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Abstract

We consider dynamics driven by interaction energies on graphs. We intro-
duce graph analogues of the continuum nonlocal-interaction equation and interpret
them as gradient flows with respect to a graph Wasserstein distance. The particular
Wasserstein distance we consider arises from the graph analogue of the Benamou—
Brenier formulation where the graph continuity equation uses an upwind interpola-
tion to define the density along the edges. While this approach has both theoretical
and computational advantages, the resulting distance is only a quasi-metric. We
investigate this quasi-metric both on graphs and on more general structures where
the set of “vertices” is an arbitrary positive measure. We call the resulting gradient
flow of the nonlocal-interaction energy the nonlocal nonlocal-interaction equation
(NL2IE). We develop the existence theory for the solutions of the NL?IE as curves
of maximal slope with respect to the upwind Wasserstein quasi-metric. Further-
more, we show that the solutions of the NL*IE on graphs converge as the empiri-
cal measures of the set of vertices converge weakly, which establishes a valuable
discrete-to-continuum convergence result.
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Notation
We list here some symbols used throughout the paper.
e M(A) is the set of Borel measures on A € R<.
e MT(A) is the set of non-negative Borel measures on A.
e P(A) C M™T(A) is the set of Borel probability measures on A.
e P(A) C P(A) stands for the elements of P(A) with finite second moment,

that is,

Ma(p) = fA|x|2 dp(x) < o0.

e Cp(A) is the set of bounded continuous functions from A to R.
e a; := max{0, a}anda_ := (—a) are the positive and negative parts of a € R.
o 1€ MH(RY) sets the underlying geometry of the state space; it is sometimes

referred to as base measure.
p € P(R?) denotes a configuration; the natural setting is that supp p < supp i,
although we allow for general supports as needed for stability results.

e n: {(x,y) e R x RY : x # y} — [0, 00) is the edge weight function.
e G={(x,y) e R xR?:x # vy, n(x,y) > 0} are the edges.
e 01 ® pr € MH(G) is the product measure of py, p» € M+ (R?) restricted to

G.

eyi=pQuandy, =puQ p.
° ZaS(G ) is the set of antisymmetric graph vector fields on G, deﬁne_d in (1.6).
e Vf is the nonlocal gradient of a function f: R? — R, while V - j is the

nonlocal divergence of a measure-valued flux j € M(G); see Definition 2.7.

e A stands for the action functional; see Definition 2.3.
e 7 denotes the nonlocal transportation quasi-metric; see (2.22).
e CE7(po, p1) denotes the set of paths (solutions to the nonlocal continuity equa-

tion for densities (1.7) or measures (2.12)) on the time interval [0, T'] connecting
two measures pg, p| € P(Rd); we set CE := CE;.

Let us also specify the notions of narrow convergence and convolution. A sequence

(0

o"

"), C M(A) is said to converge narrowly to p € M (A), in which case we write

— p, provided that

Vf e Ch(A), /fdp"—>/fdp asn — o0.
A A
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Given a function f: A x A — Rand p € M(A), we write f * p the convolution
of f and p, that is,

f*px)= / f(x,y) dp(y) foranyx € A such that the right-hand side exists.
A

1. Introduction

We investigate dynamics driven by interaction energies on graphs, and their
continuum limits. We interpret the relevant dynamics as gradient flows of the in-
teraction energy with respect to a particular graph analogue of the Wasserstein
distance. We prove the convergence of the dynamics on finite graphs to a contin-
uum dynamics as the number of vertices goes to infinity. To do this we create a
unified setup where the continuum and the discrete dynamics are both seen as par-
ticular instances of the gradient flow of the same energy, with respect to a nonlocal
Wasserstein quasi-metric whose state space is adapted to the configuration space
considered.

Let us first introduce the problem on finite graphs where it is the simplest to
describe.

1.1. Graph Setting with General Interactions

Consider an undirected graph with vertices X = {xy, ..., x,} and edge weights
wy,y = 0, satisfying wy , = wy  for all x, y € X. Although technically not nec-
essary, we impose the natural requirement that w, y = 0. The interaction potential
is a symmetric function K : X x X — R, while the external potential is denoted
P: X — R. We consider a “mass” distribution p: X — [0, 00), and we require
Y rex Px = 1. Thetotal energy £x : P(X) — Risacombination of the interaction
energy £ and the potential energy Ep:

1
Ex(P) =E1(P) +Ep(P) =5 ) Y Kuypepy + D Pepr.  (ILD)

xeX yeX xeX

The gradient descent of £x that we study is described by the following system of
ODE for the mass distribution:

dpoy 1

=5 2 Uey = v wy, (1.2)
yeX
. 1
Jx,y = Z(,Ox(vx,y)+ - Py(vx,y)—)v (1.3)
ey == p(Ky = Ki) = (Py = Po). (1.4)
zeX

The quantitiesv: X x X — Rand j : X x X — R are defined on edges and model
the graph analogues of velocity and flux. An evolution by such system is illustrated
on Fig. 1. The system (1.2)—(1.4) is the gradient flow of the energy £x with respect
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Fig. 1. A solution of the nonlocal-interaction equation on graphs driven by the energy (1.1).
We consider a graph based on 240 sample points X from a 2D two-moon data set. The
connectivity distance is ¢ = 0.7. The edge weights are wy y = exp(—6|x —y|2) iflx—y| < e
and zero otherwise. The interaction potential is Ky y = 1 — exp(—d(x, y)2 /10), where
d(x, y) is the graph distance between vertices x and y of X with edge weights 1/wy,y, and
the external potential is P = 0. The solution, starting from a uniform distribution, is shown
at time ¢ = 60. Brighter color indicates more mass

to a new graph equivalent of the Wasserstein metric. The concept of Wasserstein
metrics on finite graphs were introduced independently by CHOw et al. [14], MAAsS
[36], and MIELKE [37,38]. All of the approaches rely on graph analogues of the
continuity equation to describe the paths in the configuration space. On graphs the
mass is distributed over the vertices and is exchanged over the edges. Hence, the
analogues of the vector field and the flux are defined over the edges. However, the
flux should be the product of the velocity (an edge-based quantity) by the density
(a vertex-based quantity). Thus, one has to interpolate the densities at vertices to
define the density (and hence the flux) along the edges. The choice of interpolation
is not unique, and has important ramifications.

While the overall structure of our setup is derived from one in [36], which we
recall in Section 1.4; the form of the interpolation used is related to the upwind
interpolation used in [14] and is almost identical to one in [13]. While in [14]
the authors considered only the direction of the flux due to the potential energy to
determine which density to use on the edges, in our case the density chosen depends
on the total velocity and we furthermore include the interaction term which itself
depends on the configuration. In particular, we use an upwind interpolation based
on the total velocity. In the context of graph Wasserstein distance, such interpolation
was first used by CHEN et al. [13].

The “velocities” v we consider can be assumed to be antisymmetric: v, , =
—vy x forallx, y € X.Inthe graph setting, which we normalize in order to consider
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limit n — o0, the continuity equation with upwind interpolation is obtained by
combining (1.2) with the flux-velocity relation (1.3). Similarly to [36] and exactly
as in [13], we define the graph Wasserstein distance by minimizing the action,
which is the graph analogue of the kinetic energy:

1
A(p,v) = ; Z Z(Ux,y+)2wx,ypxo

xeX yeX

As in [13,14,36,38], the graph Wasserstein distance is defined by adapting the
Benamou—Brenier formula:

1
T p"? = inf / Ap(1), v(1)) dr,
(p,v)eCEx (p%,p1) J 0

where CEx (p?, p!) is the set of all paths (i.e., solutions of (1.2)—(1.3)) connecting
p%and p'.

It is important to observe that, in our setting, 7 is not symmetric (that is,
T(,oo, ,01) is in general different from ’T(pl, ,00)). The reason for this is that in
general, A(p, v) # A(p, —v). Therefore the nonlocal Wasserstein distance which
arises from the upwind interpolation is only a quasi-metric. The action A(p, v)
provides a Finsler structure to the tangent space, instead of the usual Riemannian
structure. Formally the system (1.2)—(1.4) is the gradient flow of £x with respect to
this Finsler structure; we present a derivation of this fact in a more general setting
in Section 3.1. The system is also the curve of steepest descent with respect to
quasi-metric 7, which is the point of view we use to create rigorous theory in the
general setting.

Remark 1.1. The well-posedness of (1.2)—(1.4) is a straightforward consequence
of the Picard existence theorem. Namely, note that the simplex 1 = p, = 0,
Y rex Px = lis an invariant region of the dynamics and that on it the vector field
(1.4) is Lipschitz continuous in p,, x € X.

Remark 1.2. One could consider other interpolations instead of the upwind one.
In particular, if we considered an interpolation of the form I (o, py) instead of the
upwind one, the only change in the gradient flow would be that the velocity-flux re-
lation (1.3) would become j,,, = rlll (ox» Py)Vx,y. We note that this can have major
implications on the resulting dynamics. In particular, for the logarithmic interpola-
tion, I(r, s) = (r —s)/(Inr — Ins), or the geometric interpolation, I (r, s) = /rs,
the resulting dynamics would never expand the support of the solutions, so even
for repulsive potentials the mass may not spread throughout the domain. On the
other hand, using the arithmetic interpolation, I (r, s) = (r +s)/2, would not work
directly since the solutions may become negative. In this case additional technical
steps, like a Lagrange multiplicator as in [39], are necessary to obtain the evolution
of a non-negative probability density. We use the more physical inspired upwind
flux, which automatically ensures the positivity of the density.

Before we turn to the general setting we point out that the system (1.2)—(1.4)
offers a new model of graph-based clustering, which is briefly discussed in Sec-
tion 1.5.
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1.2. General Setting for Vertices in Euclidean Space

Here we introduce the general framework for studies of interaction equations
on families of graphs and their limits as the number of vertices n goes to co.
In particular, in the applications to machine learning which we briefly discuss in
Section 1.5, the graphs considered are random samples of some underlying measure
in Euclidean space, and the edge weights, as well as the interaction energy, depend
on the positions of the vertices. The vertices are points in R?. The edges are given
in terms of a non-negative symmetric weight function n: {(x,y) € RY x R? :
x # y} — [0, 00), which defines the set of edges as G = {(x, y) € RY x RY .
x # y, n(x,y) > 0}. From the discrete setting, the set of vertices is replaced
by the more general notion of a measure on R?; the discrete graphs with vertices
X = {x1....,x,} C R¥ correspond to 11 being the empirical measure of the set of
points, u = rll > 8x;. The distribution of mass over the vertices is described by
the measure p € P(R?) and in most applications we consider supp p  supp u.
However, in order to prove general stability results (e.g., Theorem 3.14), we need
to allow that initially part of the support of p is outside of the support of 1 ; we think
of such mass as outside of the domain specified by . The mass starting outside of
the support of & can only flow into the support of 1. Here we present the evolution
assuming p < u, while in Sections 2 and 3 we present the setup in full generality.
Furthermore, we denote by p both the measure and its density with respect to u.

The evolution of interest is the gradient descent of the energy & : P(RY) — R
given by

1
E(p) = —/ / K(x,y) dp(x) dp(y) +/ P(x) dp(x), (1.5)
2 Rd Rd ]Rd

where K : R? x R? — R is symmetric and P : R? — R. This energy generalizes
(1.1) in terms of the configurations p and specializes it in terms of the type of
potentials K and P considered. In fact, from now on we omit the subscripts X
referring to the vertices (e.g. in the energy) since our general setting allows for
distribution of mass outside of the support of . The gradient flow we consider
takes the form

00 (x) = —/Rdj,(x, yn(x,y) du(y) =: _(6 AYE)
2
Ji(x, y) = pr (v (x, ) — pr (e (x, y)—, (NL“IE)

vi(x,y) =—(K*p,(y) — K*p,(x)+ P(y) — P(x)).

The system (NL?IE) consists first of a nonlocal continuity equation, where the
divergence V- is encoded with the graph structure described through s and 7 (see
Definition 2.7). Secondly, it involves a mapping from velocity to flux, which in our
case is the upwind flux and encodes the geometry of the gradient structure. Finally,
the third equation identifies the driving velocity as the nonlocal gradient of the
variation of the energy (1.5). Overall, we obtain that (NL?IE) is the gradient flow
of the energy £ with respect to a generalization of the graph Wasserstein metric we
now introduce.
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Nonlocal Continuity Equation Let us set
V3(G):={v: G— R:v(x,y) =—v(y, x) forall (x,y) € G} (1.6)

and call its elements nonlocal (antisymmetric) vector fields on G; for any pair
(x,y) € G the value v(x, y) can be regarded as a jump rate from x to y. Let us fix
a final time 7 > O throughout the paper and let a family {v;},cj0,7] C V**(G) be
given. In the case p; < u for all ¢ € [0, T, it is possible to combine the first two
equations in (NL?IE) in order to arrive at the nonlocal continuity equation

atpt(x)+/Rd (or ) v (x, Y) 4 —pr (W (x, y) ) n(x, y) du(y)=0, p-ae. x eR?.
(L.7)

For general curves p: [0, T] — PRY), it is necessary to consider the weak form
of (1.7), which is discussed in Section 2.3.

We remark that the general setup we develop allows for the solution p to de-
velop atoms and persist even after the atoms have formed. Heuristic arguments
and numerical experiments indicate that there are equations covered by our theory
for which this is the case. For example, if © is the Lebesgue measure on R, pg
the restriction of the Lebesgue measure to [—0.5,0.5], K(x,y) = |x — y| and
n(x,y) = 1/(x — y)2, then the solutions develop delta mass concentrations at 0
in finite time. Understanding for which K and n solutions do develop finite time
singularities is an interesting open problem.

We note that when defining the flux in (1.7) we define the density along edges to
be the density at the source; analogously to an upwind numerical scheme. While, as
we show, this leads to a convenient framework to consider the dynamics, it creates
the difficulty that the resulting distance, that we are about to define, is not symmetric
and is thus only a quasi-metric.

Upwind Nonlocal Transportation Metric We use the nonlocal continuity equa-
tion (1.7) to define anonlocal Wasserstein quasi-distance in analogy to the Benamou—
Brenier formulation [6] for the classical Kantorovich—Wasserstein distances [50].
That is, for two probability measures pg, p1 € P> (RY), let

T, (po, p1)*

1
= inf {f // v G, )4 P0G, y) dpr(x) da(y) dt}, (1.8)
(p,v)€CE(po,p1) 0 G

where CE(pp, p1) is the set of weak solutions p to the nonlocal continuity equation
(see Definition 2.14) on [0, 1] with p(0) = pg and p(1) = p;. We note that the
notion of the nonlocal Wasserstein distance for measures on R¢ was introduced by
ERrBAR [23], who used it to study the fractional heat equation. One difference is that
the interpolation we consider is beyond the scope of [23]. Very recently [43] has
extended the gradient flow viewpoint of the jump processes to generalized gradient
structures driven by a broad class of internal energies.

Another difference is that here the measure p plays an important role in how the
action is measured and allows one to incorporate seamlessly both the continuum
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case (e.g., i is the Lebesgue measure on R?) and the graph case (u is the empirical
measure of the set of vertices).

The notions above are rigorously developed in Section 2, where we list the pre-
cise assumption (W) on the edge weight function n and the joint assumptions (A1)
and (A2)y on 1 and the underlying measure p. We then rigorously introduce the
action (Definition 2.3), which is a nonlocal analogue of kinetic energy; we show
its fundamental properties, in particular joint convexity (Lemma 2.12) and lower
semicontinuity with respect to narrow convergence (Lemma 2.9). In Section 2.3
we rigorously introduce the nonlocal continuity equation in measure-valued flux
form (2.12); we introduce the notion on all of RY where  does not initially play
arole. The measure i enters the framework by considering paths of finite action.
Proposition 2.17 establishes an important compactness property of sequences of
solutions. In Section 2.4 we turn our attention to the nonlocal Wasserstein quasi-
metric based on the upwind interpolation, which we introduce in Definition 2.18.
The compactness of solutions of the nonlocal continuity equation and the lower
semicontinuity of the action imply the existence of (directed) geodesics (Proposi-
tion 2.20). We do not characterize the geodesics. Nevertheless we note that this is a
interesting problem. A possible approach in this direction is via duality using nonlo-
cal analogues of the Hamilton-Jacobi equations, similarly to how this problem was
recently treated in the discrete setting in [28,30]. Following the work of ERBAR [23]
we show that the nonlocal Wasserstein quasi-metric generates a topology on the set
of probability measures which is stronger than the W; topology (i.e., the Monge
distance or the 1-Wasserstein metric). Analogously to [2] we show the equivalence
between the paths of finite length with respect to the quasi-metric and the solutions
of the nonlocal continuity equation with finite action (Proposition 2.20). The set of
probability measures endowed with the quasi-metric 7 has a formal structure of a
Finsler manifold, and parts of this structure can be described; in particular, in (2.27)
we describe the tangent space at a given measure p using the fluxes. We note that
using fluxes, instead of velocities, is necessary since, because of the upwinding,
the relation between the velocities and the tangent vectors is not linear (Proposi-
tion 2.26) and in particular not symmetric. For this reason the resulting gradient
structure is also different to the large class of nonlinear, however still symmetric,
flux-velocity relations considered in [43]. We conclude Section 2 by showing that,
given a measure w, the finiteness of the action ensures that any path starting within
the support of 1+ will remain within the support of i (Proposition 2.28).

