows the previous results in Fig. 6,
decreasing as redshift increases.

The cross-correlations between different redshift bins,
Corr(%̂z, %̂z′ ) = SV(z, z′)/[

√
SV(z)

√
SV(z′)], are independent

of bias modeling and depend on the long modes along the line of
sight. Fig. 14 plots predicted correlation coefficients as a function
of redshift separation and at different redshifts. At low redshift (z
∼ 1), sample correlation decays quickly in redshift and becomes
negligible at a redshift separation of %z ∼ 0.1. On the other hand,
the decay is slower at higher redshift. The correlation predictions
can be used to choose appropriate smoothing functions for the
resampled COSMOS2015 redshift distributions, a topic that we will
defer to future work.

7.4 Sampling

We can now apply the 3sDir sampling method from Section 5
and produce realizations of the COSMOS2015 redshift distribution
that include uncertainties from sample variance and shot noise. For
that, we will use as inputs both the phenotype and superphenotype
definitions of Section 7.2 and the theory sample variance estimation
of Section 7.3. We will apply the sampling method as described
in Section 5.3, and we will assign the minimum sample variance
contribution to the two high-redshift superphenotypes defined in
Section 7.2. Fig. 15 shows the result of the 3sDir sampling method

applied to the COSMOS2015 data sample. The upper-left panel
shows the COSMOS2015 redshift distribution together with the mean
and standard deviation of the samples in each redshift bin. The lower-
left panel shows the normalized redshift variance that was input to
the sampling method, compared to the normalized redshift variance
of the samples, showing generally good agreement. The right-hand
panels show the distributions of the mean redshift difference between
the samples and the input COSMOS2015 data, for the entire redshift
range and for a subset at lower redshift. In those panels, we also show
the distribution corresponding to shot noise only, without sample
variance, for comparison. For the entire redshift range (0 < z < 5)
the 3sDir method shows a mean redshift dispersion of 0.019 (0.002
for shot noise only), while for the lower redshift subsample (0 < z

< 1.5) it goes down to 0.0097 (0.0008 for shot noise only).
We release with this paper a set of 1000 realizations of the

COSMOS2015 n(z) produced by the 3sDir method, which anyone
can use to propagate the shot and sample variance of COSMOS2015
into their own analyses. This is presented as a table with 305,835
rows (one for each COSMOS galaxy passing the quality and ip <

25.5 cuts); there are columns for the COSMOS2015 ID number
of the galaxy, its ZMINCHI2 redshift, and the bin number z and
phenotype t to which it is assigned in the SOM. There are then
1000 columns labelled by index j containing weights to apply to the
galaxies to realize the jth 3sDir sample. The weights are equal to
wij = f

j
tz ∗ Mtot/Mtz, where f

j
tz is the value of ftz 3sDir sample for

the tz bin to which galaxy i belongs; Mtot = 305, 385, and Mtz is the
number of COSMOS2015 galaxies falling into the tz bin. The file
containing the table described above can be downloaded in FITS
format from this link.3

To use the 3sDir resamplings, a user makes any particular cuts
they desire to the galaxy sample; defines their own redshift bins; and
then makes a histogram of the galaxies in these bins, weighting by
the wij. Each column will yield an independent sample of the n(z).

8 SU M M A RY A N D C O N C L U S I O N S

Redshift uncertainties have become one of the leading contributions
to the systematics budget of imaging galaxy surveys. In particular,
they are important enough to bias cosmological constraints in a way
that different surveys can be at tension between themselves and with
results from other probes such as the CMB, and hence it is crucial to
properly include them in cosmological analyses.

Such uncertainties in the redshift distribution of a galaxy popula-
tion arise mostly because of the limited knowledge of the colour–
redshift relation, which usually comes from prior knowledge in small
patches of the sky known as calibration samples. In those samples,
galaxy redshifts are known either through spectroscopy or from high-
quality photometry, and they have associated uncertainties regarding
those estimations. In addition, due to the small size of calibration
fields, sample variance from large-scale structure becomes an im-
portant source of uncertainty (Cunha et al. 2012). In this paper,
we have studied in detail the impact of sample variance and shot
noise in the uncertainties associated with the redshift distributions of
calibration samples, both from theory and N-body simulations, and
we have proposed a new scheme to produce realizations of redshift
distributions including those uncertainties.

