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Optimal Operations Management of
Mobility-on-Demand Systems
Salomón Wollenstein-Betech*, Ioannis Ch. Paschalidis and Christos G. Cassandras

Division of Systems Engineering, Boston University, Brookline, MA, United States

The emergence of the sharing economy in urban transportation networks has enabled

new fast, convenient and accessible mobility services referred to asMobilty-on-Demand

systems (e.g., Uber, Lyft, DiDi). These platforms have flourished in the last decade around

the globe and face many operational challenges in order to be competitive and provide

good quality of service. A crucial step in the effective operation of these systems is to

reduce customers’ waiting time while properly selecting the optimal fleet size and pricing

policy. In this paper, we jointly tackle three operational decisions: (i) fleet size, (ii) pricing,

and (iii) rebalancing, in order to maximize the platform’s profit or its customers’ welfare.

To accomplish this, we first devise an optimization framework which gives rise to a static

policy. Then, we elaborate and propose dynamic policies that are more responsive to

perturbations such as unexpected increases in demand. We test this framework in a

simulation environment using three case studies and leveraging traffic flow and taxi data

from Eastern Massachusetts, New York City, and Chicago. Our results show that solving

the problem jointly could increase profits between 1% and up to 50%, depending on

the benchmark. Moreover, we observe that the proposed fleet size yield utilization of the

vehicles in the fleet is around 75% compared to private vehicle utilization of 5%.

Keywords: transportation, mobility-on-demand, pricing, routing, rebalancing, fleet sizing, operations

management, autonomous vehicles

1. INTRODUCTION

In recent years, urban mobility has evolved rapidly as a result of worldwide urbanization and
technological development. In terms of urbanization, a United Nations report indicates that 56.3%
of the earth’s population lived in urban areas in 2018, a number expected to reach 60% by 2030.
At the same time, urban areas have increased in number. In 2000, there were 371 cities with more
than one million inhabitants around the globe. By 2018, this number had grown to 548 and it is
projected to increase to 706 by 2030 (UnitedNations, 2018). It is evident then, that the sustainability
and management of urban settlements is a critical challenge that our society faces. Thus, cities have
begun investing in becoming “smart” by developing innovative services for transportation, energy
distribution, healthcare, environmental monitoring, business, commerce, emergency response, and
social activities (Cassandras, 2017).

Focusing on human mobility, only half of the world’s urban population has convenient access1

to high-capacity (public) transportation according to data from 610 cities in 95 countries (Daniel,
2015). Extending these high-capacity transportation modes is expensive, slow, and requires
negotiating land with many private owners, hence it is not done regularly. Besides public

1Within 500 m walking distance of low-capacity transport systems (buses and trams) and 1,000 m distance to high-capacity

systems (trains, subways, and ferries).
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transportation, the use of private vehicles has been extensively
adopted in the last century due to their availability and flexibility
for door-to-door transportation. Yet, private vehicles have been
criticized due to their dependency on gasoline, their harmful
emissions to the environment, their underutilization (according
to Bates and Leibling, 2012, private vehicles are parked for more
than 95% of the time), their impact on traffic congestion, and
their land and infrastructure requirements for parking spaces and
wider roads. Therefore, although private vehicles are convenient
and fast, they are also an unsustainable solution for the future of
urban mobility (Mitchell et al., 2010).

In the last few years, the concept of a sharing economy has
become ubiquitous across industries including transportation.
Although there is no widely-accepted definition of this term,
Schlagwein et al. (2020) has described it as follows: “the
sharing economy is an Information Technology (IT)-facilitated
peer-to-peer model for commercial or non-commercial sharing
of underutilized goods and service capacity through an
intermediary without a transfer of ownership.” A key tenet
of a sharing economy is that the consumer’s cost for using a
resource will shift from ownership of it to on-demand access
based on need. This will require enforcing compliance to the
rules of sharing resources through new pricing mechanisms
relying on digital ledger technologies which ensure ease-of-
use, privacy, fairness, and adherence to widely accepted ethical
principles. It will also require new business models for operators
who provide access and maintain such resources (Crisostomi
et al., 2020). In transportation, the sharing economy has
had a large expansion in the so-called Mobility-on-Demand
(MoD) platforms for which many (especially young) citizens
have shifted from owning a car to exclusively using MoD
services and public transportation (Etehad and Nikolewski,
2016). These MoD systems, like Uber or Lyft in the United
States, provide a similar transportation service to users as
taxis do. Its main difference relies on the convenience they
provide by the use of IT and geolocalization services which
reduce customer’s waiting times. In addition to user convenience,
their connectivity feature provides economical advantages to
society. For example, they can offer a lower cost service by
employing ride-sharing services in which two or more passengers
share a vehicle.

