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Dark Energy Survey Year 3 results: Curved-sky weak lensing mass map
reconstruction
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ABSTRACT

We present reconstructed convergence maps, mass maps, from the Dark Energy Survey (DES) third year (Y3) weak gravitational
lensing data set. The mass maps are weighted projections of the density field (primarily dark matter) in the foreground of
the observed galaxies. We use four reconstruction methods, each is a maximum a posteriori estimate with a different model
for the prior probability of the map: Kaiser—Squires, null B-mode prior, Gaussian prior, and a sparsity prior. All methods are
implemented on the celestial sphere to accommodate the large sky coverage of the DES Y3 data. We compare the methods using
realistic ACDM simulations with mock data that are closely matched to the DES Y3 data. We quantify the performance of the
methods at the map level and then apply the reconstruction methods to the DES Y3 data, performing tests for systematic error
effects. The maps are compared with optical foreground cosmic-web structures and are used to evaluate the lensing signal from
cosmic-void profiles. The recovered dark matter map covers the largest sky fraction of any galaxy weak lensing map to date.

Key words: gravitational lensing: weak —methods: statistical —large-scale structure of Universe.

Bartelmann & Schneider 2001; Mandelbaum 2018a). By measuring
the subtle distortions of galaxy shapes due to the mass distribution
Weak gravitational lensing is one of the primary cosmological probes between the observed galaxies and us the observers, we are able
of recent galaxy surveys (for a detailed review of weak lensing; see to place tight constraints on the cosmological model describing the

Universe and associated nuisance parameters. In particular, weak

lensing most tightly constrains the content of matter in the Universe
* E-mail: niall jeffrey @phys.ens.fr (NJ); mgatti @ifae.es (MG) (€2,,) as well as the level at which matter clusters (o, defined to
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be the standard deviation of the linear overdensity fluctuations on a
8 h~! Mpc scale). Weak lensing also has great potential to constrain
dark energy by using galaxy shapes measured at a range of redshifts.
In addition to information about the cosmological model describing
the Universe, the reconstructed maps of the mass distribution from
weak lensing are rich in information about the interaction between
galaxies, clusters, and the cosmic web.

The main focus of weak lensing analyses to date has been the mea-
surement of two-point summary statistics such as correlation func-
tions or power spectra (Hildebrandt et al. 2017; Troxel et al. 2018;
Hikage et al. 2019; Hamana et al. 2020). A zero-mean Gaussian den-
sity field can be statistically completely characterized by its two-point
statistics. The methodologies for measuring and modelling these
two-point statistics are now relatively well-developed and standard
analyses of two-point statistics in weak lensing now take into account
several non-trivial systematic effects that were not known a decade
ago. These effects include intrinsic alignment (IA), clustering of
source galaxies, small-scale modelling of baryonic effects, and uncer-
tainty in photometric redshift calibrations (a detailed review of recent
developments in these areas can be found in Mandelbaum 2018b).

In the standard model of cosmology, the initial highly Gaussian
density field becomes increasingly non-Gaussian on small scales
through non-linear structure formation. As the techniques for two-
point analyses mature, it is natural to ask whether we could extract
significantly more information from the same data simply by going
to higher order (i.e. non-Gaussian) summary statistics, and whether
we understand, at the same level as the two-point statistics, the non-
trivial systematic effects in these higher order statistics. Common
higher order statistics with weak lensing include shear peak statistics
(Dietrich & Hartlap 2010; Kratochvil, Haiman & May 2010; Liu et al.
2015; Kacprzak et al. 2016; Martinet et al. 2018; Peel et al. 2018;
Shan et al. 2018; Ajani et al. 2020), higher moments of the weak
lensing convergence (Van Waerbeke et al. 2013; Petri et al. 2015;
Vicinanza et al. 2016; Chang et al. 2018; Peel et al. 2018; Vicinanza
et al. 2018; Gatti et al. 2020c), three-point correlation functions or
bispectra (Takada & Jain 2003, 2004; Semboloni et al. 2011; Fu
et al. 2014), Minkowski functionals (Kratochvil et al. 2012; Petri
et al. 2015; Vicinanza et al. 2019; Parroni et al. 2020), and machine-
learning methods (Fluri et al. 2018, 2019; Ribli, Pataki & Csabai
2019; Jeftrey, Alsing & Lanusse 2021). Many of these have recently
been applied to data (Liu et al. 2015; Kacprzak et al. 2016; Martinet
et al. 2018; Fluri et al. 2019; Jeffrey et al. 2021), often performing
well in terms of cosmological constraints.

This paper will focus on the key element for many of the methods
described above: a weak lensing convergence map, often referred
to as a mass map. Such a map quantifies the integrated total mass
along the line of sight (weighted by a lensing efficiency that peaks
roughly half-way between the source and the observer). Two crucial
features make a convergence map appealing for extracting higher
order statistics: (1) the map preserves the phase information of the
mass distribution and (2) the convergence is a scalar field, which can
be easier to manipulate/model than a shear field (the latter is closer
to what we observe, as explained in Section 2). Many methods for
generating these convergence maps have been proposed; the founda-
tion of most of them is the direct inversion algorithm developed in
Kaiser & Squires (1993, hereafter KS), a purely analytic solution for
converting between shear (the observable) and convergence. Many
papers are based on the KS method, including cosmological analyses
(Van Waerbeke et al. 2013; Chang et al. 2015; Liu et al. 2015; Vikram
et al. 2015; Chang et al. 2018; Oguri et al. 2018).
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The main difficulties associated with the KS method are the
treatment of the noise and mask effects. In practice, galaxy surveys
only observe a part of the sky, and mask out different regions of their
sky footprint where the shear field cannot be properly estimated.
This usually affects the map-making process, resulting in a poor
estimate of the convergence field near masked regions and near
the edge of the footprint. Moreover, we can observe only a noisy
realization of the shear field, which often leads to a noise-dominated
estimate of the convergence field. Methods more sophisticated than
KS were developed to deal with these issues. These include noise
modelling and signal priors, either in closed-form (Marshall et al.
2002; Lanusse et al. 2016; Alsing, Heavens & Jaffe 2017; Jeffrey
et al. 2018b; Price et al. 2019) — this is the approach we will take
in this work — or implicitly learned using samples from the prior
(e.g. using deep learning; Shirasaki, Yoshida & Ikeda 2019; Jeffrey
et al. 2020). Many methods have been shown to improve some
aspects of the reconstruction of the convergence maps, but ultimately
the choice of method depends on the science application of these
maps.

Therefore there is no single comprehensive test for comparative
performance between methods; a number of different tests have to
be considered.

One goal of this paper is to present an objective and systematic
comparison between several map reconstruction methods using the
same set of simulations and data. We present results using the DES Y3
shear catalogue of 100204 026 galaxies in 4143 deg”. These results
highlight expected differences in the maps constructed using the
different algorithms and illustrate the advantages or disadvantages
of their use in different science cases. We present a comprehensive
framework under which most of the convergence map-making meth-
ods described previously can be connected and compared. We focus
particularly on four methods that span the range of the most popular
methods: KS, null B-mode prior, Gaussian prior (Wiener), and halo-
model sparsity prior (GLIMPSE). The methods are applied first to
a set of DES Y3-like mock galaxy catalogues to demonstrate the
performance of each method when the true underlying convergence
field is known.

Applying the four methods to the DES Y3 data, we fulfil further
goals of performing tests for effects of observational systematic
error. We compare the reconstructed weak lensing convergence
maps with DES observations of foreground structures; this has
further applications for future cosmographic studies and full analyses
correlating these maps with cosmological observables (e.g. type la
supernovae, galaxies, and cosmic web structures). Further papers (to
follow) will use the maps generated here for cosmology analyses and
inference.

The structure of the paper is as follows: in Section 2, we provide
the theoretical background for weak gravitational lensing and the
framework that connects convergence with observable quantities in
a galaxy survey. In Section 3, we present a mathematical framework
in which the four different mass mapping methods of interest (KS,
null B-mode, Wiener, GLIMPSE) are seen to differ only with respect
to the priors that are adopted. The data products and simulations used
in this work are described in Section 4. In Section 5, we carry out a
series of tests on mass maps generated from the four methods and
compare them systematically. We then apply the four methods to the
DES Y3 data in Section 6 and present tests for additional systematic
residuals from observational effects. We additionally compare and
analyse the maps with observations of foreground structures. We
conclude in Section 7.
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2 WEAK GRAVITATIONAL LENSING ON THE
SPHERE

We begin with the gravitational potential ® and the matter overden-
sity field § = §p/p; these real scalar fields on space-time are related
by the Poisson equation

3Q, H
2a(t)

Here ¢ is time, r is a comoving spatial coordinate, €2,, is the total
matter density today, Hy is the Hubble constant today, and a = 1/(1
+ z) is the scale factor.

Weak gravitational lensing is the small distortion of the shapes of
distant galaxies caused by the gravitational warping of space-time
(and hence the distortion of light paths) by mass located between the
galaxies and an observer; see Bartelmann & Schneider (2001) for a
comprehensive introduction.