Nonlocal Nonlocal-Interaction Equation In Section 3 we develop the existence
theory of the equation (NL?IE) based on the interpretation as the gradient flow
of £ with respect to the quasi-metric 7 defined in (1.8). We begin by listing the
precise conditions (K1)—(K3) on the interaction kernel K. We note that these are
less restrictive than the typical conditions for the well-posedness of the standard
nonlocal-interaction equation in Euclidean setting [2,10].

Before we turn to the rigorous theory of weak solutions as curves of maxi-
mal slope on quasi-metric space, we discuss the gradient flow structure in a more
geometric setting, namely the Finsler structure related to 7. Indeed, the action [for-
mally given by the time integrand in (1.8), and rigorously defined by (2.4)] defines
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a positively homogeneous norm (namely a Minkowski norm) on the tangent space.
The Hessian of the square of the norm endows the tangent space at each measure
with the formal structure of a Riemann manifold. We compute this Riemann metric
in “Appendix A” under an absolute-continuity assumption. With this assumption,
we show that (NL?IE) is the gradient flow of £ with respect to the Finsler structure
in Section 3.1. For simplicity, we consider P = 0, since the extension to P # 0 is
straightforward, as it is explained in Remark 3.2.

In Section 3.2 we develop the rigorous gradient descent formulation based on
curves of maximal slope in the space of probability measures endowed with the
quasi-metric 7. The theory of gradient flows in the spaces of probability measures
endowed with the standard Wasserstein metric was developed in [2]. Here we ex-
tend it to the setting of quasi-metric spaces, endowed with the nonlocal Wasserstein
distance. This requires several delicate arguments. We start by introducing the no-
tions of one-sided strong upper gradient (Definition 3.12) and curves of maximal
slope (Definition 3.8). We define the local slope D in (3.19) by using a heuristi-
cally derived gradient of the energy £, and show, using a chain rule established in
Proposition 3.10, that ~/D is a one-sided strong upper gradient for £ with respect
to 7. One of our main results is Theorem 3.9, which establishes the equivalence
between curves of maximal slope and weak solutions of (NLZIE). In Section 3.4
we prove several important results. Namely Theorem 3.14 establishes that the De
Giorgi functional Gy is stable under variations of the base measure p and of the
solutions. A consequence of this result is the convergence of solutions of (NL*IE)
on graphs defined on random samples of a measure to solutions of (NL?IE) corre-
sponding to the full underlying measure (Remark 3.17). The proof of Theorem 3.14
relies on the lower semicontinuity of the local slope (Lemma 3.12) and the lower
semicontinuity of the De Giorgi functional (3.13). Another important consequence
is the existence of weak solutions of (NL2IE), which is proved in Theorem 3.15.

Remark 1.3. (Asymptotics) Describing the steady states and determining the long-
time asymptotics of (NL?IE) are natural and important problems. Both questions
have been extensively studied for the nonlocal-interaction equations (NLI) which
are Wasserstein gradient flows of (1.5) with P = 0. For attractive interaction
potentials it was shown that the solutions converge to a delta mass [7], while for
more general repulsive—attractive potentials very rich families of steady states were
discovered [3,35]. We remark that the dynamics of the (N L%IE) can be significantly
different. Namely, as the example of Remark 3.18 shows, the solutions for attractive
potentials do not necessarily converge to a point.

A further question closely related to asymptotics is the contractivity of solutions
of (NL?IE). For Riemannian gradient flows the contractivity of the flow follows
form the geodesic convexity of the energy. In particular if K(x,y) = k(x — y),
where k is symmetric and convex, the NLI flow is contractive in Wasserstein metric
[2,11]. Determining the geodesic convexity of energies in the setting of the nonlocal
Wasserstein metrics is an intriguing question. Thus far, the only result in the general
(not purely discrete) setting is the geodesic convexity of the entropy [23]. However,
for Finslerian gradient flows we caution that establishing geodesic convexity does
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not imply contractivity, as [42] shows. Instead a new property of skew-convexity
[42, Definition 3.1] needs to be investigated.

Finally we note that the asymptotics of gradient flows with respect to (nonlocal)
Wasserstein metrics in discrete setting has recently been investigated in [15,26],
where the equations also include diffusion (i.e., energy includes an entropic con-
tribution). These papers use the convexity of the total energy in the discrete setting
to establish the exponential convergence of the flow towards the unique minimizer.
Establishing under which conditions (on the graph construction, etc.) do these esti-
mates persist in the discrete to continuum limit as the number of vertices increases
is an interesting open problem. We also remark that, while these results do not carry
over to our setting, analyzing the asymptotics of (NL?IE) in purely discrete setting
is an intriguing and potentially approachable question.

1.3. Relation to the Numerical Finite-Volume Upwind Scheme

Equation (1.7) can be interpreted in several ways. For example, it can be under-
stood as the master equation of a continuous-time and continuous-space Markov
jump process on the graphon (R¢, 1), that is, a continuous graph with vertices R¢,
and symmetric weight n(x, y) for (x,y) € {(x,y) € R? x R? : x # y}. The
stochastic interpretation is that a particle at position x € R? jumps according to the
measure v(x, y).n(x, y)du(y) to y € R?. In this way it gives rise to a Markov
jump process related to the numerical upwind scheme.

The numerical upwind scheme is one of the basic finite-volume methods used
to solve conservation laws; see [29]. To draw the connection, let {x1, ..., x,} be
a suitable representative of a tessellation {K1, ..., K,}, for instance a Voronoi
tessellation, of some bounded domain € C R¥. Let 11 be the Lebesgue measure on
2 and take 7 to be the transmission coefficient common in finite-volume schemes:
n(xi,x;) = H"Y(K:NK )/ Leb(K;),fori, j € {1,...,n},where H~ 1 (K;NK )
is the d —1 dimensional Hausdorff measure of the common face between K; and K ;.
With this choice the equation (1.7) becomes the (continuous-time) discretization
of the classical continuity equation

0ot +V - (vep) =0

for some vector fieldv; : 2 — R4, Hereby, the discretized vector field v; is obtained
from v, by taking the average over common interfaces:
U,(X[,Xj)zéf Vi - VK. K; de_l,
HI-LK NK)) &gy

where vk, k i is the unit normal to K; pointing from K; to K ;. We refer to the recent
work [9] for a variational interpretation of the upwind scheme, which is close to
that we propose for the more general equation (1.7). Earlier results in this direction
are contained in [21,38].

The connection to finite-volume schemes explains also that the nonlocality
in (1.7) introduces a regularization, which in the numerical literature is referred to
as numerical diffusion. That the numerical diffusion is actually an honest Markov
jump process, as described at the beginning of this section, was observed and used
to find optimal convergence rates in the works [19,20,45,46].



Nonlocal-Interaction Equation on Graphs 709

1.4. Comparison with Other Discrete Metrics and Gradient Structures

The interpretation of diffusion on graphs as gradient flows of the entropy was
independently carried out in [14,36,37]. Here we recall the descriptions of the flows
relying on reversible Markov chains, which was the framework used in [25,27,36].
Starting with Markov chains, which then determine the edge weights, offers an
additional layer of modeling flexibility. In particular, consider the Markov chain
with state space X = {xi,...,x,} and jump rates {Qy y}x yex. Let m, be the
reversible probability measure for the Markov chain, meaning that it satisfies the
detailed balance condition 7wy O,y = 7y Qy . The edge weights {wy y}r yex are
givenby wy y = 7, O, . Theenergy consideredis the relative entropy: forp: X —
[0, 1T with >~y px = 1 we define

P
H(p | m) = pr 10gn—x = pr log px — pr logmy = S(p) + Ep(p)
X * X X
with P, = —logm,. (1.9)

The paths in the configuration space are given as the solution of the continuity
equation which for the flux {jy y: [0, T] — R} yex takes the form (1.2).

To compute the flux from a given velocity {vy,y}x yex (an edge-based quantity)
and density {py}rex (a vertex-based quantity), one interpolates the densities at
vertices to define the density (and hence the flux) along the edges. The literature so
far has considered a proportional constitutive relation of the form

. p 107
Jxy = vx,y(?(—x, —’>, (1.10)
Ty Ty

where the function 0 : Ry x Ry — R, needs to be one-homogeneous for di-
mensional reasons. In addition, it is assumed that the function 6 is an interpola-
tion, that is, min{a, b} < 0(a, b) < max{a, b}. The choice providing a gradient
flow characterization for linear Markov chains is the logarithmic mean, defined by
O(a,b) = % fora # b and 0(a, a) = a.

The associated transportation distance is obtained by minimizing the action
functional

. 2
. Y I 3 |y |
A(p, Jj) = E Jx,y Ux,y Wy,y = E mﬂxQx,y. (1.11)
X,y Xy Ty Ty

The corresponding transportation distance is induced as the minimum of the action
along paths:

1
inf {/OA(,O(I), J@)de: (p(0), j (1)), 0. SOlves (1.2) and p(0) = po, p(1)=p) } :

As we do in Corollary 2.8, it was shown that it suffices to consider antisymmetric
fluxes. To arrive at a gradient flow formulation, one considers the metric induced
by the action function (1.11):
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1 ) 1 j)g,y j)?,y
gp(j . Jj) = EZ@HXQW (1.12)
X,y T Ty

Then the gradient grad H of the relative entropy (1.9) with respect to this metric is
given as the antisymmetric flux j* of minimal norm satisfying

d
gp(grad H, j) = Diff H[j] = o

H(p()), (1.13)
t=0

for any curve (ﬁ(t))@o such that 9,0 (0) = —W . j). Expanding (1.13) and using
that j* is antisymmetric gives

1 Jx.y Jx,y 1 px (1) oy(@®) .
2By, a0 T g e

X
Ty x,y

Since this identity holds for all j, ,, the flux j* is identified by

Jiy=- <10g7’;—" —log p—y> 0 (px_(’), py_“) _ <px(t) - py(t)) |

Ty Ty Ty Ty Ty

where the last equality holds for the particular choice of the logarithmic mean
interpolation 0(r, 5) = =5~ By plugging j{ , into the continuity equation (1.2),
one recovers the (linear) heat equation on graphs.

The next relevant step is the introduction of the interaction and the potential
energies as in (1.1). In particular, [25] provides a gradient flow structure for free

energy functionals of the form

Fp(p) = B~'S(p) + Ex(p), (1.14)

where 8 > 01is the inverse temperature. This is the discrete analogue of the McKean-
Vlassov equation. Finding a desirable gradient flow structure is nontrivial since
considering the logarithmic interpolation, which makes the diffusion term linear,
would make the potential term nonlinear, and thus the Fokker—Planck equation on
graphs would be nonlinear. To cope with this, the framework of [25] extends the
linear theory outlined above to a family of nonlinear Markov chains satisfying alocal
detailed balance condition. The consequence for the resulting gradient structure is
that the quantities {7y }rcx, {QXJ}x,yeX and {wx,y}x’yex depend on the current
state o in such a way that the detailed balance condition wy y[p] = 7, [p]1Qx y[p] =
y[p]Qy,x[p]is still valid for all p € P(X). In particular, for 74 defined in (1.14),
it holds that

1
e [pl = Z—exp (—ﬂ (Px + Z Kx,y,oy>) with
p y
Zg = Zexp (—,3 (Px + Z Kx,ypy)) .

y
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It would be natural to try to build the framework for the case 8 = oo, which we
consider in this paper, by taking the limit 8 — oo in the framework of [25]. It
turns out that this limit is singular for the constructed gradient structure. First of
all, the measure . [ o] degenerates at all points except at the argmin of the effective
potential x +— P, + Zy K ypy. This causes the constitutive relation (1.10) to
become meaningless. A more detailed analysis also shows that the metric in (1.12)
degenerates.

We also note that in this setting the potential functions P and K and inverse
temperature 8 enter the metric in (1.11) through the weights w, , and rate matrix
Qy,y- This is in stark contrast to the continuous classical gradient flow formulation
for free energies of the form Fg form (1.14), where the metric is always the L*-
Wasserstein distance, independently of the potentials P and K and also of the
inverse temperature 8 > 0, including § = oo [2,10,11,33].

Another approach to McKean-Vlasov equations is to consider the arithmetic
interpolation, as was done in [15]. The theory the authors developed requires the
densities to be strictly positive and diffusion to be present. We note that the diffusion
itself is nonlinear.

The above problems lead us to consider the upwind interpolation in the flux-
velocity relation (1.10). In view of (1.2), this relation is replaced in the present
setting by

Jxy = ;Ox(vx,y)+ - Py(vx,y)f = O(px, Py; Ux,y)vx,y where
a ifv>0,
O(a,b;v)=1{b ifv <0, (1.15)
0 ifv=0.

Note that the relation (1.15) is a functional relation between velocity and flux with
the interpolation ® depending on the velocity.

We remark that solutions of system (1.2)—(1.4) are not the limit of the gradient
flows in [25] as B — oco. We emphasize here that the limit of these dynamics as
B — oo would in fact not be the desirable gradient flow of the nonlocal-interaction
energy, since the initial support of the solutions would never expand; see the related
Remark 1.2.

We conclude this section by observing that it seems possible to generalize the
upwind interpolation in a continuous way to define a flux-velocity relation to deal
with free energies Fg for § > 0. A candidate, inspired by the Scharfetter—Gummel
scheme [44], is the following constitutive flux-velocity relation depending on §:

Ox €Xp (lgvx,y/z) — Py €Xp (_:Bvx,y/z)
exp (ﬂvx,y/Z) — exp (—,Bvx,y/Z)

Jf,y = Uxy

In particular, it holds that j}iy — Jjx,y @ B — 00, where jy y is as in (1.15). The
form of jﬁ y can be physically deduced from the one-dimensional cell problem for
the unknown value j,’i y € Rand function p: [0, 1] — R:

P ==B""Vp()+ vy p() on[0,1],  with p(0) = p, and p(1) = py.
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Note that jﬁ y = L X;p * for vy, = 0, which is the flux due to Fick’s law. Likewise,

f y = 0forvyy = B~ log %, which is the velocity needed to counteract the

diffusion. In [47], it is shown that the Scharfetter—Gummel finite volume scheme
provides a stable positivity preserving numerical approximation of the diffussion-
aggregation equation, which also respects the thermodynamic free energy structure.
We pursue the investigation of the existence of a possible related gradient structure
in future research.

1.5. Connections to Machine Learning

Part of the motivation for the present work comes from applications to machine
learning. Here we introduce a family of nonlinear gradient flows that is relevant to
discovering local concentrations in networks akin to modes of a distribution.

Our main interest is in equations posed on graphs whose vertices are random
samples of some underlying distribution and whose edge weights are a function of
distances between vertices. In machine learning one often deals with data in the form
of a point cloud in high-dimensional space. While the ambient dimension may be
very large, the data often possess an underlying low-dimensional structure that can
be used in making reliable inferences about the underlying data distribution. To use
the geometric information, we follow one of the standard approaches and consider
graphs associated to point clouds. Formulating the machine learning tasks directly
on the point cloud enables one to access the geometric structure of the distribution
in a simple and computationally efficient way. The works in the literature have
mostly focused on models based on minimizing objective functionals modeling
tasks such as clustering or dimensionality reduction [5,31,32,34,40], or based on
characterizing clusters through estimating some property of the data distribution
(most often the density); see [12] and references therein. Only few dynamical
models have been considered—notable among them are diffusion maps [16], where
the heat equation is used to redistance the points.

Here we focus on models that are motivated by nonlocal PDEs. Consider a
probability measure © on R with finite second moments. Let X = {x1, ..., x,}
be random i.i.d. samples of the measure p. Let " = % > 8y, be the empirical
measure of the sample and let K : R? x R? — R be symmetric and P : R — R.
The total energy Ex : P(X) — R, given in (1.1), for the empirical measure 1" can
be rewritten as

Ex(u") = E(u") + Ep(n")
1
= 5// K(x,y) du"(x) du”(y) +/ P(x) dp" (x). (1.16)
RA xR4 R4
The gradient flow of £x with respect to the graph Wasserstein metric 7,,» defined
in (1.8) is described by the ODE system (1.2)—(1.4), where Ky x; = K (xi, xj)
and Py, = P(x;) foralli, j € {1,...,n}. Another evolution by such system is
illustrated on Fig. 2.
Here we remark on the contrast between (1.2)—(1.4) and the gradient flow of
(1.16) in the ambient space R?, with respect to the standard Wasserstein metric,
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Fig. 2. A solution of the nonlocal-interaction equation on graphs driven by the energy (1.1).
We consider a random geometric graph based on 240 sample points X from a 2D bean data

set. The connectivity distance is ¢ = 0.23. The edge weights are wy, y = exp(—24|x — y1?),
provided that the vertices x and y of X are connected. The interaction potential is Ky y =

1 — exp(—8|x — y|2) and the external potential is P = 0. The solution, starting from a
uniform distribution, is shown at time # = 200. Brighter color indicates more mass (right)

which takes the form

n
X =—=VPx)— Y pjViK(xi, x)). (1.17)
j=I

The first notable difference is that, on the graph, masses change and the positions
remain fixed, while in R? positions change and the masses remain fixed. This
difference is somewhat superficial, since both equations describe the rearrangement
of mass in order to decrease the same energy in the most efficient way measured by
two different metrics. The main difference is that the graph encodes the geometry of
the space that mass is allowed to occupy. In particular, it ensures that the geometric
mode discovered will be a data point itself.