In addition, using the techniques described above and a dedicated
SOM algorithm, we have applied the scheme to the COSMOS2015
data sample, producing a theory estimate of the sample variance

3https://cosmos2015resampling.shortcm.li/sbrdMS
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Figure 15. (Upper-left panel): Redshift distribution for the COSMOS2015 galaxies, and 1σ error bars for the samples produced in this work, which include
uncertainties from shot noise and sample variance. (Lower-left panel): Input normalized redshift variance to the sampling method, together with resulting
normalized redshift variance for the samples produced. Uncertainties on the latter come from bootstrap resampling. (Right-hand panels): Distributions of mean
redshift for the redshift distribution samples produced, both for the whole redshift range (upper), and for a subset at low redshift (z < 1.5) (lower). We also show
the distributions corresponding to shot noise only, without sample variance, for comparison.

contribution for that particular data set, and then generating (and
making public) 1000 realizations of its redshift distribution that
include the effects of shot noise and the estimated sample variance.
From those realizations, we compute an uncertainty in the mean
redshift of the COSMOS2015 population to be around 2 per cent
(21 per cent for z < 1.5). That uncertainty is comparable to the
redshift uncertainties estimated in cosmological analyses that have
used COSMOS2015 as redshift prior (e.g. Hoyle et al. 2018),
which highlights the importance of correctly propagating it into
cosmological constraints from galaxy surveys.

In summary, this work introduces three main advances to the
problem of propagating redshift uncertainties into the analysis of
imaging galaxy surveys:

(i) A theoretical approach to estimating the sample variance con-
tribution to the uncertainty in the redshift distributions of calibration
fields. A theoretical estimate has several advantages over a direct
estimation from N-body simulations, such as the unlimited redshift
range and the possibility of handling different modeling effects such
as cosmology dependence.

(ii) A sampling scheme, based on the Dirichlet distribution, to
produce realizations of the redshift distribution of a calibration field
given estimates of shot noise (which can be taken directly from the
data) and sample variance (given by (i) or by simulations). The
realizations are able to correctly reproduce the sample variance
impact in the uncertainty in the mean and standard deviation of
redshift distributions, and the redshift trend of the number counts
uncertainty.

(iii) A new SOM algorithm designed to improve the phenotype
classification of galaxies of modest S/N, and to allow magnitude
information (not just colours) to be used in redshift estimation.

These new elements of redshift calibration presented in this
work provide an appropriate way of including sample variance
uncertainties into the redshift uncertainty budget, which was an
important missing piece in past analyses. This work will therefore
contribute to an improved N(z) characterization in current and future
real survey data, which is a key part of the overall systematic
uncertainties in future weak lensing and galaxy clustering analyses.
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APPENDIX A : COSMOS2015 SOM

In this appendix, we describe the SOM created with COSMOS2015
data, which is used in Section 7 to define the phenotypes of that
sample. The use of SOMs to discretize the galaxy colour/magnitude
space has been discussed extensively in previous works (e.g. Masters
et al. 2015; Buchs et al. 2019; Speagle et al. 2019), and we refer

the reader to those works and references therein for more details
about the standard SOM algorithm. Here, we will describe the ways
in which the algorithm we apply to COSMOS2015 differs from
previous implementations.

The gist of the algorithm is as follows: first, we have a population
of objects (galaxies) labelled by i = 1, 2, . . . , Nobj, each of which
has a measured feature set Fi in a dF-dimensional space consisting
of, in our cases, the fluxes of the object in the u, B, V, r, ip, zp, J, H,
and Ks bands. In our case we also have measurement uncertainties
σ i corresponding to each Fi – the standard SOM algorithm does not
allow for measurement errors in the training set, so this is one aspect
we wish to address.

The SOM is defined by discrete set of points xc in an dSOM-
dimensional space. Typically these are placed in a regular grid in
dSOM = 2 dimensions for photo-z applications. Each such ‘cell’
is assigned a location in the feature space, Fc = F(xc), known as
the ‘weights’ for the cell in the SOM literature. The final step in
specifying the SOM is to define some distance measure r(Fc, Fi , σ i)
between a cell and an object. Typically this is taken as the Euclidean
metric |Fc − Fi|, but this is not required. There is in fact no need for
r to satisfy the conditions of a metric, nor even to be symmetric in
its arguments. Below we will describe a distance function which is
much more desirable in the photo-z application than the Euclidean
distance.

An arbitrary object i is assigned to an SOM cell by simply selecting
the cell c which minimizes r(Fc, Fi , σ i). The SOM literature calls
c the ‘best matching unit’ (BMU) for the object.

The algorithm for assigning the weights Fc to the cells using
a sequence of training objects Fj, j = 1, 2, . . . , Ntrain from the
population is

(i) initialize the weights to a set F(0)
c in the regime spanned by the

data;
(ii) for each training point j, find its BMU, then alter the full set

of weights according to

F(j )
c = F(j−1)

c + A(j )H (xc − xBMU, j ) "
(

F(j−1)
c , Fi , σ j

)
. (A1)

In the training phase, we have a shift in the feature space, ", to
draw the BMU weights towards the training object. In the standard
algorithm " is simply Fi − F(j−1)

c , but we will alter this. The
function H describes a neighbourhood around the BMU in the SOM
space which is dragged towards the training point, which contracts
with advancing iterations j. Finally, there is an overall learning rate
A which also typically decreases as training proceeds.