This paper studies optimal strategies to operate aMoD system.
Specifically, our goal is to answer three operational decisions.
(i) How many vehicles does the platform require to offer good
service? (ii) How should the system set prices in order to
maximize profits? (iii) How should vehicles be reallocated across
the network in order to reduce customer wait times? It is relevant
to note that these three decisions are inter-related; for example, if
we increase the price for a specific origin-destination, we expect
its demand to decrease, therefore, requiring less reallocation of
vehicles to that region and presumably a smaller fleet. Therefore,
we focus on answering these three questions jointly.

In the literature, the joint pricing and rebalancing problem has
been addressed using two different perspectives: one-sided, and
two-sided markets. One-sided markets assume full control over
the fleet of vehicles (Turan et al., 2019; Wollenstein-Betech et al.,
2020a) and have been proposed for prospective MoD systems

that operate with robotic taxis known as Autonomous Mobility-
on-Demand (AMoD) systems. In contrast, two-sided markets
consider self-interested drivers, typically human, that reallocate
themselves in order to maximize their own profit (Banerjee
et al., 2015; Bimpikis et al., 2019). For two-sided markets,
the MoD platform has to design compensation schemes to
steer drivers’ behavior toward the global MoD objective. To
facilitate the analysis in this paper, we will focus on one-sided
markets as we expect that future MoD and AMoD platforms
will gain more control on their vehicles by the inclusion of
robotaxis or by well-designed compensation schemes. For one-
sided markets, Banerjee et al. (2015) uses a queueing model to
show that static policies, those that do not vary with the real-
time state of the system, will always perform better than dynamic
pricing policies when the objective function of the problem is
concave and when analyzing the steady-state solution of the
problem. This asymptotic optimality result is well-known in the
pricing literature and was first stated in Gallego and Van Ryzin
(1997) and Paschalidis and Tsitsiklis (2000), and then extended
to networked systems in Paschalidis and Liu (2002). On the
other hand, static policies lack responsiveness when compared
with dynamic policies. This is especially true when the system
experiences perturbations or when the realization of the arrival
process deviates with respect to the parameters assumed by the
static policy. To account for such perturbations, Turan et al.
(2019) uses Reinforcement Learning (RL) in a microsimulator
environment to maximize the revenue of an electric fleet of
robotaxis. However, even though good solutions are found, RL
converges slowly and its learned parameters are hard to transfer
to a different setting.

The minimum fleet size problem together with rebalancing
is not an easy one to solve as it encompasses several trade-offs.
For example, from a user’s perspective, a larger fleet is desirable
in order to serve each customer instantaneously when required.
In contrast, the MoD system is interested in smaller fleet sizes
to maximize the system’s and the drivers’ profits. In addition, an
urban planner prefers a small fleet size in order to reduce empty
driven miles which translates to mitigating traffic congestion
and the environmental impact associated with it. Since all these
interests are not aligned, the solution typically is a sweet spot of
these trade-offs (Badger, 2018). To that end, Zhang et al. (2016)
proposes a real-time rebalancing policy using a queueing model
and show that, under a real-time rebalancing policy, the taxi
fleet can be reduced by 30% while still satisfying demand. In
the same spirit, Vazifeh et al. (2018) solve the minimum fleet
problem by mapping it to a minimum cover path formulation
and solving it using the Hopcroft and Karp (1973) algorithm for
bipartite matching. Their results show that a comparable service
in NYC can be achieved using 30% less vehicles than the actual
number of taxis in NYC. In addition to these research, Wallar
et al. (2019) show the impact of increasing the vehicles’ capacity
demonstrating that the NYC demand can be serviced with
2,864 four-passenger vehicles while for 2-passenger vehicles NYC
would require a total of 3,761 vehicles.