We will parametrize the observer’s past light cone as (x, €, ¢) with
x the comoving radial distance from the observer and 6, ¢ a point
on the observer’s celestial sphere. The effect of weak lensing can be
encapsulated in the lensing potential, denoted ¢, a real scalar field
on the light cone; its value is related to the gravitational potential &
projected along the line of sight:

V2(t, r) = 8@, r). 6]

2 o fk(—x)
oo = [ SR
This equation assumes the Born approximation (the path of inte-
gration is not perturbed by the intervening mass). Here the angular
distance function fx is sin, the identity, or sinh depending on whether
the curvature K is positive, zero, or negative.

The radial dependence of ¢ in equation (2) would allow a 3D
analysis; however, instead of this, we integrate away the radial
dependence using as a weight function the normalized redshift
distribution n(z) of source galaxies, obtaining

(x'.0.9). (@)

¢(9,<p)=/dx n(z(x)) ¢(x, 0, ¢), (3)

areal scalar field on the celestial sphere.

To handle ¢ as well as derived quantities we use the formalism of
spin-weight functions on the sphere as described in Castro, Heavens
& Kitching (2005). Let ;Y;,,(6, ¢) denote the spin-weight s spherical
harmonic basis functions. Recall that the covariant derivative O
increments the spin-weight s while its adjoint 3 decrements it; these
operators act in a straightforward fashion on the basis functions.

The convergence x = kg + ikp (of spin-weight 0 i.e. a scalar)
and shear y = y| + iy, (of spin-weight 2) are related to the lensing
potential via:

K= 3(65 +30)g, 4)

1
y = 555¢~ ©)

The convergence satisfies

3QH [
KO, p) = 0 / dx n(z(x))
0

2¢?

o /X dX/fK(X/)fK(X -x) 6()(’,9,(15). ©
0

fxGoO a(x’)

We now move to harmonic space, obtaining harmonic coefficients
Dom» Kem» and Py, for ¢, k., and y, respectively. Here for example:

Yy = Z ?Zm 2Y2m (7)

tm
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with
Pem = /dﬂ v, 9)2Y;, 0, ¢). (3

We can decompose the harmonic coefficients into real and imaginary
parts: Ko = Kg om + iKp om and Py = VE 4m + 75 0m. In harmonic
space, equations (4) and (5) become:

Rim = —%e«z + Do )
and

Pim = %\/(e — DEE + 1) + 2)Pe- (10)
Thus

o Je-ne+2)
Yim = Z(Z—i—l) Kem- (11)

3 MASS MAP INFERENCE

The formalism introduced in the previous section relates an ideal
complex shear field defined on the full celestial sphere y to the
convergence field k for a given source redshift distribution. This ideal
shear field is full-sky, sampled everywhere, and noise-free. Inferring
the unknown convergence field from ellipticity measurements of
a finite set of source galaxies in the presence of survey masks
and galaxy shape noise (discussed below) is the challenge of mass
mapping.

The real and imaginary parts of the shear y are relative to a chosen
2D coordinate system. In weak lensing, the observed ellipticity
(equation 4.10 of Bartelmann & Schneider 2001) of a galaxy €qbs
is related to the reduced shear g plus the intrinsic ellipticity of the
source galaxy € through

€obs ~ 8 + €,

14
_K.

where g = 1 (12)
In the weak lensing limit, the reduced shear is approximately the
true shear, g &~ y. This allows an observed shear to be defined, ¥ obs
= €ops; this can be interpreted as a noisy measurement of the true
shear that has been degraded by shape noise (caused by the unknown
intrinsic ellipticities €, of the observed galaxies):

Yobs ~ 14 + €s. (13)

The shape noise is larger than the lensing signal by a factor of O(100)
per galaxy. It is therefore a dominant source of noise.

In a Bayesian framework, we consider the posterior distribution
of the convergence « conditional on the observed shear y (here we
have dropped the subscript ., for brevity) and on the model M:

p(yle, M) p(k|M)
plely, M) O/ IM) ; (14)
where p(y|«k, M) is the likelihood (encoding the noise model),
p(k|M) is the prior, and p(y|M) is the Bayesian evidence.

We formulate all reconstructed convergence « maps as the most
probable maps (given our observed data and assumptions); this is the
peak of the posterior i.e. the maximum a posteriori estimate. From
equation (14) we see that the maximum a posteriori estimate is given
by

& = arg max log p(y [ic, M) + log p(| M), (15)
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where M is our model (which in our case changes depending on the
chosen prior distribution). Here, the elements of the vectors k and y
are the pixel values of a pixelized convergence map and the observed
shear field, respectively.

We can express the linear data model in matrix notation,

y = Ak +n, (16)

where the matrix operation A corresponds to the linear transforma-
tion from the ideal (noise-free and full-sky) convergence field to the
shear field (equation 11). The noise term n is the vector of noise
contributions per pixel (equation 13).

Assume that the average shape noise per pixel on the celestial
sphere (e.g. per HEALPIX Goérski et al. (2005) pixel) is Gaussian
distributed, so that the likelihood (dropping M for brevity) is given
by

P = e | =5 = AT N —a0)| (17
where it is assumed that the noise covariance N = (nnf) is known
and that the average noise per pixel is both Gaussian and uncorrelated
(so that N is diagonal). With this likelihood, the masked (unobserved)
pixels have infinite variance.

Under the assumption that the variance per galaxy due to weak
lensing is negligible in comparison to the variance due to the intrinsic
ellipticity, we can generate noise realizations by rotating the galaxy
shapes in the catalogue and thus removing the lensing correlations.
This procedure is extremely fast, and allows us to easily construct a
Monte Carlo estimate of the noise covariance N.

3.1 Prior probability distribution

This work considers four forms for the prior probability distribution
p(k| M) that appears in equation (15). This prior probability is
intrinsic to the method and cannot be ‘ignored’ (in the sense that not
including a prior is identical to actively choosing to use a uniform
prior).

The various prior probability distributions used in this work
correspond to various mass mapping methods, with each prior arising
from a different physically motivated constraint. They are:

(1) Direct Kaiser—Squires inversion. In the absence of smoothing
this corresponds to a maximum a posteriori estimate with a uniform
prior:

plr) o 1. (18)

Although this is an improper prior as it cannot be normalized, the
resulting posterior is nevertheless normalizable. One may set wide
bounds for this distribution and in practice these would not impact
the final result.

Usually the Kaiser—Squires inversion is followed by a smoothing
of small angular scales, where it is expected that noise dominates
over signal. This corresponds to a lower bound on the prior with
respect to angular scale.

(i) E-mode prior (null B-modes). As discussed further in Sec-
tion 3.3, this prior incorporates our knowledge that weak gravitational
lensing produces negligible B-mode contributions. This corresponds
to the log-prior

—log p(k) = iim)=0 + constant, (19)

where the indicator function iyy,=o is discussed in Section 3.3.
(iii) Gaussian random field prior, assuming a certain E-mode
power spectrum (and with zero B-mode power). The maximum a
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posteriori estimate under such a prior (combined with our Gaussian
likelihood) corresponds to a Wiener filter (Wiener 1949, Zaroubi et
al. 1995). The prior distribution

1 1 =
plk) = Wexp {filc’f S, K:| R (20)
with the power spectrum contributing to the signal covariance matrix
S., will be discussed in Section 3.4.

(iv) Sparsity-enforced wavelet ‘halo’ prior with null B-modes. In
the late Universe it is expected that quasi-spherical halo structures
form. A wavelet basis whose elements have this quasi-spherical
structure in direct (pixel) space should be a sparse representation
of the convergence k signal. This is included in the log-prior
distribution

—log p(k) = Allgp k|l + Im(c)=0 » 21

where the /; norm of the wavelet transformed convergence ¢TIC
is small when the convergence field contains quasi-spherical halo
structures, for a suitable choice of wavelet transform ¢ 1. Unlike the
case of the Gaussian prior, where the lack of B-modes can be included
in the power spectrum, here the second term is added to enforce that
the signals compatible with the prior contain only E-modes. This is
further discussed in Section 3.5.

In the rest of this section, we will explain the physical motivation for
these choices and show how they are implemented.

3.2 Kaiser-Squires on the sphere

In the flat sky limit, for relatively small sky coverage, the & operators
on the sphere may be approximated using partial derivatives 0 with
respect to 6 and ¢. In this regime, the relationship between shear y
and convergence « (equations 4 and 5) reduce to

k3 — k3 + 2ikik,

kf + k3

where k; and k, are the components of k, defined in terms of the
Fourier transform

/Z(k):/ dé k(9) exp[ib -K], (23)
R2

7o) = k(k), (22)

where 6 has components 6 and ¢. The well-known Kaiser—Squires
(KS) method estimates the convergence by directly inverting equa-
tion (22).