We note that the popular mean-shift algorithm [17] can be interpreted as a
time-stepping algorithm to approximate solutions of (1.17) with K = 0 and P =
In(@ * ©"(0)), where ©'*(0) is the empirical measure of the initial distribution
of particles and 6 * ©”*(0) is the kernel density estimate of the density p of the
underlying distribution. Namely the step of the mean-shift algorithm is to replace
the position of the particle at x; by the center of mass of (- — x;) * 1, (0) and
iterate the procedure. Formal expansion shows that this is a time step of the forward
scheme for the flow driven by P = In(0 * 1" (0)). We note that considering the
gradient flow of the corresponding energy on the graph (1.2)-(1.4) ensures that
the modes of the distribution discovered by the (graph) mean-shift algorithm will
remain within the data set. Furthermore, we note that adding nonlocal attraction
on the graph progressively clumps nearby masses together and thus provides an
approach to agglomerative clustering.

One of our main results, stated in Theorem 3.14, is that as n — oo the solutions
of the graph-based equation (1.2)—(1.4) narrowly converge along a subsequence to
a solution of the nonlocal nonlocal-interaction equation (NL2IE).
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2. Nonlocal Continuity Equation and Upwind Transportation Metric

2.1. Weight Function

Throughout the paper we consider a weight function n: {(x,y) € R x R¥ :
x # y} — [0, 00), which shall always satisfy

n is symmetric and non-negative, that is n(x, y) = n(y, x) for all (x, y) € G.
(W)

!nis continuous on G = {(x, VeRI xR x £y, nx,y) > 0} ;

Since n is symmetric, we regard the edges set G as undirected graph. Many of
the edge-based quantities we consider, like vector fields and fluxes, will lie in an
n-weighted L? space, L*(n ) for some A € M(G). The space L (1 1) is equipped
with the inner product

(fo @) 2oy =5 G f(x. g, ym(x, y)dr(x, y) forall f, g € L*(n1), (2.1)

where the factor % ensures that each undirected edge is counted only once.
Below we state two assumptions on the base measure u € M*(RY) and the
weight function 1, where we use the notation V to denote the maximum.

(A1) (moment bound) The family of functions {(|x —2Vvix— -|4) n(x, )} erd
is uniformly integrable with respect to u, that is, for some C;, € (0, c0), it holds
that

sup / (1 = ¥ v Ix = y1*) nx, ) duy) £ G,
xeRd

(A2) (local blow-up control) The family of measures {|x — PPn(x, ) H()} epd
is locally uniformly integrable, that is,

lim sup / lx — y*n(x,y)du(y) =0, where
Be(o\(x)

s—)OxeRd
B:(x) = {yeRd:|x—y| <8}.

Remark 2.1. Continuity on G in (W) is needed to obtain lower semicontinuity of
the action functional; see Lemma 2.9. Assumption (A1) ensures well-posedness
of the nonlocal continuity equation we shall introduce in Section 2.3, whereas As-
sumption (A2) is necessary for compactness of solutions to the nonlocal continuity
equation; see Proposition 2.17.

Example 2.2. Typically the function 7 is a function of the distance
n(x,y) =29(lx —y)) forall (x,y) €G,

where ¥ : (0,00) — [0, 00) is continuous on {## > 0} and satisfies analogues
of (A1) and (A2). An important example are geometric graphs with connectivity
distance given by ¢ > 0 and weight

ne(x,y) = 22 +d) xB.(x)(y)
o £2 | B

for all (x, y) € G. 2.2)
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In this example, fixing © = Leb(R?), we conjecture that the weak formulation
of (NL?IE)—see Section 3—converges to the nonlocal aggregation equation d; p, =
V- (0:VK % ps + psVP) as ¢ — 0 for sufficiently smooth potentials K and P.
See Section 3.5 for a discussion on the local limit.

2.2. Action

The form of the action inside (1.8) seems practical, but it does not have any
obvious convexity and lower semicontinuity properties. Therefore, we define the
action in flux variables. We start by introducing some notation. For a signed measure
j € M(G), we denote by j = j* — j~ its Jordan decomposition. Moreover, for
any measurable A € G, let AT = {(y,x) € RT x R? : (x,y) € A} be its
transpose. Likewise, for j € M(G), we denote by j ' the transposed measure
defined by jT(A) = j(AT).

For any measures u € M*T(RY) and p € P(RY), we define the (restricted)
product measures y; € MT(G) fori = 1,2 as

dy1(x,y) =dp(x)du(y) and
dy2(x,y) =du(x)dp(y) for(x,y) € G. (2.3)

Note that le = y». We define the action for general n which we only require to
satisfy Assumption (W), i.e., continuity on G, symmetry and positivity.

Definition 2.3. (Action) For n € M*T(R?), p € P(R?) and j € M(G), consider
A€ M(G)suchthat p @ u, u ® p, |j| < |A|. We define

. dj d(p®p)
Al p. J) = /y <MM di] )"MM

dj d(u® p)
/] ( dAl’ il >"MM' .

Hereby, the lower semicontinuous, convex, and positively one-homogeneous func-
tion: R x Ry — R U {oo} is defined, for all j € R and r = 0, by

Uiy >0,
a(j,r) =10 if j<0andr =0, (2.5)
o0 if j >0andr =0,

with j; = max{0, j}. If the measure u is clear from the context, we write A(p, j)
for A(u; p, j).

Note that Definition 2.3 is well-posed since the one-homogeneity of o makes
it independent of the particular choice of A as long as the absolute continuity
condition in Definition 2.3 is satisfied. An example of such measure is a A such that
Al =1p® ul+ |l ® p| + | j|. Moreover, A can be chosen symmetric, otherwise
it can be replaced by %(A +A7).
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Remark 2.4. We note that the action is inversely proportional to the measure p:
doubling the measure  leads to halving the action. This has important consequence
for the way u influences the geometry of the space of measures. In particular, x not
only sets the region where mass can be transported, but also makes the transport
less costly in the regions of high density of w.

Remark 2.5. If p <« u, then we denote its density by p by abuse of notation, and
if furthermore j < p ® p with density j, then it holds that

1 . 2 . _ 2
A p, j) = —/f (U (0 )+) + (G y)-) >n(x, y) du(x) du(y).
2)) ¢ p(x) o)

In the following lemma we can see that the action takes the form from the
tentative definition of the metric in (1.8), as soon as it is bounded.

Lemma 2.6. Let 1 € MT([RY), p € P(RY) and j € M(G) be suchthat A(w; p, j) <
00. Then there exists a measurable v: G — R such that

dj(x,y) =v(x, y)+dp(x)du(y) —v(x, y)—du(x)dp(y), (2.6)
and it holds that

1
AGii i) =5 [[[ (1 201+ 1000 0-F) . ) do) du2.7)

In particular, if v € V*(G), then
A(w; p, j) = f/G|U(X, V4P n(x, y) do(x) du(y). (2.8)

Proof. Letd € M™(G)besuchthatdy;(x, y) = dp(x)du(y) = p1(x, y) di(x, y),
likewise dy»(x, y) = du(x)dp(y) = ya(x, y)di(x, y), and dj = fd)\ for some
measurable 71, 7, j: G — R. Without loss of generality we can assume A to be
symmetric; for instance by considering %(k + A7) instead. Thus, (2.4) implies

A p, J)
1 y _
= szG (a0 . 71 ) +a( = G, ), Falx, 1) ) e, ) ditr, y) < .

By the definition of the function « in (2.5), it immediately follows that the vector

field o7 (x, y) = ];7(1)23 )y”)’ is well-defined y;-a.e. on G. By the same argument, we

find that o~ (x, y) = /y(;;xy ){) is well-defined y,-a.e. on G. Since y; =y, we have

~\T . .
that (v ) exists y1-a.e. on G. Hence, we obtain the measurable vector field

vix, y) =0t (x, y) — 0 (x, y).

The statement (2.7) follows by using the positively one-homogeneity of «, the
identity a(j, r) = a(j+, r) and the symmetry of A:

1
A p. ) = 5//0“(”(x’ Va1 ). 710 ) 1. y) dAtx, y)
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1
" z//ca(v(x, V)-y2(x, y), V2(x, y)) n(x,y) di(x,y)
1
= 5//G|U(X, y)+|2)71(x, y)nx, y) di(x, y)

1
+ 5//G|v(y,x)_|2)71(x, Y nx, y) dilx, y). o

Definition 2.7. (Nonlocal gradient and divergence) For any function ¢ : R? > R
we define its nonlocal gradient V¢: G — R by

Vo(x,y) =¢(y) —¢(x) forall(x,y) €G.

For any j € M(G), its nonlocal divergence V. j e M(R? is defined as 7-
weighted adjoint of V, i.e.,

/«pcﬁ-j

1 _
—5// Vo (x, y)n(x, y) dj(x, y)
G

1
5/¢><x>fn<x, V(A Cx.y) — dj(y,x).

In particular, for j € M*(G) :={j e M(G): j© = —j},

/¢ 0¥ j= //Gmx)n(x, W) djx, ).

If j is given by (2.6) for some v € V*(G), then the flux satisfies an antisym-
metric relation on the support of y;-a.e. on G, i.e., j* = (j1)~ y1-a.e.on G. The
following corollary shows that those antisymmetric fluxes are the relevant ones
for the minimization of the action functional. For this reason, the natural class of
fluxes are those measure on G which are antisymmetric with positive part absolutely
continuous with respect to yj, that is,

MEG) ={j e MG :jT<n. j~ <y . iT=0GD" nae} 29

1

Corollary 2.8. (Antisymmetric vector fields have lower action) Let . € MT (R,
p € P(RY) and j € M(G) be such that A(u; p, j) < 0o. Then there exists an
antisymmetric flux j* € M3} such that

g . J — v . jas’

with lower action:

A p, J*) = A p, J)-
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T_

Proof. Letus set j* = (j — j T) /2. Since 7 is symmetric and (5(1)) gtﬁ,

we get
V2 -as 1 N . - T
// Vo n dj =§// Vén(dj—dj)
G G
1 _ 1
=5// V¢ndj—§/f (Vo) 1 dj
G G
=// Vo ndj.
G

By an application of Lemma 2.6 and comparison of (2.7) and (2.8) it is enough to
show that, for all (x, y) € G,
2 2 2 2
[0 )47+ [ )= [T o0 04T+ [ 0]
< o0, )42 4 e -+ 000+ + (i, 0-

for any measurable v: G — R, where v*(x, y) = (v(x, y) — v(y, x)) /2. This
estimate is a consequence of Jensen’s inequality applied to the convex functions

(pi: R— R  with (pi(r) = (ri)z. O

Lemma 2.9. (Lower semicontinuity of the action) The action is lower semicontin-
uous with respect to the narrow convergence in MFT[RY) x P(Rd) x M(G). That
is, if W' = in M(R?), p"—p in P(RY), and j*— j in M(G), then
liminf A(u"; p", j") =2 A(w; p, j) -
n—o0

Proof. First, note that the narrow convergence of any sequences (p"), and (u"),
implies the narrow convergence of the product: p" @ u" — p ® u in PR x
MT(R?), therefore also in M™(G). Then, in Definition 2.3 consider the vector-
valued measure

A=, pQu, nL®p).

Further, we define the function

fiGxR >R by f((x,y). (. v1, 1) = (20, 1) +a(—j, y2)) n(x, y).

Since the function 7 is lower semicontinuous by (W) and « defined in (2.5) is
lower semicontinuous, jointly convex and positively one-homogeneous, f satisfies
the assumptions of [8, Theorem 3.4.3], whence the claim follows. O

According to Definition 2.3, fluxes and action are strictly related. In case
A(u; p, j) < 400, we get a useful upper bound in the following lemma that
will be crucial in several technical parts later on.

Lemma 2.10. Forany u € M+ (R%), p € P(RY), j € M(G) and any measurable
®: G — Ry it holds

1 2
<§/f <1>nd|j|) gA(u;p,n/f Oy +dy).  (2.10)
G G



Nonlocal-Interaction Equation on Graphs 719

Proof. Let u € MT(RY), p € P(RY) and j € M(G) be such that A(u; p, j) <
+oo. Let [A| € M™(G) be such that yy, 3, | j| < |A| as in Definition 2.3 and
write y; = y;|A| and | j| = |j||A| for the densities.

We have that A = {(x,y) e G :a(j,y) = xora(—j,y) = oo} is a
A-nullset. We observe the elementary inequality

()% + (o) S max{py, ) (a(, 1) +a(—j, 7)), r-ae.in A
In particular, it holds that

1l = j+ + jo £ V2max{p1, ;e 71) +a(—j, 72),  r-ae.inA°.

Hence we can estimate

1 o1 : 1 L
—// D nd|j| —// ‘D7}|J|d|)»|=—// Dn (jr+jo) dAl
2)) ¢ 2)) 6 2J) 4

1
§//AC¢ nv/2max (71, e, 71) + a(—j, 72) dA|

%
(//(;b% max {71, 72) dm)
1 :
X(z/f (Oé(j,f1)+0t(—j,)72))ndlkl) .
G

Now, the result follows by estimating max {71, 72} < 71 + 7. ]

A

A

As aconsequence of the previous results we have the following corollary, which
will be useful in Section 2.3:

Corollary 2.11. Let p € Mt (R?) satisfy (A1) for some C; € (0, 00), then for all
p € PRY) and j € M(G) there holds

1
5//(;(2 Alx = yDn(x, y) dljlGx, y) =26, Alus p, j). - (2.11)

Proof. Let us consider the case A(u; p, j) < 00, otherwise the result is trivial.
From Lemma 2.6 we have dj(x, y) = v(x, y)+dyi(x,y) — v(x, y)_dy(x,y),
withdy;(x, y) = dp(x)u(y)anddys (x, y) = du(x) dp(y). Applying Lemma2.10
for ®(x,y) = 2 A |x — y| and noticing ®(x, y) < |x — y| < |x — y| V |[x — y|?,
we arrive at the bound

1 2
(5// @A — yDnGx. y) dj)
G

= Aws p, J')/fG(2 Alx = yD*n(x, y)(dyr +dy2)

< A p. ) 2[/G (e =¥V 1x = 31*) (e, ) du(y) doo)
< A p, j)zcn»

where the last estimate follows from (A1) and the integral is finite since p € P(Rd ).
O
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L@mma 2.12. (Convexity of the action) Let ul e MT(RD), pl e PRY) and
ji e M(G) fori = 0,1. For t € (0,1) such that u”* = (1 — t)p® + tpul,
ot =1 —=1)p" + 10  and jT = (1 — 1) j° + v j, it holds

AW %, J5) = A= DAW% p°, jO + AW o' .
Proof. Let us consider a measure A € M (G) such that dy]’f = )7; dx and dj’ =

}'i dr fori = 0,1 and jq: 1, 2. Then, the convex combinations are such that
dyj =yp/dranddj® = j di, where

pi=0-0p) +1p/, forj=12,
and }'r =(1- t)}'o + r}'l.
Using the convexity of the function « we get the result, that is,
. 1 . ~T o
Au®s p", j5) = 5// (a(Jr, P +a=j" 7/2’)) n(x,y) di(x,y)
G

1—1
2

+ %// (“(}]’ P +a(-j, 3721)) n(x, y) dix, y)
G

= (1 —0)AW% 0% jO + AW o', h.

A

J[ (@G5 + a5 ) e ) die

2.3. Nonlocal Continuity Equation

In view of the considerations made in Section 2.2, we now deal with the nonlocal
continuity equation

dp+V-j, =0 on(0,T) xR, (2.12)

where (0;)se[0,77 and (j;):e[0, 7] are unknown Borel families of measures in PR
and M(G), respectively. Equation (2.12) is understood in the weak form: Vo €
CE((0, T) x RY),

T 1 T o
// atqot(x)dp,<x>dr+—/ // Vo (v, I (r, ) djy (x, y) df = @.13)
0J Rrd 2J 0 G

Since [Vo(x, y)| < [lollc1 (2 A |x — y]), the weak formulation is well-defined
under the integrability condition

T
/0/ @Al =y ) dj . y) dr < oo, (2.14)

Remark 2.13. The integrability condition (2.14) is automatically satisfied by a pair
(P15 Ji)rero, 7] such that ng(u; Prs J;) dt < oo, due to Corollary 2.11.
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Hence we arrive at the following definition of weak solution of the nonlocal
continuity equation:

Definition 2.14. (Nonlocal continuity equation in flux form) A pair (p, j): [0, T] —
P[RY) x M(G) is called a weak solution to the nonlocal continuity equation (2.12)
provided that

(1) (pr)refo,1] is weakly continuous curve in PRY);
(ii) (J;)refo0,7] is a Borel-measurable curve in M(G);
(iii) the pair (p, j) satisfies (2.13).