Aside from pricing and fleet sizing, rebalancing alone is
tackled employing a planning (or proactive) approach which
redistributes the vehicles across regions to satisfy a forcasted
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demand. In this context, Pavone et al. (2012) show that
rebalancing is needed to avoid stacking unbounded customers
in queues and to stabilize the system. The authors use a static
rebalancing policy that minimizes the empty driven time using
a fluidic model. Later, Zhang and Pavone (2016) extended this
work using a queueing-theoretical model in order to account
for customers abandoning the platform when waiting times
are long. This method consists of solving a linear program
periodically that balances the available vehicles across regions.
Furthermore, Spieser et al. (2016) solves the rebalancing problem
such that the number of customer dropouts is minimized instead
of the empty driven miles as in the previous works. The authors
provide Pareto optimal curves that showcase the existing trade-
off between the quality of service and fleet size. Different from
queueing models, simulation-based methods have also been
employed to solve the issue of rebalancing. In particular, Swaszek
and Cassandras (2019) proposed an event-driven parametric
controller that rebalances the system once a threshold (defined
as the maximum number of tolerable imbalances) is exceeded.
Other simulation-based approaches can be found in Levin et al.
(2017), Hörl et al. (2018). Finally, Wallar et al. (2018) propose
a three-step method in which first they discretize the network
topology into rebalancing regions, then forecast the demand and
perform rebalancing by solving an Integer Linear Program (ILP).

The contribution of this paper is three-fold. First, we devise
an optimization framework that jointly addresses the three
questions described above giving rise to a suggested fleet size
and static policies for pricing and rebalancing. An important
distinction of our work is the use of passenger destination
information when defining the pricing policy. From a technical
perspective, this refinement allows formulating the system as
a fluid approximation of a queueing-theoretical model for
which we can prove that by selecting appropriate prices,
one can ensure a balanced and stable system (Wollenstein-
Betech et al., 2020a). From a practical perspective, this joint
optimization yields higher profits than other approaches. Second,
we utilize this static policy to define dynamic strategies for
rebalancing while using the suggested fleet size and static
pricing policy in order to account for perturbations to the
system. Third, we build a simulation environment to test
the proposed methods and perform case studies using real
data. We utilize traffic flow and taxi data records for the
transportation networks of Eastern Massachusetts, New York
City, and Chicago.

In prior work (Wollenstein-Betech et al., 2020a), we proposed
a macroscopic model to solve the joint problem and show the
existence and stability of the balanced system when designing
optimal pricing strategies. In this paper, we incorporate real-
time rebalancing strategies in conjunction with the static
solutions. Moreover, we build a simulator to analyze, in a
microscopic manner, the performance of the proposed policies
and report its outcomes. We utilize this framework to extend
our analysis to more cities with different topologies and different
demand patterns.

The remainder of this paper is organized as follows. In
section 2, we introduce the systemmodel and the formal problem
formulation. In section 3, we derive the optimal static policies

for the pricing, rebalancing and joint problems. In section 4,
we introduce real-time rebalancing strategies. In section 5, we
present our case studies and in section 6 we conclude.

2. MODEL AND PROBLEM FORMULATION

To model the MoD system, we use a closed Jackson queueing
network as depicted in Figure 1. Formally, let the MoD fleet
be composed of m vehicles who travel across the transportation
network G = (N ,A), where N = {1, . . . ,N} is the set of N
regions, andA = {(i, j) : i, j ∈ N×N } is the set of arcs connecting
all regions. For every region i, we let xi(t) ∈ {1, . . . ,m} be a queue
of available vehicles ready to serve a user request at time t and
x(t) = (xi(t), . . . , xN(t)) the vehicle queue vector.

We model the arrival process of potential customers going
from i to j using a time-invariant Poisson process with a rate λij.
Upon a customer arrival, she either (i) pays a fee pij and is served
by one of the vehicles or (ii) leaves the system because the fee was
above her willingness to pay, or because there were no available
vehicles in region i to serve her. For every Origin-Destination
(OD) in the network, the fee pij is formed by the product of a
base fee p0ij and a surge price (or simply price) uij(t). We assume

the platform is not willing to charge less than the base fee for any
trip, hence, we have that uij(t) ≥ 1 for all i and j and all t ≥ 0.