For the DES Y3 sky coverage, the flat sky approximation cannot be
used without introducing substantial errors (Wallis et al. 2017), so as
in the Y1 mass map analysis (Chang et al. 2018) we require a curved-
sky treatment. KS on the sphere corresponds to a decomposition
of the spin-2 field y into a curl-free E-mode component and a
divergence-free B-mode component, as described in Section 2.

With these components g ¢, and Pg ¢, We use equation (11) to
recover Kg ¢, and kg ¢, Which transform as scalars using a spin-0
spherical harmonic transform to recover « (6, ¢) = kg(0, ¢) + ik (0,
®).

The spherical harmonic operations described above are entirely
analogous to CMB linear polarization, where the Q and U Stokes
parameters correspond to the y; and y, components. As such,
all spherical harmonic transformations use either the scalar or
‘polarization’ transforms of HEALPIX (Gorski et al. 2005). All maps
presented in this work use NSIDE = 1024 and all relevant spherical
harmonic transforms use ¢,,,, = 2048.

As with flat-sky KS, this generalization of KS to the celestial
sphere corresponds to an inverse of the linear operation A in

MNRAS 505, 4626-4645 (2021)
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equation (16) and, as such, corresponds to a maximum-likelihood
estimate (cf. equation 17) of the convergence field «. Direct KS
inversion therefore corresponds to a maximum a posteriori estimate
with a uniform prior p(k) o 1.

Even with this Bayesian maximum a posteriori interpretation,
the KS reconstruction method has the advantage of simplicity: the
transformation is linear if B-modes are included (which can be a
useful mathematical property) and the method is computationally
straightforward.

Asis standard practice the KS inversion is followed by a smoothing
of small angular scales, corresponding to a lower bound on the prior
with respect to angular scale. We treat the choice of the angular
smoothing parameter as a free parameter, the effects of which we
investigate using simulated data (Section 5).

3.3 Null B-mode prior

We can decompose a convergence map into a real E-mode and
imaginary B-mode component

K = kg + 1 kg, (24)

where the shear representation of the E-mode « is curl-free and the
B-mode kp is divergence-free.

The Born-approximation weak lensing derivation (see Section 2)
makes it clear that weak gravitational lensing generates no B-
mode components. Higher order contributions can contribute to non-
zero B-modes (e.g. Krause & Hirata 2010), although these effects
are generally much smaller than the leading E-mode contribution.
Additionally, intrinsic alignments of galaxies can induce non-zero
B-mode contributions (Blazek et al. 2019; Samuroff et al. 2019),
although intrinsic alignment effects are not included in this map
reconstruction analysis. We also note that systematic effects, such
as shear measurement systematic errors of point-spread-function
residuals, can also generate spurious B-modes (e.g. Asgari et al.
2019), but no significant B-modes have been measured in the DES
Y3 shear catalogue (Gatti et al. 2021).

The standard KS reconstruction generates spurious B-modes due
to shape noise and masks. Itis therefore well-motivated to have a prior
probability distribution for convergence « that gives no probability
to kg and the KS uniform prior to kg only, giving the following
log-prior

— log p(K) = iim()=0 + constant, (25)

where the indicator function of a set C is defined as

) 0 ifxeC

fe(x) = - (26)
+o00 otherwise

which in our case gives zero prior probability to convergence «
maps with an imaginary component (corresponding to B-modes).
The maximum a posteriori estimate with this prior and Gaussian
likelihood is given by the following optimization problem:

& = argmin (y — Ak)T N7' (¥ — Ak) + iimie)=o- (27
K

This formulation allows us to maximize the log posterior (equa-

tion 15) using Forward—Backward Splitting (Combettes & Wajs

2005), with a proximity operator corresponding to an orthogonal

projector on to the set C. This is implemented with the following
iterative method

k"D =Re [k™ + uATN (y — Ac™)], (28)
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where u controls the gradient steps and is free to be chosen within
certain broad conditions (see Combettes & Wajs 2005), which allows
us to represent the iterative method as

k") =Re [k™ + /AT [n, © (y — Ac™)]], @

where © is an element-wise (Hadamard) product. Here we have
absorbed the amplitude of the noise variance into ' leaving just
a vector of number of galaxies per pixel n, with galaxy weights
according to Section 4. In practice, the second term can be nu-
merically unstable due to the forward and backward transforms (A,
AT) on the HEALPIX sphere, becoming increasingly problematic for
low signal-to-noise data, which necessitates some regularization of
the gradient update steps. As with KS, we ultimately smooth small
scales of the reconstructed map, and we therefore initialize «© with
the smoothed KS reconstruction and include the smoothing operation
after each gradient update step which also serves as a regularizer in
the gradient descent. This also implies that the final map would be
slightly smoother than if it had been smoothed only at the end of the
iterative procedure.

Although the motivation and the algorithm are somewhat different,
this method is inspired by and gives a similar outcome to that shown
in Mawdsley et al. (2020). The algorithm described here is also
similar to the GKS special case of the MCALens method for flat-sky
mass mapping as described in the appendices of Starck et al. (2021).

3.4 Gaussian prior (Wiener filter)
This prior is that of a Gaussian random field, which is applicable for
the density field on large scales at late times,

pK|S) = L s;lx} . (30)

1
——————¢X
Sdeznsy P { 2

The maximum a posteriori estimate with this prior and Gaussian
likelihood is given by the following optimization problem:

& =argmin (y — Ak)I N7\ (y — Aw) + k7 S k. (31)
The solution to this problem is the Wiener filter:

IeW = W)’

W =S,A" [AS, AT +N] . 32)

Here S, and N are the signal and noise covariance matrices,
respectively, which are (k') and (nn') for this problem.

Direct evaluation of the matrix W, which has at least 10' elements
and is sparse in neither pixel space nor harmonic space, would be
extremely computationally expensive. We therefore make use of a
class of methods that use additional messenger fields (introduced
by Elsner & Wandelt 2013) to iteratively transform between pixel
space, where N is diagonal, and harmonic space, where S, is
diagonal. Such methods have seen widespread use in cosmology
where the signal covariance is often sparse due to the statistical
isotropy of the underlying signal (Jasche & Lavaux 2015; Alsing
et al. 2017; Jeffrey, Heavens & Fortio 2018a).

For a Wiener filter messenger field implementation on the sphere
we use the DANTE' package (Kodi Ramanah, Lavaux & Wandelt
2019), which uses an optimized novel messenger field implementa-
tion to perform Wiener filtering on the sphere for spin-2 fields. We
test convergence by doubling the DANTE precision (with precision
parameter from 107 to 5 x 107%), which effectively corresponds to

Uhttps://github.com/doogesh/dante
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increasing the number of iterations, and showing a negligible MSE
change of 3 x 1073 per cent with simulated data.

The signal covariance matrix in harmonic space is diagonal, with
elements given by an assumed fiducial power spectrum. Our fiducial
E-mode power spectrum is taken as the power spectrum of the
convergence truth map from the simulated data (see Section 4)
which was corrected for the mask using the NaMaster? pseudo-C,
estimation code (Alonso, Sanchez & Slosar 2019).

We explicitly provide a B-mode power spectrum set to zero,
thus simultaneously achieving the null B-mode prior equivalent to
Section 3.3.

3.5 Sparsity prior

The optimization problem solved by the GLIMPSE algorithm using a
sparsity prior is

& =argmin (y — Ai)" N7 (y — Ak) + A||oD ||} + imie—o-
(33)

where o is a diagonal matrix of weights, and & is the inverse
wavelet transform. The indicator function ijy,c)=o in the final term
imposes realness on the reconstruction (null B-modes). The use of
non-uniform discrete Fourier transform (NDFT) allows the first term
to perform a forward-fitted Kaiser—Squires-like step without binning
the shear data, allowing the smaller scales to be retained in the
reconstruction. The full algorithm, including the calculation of the
weights, is described in Section 3.2 in Lanusse et al. (2016).

GLIMPSE operates on a small patch of the sky, which it treats as flat.
Input shear data are transferred (projected) from the celestial sphere
to the tangent plane (i.e. the plane tangent to the sphere at the patch
centre); the ‘shear to convergence’ calculation is done on the tangent
plane (where the flatness simplifies the analysis); the results (which
are reported at a lattice of points — call this an ‘output lattice’) are
then mapped back to the sphere. The mapping between sphere and
tangent plane is the orthographic projection.

To analyse the large DES footprint we run GLIMPSE on multiple
(overlapping) small patches and paste the results together. We set
each of our patches to be 256 deg? (a compromise: larger would
stress the flat-sky approximation while smaller would suppress large-
scale modes). The density of such patches is one per 13 deg”. The
output lattices were set to have 330 x 330 points. Each pixel in
our draft convergence map (HEALPIX NSIDE = 2048) is obtained
from a weighted average of the convergences at all the output lattice
points, from all the patches, that happen to fall in that pixel. The
weights are chosen to be unity in the centre of each patch but to fall
away to zero (sharply but smoothly) away from the central one-ninth
of each output patch. As a last step the output convergence map is
downsampled to a NSIDE = 1024.