We denote the set of all weak solutions on the time interval [0, T] by CEr. For
00, p! € P(RY), apair (p, j) € CE(p°, p)if (p, j) € CE := CE, and in addition
p(0) = p® and p(1) = p'.

The following lemma shows that any weak solution satisfying (2.13), which
additionally satisfies the integrability condition (2.14) has a weakly continuous
representative and hence is a weak solution in the sense of Definition 2.14. This
observation justifies the terminology of curve in the space of probability measures;
see [2, Lemma 8.1.2] and [23, Lemma 3.1].

Lemma 2.15. Let (o;)ic[0, 71 and (j ;)t<[o,1] be Borel families of measures in P(RY)
and M(G) satisfying (2.13) and (2.14). Then there exists a weakly continuous
curve (p;)ref0,17] C PRY) such that p, = p; for a.e. t € [0, T). Moreover, for any
@ € CX([0, T1 x RY) and all 0 < ty < t; £ T it holds that

/ @ (x) dpy (x) — / @1 (x) dpgy (x)
R4 R4

n
- f / B0 () dpy(x) di 2.15)
toJ Rd

1 [n _
+ 5/ f/ Vo (x, y)n(x,y) dj, (x, y) dt.
) G

We now prove propagation of second-order moments.

Lemma 2.16. (Uniformly bounded second moments) Let ("), C M (R?) such
that (A1) holds uniformly in n. Let (py)n C P2 (R?) be such that sup,eny M2 (p) <
oo and (p", j")n C CEr be such that sup, .y ng(/L”; of, ji) dt < oo. Then
SUp; cj0,71 SUPeNy M2(pf') < o0.

Proof. We proceed by considering the time derivative of the second-order moment
of p/ forallt € [0,7T] and n € N. Since x — |x|2 is not an admissible test
function in (2.13), we introduce a smooth cut-off function g satisfying pr(x) = 1
for x € Bg, or(x) = 0 for x € Rd\BgR and |Vog| < %. Then, we can use
the definition of solution with the function ¥z (x) = (pR(x)z( |x|2 + 1) and apply
Lemma 2.10 with & = ﬁpR to obtain, forall t € [0, T]and n € N,

d n
s/ VRGO dol ()
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1 — n
:E Vl/fR(xJ’)n(x,)’) sz(xJ’)
G

B !
< JAGem i ™ (/fG FrCr )2 06 @y + dyz")) .

For R > 1, we estimate, for all (x, y) € G,

VYR, M7 < 2R (1) — 0r ()1 + 2lor () 1y1* — or () x 1?1, (2.16)

and observe that
— — 4
Ve 0| = [Fort, ) @r) + 9r0OD| = 2 1x = 1.

Hence the first term in (2.16) is bounded by 32|x — y|?, since R = 1. For the
second term in (2.16), we abbreviate by setting r = @r(x)|x| and s = @r(y)|y|
and compute the bound

P =ls—rPls+rF 20 — |t 4+ 8lrFls — rf?

<8 <|r|2 + 1) (Is — r|2 Vs — r|4) .

It is easy to check that x — @g(x)|x| is globally Lipschitz and we can conclude
that, for some numerical constant C > 0, for all (x, y) € G we have

|s

= 2
[Vore, [ <320 = y2 + Cll? (1x =y 2 v Ix = %)
< (WP 1) (k= yPvix =),

Thus, by sending R — oo and using (A1), it follows that

1
d n ; 2
dt ) g (1P +1) dof ) < AW;p,",Jt)(ZCCnf 2 (1w +1) dmx))

By integrating the above differential inequality, we arrive at the bound

T
[ e ageosaf  (P1) angeo+2ce, [ ag o an
R R4 0
whence we conclude by taking the supremainn € Nand ¢ € [0, T]. O

Now we are ready to show compactness for the solutions to (2.12).

Proposition 2.17. (Compactness of solutions to the nonlocal continuity equation)
Let (W), C M™T (RYY and suppose that ("), narrowly converges to w. Moreover,
suppose that the base measures " and p satisfy (Al) and (A2) uniformly in n. Let
(0", j") € CEr for each n € N be such that (py)), satisfies sup, .y M2 (py) < 00
and

T
sup/ A" pt, ji) dt < oo. 2.17)
neNJ 0
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Then, there exists (p, j) € CEr such that, up to a subsequence, asn — o< it holds

ol — py forallt €0,T],
J"—=J in Mie(G x [0, T]),

with p; € P> (R9) foranyt € [0, T]. Moreover, the action is lower semicontinuous
along the above subsequences (u")y, (0™), and (j™"),, i.e.,

n— oo

T T
timint [ A" ol g a2 [ A g o) dn
0 0

Proof. We argue similarly to [22, Lemma 4.5], [23, Proposition 3.4]. For each
n € N we define j" € M(G x [0, T]) asdj"(x, y,t) = dj}(x, y)dz. In view of
Lemma 2.16 there exists C2 > 0 such that sup, (o 7 sup,eny M2(p)') = C2 < +00.

For any compact sets K C G and I < [0, T'], we apply the bound (2.11) of
Corollary 2.11 and the Cauchy—Schwarz inequality to get

2N |x — ,
sup [j"[(K x 1) < sup/ / @A =D gim vy @
neN neNJ 1JJ k QA x —yDn(x,y)

2J111,/2C, (

inf ek 2 A lx — yDn(x, y)

[IA

T 3
sup/ A ofs §i) dt) :
neNJ 0

(2.18)

Thanks to Assumption (W), we have thatinf , yyex (2A[x—yDn(x, y) > Oforany
compact K C G. Hence, by (2.17), (j"), has total variation uniformly bounded in
n on every compact set of G x [0, T'], which implies, up to a subsequence, j"* — j
asn — 00 in Mo (G x [0, T]). Because of the disintegration theorem, there exists
a Borel family (j,;)/e(0,7] such that, for all compact sets / C [0, T] and K C G,
there holds that j(K x I) = fljt(K) dz. Thanks to the bound (2.18), the family
{J 1 }reo.1y still satisfies (2.14).

Now, as we need to pass to the limit in (2.13), we consider a function § <
Cé’o(Rd) and an interval [fg, t;] < [0, T']. The function X[to’,l](t)ﬁﬁ(x, y) has
no compact support in [fg, #1] X G, so we proceed by a truncation argument. Let
e > 0andletus set I* = [to + &, —e], N. = B,—1 x B,—1, where B,-1 =
[xeR?:|x| <&~ '}, and G, = {(x,y) € G : & < |x — y|}. Hence we can find
@s € C([to, 1] x G [0, 1]) satisfying

{pe =1} 2 I x (G N Ng), (2.19)
so that ¢ — X[s.,n1XG as € — 0 and ¢, X[,(),,]]gS has compact support in

[70, t1] x G. Then, we get thanks to Assumption (W), that

n—o0

n _
lim / //G%(t,x,y)Vé(x,y)n(x,y) dji(x,y)de
0]

n o
=/ //G%(t’x’y)VS(x’y)’?(xvy) dj, e,y dr. (220)
1o
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Now, it remains to show that

11m sup
0,eN

/ / (1 — e (t, x, ) VE(x, y)n(x, y) djf(x,y) d
(2.21)

We need to estimate terms for which ¢, (f, x) < 1. First, setting I = [to, t1]\ L,
we note that

[0, 11] x G\fge = 1} C (IS x G) U (I. x (G\(G, N N))) = M,

whence, by Lemma 2.10,

n _
’/ / (1=t ) Ve, e, ) 77 G ) o
0]

1
= IIEIICI/ / G(l —@e(t, x,¥)) 2 Alx =yl n(x, y)dljil(x, y)de
0]

T 3
<21élle ([ A0 i)
<[] (nm =R neesrde, + ) a
M

Since 4 A |x — y|2 < |x — y|2 V |x — y|* we have, by Assumption (A1), the bound
f f/ (4 Alx — y|2> NG, y) d(y "+ y2") de < 20I8|C,) = 4C,e.
I¢ G

Likewise, using the symmetry, we arrive at

/ // (4 A1 = y1) e, ) A, + 72, o
I, Gg

T
:2/ // (4 A1 = ¥12) (e, ) dia () dpf'(x) dir,
0 G¢

which vanishes as ¢ — 0 in view of Assumption (A2). Finally, the last term is
estimated again using (A1):

f ff (47 1% = yP) e,y dy" @
.JJ G\N,
T
<[] [ (anm =R ne ao) aoi a
0 B.—1 R4

STC, sup pf (B _1)—>0 ase — 0,
1€[0,T]

since Mz (p}') < C forany n € Nand ¢ € [0, T] by Lemma 2.16.
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Combining (2.20) and (2.21), we get
51 _
Jim / // VECx, ) n(x, y) djlx, y) dr
n—o00 10 G

n _
=/ // VE(x, y)n(x,y) dj,(x, y) dr.
1o G

By means of the last convergence, the tightness of (o(}),,, and (2.15) with ¢ (¢, x) =
&(x),to = 0and t; = T, we obtain that (p;'), locally narrowly converges to some
finite non-negative measure p; € M*(R?) forany ¢ € [0, T]. In particular, for any
& e ch(Rd) and any ¢ € [0, T], we have

1 /! —
/ &(x) dp(x) =/ &(x) dpo(x) + —/ f/ VEXx, y)n(x,y) djs(x,y) ds.
Rd Rd 2J)0JJ 6

Now, for R > 0, let us consider a function £g € C°(R?) such that 0 < & < 1,
& = lon Bg,and ||€||1 £ 1. Because of the integrability condition (2.14), satisfied
thanks to Corollary 2.11, we have

t 1 .
‘/ E/f VEr(x, ) n(x, y) djs(x,y) ds
0 G

1! ;
SN @A v =y (e, y) dlj,| ds —— 0.
2 o)) c\BrxBr e

Hence the measure p; is actually a probability measure on R? for all t € [0, T].
Moreover Lemma 2.16 ensures that the convergence is global and not only local. As
a direct consequence of the previous considerations, (o, j) € CEr and the lower
semicontinuity follows from Lemma 2.9. O

2.4. Nonlocal Upwind Transportation Quasi-Metric

Here, we give a rigorous definition of the nonlocal transportation quasi-metric
we introduced in (1.8). Let us recall that : {(x, y) € RY x R? : x # y} — [0, 00)
is the weight function satisfying (W).

Definition 2.18. (Nonlocal upwind transportation cost) For i € M*(R?) satis-
fying Assumptions (A1) and (A2), and pg, p1 € P2(R?), the nonlocal upwind
transportation cost between pg and p; is defined by

1
T,.(po, p1)* = inf {/OA(M; P> J) dt : (p, j) € CE(po, p])} . (222)

If 11 is clear from the context, the notation 7 is used in place of 7,.

Note that Proposition 2.17 ensures the existence of minimizers to (2.22), when
7,. < oo, which holds when there exists a path of finite action. On the other hand, if
this is not the case, the nonlocal upwind transportation cost is infinite. For example,
consider the graph with vertices set by u and n which is disconnected, meaning that
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there are x, y € supp u such that there is no sequence (xg = X, X1, ..., Xp—1, Xp =
Y With (x;, x;41) > Oforalli = 0,...,n — 1; in this case, 7,,(8,, 8;) = o0
since the set of solutions to the continuity equation CE(dy, 8y) is empty.

Due to the one-homogeneity of the action density function « in (2.5), we have
the following reparametrization result, which is similar to [22, Theorem 5.4]:

Lemma 2.19. (Reparametrization) For any u € MH(R?) satisfying Assumptions
(A1) and (A2), and any po, pr € P2(R?), it holds that

T
T,.(po, pr) = inf {/O\Nl(u; o1, Jp) dt: (p, j) € CE7(po, pr)}-

Now, as consequence of the above reparametrization and Jensen’s inequality,
we have the following result, which implies that the infimum is in fact a minimum;
see [23, Proposition 4.3].

Proposition 2.20. For any u € M1 (R?) satisfying Assumptions (Al) and (A2),
and any po, p1 € P2(RY) such that T,.(po, p1) < 00, the infimum in (2.22) is
attained by a curve (p, j) € CE(po, p1) so that A(p:, j,;) = Tu(po, 01)? for a.e.
t € [0, 1]. Such curve is a constant-speed geodesic for T, i.e.,

Tu(ps: pr) = |t = s|Tu(po. p1), foralls,t €0, 1].
The next proposition establishes a link between 7, and the W-distance.

Proposition 2.21. (Comparison with W;) Let i € Mt (R?) satisfy (A1) for some
C, > 0 (depending only on | and n). Then for any 00, p' € PrL(RY) it holds

Wi(o". p') < V2C, VT (0. D).

Proof. By a standard regularization argument and the truncation procedure as in
the proof of Lemma 2.16, we can actually consider any 1-Lipschitz function ¢ as
a test function in the weak formulation (2.13) for some (p, j) € CE(0°, p!). Then
we can estimate, by Lemma 2.10 and Assumption (A1),

U wdp‘—/ ¥ dp°

R4 R4
1! _ 1!

=‘—/ /f Yy ndj, dr g—/ // i — ¥l nCe, y) 1, ICr. y) di
2J o G 2J 0 G

! I/ :
<f A(,Ot,jt)dt) </ // |x—y|2n(x,y)(dy1 +dy2)>
0 0 G
1 %
</ Aprs o) dt)
0
| %
) (2/ // (|x U y|4) nx, y) du(y)dpz(X)>
0 G

A

[IA
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1
1 2
< /2G, </OA(,0¢, j,)dt) .

Taking the supremum over all 1-Lipschitz functions and the infimum in the cou-
plings (p, j) € CE(0°, p') gives the result. O

The results above show that 7, is an extended (meaning that it can take value co)
quasi-metric on the set of probability measures which induces a topology stronger
than the Wy-topology.

Theorem 2.22. Let n € M+ (R?) satisfy Assumptions (A1) and (A2). The nonlocal
upwind transportation cost T, defines an extended quasi-metric on P> (RY). The
map (po, p1) = T, (po, p1) is lower semicontinuous with respect to the narrow
convergence. The topology induced by T, is stronger than the Wi-topology and
the narrow topology. In particular, bounded sets are narrowly relatively compact

in (P2(RY), T,).

Proof. If 7,,(po, p1) = 0, then A(u; p;, j,) = O0forae. € [0, 1]. Hence j, =0
yy-a.e., which implies that pg = p; by the nonlocal continuity equation (2.15). The
triangle inequality is a consequence of Lemma 2.19 and the fact that solutions to
the nonlocal continuity equation can be concatenated. The lower semicontinuity
and compactness properties of 7, are inherited from the action functional A via
Proposition 2.17. In view of the comparison with W; from Proposition 2.21, we
have that the topology induced by 7,, is stronger than that induced by W; and the
narrow topology. O

The next lemma provides a quantitative illustration of asymmetry of 7.

Lemma 2.23. (Two-point space) Let us consider the two-point graph Q = {0, 1},
with n(0,1) = n(1,0) = « > 0, u(0) = p > 0and u(l) = g > 0. Let
0,V € Pr(R) and let py, p1, vo, v1 € [0, 1] be such that p = pody + p181 and
v = vopdo + v181. There holds

75 (VPT =) ifpo < w.
J%(M—Jv_o) ifvo < po.

Proof. Let us fix A = §(0,1) + &(1,0) and notice that po + p1 = 1 and vp + v| =
1 as p, v are probability measures. Since 2 = {0, 1}, note that for any curve
t € [0,1] > p; € P2(2) there exists a function g: t € [0,1] — g; € [0, 1]
accounting for the mass displacement. Thus, we notice that (p, j) € CE(p, v) if

T(p,v) = (2.23)

pr=gd0+(1—g)81. j, suchthat j,(0,1) = —% and j,(1,0) = %
forallr € [0, 1].

Hence, using that j, is antisymmetric yields

1
T (o, p1)* = inf {/OA(M» Jo) dt:(p, j) € CE(po, m)}
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-8 @ B oo oo

Fig. 3. In the context of Lemma 2.23, in the above figures we parametrize the quasi-distance
T (p,v) by pg € [0, 1] and vq € [0, 1] for 1 (0) = 0.1 (left) and @ (1) = 0.5 (right). Colors
represent different values of 7 (p, v) with respect to the initial values pg and vg. In the left
figure, by swapping the values of py and v( on the axes, we can see that 7 is non-symmetric

= inf
g

{ V(g N ()41

dr : go = po and g1 =vo}.
0 ®&q a(l—g)p

Now, let us assume without loss of generality that pg < vg. Obviously, in this
configuration we can restrict the above infimum among non-decreasing g, as it
gives a lower action. Therefore, by applying Jensen’s inequality, we have

T(p.v)? = inf — L N 2d(,/1 >2dt
, V) =inf — | ——— df = inf — —2— -
P ¢/ ap 0(1—gz) g/Olp 0 dr &
2
gmf_\/ (Vi—a)al =2 (Vimm-yT=m)
g/ ap

=@(x/ﬁ_1—~/v_1)

The equality case is obtained by noting that the solution to — %«/1 — g =./p1 —
JV1 for all ¢ € [0, 1], with consistent boundary values gop = po and g; = vy, is
givenby g, = 1 —(/o1(1—1) +, /vlt)2. The case vy < oo is obtained in a similar
manner, which gives formula (2.23). O

Remark 2.24. The quasi-metric is in general already non-symmetric on the two-
point space, which one can best observe in Fig. 3. In the case p = %, the swapping
po = p1 and p; = pg preserves the quasi-distance 7 (p, v) = 7 (p, D).