To determine the fraction of customer arrivals that are
willing to pay the fee p0ijuij(t), we assume there is a known

demand function F̄ij(uij(t)) :R≥1 7→ [0, 1] which establishes
this relationship. We assume this function F̄ij(uij(t)) to be (i)
continuous; (ii) strictly decreasing, such that a higher price
always results in a lower demand; and (iii) lower bounded by
zero such that there exists a price umax

ij that makes F̄ij(u
max
ij ) =

0 for all i, j ∈ N . Consequently, the resulting arrival process
considering the users’ willingness to pay is described by the
modulated demand 3ij(uij(t)) which follows a Poisson point
process with rate λijF̄ij(uij(t)).

After a customer arrival at region i who is willing to pay the
fee, the MoD platform assigns her a vehicle immediately. Then,
the travel time experienced by the customer and vehicle is an
exponential random variable with rate 1/Tij, where Tij is the
average travel time from i to j. This is a standard assumption for
queueing models, however, it can be replaced by a deterministic
travel time if desired. Additionally, we let yij(t) be the number of
customer-carrying vehicles traveling from i to j at t.

We assume the MoD service is capable of rebalancing the
system, i.e., sending empty vehicles across regions to avoid having
excess or fewer vehicles at every region. Hence, we let rij(t) be
a decision variable denoting the number of vehicles that the
platform will send from i to j at time t. Finally, we let zij(t) and
crij be the number of empty vehicles en-route at t and the cost

incurred for an empty trip from i to j, respectively.
The problem we are aiming to solve is how to properly

select a fleet size m, the prices u(t) = (uij(t); i, j ∈ N )
and a rebalancing policy r(t) = (rij(t); i, j ∈ N ) so as to
maximize a utility function. Examples of this utility function
are profit maximization of the MoD service or, from a societal
perspective, customer welfare maximization. We discuss both
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FIGURE 1 | Prospective customers wishing to travel from i to j arrive at a rate λij . Then, if they accept price uij and there is an available vehicle they travel to j in Tij
units of time. If the price uij is above their willingness to pay, the MoD incurs a cost composed by the loss of a trip and a cost ccij for disappointing the customer.

Moreover, if the customer is willing to pay uij but no vehicle in i is available, then the customer is rejected and the platform incurs a cost c
p
ij . The objective of the MoD

provider is to plan a pricing policy u and a rebalancing policy r such that its profit (or other utility function) is maximized.

utility functions in the next section as well as static and dynamic
strategies to solve this problem.

3. OPTIMAL STRATEGIES

As pointed out by Swaszek and Cassandras (2019) and Turan
et al. (2019), one way in which we can derive optimal strategies
for this problem is to frame it as a Markov Decision Process
and use Dynamic Programming to solve it. Unfortunately, they
observe that the problem suffers from the curse of dimensionality
and becomes intractable even for small instances of the problem.
One way in which we can address this complexity issue is to
define static policies. The idea is to analyze the problem at
its steady-state and find policies that are time-invariant, i.e.,
u(t) = u and r(t) = r. To achieve this, it is convenient
(although not necessary) to use a fluidic abstraction of the
real system. The main advantage of fluidic models is two-fold.
First, to relax the discrete system (vehicles and customers are
discrete entities) to a continuous system in order to facilitate
the optimization procedure. Second, to ensure that the system is
balanced, which means that the total incoming flow of vehicles
to any region i ∈ N is equal to the summation over the all
modulated customers leaving i. In general, to claim that the
solution of the fluidic abstraction is a good solution for the
original queueing system, the following mild assumptions are
required: (i) The solution is only optimal when analyzing the
steady state of the system, not during transient periods; (ii) the
Poisson processes modeling the modulated customer demand
and rebalancing are independent. With these assumptions, all the
stochastic processes in the queueing model are Poisson processes.
For the modulated customer demand, a thinning (or splitting)
Poisson process will result by interpreting the willingness-to-pay
function for a given price as defining Bernoulli trials of customers
accepting the price or leaving the system. Likewise, the process
of vehicles leaving stations will result in a superposition of two
independent Poisson processes (which remain a Poisson process)