An alternative to this patching strategy would be to implement
wavelets on the sphere. The sparsity-based statistical model de-
scribed by Price et al. (2021) demonstrate such a strategy, with
the added benefit of sampling the posterior distribution (not just
maximization), though uses wavelets on the sphere that have infinite
support in pixel space.

The choice of wavelet transformation (sometime called a ‘dic-
tionary’) depends on the structures contained in the signal. Theory
predicts the formation of quasi-spherical haloes of bound matter. It
is standard practice to represent the spatial distribution of matter in

Zhttps://github.com/LSSTDESC/NaMaster
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haloes with spherically symmetric Navarro-Frenk—White (Navarro,
Frenk & White 1996) or Singular Isothermal Sphere profiles. The
starlet, Coefficients of Isotropic Undecimated Wavelets (Starck,
Murtagh & Fadili 2015), in two dimensions are well suited to
represent the observed convergence of a dark matter halo. The
wavelet transform used in the GLIMPSE algorithm is the starlet (Starck,
Fadili & Murtagh 2007), which can represent positive, isotropic
objects well. This prior in the starlet basis represents a physical model
that the matter field is a superposition of spherically symmetric dark
matter haloes.

The full GLIMPSE algorithm is described in detail in Lanusse et al.
(2016).

3.6 Properties of inferred maps

As described above, each of our maps is a maximum a poste-
riori estimate given the observed data; that is, each is the most
probable map for the data given one of our assumed models. All
mapping methods take into account the same noise covariance
matrix (characterizing the noise amplitude and distribution across
the observed area); differences between the maps arise from the
different assumptions about the prior probability distribution for the
underlying convergence k.

Although the map (in practice this is a set of pixel values)
is the most probable map, a given statistic of the map will not
necessarily correspond to the most probable statistic. For example,
if the convergence « field is indeed Gaussian, we can see that the
resulting most probable map is the Wiener filter map. The two-
point statistics (e.g. power spectrum) of the Wiener filtered map will
comprise terms such as (&) = (Wyy W), If the signal-to-noise
ratio is not infinite (i.e. S + N # S), equation (32) for W shows that
the two-point statistics of the Wiener filtered map (¢#') will have
lower amplitude than those of the truth (k).

This is no contradiction: the pixel values forming their most
probable combination £ maximize p(x|y), but would not maximize
a transformed probability p(«?|y). For most summary statistics, the
map cannot simultaneously be the most probable map and be trivially
used to derive the most probable summary statistic. If we evaluated
the full posterior p(k|y) rather than evaluating a maximum a
posteriori point-estimate, we could transform the probability density
to further evaluate functions of the map (e.g. spectra, correlation
functions, moments).

If we wished to jointly estimate the map and a given statistic
@ used in the map-making process (e.g. C, for Wiener filtering
or A for the sparsity prior) we could instead form the joint pos-
terior p(k, u|y) and jointly estimate p. It has been demonstrated
that under certain assumptions one can indeed jointly sample the
lensing map and the unknown power spectrum (Wandelt, Larson
& Lakshminarayanan 2004; Alsing et al. 2017) or the unknown
A parameter (e.g. Higson et al. 2019; Price et al. 2019) if this is
desired. In this work, we evaluate a point-estimate that maximizes
p(k|y) and, as we do not aim to evaluate the full posterior, we fix C,
(even doubling the amplitude leads to sub-5-percent change in mean-
square-error for the point estimate) and tune X using simulated data
(Section 5).

For inference using map-based statistics, the theoretical predic-
tions can be simply adjusted for the given map reconstruction. In
a forward-modelling framework (as used by many higher order
statistics), the predictions are measured from mock maps and the
same operations are applied consistently to the mock data and to the
observed data.
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4 DATA AND SIMULATIONS

In this paper, we used data products from the first three years (Y3) of
the Dark Energy Survey (DES; Dark Energy Survey Collaboration
2016; Abbott et al. 2018), and mock galaxy catalogues that were
tailored to match the data. DES is a five-year survey that covers
~ 5000 deg? of the South Galactic Cap. Mounted on the Cerro Tololo
Inter-American Observatory (CTIO) four metre Blanco telescope in
Chile, the 570 megapixel Dark Energy Camera (DECam; Flaugher
et al. 2015) images the field in grizY filters. The raw images were
processed by the DES Data Management (DESDM) team (Sevilla
et al. 2011; Abbott et al. 2018; Morganson et al. 2018). For the full
details of the data, we refer the readers to Sevilla-Noarbe et al. (2021)
and Gatti et al. (2021).

4.1 The DES Y3 shear catalogue

The DES Y3 shear catalogue, described in detail in Gatti et al.
(2021), builds upon the Y3 Gold catalogue (Sevilla-Noarbe et al.
2021). It is created using the METACALIBRATION algorithm (Huff
& Mandelbaum 2017; Sheldon & Huff 2017), which infers the galaxy
ellipticities starting from noisy images of the detected objects in the 7;
i, zbands. The METACALIBRATION algorithm was used previously
in the DES Y1 analysis (Zuntz et al. 2018). METACALIBRATION
provides an estimate of the shear field, and it relies on a self-
calibration framework using the data itself to correct for the response
of the estimator to shear as well as for selection effects. Objects are
included in the catalogue if they pass a number of selection cuts
designed to reduce potential systematic biases (Gatti et al. 2020a).
Inverse variance weights are assigned to galaxies. The final DES
Y3 shear catalogue has 100204 026 objects, with a weighted rn.; =
5.59 galaxies arcmin—2.

Despite the METACALIBRATION response self-correcting for
most of the multiplicative bias, it is known that for the DES Y3 shear
catalogue there is an additional multiplicative bias of approximately
2 or 3 per cent (MacCrann et al. 2020). This factor arises partly
from a shear-redshift-dependent detection bias due to blending of
galaxy images, for which the METACALIBRATION implementation
adopted in DES Y3 is unable to account (Sheldon et al. 2020).
This multiplicative factor is left uncalibrated but is marginalized
over in the main cosmological analysis. In Gatti et al. (2020a), the
shear catalogue has also been tested for additive biases (e.g. due
to point-spread-function residuals). In particular, the catalogue is
characterized by a non-zero mean shear whose origin is unknown
and which is subtracted at the catalogue level before performing any
analysis.

A two-stage blinding procedure was used in the DES Y3 analysis
to mitigate confirmation bias. The first level of this procedure blinded
the shear catalogue by means of a multiplicative factor, in a fashion
similar to what has been adopted in the Y1 analysis (Zuntz et al.
2018). The second level of blinding (Muir et al. 2020) was applied to
the summary statistics under examination (e.g. cosmic shear, galaxy—
galaxy lensing, galaxy—galaxy clustering). Since in this work we do
not directly measure any summary statistics from the data maps, only
the first level of blinding has been considered. All the systematic tests
on the maps obtained from the data have been performed first using
the blinded catalogue, and then repeated after unblinding.

The shear catalogue is further divided into four tomographic bins;
redshift distribution estimates (Fig. 1) for each of the tomographic
bins are provided by the SOMPZ method (Myles et al. 2020), further
informed by clustering (WZ) constraints (Gatti et al. 2020b). The n(z)
are also tweaked to take into account the redshift-dependent effect
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Figure 1. Redshift distributions as estimated in data for the four DES Y3
tomographic bins (Myles et al. 2020).

of blending (MacCrann et al. 2020). When running the cosmological
analysis, constraints on the n(z) are further improved by shear-ratio
constraints (Sanchez et al. 2020). The tomographic bins are selected
so as to have roughly equal number density.

The catalogue is then used to create shear maps (i.e. pixelized
maps for the two components of the shear field). The maps are
constructed using a HEALPIX pixelization (Gdrski et al. 2005) with
NSIDE = 1024 (corresponding to a pixel size of 3.44 arcmin). The
estimated value of the shear field in the map pixels is given by:

Z?:l €jw;

Yobs = 5> V=1,2, (34)
" RE]':I w;

where v refers to the two shear field components, 7 is the total number
of galaxies in the sample, w; is the per-galaxy inverse variance
weight, and R is the average METACALIBRATION response of the
sample. Equation (34) is used to create shear field maps for the full
catalogue as well as for the four tomographic bins. As mentioned
earlier, the multiplicative shear bias is left uncalibrated when creating
the shear maps. Any non-zero mean shear is subtracted from the
catalogue before creating the maps.

4.2 Simulated mock galaxy catalogue

To build our simulated galaxy catalogue, we use a single realization of
the 108 available Takahashi et al. (2017) simulations. These are a set
of full-sky lensing convergence and shear maps obtained for a range
of redshifts between z = 0.05 and 5.3 at intervals of 150 A~' Mpc
comoving distance.