We now adapt the standard definition of absolutely continuous curves in metric
spaces from [2, Chapter 1] to our setting. Let u € M1 (R?) satisfy Assump-
tions (A1) and (A2). Acurve [0, T] >t +— p; € Pz(Rd) is said to be 2-absolutely
continuous with respect to 7, if there exists m € L%((0, T)) such that

1
Tu(prgs 1) = / m(t) dt forall0 <19 <1t <T. (2.24)

fo
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In this case, we write p € AC([0, T]; (P2(RY), 7,,)). For any p € AC([0, T;
(P>(R%), 7,,)) the quantity

|p/| .= lim %(pfs ,Ot+h)
th-—

2.25
-0 |h| (2:25)

is well-defined for a.e. t € [0, T'] and is called the metric derivative of p at t. More-
over, the function r — |p’|(¢) belongs to L>((0, T)) and it satisfies | o[ () < m(t)
for a.e. r € [0, T], which means p’ is the minimal integrand satisfying (2.24).
The length of a curve p € AC([O, T1; (P2 (RY), Tu)) is defined by L(p) :=

T
Jolp'l(t) dr.
Proposition 2.25. (Metric velocity) Let i € M1 (R?) satisfy Assumptions (A1)

and (A2). A curve (p;)ie0.1] C P (RY) belongs to AC([0, T, (P2 (RY), 7)) if
and only if there exists a family (j;):c[0,1] such that (p, j) € CEr and

T
/Ox/A(M; pr> Jo) dt < oo.

In this case, the metric derivative is bounded as in |p'|*(t) < A(u; pr, j,) for a.e.
t € [0, T). In addition, there exists a unique family (j,):c[0,7] Such that (p, j) €
CE7 and

1017 = A(us pr. j,)  forae.t€[0,T]. (2.26)

Hereby, the previous identity holds if and only if j ;€ TPPQ(Rd) fora.e.t €[0,T],
where

T,Pa(RY) = {j € M3 (G) : Au; p, J) < o0,
A p, j) = A p, j +d) foralld € My (G)}, (2.27)

with ./\/l?/? (G) defined in (2.9), and Mgiv(G) the set of nonlocal divergence-free
fluxes, that is

Maiv(G) = {d e M(G): // Vyndd =0 forall ¥ € Cgo(Rd)}.
G

Proof. The first statement on the characterization of absolutely continuous curves
as curves of finite action follows from [22, Theorem 5.17], in view of Lemma 2.19
and Propositions 2.17 and 2.20. Let us now show that (2.26) holds if and only if j p
belongs to TpPQ(Rd) for a.e. t € [0, 1], given by (2.27). Let t € [0, 1] be so that
J, verifies A(u; pr, j,) < 4o00. Due to Corollary 2.8, the element }z of minimal
action satisfying (2.26) is characterized by 3,0, +V - j, = 0= 3,0, + V - }'t, that
is,

j, = argmin [Aw: pr. j):V-j=V-j}
JEME(G)

Recalling the notation for the Jordan decomposition of a measure from Section 2.2,
note that we use that the functional j — A(u; p, j) is strictly convex for j €
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M(G) such that j* « p® pand j~ <« 1 ® p, which is guaranteed above since
A(u; p, j) < ooand j € ./\/l 1 (G). Then, we observe the set {j € M 1(G) -

V.j=V. J:}1s closed with respect to the narrow convergence. In addltlon, the
estimate (2.10) from Lemma 2.10 with ®(x, y) = |x — y| V |x — y|? gives

V2C, /A ,
// 10e ) A1l () S = s 1, 1)

fr(lx —ylVix —y?)

for all compact K C G,

showing that the sublevel sets of j +— A(u; pr, j) are locally relatively compact
with respect to the narrow convergence, arguing as in the proof of Proposition 2.17.
Hence the element j , 1s well-defined by applying the direct method of calculus of
variations. O

We defined the tangent space Tppz(Rd) in (2.27) using the nonlocal fluxes
J. We note that this is in some way a nonlocal, Lagrangian description of the
tangent vectors and that the relationship between this Lagrangian description and
the Eulerian description is the nonlocal continuity equation

3t,01=—$‘j,

which is satisfied in the weak sense. This provides a useful heuristic, but as for
classical Wasserstein gradient flows [2] the precise, rigorous definition of the tan-
gent space is in Lagrangian form; we note, however, that here we use fluxes instead
of velocities. This is not just a superficial difference. Namely, as can be seen in
Proposition 2.26, the relation between velocities and fluxes is not linear and thus
the velocities do not provide a linear parametrization of the tangent space. We use
the argument from [22, Theorem 5.21] to characterize the tangent space TpPQ(Rd )
in more detail.

Proposition 2.26. (Tangent fluxes have almost gradient velocities) Let u € M*(RY)
satisfy Assumptions (A1) and (A2), and p € P2(R?). Then, it holds that j €

T, Pz(Rd) if and only if j € M(G) with j* < y1, j~ < y», and v = %,
Vo= (311;/2 satisfy, for v :i= vt — v~ : G — R, the relation
— L7 —
€ {Vp: 9 e CERY} , Where  dy® = xp=01dy1 + X{v<0} dy2.
(2.28)

Proof. If A(u; p, j) < 0o, then by Lemma 2.6 it holds for some v € V*(G) that

djx,y) =v(x, »)pdyi(x,y) —v(x, y)_dyi(y, x)
=v(x,y)dys(x,y) — vy, x) dy+ (v, x) ,

where y; = yi|;+, with J* = supp j*, and we used that (JT)T = supp j~
Then, by recalling the definition of the norm on L%(n y1) from (2.1),

A p. ) = 20101172, ) = 2100172 -
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By using the relation between j and v from above, we can rewrite the divergence
- j in weak form for any ¢ € C° (R9):

[ Fvndi=[[ Swonan= [[ Tvonap.

Now, the characterization (2.27) of j € T,P» (Rd) is equivalent to

// lv>n dyy < // lv 4+ w|?*n dyy forallw € V*(G) so that
G G
// Vywn dyy =0 Yy € CORY).

G

Hence v belongs to the closure of {Vg : ¢ € Coo(Rd )} in Lz(n y+). From the
antisymmetry of v follows that v~ belongs to the closure of {V¢ : (p eC OO(Rd)}
in L2(n y_). Thus, the conclusion follows from the identity y; + y.” L =y’ onG.
O

Remark 2.27. Proposition 2.26 shows that for  as in its statement, p € P> (R%)
and j chosen from a dense subset of T,,> (Rd ), there exists a measurable ¢ : RY —
R such that we have the identity

— _ 2
AGus p, j) = Aw; p, Vo y1) = f/ ‘(W)Jr‘ ndy;.
G
Finally, we provide an interesting property of absolutely continuous curves.

Proposition 2.28. (Absolutely continuous curves stay supported on ) Let u €
MTRY) satisfy Assumptions (A1) and (A2) and p € AC([0, T], (P2(RY), 7))
be such that supp po < supp . Then, for all t € [0, T], it holds supp p; < supp K.

Proof. Since (p;):¢[0,7] 1s absolutely continuous, there exists by Proposition 2.25
a unique family (j,):c[0,7] such that (p, j) € CEr and j, € Tp,PZ(Rd) C

M3 (G), where y1, = pr ® p, and |p[|* = A(u; py, j,) for ae. 1 € [0, T].

In particular, by Lemma 2.6, there exists a measurable family (v;);c[0,77 C V*(G)
such that

dj,(x,y) = v(x, y)+ dos(x) du(y) — ve(x, y)— du(x) dpor (3).

Without loss of generality, let (o;);c0,7] be the weakly continuous curve from
Lemma 2.15 satisfying, for any test function ¢ € CS"(R") andr € [0, T],

1 [t —
/ @(x) dp;(x) =/ @(x) dpo(x) + —/ // Vo(x, y)n(x, y) djg(x, y) ds
Rd Rd 2) o)) G
=/ @(x) dpo(x)
]Rd

t
+/o//0%(x’ Y (x, y)4n(x, y) dlps ® ) (x, y) ds.
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Now, let ¢ € ch(Rd) with ¢ > 0 and suppe < R9\ supp . Then, for all
t € [0, T], it holds

1 t
5/ o(x) dpt(x>=—/ // ()05 (X, ¥)4n(x ¥) dips ® W) (x, y) ds < 0,
R4 0 G

negative measure for all # € [0, 7] by Lemma 2.15. O

which implies that supp p, < supp i, since p, € P(R?) is in particular a non-

3. Nonlocal Nonlocal-Interaction Equation

In this section we consider gradient flows in the spaces of probability mea-
sures P> (R?) endowed with the nonlocal transportation quasi-metric 7,., defined
by (2.22). From now until Section 3.4 (excluded) we fix u € MT(RY) satisfy-
ing (A1) and (A2), unless otherwise specified. For this reason we shall use the
simplifications A(p, j) for A(u; p, j) and T for 7,,.

In this section investigate the nonlocal nonlocal-interaction equation (NLZIE)
as a gradient flow with respect to the metric 7. We restate it in a one-line form and
note that from now on we consider the external potential P = 0. The extension to
P £ 0 is straightforward; see Remark 3.2. Thus,

B0 () + / T ) o) di) (NL’IE)

- / VK 5 )5 )4 ) di(5) =0,

In the classical setting of gradient flows in the spaces of probability measures
endowed with the Wasserstein metric [2, 10], the nonlocal-interaction equation

00t +V - (VK %01)) =0 (3.1)

is the gradient flow of the nonlocal-interaction energy
1
E(p) = 5// K(x,y) dp(x) dp(y). (3.2)
R4 x R4

We start by discussing the geometry of (NL?IE) and interpret it as the gradient
flow of (3.2) in the infinite-dimensional Finsler manifold of measures endowed
with the Finsler metric associated to 7 . Following this, we develop a framework of
gradient flows in the quasi-metric space 7 , which extends the setup of gradient flows
in metric spaces [2] to quasi-metric spaces. In particular, we build the existence
theory for (NL?IE) based on this approach.

Above, for simplicity, (NL?IE) was written for p <, where we recall that
we used the notation p to denote both the measure and the density with respect
to w. Our framework, however, also applies to the case when p is not absolutely
continuous with respect to 1. The general weak form of (NLIE) is obtained in
terms of the nonlocal continuity equation as introduced in Section 2.3. Specifically,
we have



Nonlocal-Interaction Equation on Graphs 733

Definition 3.1. A curve p: [0, T] — P, (R?) is called a weak solution to (NL2IE)
if, for the flux j: [0, T] — M(G) defined by

_S8& —6&
dj,(x,y) = V%(x, y)—do(x)du(y) — Vg(x, Y+ do (y) dpe(x),

the pair (p, j) is a weak solution to the continuity equation
8tpf+§~jt=0 on [0, T]X]Rd,
according to Definition 2.14.

Here we list the assumptions on the interaction kernel K : R? x R — R we
refer to throughout this section:

(K1) K € C(R? x RY);

(K2) K is symmetric, i.e., K(x, y) = K(y, x) for all (x, y) € R? x RY;

(K3) K is L-Lipschitz near the diagonal and at most quadratic far away, that is

there exists some L € (0, o) such that, for all (x, y), (x, y') € RY x R¢,

K, 3) = KGN L (1605 = 601V G 3) = 30 P)
Remark 3.2. Assumption (K3) implies that, for some C > O and all x, y € R4,
K@ £ C (14 xR+ 1) (3.3)
indeed, for fixed (x, y') € R? x R4, (K3) yields
K@)l = KGNS L (1v2 (160 9P+ 1600 F) )

and bounding the maximum (V) by the sum, we arrive at |K(x,y)] < L +
2L (|, Y0 +1(x, »)I?) + |K (', y)|, which gives (3.3) with C = 2L(1 +
|(x/, y’)|2) + |K (x’, y')|. We notice, by the way, that the bound (3.3) implies that
E:PrRY) - Ris proper with domain equal to P, (RY).

As mentioned previously, the theory in this section can be easily extended to
energies of the form (1.5) including potential energies Ep (p) = f ra P dp for some
external potential P: RY — R satisfying a local Lipschitz condition with at-most-
quadratic growth at infinity; that is, similarly to (K3), there exists L € (0, co) so
that for all x, y € R4 we have

P = PO S Ll =yl v Ix = yP).

We now show that, under the above assumptions on the interaction potential K,
we have narrow continuity of the energy.

Proposition 3.3. (Continuity of the energy) Let the interaction potential K satisfy
Assumptions (KI)—(K3). Then, for any sequence (p"),, C P2(R?) such that p"* — p
asn — oo for some p € Po(RY), we have

Jlim E(p") = E(p).
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Proof. Let (p"), C Pz(Rd) and p € P>(R?) be such that p" — p asn — oo. For
all R > 0, we write By the closed ball of radius R centered at the origin in (Rd )2
and ¢pg: (IR{d)2 — R a continuous function such that pr(z) = 1 for all z € Br,
¢r(z) = 0forall z € (RY)?\Bag, and g (z) < 1forall z € (R?)%. Forall R > 0,
we then set Kp = prK and

Er(v) = %//Rd RdKR(x, y) dv(y) dv(x) forallv e Py (RY).

Since (p"), converges narrowly to p asn — oo and K g is bounded and continuous,
we get

Er(P™Y) — Er(p) asn — oo.

Furthermore, since Kg — K pointwise as R — oo, |Kg| < |K| for all R > 0,
the domain of £ is P, (Rd) and p € P> (]Rd), we also have

Er(p) —> E(p) asR — 0
by the Lebesgue dominated convergence theorem. Similarly, we also have
Er(P") = E(p") asR — ooforalln € N.

By a diagonal argument, we deduce the result. O

3.1. Identification of the Gradient in Finsler Geometry

Since the nonlocal upwind transportation cost 7 is only a quasi-metric, the
underlying structure of P,(R?) does not have the formal Riemannian structure as
it does in the classical gradient flow theory, but a Finslerian structure instead. This
highlights the fact that at every point p € P>(R?) the tangent space T,P> R7) is
not a Euclidean space, but rather a manifold in its own right.

In this section we provide calculations, in the spirit of Otto’s calculus, that
characterize the gradient descent in the infinite-dimensional Finsler manifold of
probability measures endowed with the nonlocal transportation quasi-metric 7. To
keep the following considerations simple, we assume that p is a given probability
measure which is absolutely continuous with respect to w. In this way, we avoid
the need to introduce yet another measure 1 € M™(G) with respect to which all
of the occurring measures are absolutely continuous, similar to how we proceeded
in Definition 2.3 for the action. This restriction is done solely to make the presen-
tation clearer and highlight the geometric structure. Hence any flux j of interest is
absolutely continuous with respect to u ® p and we can think of j via its density
with respect to 1 @ i, which we shall denote by j (using a letter which is not bold).

Atevery tangentflux j € T,P, (R?) we define an inner product 8p.j: TP (R%)
x T,P2(RY) — R by

1
80 Gt da) = E//Gjl (6, ¥) Ja(xs ¥) nx. ¥)
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X(X{j>0}(x,y) X(j<0y(x, y)

d d ., (34
) ) )u(x) n@), G4

where {j > 0} is an abbreviation for {(x, y) € G: j(x,y) > 0} and similarly for
{j < 0}. The ratios are well-defined since p cannot be zero where j is not zero. We
note that this is the bilinear form that corresponds to the quadratic form defining
the action (see Definition 2.3 and Remark 2.5); namely,

We refer the reader to “Appendix A” for a derivation of this inner product from a
Minkowski norm on 7, P, (RY) as it is required in Finsler geometry. We recall that
from Proposition 2.26 a dense subset of tangent-fluxes j are characterized by the
existence of a potential ¢ € CZ° (R9) such that, for 4 ® p-a.e. (x,y) € G,

J @3 = Ve, 3) (PO X(Tpm0 o 1)+ PO A7y (5 1) . (BS)

In this Finsler setting, we now want to determine the direction of steepest descent
from p, for the underlying energy defined in (3.2). The gradient vector of some
energy £: P(RY) — R at p, which we denote by grad £(p), is defined as the
tangent vector which satisfies

Diff , E[j1 = 85 grad£(p) (2rad E(p), j)  forall j € T,P>(R?),

provided this vector exists and is unique. Here, we use the continuity equation
Definition 2.14 to define variations via

d
Diff , E[j] = —
iff, £[J1 ”

g(ﬁl)v
t=0

where p is any curve such that oy = p and %
=

0 p: = —V - j. From Definition 2.7,
due to 1 ® p-absolute continuity of j we have that

—V.jx) = —/n(x, y)j(x,y) du(y)  forp-ae.x € RY.