stemming from the customer-carrying and the rebalancing
vehicles. This is equivalent to observing Bernoulli trials governed
by the probability that the vehicle leaving a station is an empty
(rebalancing) or a customer-carrying vehicle. In addition, to
maintain feasibility and tractability of the solution, we consider
the following assumptions: (iii) the rebalancing rate encourages
rather than forces the vehicles to rebalance (e.g., if no vehicles are
available in a station, then no rebalancing will occur); (iv) there
exists a maximum price for which no customer is willing to travel
(customer demand goes to zero). For a formal analysis on the
well-posedness and stability of the pricing and rebalancing fluidic
models we refer the reader to Wollenstein-Betech et al. (2020a)
and Zhang and Pavone (2016), respectively.

3.1. Static Pricing
As stated earlier, we aim to select time-invariant static prices u
with the objective of maximizing the profit of a MoD provider
while ensuring a balanced system. Similar to this approach, we
also present an equivalent formulation that maximizes user social
welfare rather than MoD profit.

3.1.1. Profit Maximization

Let coij be the operational cost of providing a transportation

service from i to j and cf be a fixed cost associated with the value
of owning a vehicle for a period of time. Moreover, let cc be an
additional cost that the MoD service incurs when a costumer
leaves the platform because of a high price. For example, a
customer who thinks the service is too expensive might not
consider to use this MoD platform in the future. With these
definitions we write the profit maximization problem as follows:

max
u,m

∑

i∈N

∑

j∈N

3ij(uij)(uijp
0
ij − coij)− cc(λij − 3ij(uij))− cfm,

(1a)

s.t.
∑

i∈N

(3ij(uij)− 3ji(uji)) = 0, ∀j ∈ N , (1b)
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∑

i∈N

∑

j∈N

Tij3ij(uij) ≤ m, (1c)

1 ≤ uij ≤ umax
ij , ∀i, j ∈ N , (1d)

where in the objective function 3ij(uij) is the modulated demand
and (uijp

0
ij − coij) is the difference between the charged fee and

the operational cost coij. Equation (1b) ensures the MoD system

not to accumulate vehicles in any region, as well as to make
sure that no region is being constantly rejecting customer due
to a lack of vehicles. Constraint (1c) restricts the minimum
number of vehicles the fleet has to have in order to provide
such a service. Finally, (1d) ensures that the optimization process
happens within prices range. Note that in order for (1) to be
tractable, we have to maximize a concave objective function (1a)
in the range of [1, umax] over a convex feasible set. Both of these
requirements are accomplished when using a linear willingness-
to-pay function as the problem becomes to minimize a convex
quadratic objective over linear equality constraints. Notice that
in this fluidic formulation, we do not include a cost of losing
a customer due to the shortage of vehicles. This is because
constraint (1b) ensures a balanced system and since for the fluidic
model we assume non-stochastic behavior, this cost is equal
to zero.

3.1.2. Welfare Maximization

It is relevant for the discussion on smart cities to consider the case
where social welfare is maximized instead of the platform’s profit.
To do this, we associate a utility with every customer arrival,
which we model using a random variable Uij with probability
density function fij(uij) and support in [1, umax

ij ]. If Uij exceeds

price uij, then the customer will accept the fee, which result in a
modulated demand 3WM

ij (uij) = λijP[Uij ≥ uij]. Consequently,

the expected utility of a customer conditional on the fact that the
customer is willing to pay the fee uij is E[Uij|Uij ≤ uij]. Hence,
the welfare maximization problem is

max
u,m

∑

i∈N

∑

j∈N

E[3WM
ij (uij)E[Uij|Uij ≥ uij]]− cfm, (2a)

s.t.
∑

i∈N

(3WM
ij (uij)− 3WM

ji (uji)) = 0, ∀j ∈ N , (2b)

∑

i∈N

∑

j∈N

Tij3
WM
ij (uij) ≤ m, (2c)

1 ≤ uij ≤ umax
ij , ∀i, j ∈ N , (2d)

Notice that the objective (2a) has a similar form as (1a), and
thus, the two problems can be solved using the same optimization
methods. Therefore, from now on, we will focus on the profit
maximization problem.