Initial conditions were generated using the 2LPTIC code (Crocce,
Pueblas & Scoccimarro 2006) and the N-body simulation used L-
GADGET?2 (Springel 2005) with cosmological parameters consistent
with WMAP 9yr results (Hinshaw et al. 2013): @, = 0.279,
og = 0.82, @, = 0.046, ng = 097, h = 0.7. The simulations
begin with 14 boxes with side lengths L = 450, 900, 1350, ...,
6300 A~! Mpc in steps of 450 h~' Mpc, with six independent
copies at each box size and 20483 particles per box. Snapshots are
taken at the redshift corresponding to the lens planes at intervals of
150 h~! Mpc comoving distance. The average matter power spectra
of the simulations agree with the revised HALOFIT (Takahashi et al.
2012) predictions within 5 per cent fork < 1 2 Mpc™' atz < 1, for k
<0.8hMpc~!atz < 3,and fork < 0.5 2 Mpc~! atz < 7. A multiple
plane ray-tracing algorithm (GRayTrix; Hamana et al. 2015) is
used to estimate the values of the shear and convergence fields for the
simulation snapshots. Shear and convergence field maps are provided
in the form of HEALPIX maps with resolution NSIDE = 4096.
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We use the convergence and shear maps at different redshifts to
generate a simulated DES Y3 shape catalogue, using the following
procedure. First, we generate convergence and shear field HEALPIX
maps for the four DES Y3 tomographic bins (and for the full
catalogue as well) by stacking the shear and convergence snapshots,
properly weighted by the fiducial DES Y3 redshift distributions
of the bins. Simulated galaxies are then randomly drawn within
the DES Y3 footprint according to the DES Y3 number density.
Each simulated galaxy is assigned a shear and convergence value
depending on its position (i.e. by looking at the value of that particular
pixel of the convergence and shear maps into which they fall). To
assign realistic shape noise and weights to the simulated galaxies,
we make use of the fiducial DES Y3 shape catalogue. In particular,
we randomly rotate the ellipticity of each galaxy in the data such
that it can be used as intrinsic ellipticity. This intrinsic ellipticity
is added to a random galaxy of the simulated catalogue, using the
shear addition formula (e.g. Seitz & Schneider 1997). We also assign
to the simulated galaxy the inverse variance weight from the same
real galaxy we used to obtain the intrinsic ellipticity. Following this
procedure, we obtain a simulated DES Y3 catalogue, with the same
number density, shape noise, and weights of the catalogue in data.
Finally, following equation (34), we use the simulated catalogue to
create a NSIDE = 1024 ‘true’ convergence map, which will be used
as comparison in all the tests on simulations.

5 SIMULATION TESTS

In this section, we discuss and compare the different mass map
methods outlined in Section 3. To this aim, we use simulated
convergence maps and a number of different statistics to test the
quality of the reconstruction with respect to the input convergence
map available in simulations. Here, we only show tests on the maps
created using the full shear catalogue.

We do not expect any conclusion drawn in this section to change
when considering tomographic maps rather than the full map. All the
maps considered have been converted to HEALPIX (Gérski et al. 2005)
maps with NSIDE = 1024 (corresponding to a pixel resolution of
3.44 arcmin).

As mentioned in the introduction, there is no single comprehensive
test for comparative performance between methods. Rather, a number
of different tests can be performed, aimed at highlighting the advan-
tages and disadvantages of each method. In particular, Section 5.1
discusses how different methods deal with mask effects, Section 5.2
shows the convergence field estimates in the presence of realistic
shape noise from the different methods when realistic, noisy shear
fields are provided as input, while Sections 5.3-5.5 show quantitative
tests on a number of summary statistics. In these tests, whenever
meaningful, we varied the parameters of the method (i.e. the 6
parameter for KS and null B-mode prior methods and the A parameter
for GLIMPSE). We note that these tests are by no means exhaustive,
as other summary statistics could be examined (e.g. higher order
statistics, phases, peaks). While we think the tests presented in this
section allow us to characterize the advantages and disadvantages
of each method, further tests could be performed depending on the
particular science application.

5.1 Mask effects

To demonstrate the effects of the mask and missing data, we
generate a mock catalogue with no shape noise. Fig. 2 shows the
input true convergence map (top left-hand panel), the KS E-mode
reconstruction (top left-hand panel), the KS residual map (bottom
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left-hand panel), and the KS B-mode map (Bottom right-hand panel).
The residual is defined as the difference between the input true map
and the reconstructed E-mode map. In these figures the maps have
been smoothed with a Gaussian kernel with ¢ = 10 arcmin for
visualization.

In the noise-free case all methods other than KS (including Wiener
and GLIMPSE) have a null B-mode prior and are thus equivalent. In
this noise-free limit, the noise covariance becomes a binary matrix
(for the mask) and the signal factors can divide out (although our
code implementations of Wiener and GLIMPSE would not be able to
deal with this zero limit in practice). The noise-free result is therefore
the same for the null B-mode prior method, the Wiener filter, and
GLIMPSE.

From the KS residual map (bottom left-hand panel), where the
residual is between the KS idealized case with no shape noise and the
truth, we recover most of the features of the input convergence map,
except for the part of the map close to the edges of the DES footprint.
As discussed in Section 3, the KS reconstruction is susceptible to
mask effects in the case of partial sky coverage, resulting in a non-
zero residual map and spurious B-modes (i.e. E-mode leakage). The
amplitude of the residual map is strongly reduced when a null B-
mode prior is applied, as shown in Fig. 3. We can also quantify the
effect of the null B-mode prior by measuring the power spectra of the
recovered maps. In Fig. 4, we compare the power spectra of the KS
and null B-mode prior maps with the input convergence map power
spectrum. The maps have not been smoothed in this comparison. We
use the HEALPIX routine anafast to estimate the power spectra of
our maps. The power spectra are binned in 20 bins between ¢ = 0
and ¢ = 2048. Fig. 4 clearly shows that the KS method underpredicts
the power spectrum at large scales, due to mask effects and E-mode
leakage. The null B-mode prior, on the contrary, better recovers the
power spectrum at all scales. This holds in the case the spurious B-
modes are caused only by mask and edge effects. As all the methods
other than KS include a null B-mode prior, these methods are less
susceptible to mask effects.

5.2 Reconstruction from realistic mock data

Fig. 5 shows the reconstructed maps from the simulated realistic
noisy shear catalogue using the four methods for comparison. Again,
the KS and the null-B-mode reconstruction have been smoothed at
10 arcmin. The GLIMPSE reconstruction uses a sparsity parameter
of A = 3 (discussed below). Recall that all the map making
methods take into account the noise covariance matrix of the data,
thereby characterizing the noise amplitude and distribution across the
observed area. As a result, all methods naturally take into account
inhomogeneities in the noise properties across the DES Y3 footprint.

The KS E-mode map is now noticeably degraded compared to the
noise-free example (Fig. 2). Though the most significant features of
the input convergence field can still be spotted by eye, a number
of noise-induced small-scale peaks dominate the reconstructed map.
The null B-mode prior method map looks similar to the KS E-
mode map, whereas the impact of noise is reduced in the case of
the other methods, due to their signal priors in the map inference
process. In particular, the sparsity prior adopted by the GLIMPSE
method suppresses the noise enhancing peaky features, which are
assumed to be the result of a superposition of spherically symmetric
dark matter haloes (a feature that can be noted in the zoomed-in
portion of the GLIMPSE map). The noise is also suppressed in the case
of the Wiener filter reconstruction, although the map shows fewer
peak features compared to the GLIMPSE map. The Wiener method has
a prior distribution for which the convergence field is a realization
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Figure 2. Simulated noise-free DES Y3 weak lensing mass maps. Top left-hand panel: the original input convergence field map. Top right-hand panel: the
convergence field map (E-mode) obtained using the spherical KS algorithm from a noiseless realization of the shear field. Bottom left-hand panel: residual map
of the input convergence field and the KS map. Bottom right-hand panel: KS B-mode map. Maps have been smoothed at 10 arcmin for visualization purposes.

Inset: RAcentre, DeCeentre = 70°, —40°; ARA, ADec = 15°, 10°.
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Figure 3. Zoomed-in version of the residual maps for the KS (left-hand
panel) and null B-mode prior methods (right-hand panel). The maps have
been zoomed close to the edge of the footprint. The null B-mode prior method
is characterized by a lower amplitude of the residual map, owing to a better
handling of the mask effects.

of Gaussian random field, and therefore it is better suited to recover
the large-scale structures in the map that have been less affected by
non-linear structure collapse.

5.3 Pearson correlation coefficient

The first statistic we examine is the Pearson correlation coefficient,
which quantifies the correlation between the true convergence from
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Figure 4. Power spectrum of the reconstructed maps, for the KS and the
null B-mode prior methods, obtained from a noiseless realization of the shear
field. No smoothing has been applied to the recovered maps. We compare
here with the power spectra of the input convergence field.

simulation and the reconstructed convergence from the simulated
mock data catalogue. The Pearson coefficient also reveals the ability
of one method to preserve the phases of the convergence field, as it
would assume low values if phases were not preserved. The Pearson
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Figure 5. Simulated DES Y3 weak lensing mass maps, obtained from a noisy realization of the shear field, with different map making methods. Top left-
hand panel: noisy KS E-mode reconstructed map. Top right-hand panel: null B-mode prior method reconstructed map. Bottom left-hand panel: Wiener filter
reconstructed map. Bottom right-hand panel: GLIMPSE reconstructed map. The maps in the top panels have been smoothed at 10 arcmin; no further smoothing
is applied to the maps showed in the lower panels. Inset: RAcentre, DeCcentre = 70°, —40°; ARA, ADec = 15°, 10°.

correlation coefficient, defined for two convergence fields « and «,
is given by

{k1K2)

where (k k) is the sample covariance estimated using pixel values
of k1 and k.