In the case, when M is a finite-dimensional Finsler manifold, such gradient vector
exists and is unique since the mapping £: T, M — (T,M)*, j — g, i(J,"),
is a bijection; see [18, Proposition 1.9]. For further details into Finsler geometry,
we refer the reader to [4,49]. In our case, we can at least claim that the functional
Lp: T,Po(RY) — (T, P2(R))*, given for j € T,P»(R?) by

Jo = Lp(N)2) = 8p.jJ, J2)

1 i (x, i(x, y)—
_ —/[ jz(x,ymoc,y)(”" Vi _ &) )dM(X)du(y),
2)) ¢ p(x) p(y)
(3.6)

is injective n u ® p-a.e.; that is, the existence of a gradient implies its uniqueness
(n n ® u-a.e.), in which case we have

£y(grad E(p)) = Diff, €.



736 A. ESPOSITO ET AL.

To see the injectivity of (3.6), we first note that £, is positively 1-homogeneous
by definition. Moreover, we have the following one-sided version of a Cauchy—
Schwarz-type estimate

. 1 J2 e, ) +j (s y)+
< -
Lo(NU2) = 2//0 ) n(x, y)du(x) du(y)

1 i (x, y)—j(x,y)_
+—// PO 0 due) duy)
2)) ¢ o)

S VNG €12 ) (3.7

Here, we also used that Jab++cd <J(a+c)b+d)foralla,b,c,d > 0.Note
that the above inequalities become strict if any of the integrands jo(x, y)4j(x, y)—
or jp(x, y)—j(x, y)+ have a contribution. In particular, we could have £,,(j ) (j,) =
—oo although the right-hand side is finite. Despite this, we still have equality in (3.7)
ifand only if j, = Bj| n n ® p-a.e. for some B = 0.

To prove the injectivity of £,, let us suppose that j,, j, € TpPQ(Rd) are so
that £,(j1) =€,(jy). If jy =00r j, =0nu ® p-ae., then £,(j) = £,(j,)
implies that j; = j, = 0. If both j; and j, are nonzero, then by the above
Cauchy—Schwarz inequality we get

0 <8p.j,(J2, J2) =€p(J2)J2) = Lp(G1)(J2) = 8p.j,(J15 J2)

< /201 Gt T 0800220 ),

which, after dividing by /gy, j,(J2, j2) yields gy j,(jas J2) < 8o.j,(J1>J1)-
Similarly, one gets g, j, (j 1, J1) = &p.j,(J2. J2), from which we get

gp,jl(jlv jl) = gp,jz(j2’ j2)
Hence

80.j 1 U1:J2) =L (G2 =€,(J)U2) = 8p.j,(Jas J2)

= 8.0, U1 708,122 ),

which is the equality case in the Cauchy—Schwarz inequality. Therefore, there exists
B = 0 such that j, = Bj;. By positive 1-homogeneity of £, we get £,(j,) =
Lo(Bj1) = BLy(J1) = BLy(jy), sothat B = 1, since £,(j,)(j,) # 0. This ends
the proof of the claim of injectivity of £,.

The direction of the steepest descent on Finsler manifolds is in general not
— grad £(p), but is defined to be the tangent flux, which we denote by grad™ £(p),
such that

—Diff ) E[j] = 8 grad- £(p) (€rad™ E(p). j)  forall j € T,P,(R).

In other words, we define grad~ £(p) as the tangent vector (provided it exists) such
that

¢,(grad~ £(p)) = — Diff, £. (3.8)
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Here we clearly see that in general grad™ £(p) # — grad £(p) since £, is not
negatively 1-homogeneous. We can justify that grad™ £(p) indeed corresponds to
the direction of steepest descent at p via the following criterion, which is analogous
to the Riemann case. We first note that if Diff, £ = 0 then grad™ £(p) = 0. If
Diff , £ # 0 we note that minimizers j* of

J — Diff, £[j]1, with the constraint thatg, ;(j, j) =1,

are of the form j* = B grad™ £(p) for some B > 0. Indeed, using the fact that

d%‘s 8p.jtsiy U+ SJ1.d +541) = 285, (. jp) forall j, j, € T,PoRY)
[as shown in (A.1) of “Appendix A’] and using the Lagrange multiplier 8 and the
functional

H(B. j) :=Diff, ELj1+ 5(gp.j(G. ) — 1. jeT,P2RY), BeR,
yields, for a constrained minimizer j*, the condition
Diff, & = —p* g, j+(J*, ) = =B L, (). (3.9)
By the definition of j* we have 0 > Diff, £[j*] = —B%g, j*(j*, j*), which
implies that 8* > 0. By injectivity and positive 1-homogeneity of £,,, we get
7 — 01 (— L Diff, € ) = —¢- (= Diff,, €) = — grad™ &
J* = 45" (g Diffy €) = 26! (DM, €) = 2 erad™ £0).
The gradient flows with respect to £ in the Finsler space (P> (R%), T) can thus be
written
8:pr =V -grad” E(p). (3.10)

These considerations stay valid for general energy functionals £ : P>(R%) — R.

Let us compute the gradient flux for the specific case of the interaction energy
(3.2). A direct computation using the symmetry of K and Definition 2.7 gives, for
all j € T,P2(RY),

— Diff ,&E[f]

1 _
- E//G(_V(K % 0))(x, y) 1(x, ¥) j(x, y) dp(x) du(y)

1
=5// J,y)n(x,y)
G

5 P(=V(K %p) (x.y)  pO(=V(K *p))_(x.y)
p(x) p(y)

) du(x)dp(y)

1 _
= E//Gj(x, W0, y)(=V(K * p)(x, y))

(P(X)X{_VK*p>())}(x9)’) P()’)X{_ﬁK*/K()}(xv y)
p(x) p(y)
= Lo(grad ~€(0)) (),

) dp(x) du(y)
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where by comparison with (3.6), we observe that grad™ £(p) is given for u ® u-a.e.
(x,y) € G by

grad “E(p)(x, y)

= — V(K %) (6 ) (01 Tkup0) 0 V) + PO Tkupe) (1)) -
(3.11)

This shows by (3.8) the existence and by our previous argument also uniqueness
of grad™ £(p). It is easily observed that it has exactly the form (3.5) with the
corresponding potential given by ¢ = —K % p.

We conclude this section by mentioning that the Finsler gradient flow structure
of differential equations has been discovered and investigated in other systems; see
[1,41,42].

3.2. Variational Characterization for the Nonlocal Nonlocal-Interaction Equation

Section 3.1 shows that the nonlocal nonlocal-interaction equation (NLZIE) can
in fact be written as the gradient descent of the energy £ according to the Finsler
gradient operator; see (3.10) and (3.11). This is why we refer to weak solutions of
(NLZIE) as gradient flows.

In this section we consider (P, (Rd), T) as a quasi-metric space rather than
a Finsler manifold, which allows us to prove rigorous statements more easily. In
particular, we show that the weak solutions of (NLZIE) are curves of maximal
slope for the energy (3.2) in the quasi-metric space (P2 (R?), T) and vice versa.
We then establish the existence and stability of gradient flows using the variational
framework of curves of maximal slope. To develop the variational formulation,
we adapt the approach of [2] to curves of maximal slope in metric spaces to the
quasi-metric space (P, (R), T). This requires introducing a one-sided version of
the usual concepts from [2] to cope with the asymmetry of the quasi-metric 7.

Definition 3.4. (One-sided strong upper gradient) A functionh : P, (R?Y — [0, o0]
is a one-sided strong upper gradient for € if forevery p € AC([0, T']; (P (RY, 7))
the function / o p is Borel and

t

h(po)lpyl dt forall0 < s <7 < T, (3.12)

s

E(or) — Epy) = — /

where |p'| is the metric derivative of p as defined in (2.25).

The above one-sided definition is sufficient to characterize the curves of maxi-
mal slope.

Definition 3.5. (Curve of maximal slope) A curve p € AC([0, T']; P>(RY)) is a
curve of maximal slope for £ with respect to its one-sided strong upper gradient /
if and only if r — &£(p;) is non-increasing and

t

1
Ep) — E(po) + Ef (n(o0? +10;?) dr S0 forall 0S5 <1< T.

N

(3.13)
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Remark 3.6. Note that by using Young’s inequality in (3.12), we get

1 t
£ = £+ 5 [ (Moo +1pP) dr 20 foralloss<r<T.
N
Hence, if the curve (p;)¢[0.7] 1S a curve of maximal slope for £ with respect to its
strong upper gradient &, we actually have an equality in (3.13).

Therefore, in order to give a variational characterization of (N L2IE) we need to
detect the right one-sided strong upper gradient. As showed in [24], the variation
of the energy along the solution to the equation provides the suitable candidate. In
what follows we clarify this point as well as the strategy.

We recall that Proposition 2.25 ensures that for any p € AC([0, TT; (P2(R%),

T)) there exists a unique flux (j,)seqo,77 in TpPZ(Rd) such that ng(p;, Jj)dt <
00, (p, j) € CET and |,0,’|2 = A(p, j,) fora.e.t € [0, T]. Moreover, according to
Lemma 2.6 there exists an antisymmetric measurable vector field w: [0, T]x G —
R such that

dj,(x, y) = w;(x, )y dyr(x, y) — we(x, y)—dya  (x, y). (3.14)

It will be convenient to work directly with this vector field (w;);c[0,7]: from now
on we write (p, w) € CEr for (p, j) € CEr as well as ,zl\(p;, wy) for Aoy, j,;)
according to (2.8). With this convention, we can define a Finsler-type product on
velocities in analogy to (3.4) as

N 1
Bntiv) =5 [[ ute oy
G
X (Xw=0y(x, dy1(x, ¥) + xw<0y(x, y) dya(x, y)).
Note that, under the absolute-continuity assumptions of Section 3.1, by comparing

with (3.4) we have that g, ., (u, v) = gp.j(J1. j»), Where j, j, are obtained from
u, v by (3.14), respectively. Moreover, taking (3.6) into account, we also define

£, (w)(v) = Gp.uw(w, v). (3.15)

Arguing as in (3.7), we arrive at the following one-sided Cauuchy—Schwarz in-
equality:

Lemma 3.7. (One-sided Cauchy—Schwarz inequality) For all v, w € T,,PZ(Rd) it
holds that

2o.wW, v) = V800, V) Zpw(w, w), (3.16)

with equality if and only if, for some . > 0, v(x, y)+ = Aw(x, ¥)4 forn p @ u-a.e.
(x,y) € G (and thus, by antisymmetry, alsov(x, y)— = Aw(x, y)_ forn u® p-a.e.
(x,y) € G).
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Proof. Using v = vy — v_ and the usual Cauchy—Schwarz inequality in L?( p ®
W), we get

— 1
gpw(w,v) = 5//Gv(x, nx,y)

x (wx, y)4dp)du(y) — wix, y)—dux) do(y))

1
< 5//Gv(x, V4w, y)enlx, y)do(x) du(y)

1
+ E//Gv(x, V_w(x, y)_n(x, y) dux) dp(y)

é \/’g\p,v(va v) §p,w(w, w).

From the usual Cauchy—Schwarz inequality we have equalities above if and only
if there exists A > 0 such that v(x, y)4 = Aw(x, y)4 for np ® p-ae. (x,y) € G
and v(x, y)— = Aw(x, y)_ for nu ® p-a.e. (x, y) € G, since all the contributions
are positive. O

Now note that, from the weak formulation of the nonlocal continuity equa-
tion (2.15), we have for any ¢ € Cgo(Rd) and any 0 < 5 < ¢ < T the following
chain rule:

f so(x)dp;(x)—/ @(x)dps(x)
R4 R4

1! _
= Ef /f Vo(x, y)n(x,y)dj (x,y)dr
s G
1! _
= —f /f Vo, y)n(x,y)

x (wr(x, Y)4dy1,r (x, ¥) — we(x, y)—dyr o (x, y)) dt
/// Vo(x, y)we(x, y) n(x, y)
X ( X{w>0} dyl,r(xa )+ X{w<0} de,r(X, y)) dr

t t
=/§p,,wr(w,,%)dr=/zp(w,)(%)dz. (3.17)

S

Moreover, we still have the identification of the product g with the action in the
form of Lemma 2.6,

. 1
Soruw, (We, wy) = 5/[ we(x, y)n(x, y)
G
X (Xw=0y(x, ) dy1,(x, ¥) + xqw<oy(x, y) dy2,(x, )
1
= 5// we(x, V)30, y)dyr(x, y)
G

1
+ 5// we(x, )2 n(x, y) dys s (x, y)
G
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1
= E//G (w[(-xy y)_2|. + w;(y,x)z_) }'}(_x, )’)dyl,z(x, y)
= A(or, wy), (3.18)

which shows that the action is the norm with respect to the Finsler structure.

A crucial step toward the variational characterization of (NL2IE) mentioned
above is to obtain the chain rule (3.17) for the energy functional (3.2), which is
done in Proposition 3.10 below by a suitable regularization. As a consequence, by
using the one-sided Cauchy—Schwarz inequality from Lemma 3.7, we obtain in
Corollary 3.11 that the square root /D of the local slope, defined below in (3.19),
is a one-sided strong upper gradient for £ with respect to the quasi-metric 7 in
the sense of Definition 3.4, where |,ot/|2 = fl(,o,, wy) = fg\p,,w,(u),, wy) for a.e.
t € [0, T] due to Proposition 2.25 and (3.18). This allows us to define the De
Giorgi functional, which provides the characterization of weak solutions as curves
of maximal slope.

Definition 3.8. (Local slope and De Giorgi functional) For any p € P> (R, let
the local slope at p be given by

7o _55) ) (3.19)

D(p) = gp’_v% <—V%, —V%

For any p € AC([0, T']; (P> (R?), T)), the De Giorgi functional at p is defined as

T

1
Gr(p) == E(pr) = E(po) + / (PG + 16 F) dr. (3.20)

When the dependence on the base measure 1 needs to be explicit, the local slope
and the De Giorgi functional are denoted by D(u; p) and G (u; p), respectively.

If the potential K satisfies Assumptions (K1)—(K3), we note that whenever p
is a weak solution to (NL?IE) and p € AC([0, T']; P>(R%)) the quantity G7(p) is
finite; indeed, the domain of the energy is all of P, (R?) and Proposition 2.25 yields
that both the local slope (since it is equal to the action of (p, j), where j is given
in Definition 3.1) and metric derivative are finite.

We are ready to state our main theorem.

Theorem 3.9. Suppose that | satisfies Assumptions (Al) and (A2) and K satis-
fies Assumptions (KI1)—(K3). A curve (pr)ief0,171 C Pr(RY) is a weak solution to
(NL2IE) according to Definition 3.1 if and only if p belongs to AC([0, T1; (P> (R,
T)) and is a curve of maximal slope for £ with respect to VD in the sense of Defi-
nition 3.5, that is, satisfies

Gr(p) =0, (3.21)

where Gt is the De Giorgi functional as given in Definition 3.8.
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Note that in the above theorem, the implicit assumption that /D is a one-sided
strong upper gradient for £ is made; this is in fact true thanks to Corollary 3.11
below. In light of this we can represent the result via the following diagram:

p is a weak solution of (NLZIE)
<= p is a curve of maximal slope for £ w.r.t. VD
< Gr(p)=0.

3.3. The Chain Rule and Proof of Theorem 3.9

Firstly, we focus on the chain-rule property, which is the main technical step
for proving Theorem 3.9.

Proposition 3.10. Let K satisfy Assumptions (K1)—(K3). For all p € AC([O, T,
(P> (RY), T)) and 0 < s <t < T we have the chain-rule identity

r _6&
E(pr) — E(ps) = /‘gp,,wr (wr, Vg(ﬂ%)) dr, (3.22)

N

where (w;):e[0,1] IS the antisymmetric vector field associated by (2.6) to (p, j) €
CEr.

Proof. Sincethecurvep € AC([O, T1; (P2 (RY), T)) ,according to Proposition 2.25

there exists a unique family (j,)¢[0,7] belonging to T,P» (]Rd) fora.e.t € [0, T]
such that:

() (p, j) € CEr;
Qi) [ /Ao, Jp) dt < oo
(i) |p]1*> = A(py, j,) forae. t € [0, T
(iv) dj, (e, y) = we(x, y)4 dyr:(x, y) — we(x, y) = dya(x, p).