3.2. Static Rebalancing
Following the rebalancing model developed in Pavone et al.
(2012), we are interested in finding a static rebalancing policy
that balances the system without adjusting prices. Let rij be the
rebalancing flow from i to j, in other words, the rate (veh/h)
at which we have empty vehicles traveling from i to j. We can
formulate and solve this problem using a Linear Program (LP)

that minimizes the empty travel time while ensuring a balanced
system. Formally, this is stated as

min
r≥0

∑

i∈N

∑

j∈N

Tijrij (3a)

s.t.
∑

i∈N

(3ij(uij)+ rij − 3ji(uji)− rji) = 0, ∀j ∈ N . (3b)

Notice that in this formulation, u is a known parameter (not
a decision variable) in the optimization problem. Therefore, we
do not consider the possibility of decreasing the demand by
adjusting prices. This LP is always feasible as one can always
choose rij = 3ji(uji) for all i, j ∈ N which satisfies the set
of constraints (3b). For more details about this formulation, we
refer the interested reader to Pavone et al. (2012) and Zhang and
Pavone (2016).

3.3. Joint Pricing and Rebalancing
We are interested in choosing the best policy that leverages
multiple decisions that the MoD platform faces. In particular,
we would like to optimize the pricing, rebalancing and fleet
sizing problem. We write this joint optimization problem as the
combination of (1) and (3) which leads to

max
u, r≥0, m≥0

∑

i∈N

∑

j∈N

3ij(uij)(p
0
ijuij − coij)− cc(λij − 3ij(uij))

− cr(rijTij)− cfm (4a)

s.t.
∑

i∈N

(3ij(uij)+ rij − 3ji(uji)− rji) = 0, ∀j ∈ N ,

(4b)
∑

i∈N

∑

j∈N

Tij(3ij(uij)+ rij) ≤ m, (4c)

1 ≤ uij ≤ umax
ij ∀i, j ∈ N , (4d)

where cr and cf are the cost of rebalancing and the cost of owning
andmaintaining a vehicle per unit of time, respectively. Note that
problem (4) is always feasible as it can always admit the solution
u = umax, r = 0, and m = 0. However, in order to numerically
solve (4) in polynomial time, and to ensure we have found the
global maximum, we must validate that the objective function is
concave for u ∈ [1, umax] and that the constraints (4b)–(4d) form
a convex set. If these conditions are satisfied, then (4) yields a
solution with higher profits than the individual formulations (1)
and (3), or the sequential approach of solving first the rebalancing
problem (3) and then selecting optimal prices (1). This happens
given that the problem is jointly solving form, u and r rather than
using an individual or a greedy sequential approach.

4. REAL-TIME STRATEGIES

So far, we have discussed static pricing and rebalancing
policies which are desirable economically (there is no better
dynamic pricing policy that can exceed its static counterpart in
steady-state) and socially (avoiding drastic fluctuation in prices
generates a more desirable platform for users). However, one
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FIGURE 2 | A diagram of the state of the system for the EMA network. Every

bar in the plot represents the state of a region composed of the available

vehicles (blue), the en-route customer-carrying vehicles (red), and the empty

rebalancing vehicles (green). The dotted line represent the parameter θi for

every region i which indicates the minimum desired level to be satisfied when

performing a rebalancing action.

characteristic that static policies lack is their responsiveness to
perturbations in the environment.

In this section, we introduce real-time (or dynamic) policies
to optimize the operation of the MoD platform. The main idea
is to exploit real-time information to operate the system more
efficiently. For example, we can use the status of vehicle queues
x(t) and traveling vehicles y(t) at time t to decide a rebalancing
strategy r(t) or to adjust prices u(t). Due to the desired theoretical
static prices, we will focus on designing rebalancing policies r(t)
that are dynamic in order to account for fluctuations, while we
keep the prices static u(t) = u. Hence, from now on, we will focus
on finding r(t) and we assume we use the optimal static pricing
resulting from solving the joint problem (4).