In this case, we compute the Pearson correlation coefficient
between the true simulated convergence map and the reconstructed
E-mode convergence map. The results are shown in Fig. 6. In general,
the closer to unity the Pearson coefficient value, the better the
reconstruction.

For KS and the null B-mode prior methods the smoothing
parameter of the Gaussian kernel o was varied, while for GLIMPSE
we varied the sparsity parameter A. Recall that in our implementation
of the null B-mode prior method the map is recursively smoothed
at every iteration of the algorithm, so that the final map is slightly
smoother than if it were smoothed only at the end of the iterative
procedure. This means that in practice a given value of the smoothing
parameter 6 for the null B-mode prior method should be compared
to a slightly larger value 6 for the KS method.

The eftect of the tuning parameter for the null B-mode prior
method is similar to KS, although the former method performs

(35)

Ie =

slightly better at small smoothing parameter values. The KS and
null B-mode prior methods maximize the Pearson coefficient at
10 and 5 arcmin of smoothing, respectively. This is due the smallxx
angular scales being shape noise dominated, with 5-10 arcmin
corresponding to the scale where the amplitude of shape noise
is comparable to the amplitude of the signal. One can interpret
this as the smoothing up to 5-10arcmin removing more small-
scale noise-induced spurious structures than true signal. A dif-
ferent shape noise contribution (or, equivalently, a different data
set) would change this scale; in the limit of no shape noise, the
optimal scale would be the smallest scale allowed by the pix-
elization scheme. The null B-mode prior method performs slightly
better than KS at small 6 because of the extra regularization (i.e.
smoothing) performed at every step of the iterative algorithm; this
further suppresses noise, improving the Pearson coefficient at small
scales.

For GLIMPSE, the level of suppression of the shape noise is
controlled by the sparsity coefficient A, for which we found A =
3 to optimize the Pearson correlation coefficient. The Wiener filter
has no free parameters in our implementation provided the fiducial
power spectrum is assumed. Both GLIMPSE and the Wiener filter
outperform standard KS and null B-mode prior methods, delivering
a higher Pearson coefficient.
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Figure 6. Top: Pearson correlation coefficient between the reconstructed map and the true, noiseless convergence map, for the four different mass map methods.
When possible, we varied the tuning parameters of the methods. Errors are estimated from jackknife resampling. Bottom: RMSE (see Section 5.4 for a definition)
for the four different mass map methods. When possible, we varied the tuning parameters of the methods. Errors are estimated from jackknife resampling.

5.4 RMSE

The second statistic we examine is the root-mean-square error
(RMSE) of the residuals, defined to be

RMSE(K"mh, Krecon) = (36)

where N is the number of pixels and Ak, is the difference between
the reconstructed map and the true map in pixel p. Again, we only
consider E-mode maps and maps recovered from noisy estimates of
the shear field. The results are shown in Fig. 6. In general, the closer
to zero the RMSE, the better the reconstruction. The RMSE reveals
the ability of one method to preserve the phases and the amplitude
of the convergence field.

The results from this test match those from the Pearson coefficient
test. The null B-mode prior method shows a similar trend to the KS
method, although it is characterized by a smaller RMSE at small
scales. The GLIMPSE and Wiener methods perform better (i.e. the
RMSE is closer to zero) than standard KS and the null B-mode prior
methods.

For KS and the null B-mode prior methods the RMSE is reduced
strongly with smoothing, indicating that the variance at small scales
is completely dominated by shape noise, reaching a minimum after
smoothing the reconstructed maps at 10-20 arcmin. We note that
the minimum of the RMSE signal and the maximum of the Pearson
coefficient for these two maps are at a similar smoothing parameter
value (even though the value does not need to be exactly the same).
For these two methods, the RMSE should converge at very large
smoothing parameter values (larger than those showed here) to the
RMSE of the original field, as the reconstructed map signal goes to
zero. Similar to the Pearson coefficient case, the null B-mode prior
method has a smaller RMSE compared to KS at small scales, due to
the extra noise suppression of the algorithm.

The GLIMPSE and Wiener methods have a significantly smaller
RMSE compared to KS, meaning the reconstructed GLIMPSE and
Wiener maps map is more accurate than KS on the pixel level. For
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GLIMPSE the minimum RMSE is reached for a sparsity parameter A
= 3, the same value that maximizes the Pearson coefficient.

5.5 Power spectra

‘We now examine, for each method, the power spectrum of the residual
map (defined to be the difference between the reconstructed map
and the input convergence map) and the power spectrum of the
reconstructed map. Recall that the reconstruction £ is a maximum
a posteriori estimate, so the power spectrum of £ is not expected to
match the power spectrum of the underlying field (Section 3.6).

The differences between power spectra highlight the effect of dif-
ferent priors on the maximum a posteriori reconstruction, whereas the
residual map power spectra show at which scales the recovered maps
are most similar to the input convergence field. For these tests, we use
the maps recovered from a noisy version of the shear field. We use
the HEALPIX routine anafast to estimate the power spectra of our
maps. The power spectra are binned in 20 bins between £ =0 and £ =
2048. For the KS and the null B-modes prior methods, we considered
the maps with 10 arcmin smoothing; for the GLIMPSE method, we
considered the map obtained with sparsity parameter A = 3.

The left-hand panel of Fig. 7 shows the power spectra of the maps
compared to the power spectrum of the input convergence field. There
is a clear signal suppression at small scales and high multipoles; this is
a consequence of the priors implemented by the different methods to
reduce the impact of noise (which dominates the small-scale regime).
The KS and the null B-modes prior methods show similar behaviour,
as they implement similar priors; however, the null B-mode prior
method suppresses the small-scale signal slightly more compared to
KS. In general, none of the methods reproduce the correct amplitude
of the input theory power spectra; this is to be expected with point-
estimate reconstructions of the map (Section 3.6).

The right-hand panel of Fig. 7 shows the power spectra of the
residual maps. At large scales the Wiener map shows the smallest
amplitude, indicating that it performs best at reproducing the large-
scale pattern of the convergence field. For Wiener and GLIMPSE maps,
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Figure 7. Simulations. Left-hand panel: power spectrum of the reconstructed maps obtained from a noisy realization of the shear field with respect to the power
spectrum of the input convergence field. For the KS and the null B-mode prior methods, we considered the maps with 10 arcmin smoothing; for the GLIMPSE
method, we considered the map obtained with sparsity parameter A = 3. As discussed in Section 3.6, the power of the maximum a posteriori estimates will
not match the power of the truth, and is expected to be reduced. For the Wiener filter, this reduction is known analytically as a function of signal and noise
covariance. Right-hand panel: power spectrum of the residual map, defined as the difference between the recovered map and the input convergence field.
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Figure 8. PDFs (one-point distributions) for the different map reconstruction methods, obtained from a simulated, noisy realization of the shear field. The gray

shaded histogram in each panel is the PDF of the true, input convergence field.

the residuals steadily increase at larger multipoles; indeed, none of
the methods is able to recover the small-scale information. Besides
this main trend, the KS and null B-mode prior maps also show an
increment in the residual map power spectrum around ¢ ~ 300. The
smoothing prior is not able to reduce the impact of shape noise at
these scales, causing the residual map power spectrum to increase
substantially. This shows that the Wiener and GLIMPSE methods
are indeed better than the KS and null B-mode prior methods at
recovering intermediate scales.

5.6 Convergence one-point distribution and recovery of the
input convergence pixel values

In Fig. 8, we show the one-point distribution function (PDF) of the
convergence field. For KS and the null B-mode prior reconstructions
we considered maps with 10 arcmin smoothing, and we used A = 3
for GLIMPSE.

The PDFs of the pixel values of the reconstructed maps are not
identical to those of the input. This is expected. As all reconstructions
are a maximum a posteriori estimate of the underlying convergence
field, the variance (and possibly higher order moments) of the
reconstructed map will be suppressed. The asymmetric distributions

are a sign that the recovered map is not dominated by noise, whose
PDF is completely symmetric.

We also show in Fig. 9 density plots illustrating the relation
between the values of the pixels of the recovered maps and those
of the input convergence map. For a perfect reconstruction, the
density plots would look like a straight, diagonal line (the black
line in the figure). In general, it can be noted that the values of
the pixels of the recovered maps scatter more around zero than the
values of the pixels of the input map. This is a consequence of the
noise; however, as already noted in Fig. 8, the density plots not being
perfectly symmetric means that the maps are not dominated by noise.
Generally, pixels with negative (positive) values in the recovered
maps are also associated to the ones with negative (positive) values in
the input convergence map, although with a large scatter. The scatter
is larger for pixels with positive values, due to the long positive tail
of the convergence PDF.