Then the identity (3.22) is equivalent to proving

[ —8&
eoo = =3 [ [[ Vioow ey ajiwy ar. 623)

We proceed by applying two regularization procedures. First, for all (x, y) €
R? x R? we define K¢(x, y) = K * mg(x,y) = [ raypaK (2, 2 me(x —z,y —
7") dz dZ/, where m.(z) = g%dm(ﬁ) for all z € R and ¢ > 0, where m is a
standard mollifier on R??. We also introduce a smooth cut-off function ¢z on R??
such that ¢(z) = 1 on Bg, ¢(z) = 0 on R?¥\ By and [Veg| < %, where By, is the
ball of radius R in R*¢ centered at the origin. We set K % ‘= @rK?® and note that it
isaC (R??) function. We now introduce the approximate energies, indexed by &
and R,

1
Erv) = E/Rd/RdKi(x, y) dv(y) dv(x) forallv € P»(RY).
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Let us extend p and j to [T, 2T] periodically in time, meaning that p_; = p7_g
and pr4s = ps foralls € (0, T]and likewise for j. We regularize p and j in time by
using a standard mollifier n on R supported on [—1, 1], by setting n, (1) = %n(é)
and

o

PrA =g ko) = [ mot = spu(a) s VAR,
j?(U):na*jt(A)Z/ ne(t —s)j,(U) ds, YU C G,

—0

for any o € (0, T); whence p/ € P, (R?). Let us now show that the integral of
the action is uniformly bounded with respect to . Let || € M™(G) be such that
Vi, V2. |Ji| < |A| for all ¢+ € [0, T]. Then by using the joint convexity of the
function « from (2.5), Jensen’s inequality and Fubini’s Theorem, we get

T
/OA(p?,j?)dt
17 o dj 7 dy
=-/ // oe(f ﬁna(s)ds,/ Mng(s)ds)ndmdt
2J0JJ) G —o d]A] —o d[A]
1 [T o dj  dyy
+—/ ff a(—/ ﬁna(s)ds,/ Y2 Sng(s)ds>nd|)\|dt
2J 0l 6 —o d[A] o d[A|
1 [T o dj dyr,—
< —/ // / a< Jims VLt S)n(,(s)dsndlMdt
2)0J) 6) = diA] ~ dIA]
1T o dj dys,—
+ —/ ff / o <——JH, s S>ng(s) ds nd|A| dr
2J0J) 6) - dia| -~ d|A]

+0o T
_ / / AP ) g (9 ds

2T T
< [ A ipdi=3 f Alpr. 1) di < oo.
T 0

Itis easy to check that (p”, j) is still a solution to the nonlocal continuity equation
on [0, T']. By arguing as in the proof of Proposition 2.17, we get that along subse-
quences it holds pf — p, aso — 0O for all ¢t € [0, T'] for some curve (0;)se[0,7]
in P2(RY), and jo — j in Mjoe(G x [0, T]). with dj := dj, dr, for some curve
(}',)ze[o,r] in M(G). Note thatn, — dpaso — 0, and, as aconsequence, pf — p;
for all + € [0, T] in the view of Proposition 2.21. Thus, we actually have p = p
and j = j by uniqueness of the limit and the flux, as highlighted above. Using the
regularity for ¢ > 0 and o > 0, we get

d
” Er(p!) = / (Kg * pf)(x)0;pf (x) du(x)
t Rd

1 _
- 5//GV(K2 xp7) (., y) n(x, y) djf (x, y).

For the sake of completeness, we note that the second equality follows from the
definition of CE7 by using again a cut-off argument on the function K§, * p7. We
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omit this step as it is a standard procedure. By integrating in time between s and ¢,
with s < ¢, it follows

Ex(p]) — Er(pd)
1 [ —
_ 5[ //GV(K;z * 00 (X ) 1x, y) 4 (r. ) dr

1 t
- 5/ // / (Kr(y.2) — Ki(x,2)) dp? (2)n(x, y) djf(x,y) dr.
s GJ R4
(3.24)

In order to obtain (3.23) we need to let ¢ and o go to 0 and R go to oo in (3.24).
The left-hand side is easy to handle since pf — p; as 0 — O forany ¢ € [0, T],
and K — K uniformly on compact sets as € — 0. Finally, by letting R go to 0o
we have convergence to £(p;).

In order to pass to the limit in the right-hand side of (3.24), we use a truncation
argument similar to that in the proof of Proposition 2.17. Let 6 > 0 and let us set
Ns = Bg-1 x Bg-1, where Bs-1 = {x e R? : x| <87}, and Gs = {(x,y) €
G : 8 < |x — y|}. We can consider a family (¢5)s=0 C C(R? x G; [0, 1]) of
truncation functions such that, for all § > 0,

{ps =1} 2 Bg-1 x G5 N Njs.

Now, we add and subtract ¢; in the integral on the RHS of (3.24) and we argue as
follows. Since pf ® j; — p; ® j, foranyt € [0, T]as o — 0,and K, — Kg
uniformly on compact sets as ¢ — 0, we can pass to the limit in o and &, for any
R and$§ > 0,

1 t
5/ /// ¢s5(z.x. ) (K (y.2) = KR(x,2)) dpf @n(x. y) djF (x.y) dr
s GJ Rd

1 t
g E/. //G/Rd(ps(zvxa )’) (KR()’»Z) - KR()C, Z)) dpr(Z)ﬂ(xa )’) djr(xs y) dr.
(3.25)

By using s < 1, Assumption (K3), Lemma 2.10 with ®(x, y) = |x — y|V |x — y|?
and (A1), we can bound the modulus of (3.25) for any t € [s, ] by

I |Kr(.2) — Ki(x,2)] B o .
5//0/@1 IV x P dpi(@) (Ix =y v |x = yI) n(x, y) dIj, I, )

< L,/2C, Alpr. j ).

Hence the integral is uniformly bounded in § and R, and by the Lebesgue dominated
convergence theorem we can pass to the limit in (3.25) in § and R, obtaining

1 [t
E/ // / (K(y,2) — K(x,2)) dpo: (2)n(x, y) dj . (x,y) dz.
K GJ R4
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Now, it remains to control the integral involving the term 1 — ¢s(z, x, y) in the
integrand. Let us note that, for all 6 > 0,

(R! x G) \{es = 1) < (Bi-1 x G) U (R! x (G\(Gs N Ny))) =: M.

Using Assumption (K3) and splitting each contribution, we obtain
‘//G[Rd (1 —¢5(z, %, ) (K (v, 2) = K (x,2)) dpf (2)n(x, y) djf (x, y)

< L/// (|x —y|Vx —y|2) nx,y) dj? (x,y) dpf (z)
M

§L///ﬂ (lx—y|\/|x—y|2) n(x,y) djf (x,y) dpf (z)
Bi_1xG

s—1x

war [ ap@ [ (b tv b= ) wetr et dnf 6 duy)
Rd GS

war [ af@[[ (b=t b= ) wr e ) dof o) duio)
R4 N§

Using Lemma 2.10 with ®(x,y) = |x — y| V |x — y|?, (A1) and the Cauchy—
Schwarz inequality with respect to 1 pf ® p, the right-hand side in the inequality
above can be further bounded by

AL\ Co Ay ) of (B5-1)
1
2
+ 21 AP O ((//G e — ¥, y) dof () du(y)> + JCup? (EEI)) .
P

Thanks to the uniform second moment bound of p/ from Lemma 2.16 and As-
sumption (A2), the above terms converge to zero as § — 0, which concludes the
proof. O

That ~/D is a one-sided strong upper gradient for £ is an easy consequence of
the previous result.

Corollary 3.11. For any curve p € AC([0, T1; (P»(R?), T)) it holds that
t
£ = £p) 2 = [ VDAl dr forall 0SsS1ST. (326
s

i.e., VD is a one-sided strong upper gradient for £ in the sense of Definition 3.4.

Proof. Without loss of generality we assume | ;\/W |o’|(t) dt < o0, as oth-
erwise the inequality (3.26) is trivially satisfied. We obtain the result as conse-
quence of Proposition 3.10 by applying the one-sided Cauchy—Schwarz inequality
(Lemma 3.7) to (3.22) as follows: forany0 < s < < T,

E(pr) — E(ps)
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t —8 N tA —5 .
:/ /g\ﬂr,wf (wf7 \% 58(1(? )) dr = _/ gpr,wr (w‘L'v -V 58(1(? )) dr
! =8E(pr)  S8E(pr)
> ~ _ _ =
2 /S\/gpr’_vasg,) ( \% 5 \% 5 )w/gpt,wf (wg, we) dt
t
= [ VPG Atorw ar

t
=/ VD(p:) 1p'|(7) dr.

Note that the last two equalities are provided by identity (3.18) and Proposition 2.25.
|

At this point, we have collected all auxiliary results to deduce Theorem 3.9.

Proof of Theorem 3.9. Let us start by assuming that p is a weak solution to
(NLZIE). In view of Definition 3.1, a weak solution is obtained from the weak
formulation of the nonlocal continuity equation (2.13) if we set

X _6& &
dj,(x,y) = Vg(x, y)—dp(x)du(y) — V%(x, )+ dor(y) du(x).
Then, by writing vtg (x,y) = —V% (x,y), it is easy to check that

Alpr, jo) = Alpr, v€) = D(pr) < 00,

where the finiteness follows from Assumptions (K3) and (A1), as shown by the
computation

D(pr) = //GI(VK % 0 (x, V)= *n(x, y) dpr(x) die(y)

< //G(VK * g (x, y))zn(x, y) dp; (x) du(y)

2
//G </Rd(K(x’Z) — Ko dMZ)) n(x, y) dpy(x) du(y)

A

/:/G/]Rd([((x’ ) — K(y, Z))z dps(2)n(x, y) dps(x) du(y)
= LZ/ /f ('x —yF Vi - Y|4) n(x,y) due(y) dp;(x) dpy(2)
R4 G
= LZC”/ / dpi(x) dps(z) = L*Cy.
RdJ R4

Thanks to Proposition 2.25, this also proves that p € AC([0, T1; (P>(R%), T))
and |,ot’|2 < D(py) fora.e. t € [0, T]. In view of Proposition 3.10, we thus obtain

r &
Elpr) — E(py) = / 2y 0f (vf,vg(m> dr
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! _8&
—~ £
- R vl d
/Sgpr,v‘,g <UT s (pr)> T

d —6&&
[ [
K G |4

t t
=~ [ Do ar =~ [ VDG ar.

2
n(x,y) doc(x) du(y) dr

This implies that

(i) the map ¢t — &(py) is non-increasing;
(i) £(or) — E(ps) + 2 [ D(pr) + |pL1* dr = 0, by Corollary 3.11.

Whence the first part of the theorem follows for s = 0 and r = T since Gr(p) = 0.
Consider now p € AC([0, T]; (P2(R%), T)) satisfying the equality (3.21). Let
us verify that it is a weak solution of (NL?IE). By Proposition 2.25 there exists a
unique family (j,);e[0,7)1n Tp[PQ(Rd) suchthat (p, j) € CEr,fg A(pr, j,) dt <
oo and |,ol/|2 = A(p:, j,) fora.e. t € [0, T]. Moreover, by Lemma 2.6 we find an
antisymmetric measurable vector field w: [0, T] x G — R such that

dj,(x,y) =wi(x, )y dyr(x, y) — welx, y)—dya, (x, ).

Thanks to Proposition 3.10, by applying the one-sided Cauchy—Schwarz, using the
identification (3.18), the definition of the local slope (3.19) and Young inequality,

we get
T 8¢
ngrsw‘( wT?v%(pf) dr

r_ _8&
= - ngr,wr w-[,—V%(,Or) dr

T T
—/QJD@»¢Awnj»dr=—/;¢Dwamudr

1/TD()d I/H/Pd
—= T— = T.
2 0 IOT 2 0 10'[

Thanks to the equality (3.21), we actually have that the above inequalities are
equalities, which holds if and only if w;(x, y) = —V%(x, y) fora.e.t € [0, T]

E(pr) — E(po)

v

v

and y; ;-a.e. (x,y) € G. Hence (p, j) € CE7 with w = —?%, that is, p is a
weak solution to (NL2IE). O

3.4. Stability and Existence of Weak Solutions

Theorem 3.9 provides a characterization of (weak) solutions to (NL2IE) as
minimizers of Gy attaining the value 0. The direct method of calculus of variations
gives existence of minimizers of Gr. However, it is not clear a priori whether they
attain the value 0 and are thus actually weak solutions to (NL?IE). Hence we prove
compactness and stability of gradient flows (see Theorem 3.14) and approximate
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the desired problem by discrete problems for which the existence of solutions is
easy to show; see the proof of Theorem 3.15. We start by proving that the local
slope D is narrowly lower semicontinuous jointly in its arguments, © and p; see
Lemma 3.12. We then establish the compactness coming from a uniform control
of the De Giorgi functional Gr, as well as its joint narrow lower semicontinuity
(see Lemma 3.13), which we prove using compactness in CE7 and the joint narrow
lower semicontinuity of the action (see Proposition 2.17) and of the local slope.
(See also [48, Theorem 2] for an analogous strategy.)

In Theorem 3.14 we prove one of our main results, namely that the functional G
is stable under variations in base measures, defining the vertices of the graph, and
absolutely continuous curves. A particular consequence of this theorem is that weak
solutions to (NL?IE) with respect to graphs defined by random samples of a measure
w converge to weak solutions to (NL2IE) with respect to u; see Remark 3.17.

The existence of weak solutions of (NL21E) (and thus gradient flows) with
respect to £ proved in Theorem 3.15 shows that, indeed, the De Giorgi func-
tional (3.20) corresponding to an interaction potential K satisfying (K1)—(K3)
admits a minimizer when 1 (R?) is finite.

Lemma 3.12. Let (u"), C M1 (R?) and suppose that ('), narrowly converges
to ju. Assume that the base measures ("), and ju are such that (A1) and (A2) hold
uniformly in n, and let K satisfy Assumptions (K1)—(K3). Let moreover (p"), be a
sequence such that p" € Pr(RY) foralln € N and p" — p as n — oo for some
p € Pr(RY). Then

liminf D(u"; p") 2 D(1; p).
n—oo

Proof. Foreveryn € Nwesetu” = VK * p". Furthermore, we write u = VK * P
and define g: R — R by g(x) = (x;)? for all x € R. Then note that g is convex
and continuous, and

D(u"; p") = / f 80 (e, y) dp" () dut ().

and, similarly,

D(u; p) = //Gg(u(x, yn(x,y) do(x) du(y).

We want to use [2, Theorem 5.4.4 (ii)] to prove the desired liminf inequality.
Observe that u" € L?(ny{") and u € L?(y y1); indeed, (K3) and (A1) give

fqu'%x, »2n(x, y) dyf'(x, y)

= //G(K % p"(y) — K % p"(x))*n(x, y) dyf'(x, y)

< L%Cy,
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and, similarly, for u. Let now ¢ € C°(G). We have

//Gu"(x, Ve, ynx, y) dyf(x,y)

// (/ K(y,z) dp"(2) —/ K(x,z2) dp"(z)) ox, yn(x,y) dyf'(x, y)
G R4 Rd

_//G/RA(K(%Z) — K(x,2)p(x, y)nx,y) d(p" ® y{)(z, x, )

= f/ f (K(y,2) = K(x, 2)e(x, y)n(x, y) d(o" ® y)(z, x, y)
supppJ RINBR

+ // / (K(y,2) — K(x, 2)px, y)n(x, y) d(p" @ y{')(z, x, y).
suppp RI\Bp

The last integral is actually vanishing as R — oo since (K3), (A1) and Prokhorov’s
Theorem give

V/ / (K(y,2) — K(x,2)e(x, y)n(x,y) d(p" @ y{)(z, x, y)
suppps RI\Bp

« _ Llgllecp" ®\Bg)
~infauppe(lx — ¥V |x — y|2)

// (x = y[2 v |x — y[MnGe. y) du(y) dp™(x)
supp ¢

< LGyliglloop” RI\Bg)
- infsuppq)(|x —yIVix— y|2) R—00

The function (z, x, y) — (K(y,z) — K(x, 2))¢(x, y)n(x, y) is continuous and
bounded on (R4 N Bgr) x G thanks to Assumption (W). In addition, we note that
(0" ® y{')n narrowly converges to p ® y; in PR x Mt(G). Therefore, we
obtain for any R > 0 the convergence

lim // / (K(y,2) = K(x, 2)ex, y)n(x,y) d(o" @ y{)(z, x, y)
supppJ RINBp

n— oo

= // / (K(y,2) — K(x,2))p(x, y)n(x,y) d(p @ y1)(z, x, ¥).
supppJ RINBg

By sending R — 00, we obtain

lim //Gu"(x, Vet ynx. y) dyl(x. y)

n—oQo

= //G/RJ(K(% 7)) — K, 2)ex, y)nx,y) dlp ® y1)(z, x, y)

= //Gu(x, Ve x, y)n(x, y) dyi(x, y).
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Thus, u” converges weakly to u as n — o0 in the sense of [2, Definition 5.4.3]. By
[2, Theorem 5.4.4 (ii)] we therefore conclude that

liminf D(u": ") = lim inf / / G () 40" () i (3)
> //Gg(u(x, yn(x, y) do(x) du(y) = D(u; p),

which is the desired result. O

Let us also prove the compactness and narrow lower semicontinuity of the De
Giorgi functional.