To implement a dynamic controller we are required to define
the state variables that will be available to control the system. Let
us propose a state vector s(t) ∈ {0, 1, . . . ,m}N composed of state
variables indicating the actual and prospective vehicles at every
region expressed by

si(t) = xi(t)+
∑

j∈N

yji(t)+ zji(t),

where we recall that yij(t) and zij(t) are the number of customer-
carrying vehicles and empty vehicles traveling from i to j,
respectively, and where si(t) is the sum of all available vehicles
at a region i and all vehicles traveling to i. Figure 2 shows an
illustrative example of the state variables for different regions.

We let a rebalancing event be an event happening at a specific
moment in time in which the platform decides to rebalance the
system. Different from the fluidic controller in which vehicles are
sent at a constant rate, the dynamic controllers herein trigger a
rebalancing event once a condition is satisfied based on the state
s(t) and a vector of d parameters denoted with 2(t) ∈ R

d.

Giving more structure to the dynamic policies presented here,
let us define a set of parameters θ(t) = (θi; i ∈ N ) corresponding
to a desired level of vehicles in every region at time t. In other
words, for region i at time t, we would like to have a number
of θi(t) idle or prospective vehicles. The choice of θ(t) is not
known in advance and learning methods such as concurrent
estimation (Cassandras and Lafortune, 2009) or RL (Sutton and
Barto, 2018) can be leveraged to learn good choices of θ(t).
With these parameters, we can define an optimization problem
that rebalances the system to guarantee that every region has at
least θi(t) prospective vehicles at the time of a rebalancing event.
Therefore, at a fixed time t, we solve the rebalancing problem:

min
r(t)

∑

i∈N

∑

j∈N

Tijrij(t) (5a)

s.t. θi(t) ≤ si(t)+
∑

j∈N \{i}

(rji(t)− rij(t)) ∀i ∈ N , (5b)

∑

j∈N

rij(t) ≤ xi(t) ∀i ∈ N , (5c)

rij(t) ∈ N, ∀i, j ∈ N , (5d)

where rij(t) is the number of rebalance vehicles to be send from
i to j, (5b) ensures that the minimum number of current and
prospective vehicles at every region is greater or equal than
its corresponding parameter, (5c) allows rebalancing only idle
vehicles in a region, and (5d) ensures that the solution is integer.

Solving general ILPs such as (5) is computational-expensive.
Thus, we would like to write an alternative formulation which
is faster to solve. To achieve this, we follow Pavone et al. (2012)
which exploits the total unimodularity structure of the problem.
Informally, total unimodularity implies that if the right hand
side vector of a network flow problem is integer-valued and
the incidence matrix of the network exclusively contains entries
in the set {−1, 0, 1}, then, the solution to the linear program
relaxation is guaranteed to be integer. Note that in our case, the
vectors θ(t) and s(t) are integer-valued. Hence we rewrite (5) as a
network flow model as follows:

min
r(t)≥0

∑

i∈N

∑

j∈N

Tijrij(t) (6a)

s.t. min
{

si(t)− θi(t), xi(t)
}

≥
∑

j∈N \{i}

(rij(t)− rji(t)) ∀i ∈ N .

(6b)

Note that (6b) encompasses both equations (5b) and (5c). When
si(t) − θi(t) < xi(t) holds, then (6b) equals (5b). When xi(t) <

si(t)− θi(t), the constraint (6b) indicates that region i has enough
idle vehicles to send to other regions and it is identical to (5c). All
the real time parametric controllers presented in the following
subsections will be based on solving problem (6) at specific
times t. Then, our next question is, when should we perform a
rebalancing event?

4.1. Single Parameter
We begin by considering the simple time-driven controller which
triggers a rebalancing event every � units of time. The controller
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solves (6) by choosing the thresholds θ(t) to be uniform and
time-invariant, i.e., θi(t) = ⌊mN ⌋ for all t and for all i in N . This
is a single-scalar policy since it is based on a single parameter
2 = {� ∈ R+}. This controller is quite effective, however,
defining a uniform θ vector can be inefficient since demand rates
for different regions are not uniform. For example, a region with
a high volume of requests would benefit for a higher θi.