The density plots for the Wiener filter and GLIMPSE maps are
tighter, whereas KS and null B-mode prior method show a larger
scatter. The density plots convey the same information encoded
by the RMSE: a higher (lower) RMSE value is associated to a
tighter (broader) density plot around the black diagonal line in
Fig. 9.
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Figure 9. Density plots showing the relation between the values of the pixels of the recovered maps and the input convergence field map. A map that perfectly
recovered the truth would have a density plot that followed the black solid line. All of the density plots are normalized. The linear correlation between variables
shown in this plot is quantified by the Pearson correlation coefficient discussed in Section 5.3. As discussed in Section 3.6, the pixel variance of the as maximum
a posteriori estimates will not be equal to pixel variance of the truth, and is expected to be reduced.

6 APPLICATION TO DATA

6.1 Map reconstruction

In this section, we present the reconstructed mass maps using DES
Y3 weak lensing data. We show only maps created using the full
catalogue. We also created maps for the four tomographic bins; they
are not shown here, but they will be made publicly available following
publication at https://des.ncsa.illinois.edu/releases.

Fig. 10 shows the four maps obtained with the KS, null B-
mode prior, Wiener filter, and GLIMPSE methods, obtained from
the METACALIBRATION catalogue. We recall that these maps
have been obtained applying the METACALIBRATION response
correction and the inverse variance weights, as explained in Section 4.
The maps obtained with the different methods visually show the same
differences as the ones obtained in simulations (Fig. 5), with the
Wiener and GLIMPSE maps particularly suppressing the noise thanks
to their priors.

6.2 Systematic error tests

We perform a number of tests on the recovered maps. We first test if
any spurious correlation exists between our maps and quantities that
are not expected to correlate with the convergence maps. The shear
catalogue used to produce the mass maps have been largely tested in
Gatti et al. (2021), but the potential correlation between convergence
maps and systematic errors was not investigated there. We therefore
consider a number of catalogue and observational properties as
potential systematic errors, in a fashion similar to what was done
in Gatti et al. (2021). In particular, we consider the two components
of the point-spread-function (PSF) ellipticity at the galaxy position
(PSF,, PSF,), their E- and B-modes maps (PSFg, PSFp), and the size
of the PSF (Tpsp). As observing condition properties, we consider
mean airmass, mean brightness, mean magnitude limit (depth), mean
exposure time, and mean seeing (all in the i band).

A few maps were considered in the shear catalogue tests and so
are excluded here. For example, we do not include the signal-to-
noise ratio maps among the systematic maps, as we actually expect
to measure a signal (indeed, overdense regions of the sky should
be populated by red elliptical galaxies with high signal-to-noise).
Similarly, we expect (and measure) at high significance a correlation
between galaxy colours and our mass maps.
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We follow Chang et al. (2018) and create (using mean-subtracted
values) a systematic map M for each of the systematic errors. We
first assume a linear dependence between the convergence maps and
the systematic maps:

kg = bMS. 37)

We fit all the pixel values of the convergence maps assuming such a
linear relationship with the systematic maps. We show the measured
coefficient for each of these systematic maps in the left-hand panel of
Fig. 11. Errors are estimated using jackknife errors. We do not find
any particularly significant correlation; individually, the coefficients
are measured with a significance smaller than 3o. The overall x>
of the null hypothesis (considering the correlations among the 10
systematic maps considered here) is 6, 12, 10, and 17 for 10 d.o.f., for
KS, null B-mode prior, Wiener, and GLIMPSE, respectively, indicating
compatibility with no significant dependence on systematic errors.
We also compute the Pearson coefficient between the convergence
maps and the systematic maps; results are shown in the right-hand
panel of Fig. 11 (note that in the same figure we also show the Pearson
coefficient with redMaPPer clusters, discussed in the next section).
The main difference with the linear fit is that the Pearson coefficient
does not assume a priori any relation between the convergence maps
and systematic maps. Again, we do not find any strong evidence of
systematic contamination, with the x? of the null hypothesis being
5,5, 7, and 10 for 10 d.o.f., for KS, null B-mode prior, Wiener, and
GLIMPSE, respectively.

6.3 Structures in the reconstructed maps

6.3.1 Galaxy cluster distribution

For obvious reasons the true convergence map is not available in data;
nevertheless we can check that the reconstructed mass maps probe
the foreground matter density field by correlating them with a sample
of other tracers. For visualization purposes, we show in Fig. 12 the
GLIMPSE map with a few redMaPPer clusters superimposed.

From Fig. 12, we can see that clusters tend to populate the densest
regions in the reconstructed convergence map and avoid the regions
with negative convergence signal.

We also report in Fig. 11 the Pearson coefficient between the
maps and the effective richness of redMaPPer clusters at z < 0.6.
In particular, we follow Jeffrey et al. (2018b) and define an effective
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Figure 10. METACALIBRATION DES Y3 weak lensing mass maps, obtained from the official DES Y3 shear catalogue and created using different map making
methods. Top left-hand panel: noisy KS E-mode map; Top right-hand panel: E-mode map obtained with the null B-mode prior method. Bottom left-hand panel:
E-mode Wiener filter map. Bottom right-hand panel: E-mode GLIMPSE map. The maps in the top panels have been smoothed at 10 arcmin; no further smoothing
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lensed cluster richness A%
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where Ag is the redMaPPer cluster richness, a( ) is the scale factor
evaluated at the comoving distance to a given cluster x, and p(x)
is the lensing efficiency, defined as p(x) = f;oo dy’'n(x") X/;,X , with
n(x') the redshift distribution of the source galaxies used to create the
mass maps as a function of comoving density. The effective richness
is then normalized to the mean of the effective richness of all clusters
considered. For all the maps, the measured Pearson coefficient shown
in Fig. 11 is significantly larger than 0, showing how the recovered
maps successfully trace the foreground matter density field. Again,
we use parameter value & = 10 arcmin for the KS and the null B-
mode prior reconstruction and A = 3 for GLIMPSE by default. For the
redMaPPer result in the right-hand panel of Fig. 11, we also plot 0
= Sarcmin and A = 1 (the triangular figure markers), which were
shown to improve the correlation for these maps.

ff
At =2
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6.3.2 Cosmic void imprints

Cosmic voids are an increasingly favoured cosmic probe and have
now already been successfully used to extract cosmological infor-

mation (for a recent overview see Pisani et al. 2019). We expect
these large lower density regions in the cosmic web to display a
typical imprinting in the convergence signal when cross-correlated
with weak lensing mass maps (for previous results from DES Y1
data see Chang et al. 2018).

We create a catalogue of so-called ‘2D voids’ (Sanchez et al. 2017)
from the DES Y3 redMaGiC (Rozo et al. 2016) photometric redshift
data set by searching for projected underdensities in tomographic
slices of the galaxy catalogue. On average, these tunnel-like voids
correspond to density minima that are compensated by an overdense
zone in their surroundings. With this simple approach, we detect 3222
voids in the DES Y3 data set, which are larger on average, although
also less underdense, than most voids from other void finders (see
e.g. Fang et al. 2019). They certainly are useful tools in void lensing
studies (Davies, Cautun & Li 2018) and they have been widely used
in previous DES analyses (see e.g. Kovdcs et al. 2017, 2019; Fang
et al. 2019; Vielzeuf et al. 2021).

The lensing imprint of typical individual voids is expected to be
undetectable (Amendola, Frieman & Waga 1999). Therefore, after
selecting our void sample, we follow a stacking method to measure
the mean signal of all voids (see e.g. Vielzeuf et al. 2021). Knowing
the angular size of voids, we re-scale the local mass map patches
around the void centres. In such re-scaled units, we then extract
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Figure 11. Left-hand panel: Best-fitting values for the coefficient of the relation kg = hbM® for a given systematic map S. The values of the slopes are shown
for different tomographic bins, and the uncertainties are estimated through jackknife resampling. Right-hand panel: Pearson coefficient between the recovered
convergence map and the systematic maps S. Uncertainties are estimated through jackknife resampling. When applicable, systematic maps are considered in the
i band. For the redMaPPer cluster correlation (right-hand panel) we also show the result for different tuning parameters (see the text for details) that are shown
with with triangle markers.
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Figure 12. METACALIBRATION DES Y3 weak lensing mass maps using galaxies in the third redshift bin (see Fig. 1), obtained with the KS method, with
redMaPPer clusters in the redshift range 0.3 < z < 0.5 (green circles) superimposed. In the wide field, we randomly selected a subsample of the clusters with
richness Arym > 35; for the small inset, we zoom in on the (randomly chosen) location (RA, Dec) = (70°, —40°) (cyan marker on the large map). The circles are
centred at the cluster centre, with the size of the circles scaling with the mass (richness) of the clusters. Visually, the clusters coincide with the high « regions
and avoid the low « regions. The ¥ map is smoothed by a 1 deg Gaussian filter to highlight large-scale features.
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results and errors (shaded ranges are 1o and 20 about the KS signal).

convergence k patches five times the R/R, = 1 void radius, stack
them to increase signal-to-noise, and measure radial profiles from
the average « patch. Without a large set of simulations to estimate
covariance of the void profile statistic, we estimate uncertainty using
a void-by-void jackknife method (see e.g. Sdnchez et al. 2017). We
then correct these re-sampling based uncertainties with reference
to previous DES Y1 void analysis results that used more accurate
Monte Carlo simulations (Vielzeuf et al. 2021).