We adopt the functional forms for A and H given by Speagle et al.
(2019). We adopt a regular grid of x in two dimensions for our cells,
as have other photo-z applications, in our case a 64 × 64 array. We do
not adopt period boundary conditions in SOM space, because there
is no natural periodicity in the feature space of galaxy colours and
magnitudes.

The main alterations we make to previous methods are to the
distance function r and the training shift ". Previous works have
struggled with the choice between using fluxes, magnitudes, and/or
colours as the elements of the feature space. Fluxes are the natural
space in the sense that measurement errors are nearly Gaussian in
flux space, making a Euclidean distance the best match to a (log)
probability in flux space. It is also true, however, that galaxy colours
– i.e. ratios of fluxes, or differences in log(flux) – are more sensitive
indicators of redshift than are fluxes, making a Euclidean metric
in colour a better way to group galaxies into cells of common
redshift. For this reason, most SOM-based photo-z techniques use
colours as features. But this method fails catastrophically when one
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Figure A1. The COSMOS2015 SOM, coloured by the mean redshift in each
cell. White cells have no members.

or more bands have modest or low S/N (or when observed fluxes are
negative!), as colour becomes wildly uncertain, and the measurement
noise can come to dominate the choice of BMU. We want our
functions r and " to respect the meaning of the error bars, and not use
unreliable information to classify objects or train the SOM. A further
shortcoming of pure colour-based SOMs is that redshift is known to
very with flux (or magnitude) at fixed colour, as demonstrated by
Speagle et al. (2019) and Masters et al. (2019). We therefore want a
distance function with sensitivity to overall flux or magnitude level,
but much more weakly than to colour.

The solution we find is as follows. First, we use fluxes as our
features, so that negative measured fluxes can be treated properly.
But we force the cells to have positive weights (fluxes), since we
consider the cell weights to be noiseless galaxy ‘templates’. We then
define a nominal distance function to be a sum over the elements
of the flux vector (indexed by band b) as follows. First, we convert
the object and cell fluxes into units of signal-to-noise ratio (SNR),
specifying a maximum for the object SNR as a means of softening
the specificity of the cells:

sib ≡ max (σib, Fib/SNRmax) , (A2)

νib ≡ Fib/sib, (A3)

νcb ≡ Fcb/sib. (A4)

Next we define a weighting function that will be used to transition
from the high- to low-SNR regimes:

wib = e2(νib−4). (A5)

Now we define a distance function

r̃(Fc, Fi , σ i) =
∑

b

[
asinh νcb + wib log 2νcb

1 + wib

− asinh νib

]2

×
(
1 + ν2

ib

)
, (A6)

which has the desirable properties of approaching Euclidean in log-
flux at high SNR, and Euclidean in linear flux at low SNR, weighting
each band by its SNR (up to a maximum), and monotonically
increasing away from Fi = Fc.

The final step is to make the cells ‘fuzzy’ in overall flux level, in
the sense of Speagle & Eisenstein (2017), by allowing the cell fluxes
to be scaled by an overall constant es:

r(Fc, Fi , σ i) = inf
s

[
r̃(es Fc, Fi , σ i) + s2

σ 2
s

]
. (A7)

The cell’s fluxes are thus rescaled to find the minimal distance to the
object’s fluxes, subject to a penalty that is quadratic in the log of the
scaling factor. The parameter σ s determines, essentially, the width in
magnitudes of the smeared cells. We thus realize a distance that can
be quite sharp in any colour while being broad in overall flux.

We will not detail the shift function " here, just noting that it
operates as a simple shift in log-flux space when SNR is high in a
given band, but produces no shift during training in bands where the
difference between the flux of the training object and the flux of the
cell have less than 2σ significance.

The COSMOS2015 SOM is created using SNRmax = 50, which
essentially sets the sensitivity to colour at ≈0.02 mag; and with σ s =
0.4, which sets the sensitive to overall flux at ≈0.4 mag. Fig. A1
shows the mean redshift of COSMOS2015 galaxies assigned to each
SOM cell, plotted across the SOM space x. The redshift standard
deviation of galaxies assigned to each cell has a median of 0.21. Keep
in mind that the SOM was constructed without regard to redshift. The
smooth behaviour of redshift across the SOM shows that the variation
of redshift in the 9-band flux space is reasonably well traced by the
embedded 2D manifold defined by the SOM.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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