Lemma 3.13. (Compactness and lower semicontinuity of the De Giorgi functional)
Let (W), C MT[R?) and suppose that (u"*), narrowly converges to . As-
sume that the base measures (" and w satisfy (Al) and (A2) uniformly in n,
and let K satisfy (KI)—(K3). Let moreover (p™"), be a sequence so that p" €
AC([0, T1; (Po(RY), T,)) for all n € N with sup, .y Ma(pf) < 00 and sup,,cy
Gr(u"; p") < oo. Then, up to a subsequence, p; — p;asn — oo forallt € [0, T']
for some p € AC([0, T1; (P2(R?), 7,,)) and

liminf Gr (u"; p™) = Gr(u; p).
n—o0

Proof. For any n € N, recall the definition

17 LTy
Gr(u": p") = E(pF) = Epf) + Efopw"; pi) dr + 5/0 oY .

where we are careful to take the metric derivative of p” with respect to 7,» (as
given in Definition 2.18). Since the domain of the energy & is all of P, (R¢) and the
local slope D is non-negative, the bound sup, .y G (1"; p") < 0o ensures that

T
sup/ (!5, dt < oo.
neNJ 0 K

For all n € N, since p" € AC([0, T]; (P2 (RY), 7,n)), Proposition 2.25 yields the
existence of a flux j" such that (p", j") € CE7 and |(/o,")’|2 = A" pft, ji) for
almost all ¢ € [0, T']. We then get

T T
SUP/ A" o, ji) dt = sup/ (o |5, dt < oo.
neNJ 0 neNJ 0 "

By Proposition 2.17, there now exists (p, j) € CE7 such that, up to subsequences,
pl — p; forallt € [0, T]and j" — jasn — oo, and

T T
00 > liminf/ A" pft, jiy dt = / A(w; pr, j,) dr.
n—oQ 0 0
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By Proposition 2.25, we therefore have p € AC([0, T'1; (P2(R9), 7,)) and |(pt)’|zTﬂ
< A(w; pr, J,) for almost all ¢ € [0, T, which finally gives

T T
.. 2
1%111%)1? /0 |(pfn)/|TM” dr > /0 |pt/|7; dr. (3.27)

|
By the narrow continuity of the energy proved in Proposition 3.3, we get

Jlim E(p7) = E(pr) and  Tim E(py) = E(po)- (3.28)

Furthermore, by Fatou’s lemma and the narrow lower semicontinuity of the local
slope shown in Lemma 3.12, we have

hmmff D(u"; pr') dt >/ D(; py) dt. (3.29)

Gathering (3.27), (3.28) and (3.29), we finally obtain

o 1 T 1 T
liminf Gr (1"; p") 2 E(pr) — E(po) + —/ D(u; pr) dt + —/ o5 dt
n— 00 2 0 2 0 n

= Gr(u; p),

which ends the proof. O
We now get our stability result.

Theorem 3.14. (Stability of gradient flows) Let (1), € M*(R?) and suppose
that (u"), narrowly converges to (. Assume that the base measures (1" and |
satisfy (A1) and (A2) uniformly in n, and let the interaction potential K satisfy (K1)—
(K3). Suppose that p" is a gradient flow of € with respect to ”* for all n € N, that
is,
Gr(u; p"y =0 foralln € N,

such that (pgy), satisfies sup, .y Ma(py) < o0 and p}! — p, asn — oo forallt €
[0, T for some curve (py)iejo.r) C P2(R?). Then, p € AC([0, T1; (P2(RY), T,.))
and p is a gradient flow of € with respect to u, that is,

Gr(u; p) =0.

Proof. By Lemma 3.13 we directly obtain that p € AC([0, T]; (P2(R%), 7,.)) and,
up to a subsequence,

0 = liminf Gr (u"; p") 2 G(u; p).
n—oo

Finally, since Gr(i; p) = 0 by Young’s inequality and Corollary 3.11, we obtain
Gr(u: p) =0. O

Note that, via Theorem 3.9, the above theorem also shows stability of weak
solutions to (NL’IE). Typically, in Theorem 3.14, ("), is a sequence of atomic
measures used to approximate, or sample, the support of p. Indeed, we now use
this approach to show the existence of weak solutions to the nonlocal nonlocal-
interaction equation.
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Theorem 3.15. (Existence of weak solutions) Let K be an interaction potential sat-
isfying Assumptions (K1)—(K3). Suppose that u € MT (R is finite, i.e., M(Rd) <
oo, and satisfies (A2). Assume furthermore that for some C ,’7 > 0 it holds that

sip (= yPvir =y )nw o c (330)
(x,y)eGNsupp n@u

Consider py € P2(R?) which is ju-absolutely continuous. Then there exists a weakly
continuous curve p: [0, T] — P(Rd) such that supp p; < supp uforallt € [0, T],
which is a weak solution of (NL?IE) and satisfies the initial condition p(0) = po.

Proof. Let (u"), C MT(R%) be a sequence of atomic measures such that (1),
converges narrowly to u. Moreover, assume that u” has finitely many atoms and
w" (R < (RY) and supp u" < supp u foralln € N. Let " be the normalization
of 1" which has the same total mass as u, that is,

n BRYH

A
and let 7" be optimal transportation plan between w and " for the quadratic cost.
Let p; be the second marginal of gy, where py is the density of the measure pg
with respect to jt; namely, let pj(A) = f Rdx 4P0(x) dr" (x, y) for any Borel set
A C R?. Note that i (RY) = po(RY) and py < w" foralln € N, and that, since
pom" is a transport plan between pg and pg, oy — po as n — 0.

Thanks to Assumption (3.30), it holds, for all n € N, that

j1—ess sup/ux =y Vix = y[HnGey) du () £ p"®RHC)

xeRd

< u@®He). (331

Since, by construction p; < w", we have supp p; < supp u”" < supp . This
nested support property is, thanks to Proposition 2.28, preserved in time, so that
supp p;! < supp u forallt € [0, T] and n € N. For this reason, (3.31) can be used,
under the stated support restriction on py, instead of Assumption (A1) uniformly
in n when calling Lemma 3.13 and Theorem 3.14 later in this proof. Since n”"
consists of finitely many atoms and u satisfies (A2), the family (u,), satisfies (A2)
uniformly in 7.

By Remark 1.1, we know that the ODE system (1.2)—(1.4) admits a unique
solution for all n € N. It can be easily checked that this solution, which we denote
by p", is a weak solution to (NL?IE) with respect to " starting from 04> according
to Definition 3.1. By Theorem 3.9, we then get that p” is a gradient flow of £ with
respect to u starting from pfj for alln € N.

Combining the compactness part of Lemma 3.13 and the stability from Theo-
rem 3.14, we get that, up to a subsequence, p;' — p; asn — oo forall ¢ € [0, T,
where p € AC([0, T1; (P>(RY), 7,)) is a gradient flow of £ with respect to u
starting from pg. Theorem 3.9 finally shows that p is a weak solution to (NL’IE)
with respect to p starting from pg. O
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Remark 3.16. Assumption (3.30) is only needed to arrive at an atomic approxima-
tion sequence ("), of u such that Assumptions (A1) and (A2) hold uniformly in
n. On a case-by-case basis, one could drop (3.30) and try to construct the sequence
(u™), explicitly in such a way as to satisfy both assumptions uniformly in 7.

Remark 3.17. We conclude the section by remarking on the relevance of the The-
orem 3.14 to the setting of machine learning. Namely, there p is the measure
modeling the true data distribution, which can be assumed to be compact. Let (x;);
be a sequence of i.i.d. samples of p and let u" = % Y11 8y, be the empirical
measure of the first n sample points. Assume (p™), is a narrowly converging se-
quence of probability measures such that supp p” C {x,...,x,} foralln € N,
and denote by p its limit. Assume that 7 is an edge weight kernel such that i and n
satisfy (A2) and (3.30). Let K be an interaction kernel satisfying (K2) and (K3).
Finally, let (0"), be the sequence of solutions of (NLZIE) in the sense of Defini-
tion 3.1 such that p; = p" foralln € N. Then, by Lemma 3.13, the sequence (o;'),,
narrowly converges along a subsequence for all ¢+ € [0, T'], and furthermore, by
Theorem 3.15, any curve (0;);c[o,7] of subsequential limits yields a solution o of
(NL2IE) with initial condition p.

3.5. Discussion of the Local Limit

Here we discuss at a formal level the connection between the nonlocal nonlocal-
interaction equation and its limit as the graph structure localizes. We first present
a very formal justification as to why we expect the solutions of (NL?IE) to con-
verge to the solutions of a nonlocal-interaction equation as the localizing parameter
e — 0T, i.e., as the edge-weight function n = 1, localizes. We conclude this sec-
tion with an example that cautions that the formal argument cannot be justified in
full generality. Proving the convergence of (NL?IE) in the limit ¢ — 0, under
appropriate conditions, remains an intriguing open problem.

Take u = Leb(R?) and choose ne given by (2.2). Consider a smooth in-
teraction potential K : RY x RY — R and a compactly supported initial condi-
tion po which has a continuous density with respect to . Let p® be the solution
of (NL?IE) starting from po for the edge weight function 7,. Assume that o
is absolutely continuous with respect to w for all ¢. In the following we drop
the 7-dependence of p® for brevity. From (NL’IE), by adding and subtracting
P (xX) [Ra (VK % p®(x, ¥))4n6(x, y) dy, it follows that

¥ p°(x) = —pS(X)/RFK * p°(x, y)ne(x, y) dy
—/Rﬁpg(x, WVK * p®(x, y)ne(x, y) dy.
Then, for almost all x € R? we have

/ VK *p°(x, y)ne(x, y) dy
Rd
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XB:(x)(Y)

dy
| Be|

2Q2+d
= (—er)/ (K % p°(y) — K * p°(x))
& R4

ZM<L/ K % p°(y) dy—K*pe(X))
€ |Be|J B,(x)

A standard calculation, using a second-order Taylor expansion, shows that the right-
hand side approximates AK * p®(x) when ¢ is small, provided that derivatives of
p¢ remain uniformly bounded.

Similarly, by Taylor expanding V¢ and VK # p¢ to first order and changing
variable over the unit sphere while carefully tracking the positive part, one gets

/Rﬁps(x, WVK % p°(x, y)4ne(x, y) dy = Vp©(x) - VK * p°(x)
for small &.

Combining the expressions above yields
I p"(x) & —p° () AK * p°(x) = Vp*(x) - VK * p°(x)
==V (p°VK * p*)(x).

This suggests that if p® converge as & — 0T, then the limiting p is a solution of
the standard nonlocal interaction equation (3.1). A possible way to attack the local
limit within the variational framework is via a stability statement similar to that of
Theorem 3.14, but now with respect to the family (17¢)¢~0 in the limit & — 0.
The next remark indicates that this will require further regularity assumptions on
the interaction kernel K.

Remark 3.18. We present an example that indicates that, in certain situations,
solutions of (NL2IE) cannot be expected to converge to solutions of (3.1) as
the interaction kernel 7, becomes more concentrated. Namely, consider d = 1,
Q=(-2,2)and u = Leb(Q). Let K(x,y) =1 —e ¥V forall x, y € Q and n
be a smooth, even function, positive on (—0.2, 0.2) and zero otherwise. Consider
0o = %(8_ 1 + 81). It is straightforward to verify that p, = pg for all € [0, T']
yields a weak solution of (NLZIE) for all & > 0. In particular, note that the corre-
sponding velocity field satisfies v(—1, y) = —(K % po(y) — K % po(—1)) < 0for all
y € (—1.2, —0.8), and thus the flux from x = —1 remains zero, and analogously
from x = 1. Therefore, one cannot expect the weak solutions for the interaction
potential K to converge to weak solutions of (3.1) as ¢ — 07. We believe that,
for these particular kernel K and edge weights 7, the problem persists for strong
solutions for initial data close to pg, only that explicit solutions are not available.
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Appendix A: Minkowski Norm of the Underlying Finsler Structure

In this appendix we show that, given p € P (R?) and Jj e TPPZ(Rd ), the inner product
8, j from Section 3.1 derives from a so-called Minkowski norm, as it should be in the theory
of Finsler geometry; see [4,18,49].

Letus fix p € P» (Rd) which is absolutely continuous with respect to u, in accordance
with Section 3.1. For j € TpPZ(Rd), we denote j its density with respect to u© ® u. We
show that the function Fj,: T,P> R?) - R given by

1 j> s j< 5
Fp(j) = f// J G y)n(x, y) (X“ 0 (x. ) At 0 y)) dp(x) du(y)
2/) ¢ p(x) Py

forall j € T,P»(R?),

is a Minkowski norm, that is, it is smooth away from 0, positively 1-homogeneous and,
whenever j in nonzero n u ® w-a.e., its second variation is a symmetric positive definite
bilinear form. In fact, we now prove that, for all j, j{, jo € TpP; (R?) such that Jjis
nonzero n @ pu-a.e.:

1 92

2, . . . ..
- F t = . , .
3919 pJ+sir+tj2)=28pj(1J2)

s=t=

Indeed, let j € T,P>(RY), s € Rand j; € T,P>(R?) such that j +sj € TyP2(RY).
Then,

Fp(j+5i1) = F5(j)
1
= 5// G, ¥) + sj1(x, )20 (x, )
G

" (X{j+sj1 S0} (%, ¥)  X{j+sji <0} (X, ¥)
px) Py

) dp(x) dp(y)
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] j > ’ j < ’
- gfij(x,y)zn(x,y) (X{’ 0)x, y) + X <0)(x y)> du(x) du(y)

o(x) o)
1 +s]1> s > s
= fff j(x,y)2n<x,y)<x“+“ 000 ) _ Xij=0 (¢ y)) due(x) dpe(y)
2)) G p(x) p(x)

1 [+sj1< (s ) < (s )
+5//Gj(x,y)2n(x,y)(X{““ Oy Xj<0F y)d,u,(x)du(y)

p(y) o)
52 . 2
+ 7// J1Ge, ) n(x, y)
G

« (X{l'+‘v,/1>0} (x, y) X{j+sj1<0} (x,y)
p(x) p(y)

+S//Gj(x7 VG ynx, y)

" (X{j+sj| S0} (X, Y) X{j4sji <0} (X, )
p(x) p(y)
=h+Dh+13+14.

) dp(x) du(y)

) du(x) du(y)

Note that
L= 1[/ Gy, y)
2JJ o<js-sin
o (X{j+sj1>0}(x,y) XG>0 (x, y)
p(x) p(x)

lf/ . 2
+ 3 (x, y)"n(x, y)
2J) ez Y

o (X{j+sj1>0}(x,y) XG>0, y)
p(x) p(x)

1 J e »)2nx, y)
=—5 " dux)d
2//{0</<_w o) u(x)du(y)

1 i (x, y)2n(x,
41 f / JENTED 4y duiy).
2 {—sj1<j<0} p(x)

) du(x) du(y)

) dp(x) dp(y)

Therefore,
10, )2 n(x, )
HE 2[/ DD dut) dudy).
p(x)
Similarly, one gets
10, )2 n(x, )
HE 2// DS duo) duy).
p(y)
‘We also have that

1] < %// S ynx, ) () du(y)

p(x)
1(x, n(x, y)
*f/ JUEL IR T ey day).
o(y)
Using Lebesgue’s dominated convergence theorem, one gets, moreover, that
Iy _ ; .
lim = S g )Gy, y)

s—>0 §
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XG>0y (X,Y) | X(j<0}(x,y)
(B 4 ZEQEED ) da) du(y),

We thus overall get

F2(j +sj1) — F2(j)
lim 27 71 o sz J10e, ) j (e, yn(x, y)
s—0 S G
« (X‘f>°“x’y) X‘f<°“x’y)> () du(y),
p(x) o)

which shows that

1d ) 1
14| piicinzl . .
28], o +sjp 2//611(x,y)1(x,y)n(x,y)

N (X{j>0}(x7y) X{j<0}(x7y)> 400 di(y)
p(x) Py
=2.; 1. J)- (A1)

Note that this equality was used in Section 3.1 to determine that grad™ £(p) is indeed the
direction of steepest descent from p, i.e., to get (3.9). Computing now a further derivative in
direction j, € T,P; (R?) and using similar boundedness arguments, we get
192
2 0tds

F2(j +sj1+1j2)

S=r=!

1
= 5// 1, ) x, yn(x, y)
G

o (X{j>0}(x7 Y Xx(j<0y(x,¥)
px) )

) du(x) du(y)
1
+ 5// J1Gx, ) ja(x, yn(x, y)
{j=0}
» (X{jz>0}(x,y) X(j2<0) (X, ¥)
p(x) p(y)

) dp(x) du(y)

.. 1 . .
=gp,j(11,12)+7// J1(x, y)ja(x, y)n(x, y)
2JJ (=0

" (X{j2>0}(x, Y X{jp<0} (X, ¥)

d d .
p(x) p(y) ) ) dpe)

Note that the presence of the integral over the set {j = 0} comes from the fact that j is not a
multiplicative function of the integrand anymore (as it was the case for the first derivative),
so that the set of points where j = 0 has to be considered. Assuming then that n u ® p-a.e.
we have j # 0 we obtain that this integral over {j = 0} is equal to zero, which yields the
claim.
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