Fig. 13 shows the measured profiles using the DES voids. As
anticipated, we detect a negative convergence signal within the
void radius (R/R, < 1) and a surrounding ring (1 < R/R, < 3)
of positive convergence signal (due to compensating mass around
voids). We note that different mass map versions show consistent
signals (within the quoted uncertainties). While these void lensing
results remain open to much further quantitative work, there is
certainly clear detection of correlations between underdensities of
galaxies and matter; this will motivate further studies using DES
Y3. We finally remark that the typical convergence signal associated
with local underdensities can be affected by the void definition and
selection. We explore alternative void samples extracted from DES
Y3 data in Appendix A.

6.3.3 Line-of-sight underdensities

Posing a slightly different question, we also examine the distribution
of galaxies in a line-of-sight aligned with the most negative fluctua-
tions in the DES Y3 mass maps. We call these voids in lensing maps
or voles (see e.g. Davies et al. 2018). We use a slightly modified
version of the 2D void finder algorithm to identify them in the DES
mass maps. We apply a Gaussian smoothing of 2 deg in order to
intentionally select relatively deep and extended voles.

Following the previous DES Year 1 (Y1) analyses (Chang et al.
2018), the redMaGiC galaxy position catalogue is projected into
2D slices of 1004~! Mpc along the line-of-sight. This thickness
corresponds to the approximate photo-z errors of the redMaGiC
galaxies that allows the robust identification of voids (see Sanchez
et al. 2017, for details). At redshifts 0.1 < z < 0.7, galaxy density

Galaxies are counted within an aperture of 2 deg of the void centre,
which approximately corresponds to the full angular size of voles.
The measured density contrasts at the different redshifts are used
to reconstruct the radial density profile aligned with the given
vole. Fig. 14 shows the line-of-sight galaxy density aligned with
a significant vole at (RA, Dec) ~ (41.2°, —12.2°) in the KS map.

We find an extended underdensity that is consistent with a
supervoid with radius R, ~ 250 h~! Mpc (assuming simple Gaussian
void profiles as in Finelli et al. 2016). This supervoid, similar to the
biggest underdensity found in the preceding DES Y1 analysis (Chang
etal. 2018), will have smaller scale substructures that are inaccessible
using redMaGiC photometric redshift data. Nevertheless, such a
supervoid is comparable to the largest known underdensities in the
local Universe, and these objects are of great interest in cosmology
(see e.g. Shimakawa et al. 2021). Their integrated Sachs—Wolfe
imprint has already been studied using DES Y3 data to probe dark
energy (for details see Kovdcs et al. 2019).

7 SUMMARY

In this work, we constructed weak lensing convergence maps (‘mass
maps’) from the DES Y3 data set using four reconstruction methods.
The first method considered is the direct inversion of the shear field,
also known as the Kaiser—Squires method, followed by a smoothing
of small angular scales. The second method uses a prior on the B
modes of the map, imposing that the reconstructed convergence field
must be purely an E-mode map (null B-mode prior); this method
also includes smoothing at small scales. The third method, the
Wiener filter, uses a Gaussian prior distribution for the underlying
convergence field. Lastly, the GLIMPSE method implements a sparsity
prior in wavelet (starlet) space, which can be interpreted as a physical
model where the matter field is composed of a superposition of
spherically symmetric haloes.

All methods are implemented on the sphere to accommodate the
large sky coverage of the DES Y3 footprint. We compared the
different methods using simulations that are closely matched to the
DES Y3 data. We quantified the performance of the methods at the
map level using a number of different summary statistics: the Pearson
coefficient with the ‘true’ simulated convergence map, the root-
mean-square error (RMSE) of the residual maps, the power spectra
of the mass maps and residual maps, and the 1-point distribution
function (PDF) of the mass maps.
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The tests performed suggested that using our physically motivated
priors to recover the convergence field from a noisy realization of the
shear field generally improves some aspects of the reconstruction. In
particular, null B-mode, Wiener, and GLIMPSE delivered larger values
of the Pearson coefficient and smaller values of the RMSE compared
to the standard KS method, indicating that their use of physically
motivated informative priors significantly improve the accuracy of
the reconstruction. We furthermore showed that a null B-mode prior
mitigates the troublesome effects of masks and missing data. We
also note how the choice of the prior can make the comparison of
certain statistics with theoretical predictions non-trivial when taking
the maximum a posteriori result as a point estimate &, rather than
evaluating the full posterior distribution p(k). Even if the effect of
the prior cannot be easily modelled for a given theoretical summary
statistic for cosmological inference, a forward modelling framework
can be implemented that compares observed and simulated summary
statistics.

We have presented the official DES Y3 mass maps, obtained with
the four different methods, and assessed their robustness against a
number of systematic error maps representing catalogue properties
and observing conditions. This recovered mass map, of which the
dominant mass contribution is dark matter, covers the largest sky
fraction of any galaxy weak lensing map of the late Universe.

We emphasize that the choice of the particular mass map method
depends on the goals and details of the science application. Science
applications of these DES Y3 mass maps are expected in future work.
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APPENDIX A: ALTERNATIVE SAMPLES OF
VOIDS

We considered alternative catalogues of voids to test how the mass
map imprints may depend on the void definition and selection.

VIDE 3 (Sutter et al. 2015) is a watershed void finder based on
ZOBOV (Neyrinck 2008) that has been widely employed for various
void studies (see e.g. Hamaus et al. 2020, and references therein).
It has already been successfully used to study voids in the DES Y1
data (Fang et al. 2019; Pollina et al. 2019).

VIDE'’s default centre is the volume-weighted barycentre, which
does not generally coincide with the density minimum inside the

3https://bitbucket.org/cosmicvoids/
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Figure Al. Top panel: Different mass map imprints of different types of
voids. Bottom panel: Differences in signals measured from different mass
map reconstructions, relative to the KS results and errors (shaded ranges are
lo and 20 around the KS results).

void due to non-spherical void geometry. Instead, the barycentre
preserves information about the void boundary. Therefore, a different
kind of imprint signal is expected when correlated with convergence
maps, with more pronounced positive rings rather than negative
centres (for a comprehensive study on the « signal associated with
voids see Cautun, Cai & Frenk 2016). In the DES Y3 redMaGiC
data, VIDE detected 12841 voids. We then halved this catalogue
using the compensation of voids to further increase and isolate the
expected signal from the boundary zone, expecting to see an en-
hanced positive convergence « imprint from these overcompensated
voids.

We are also interested in detecting the most pronounced negative «
signals associated with a specific subclass of large and deep voids that
are undercompensated. As a third option, we thus used the public*
void finder algorithm REVOLVER (Nadathur, Carter & Percival 2018;
Nadathur et al. 2019), also based on the ZOBOV algorithm.

A proxy for the gravitational potential (and thus for the conver-
gence field) at the positions of voids can be defined as

12

3 Reff

A =8 | ——— , (AD)
1 h~'Mpc

using the average galaxy density contrast Sg = % f v 9 d*x and the
effective spherical radius, Rer = (V) '3 where the volume V is
the total volume of the void (for further details see Nadathur & Crit-
tenden 2016; Nadathur, Hotchkiss & Crittenden 2017). Raghunathan
etal. (2020) showed that different values of the A, parameter indicate
different (CMB) lensing imprints, including signals with either

“https://github.com/seshnadathur/REVOLVER/
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positive or negative sign, aligned with the void centre.’> Following
this, we keep only 7782 of the most undercompensated voids defined
by the lowest X, values. Leaving more detailed analyses for future
work, we note that a subclass of voids with high X, values would also
correspond to overcompensated voids such as our VIDE sample.

Fig. Al shows the measured profiles of our REVOLVER, VIDE,
and 2D void analyses given the uncertainties. As anticipated based
on the differences in the nature of the voids we selected, we detected
qualitatively different signals in each case:

(i) the VIDE voids show arelative depression in convergence at the
void centre compared to the pronounced peak at the void boundary,
matching our expectations.

(ii) the REVOLVER voids we selected are associated with strong
negative « imprints that in fact extend far beyond the void radius,
indicating surrounding voids on average.

(iii) 2D voids combine the advantages of the other finders. They
excel in marking the actual radius of voids in the mass map profiles,
with reduced central and wall amplitudes.

‘We thus report that all three void types we consider show consistent
signals when mass maps are varied for a given void sample. We leave
more detailed analysis for future work.
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