4.2. N+1 Parameter Controller
To address the limitation of using only uniform thresholds,
we can define a controller that chooses a good time-invariant
vector θ . One way to select θi is to consider a number that
is proportional to the outgoing flow from node i, i.e., θi =

⌊m

∑

j∈N 3ij(uij)
∑

i∈N

∑

j∈N 3ij(uij)
⌋. Another approach is to select θ using

simulation-based optimization methods such as concurrent
estimation [see Swaszek and Cassandras (2019)] or RL. In
addition to these N parameters coming from θ , we consider
an additional parameter (this is why we called it the “N+1
controller”) which triggers the rebalancing event. A natural
option for this is to use a time-driven parameter as in the
single parameter controller. In addition to this, we also consider
triggering the rebalancing event using a metric of the total
vehicle imbalances in the system. In this manner, if the system
is balanced, the controller would not activate any rebalancing
event, conversely, if the system is imbalanced, the rebalancing
event will be triggered more often. Formally, let � be a selected
parameter which accounts for the minimum number of negative
imbalances that the system is willing to tolerate before triggering
a rebalancing event. That is, at every time t, the controller will
solve problem (6) if� >

∑

i∈N̄ (t)(θi− si(t)) where the set N̄ (t) is
composed of the regions which have less than the desired number
of vehicles, i.e., N̄ (t) =

{

i | θi − si(t) > 0
}

. Here, 2(t) = {θ ,�}.
Both of these parameters can be selected by using any non-
convex global optimization approach or by leveraging concurrent
estimation techniques as in Swaszek and Cassandras (2019).

4.3. Dynamic N+1 Controller
Up to this point we have discussed polices where our parameters
are time-invariant. The question we now ask is: can we update
these parameters in real-time such that these can improve the
overall performance? To do this, we introduce the notion of
episodes. We think of an episode as a interval of τ units of time for
which we will gather information and will use the data to update
our future decisions. By employing this approach, we assume that
the last episode observation contains relevant information for
our next decision. In our case, for every episode k = 1, . . . ,K,

we would like to estimate the demand rate 3(u(t)) with 3̂k by
counting the number of observed arrivals and dividing it by τ .
Then, we update the θ vector either by using a naive approach:

θi,k(t) =
⌊

m

∑

j∈N 3̂ij
∑

i∈N

∑

j∈N 3̂ij

⌋

,

FIGURE 3 | EMA.

or by taking a step in the direction of the new estimate, that is:

θi,k+1(t) =
⌊

θi,k(t)− ηk
(

θi,k(t)−m

∑

j∈N 3̂ij
∑

i∈N

∑

j∈N 3̂ij

)

⌋

,

where ηk is a pre-specified stepsize or learning rate for all k in
1, . . . ,K.

5. NUMERICAL RESULTS

We perform experiments to showcase the advantages and
disadvantages of the static and dynamic policies. To carry
out the experiments, we employ the transportation networks
of Eastern Massachusetts Area (EMA), Chicago (CHI), and
New York City (NYC), shown in Figures 3–5. The EMA network
is composed of 8 regions and we retrieved its topological
and demand information using speed data provided by the
Central Transportation Planning Staff (CTPS) of the Boston
Metropolitan Planning Organization (MPO) and processed as in
Wollenstein-Betech et al. (2019). The NYC network is composed
of 70 regions distributed across the Manhattan area and we use
open-source travel times and taxi trip data available in NYC taxi
and Limousine Commission (2020). Finally, the Chicago network
is composed of 76 regions for which we retrieve the open-source
data from Chicago Data Portal (2021).

To analyze the stable distributions of the demanded trips,
we filter the data by only considering working days (Monday
to Friday). Then, we focus on four time slots: Morning Peak
(AM) from 7:00 to 10:00 h, Noon (MD) from 12:00 to 15:00 h,
Afternoon Peak (PM) from 17:00 to 20:00 h and Night (NT) from
00:00 to 3:00 h. For every time slot we compute the average hourly
demanded trips and travel times for every origin-destination pair
and we use this information to preform our experiments.
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FIGURE 4 | Chicago.

Before stating our results, note that the static formulations
(1)–(4) still require to define the demand functions 3ij(uij).
We assume that customers within and across OD pairs are
homogeneous (have the same demand function), and, since we
are interested in explicitly solving (1)–(4) to optimality, we
assume a linear willingness to pay function of the form:

3ij(uij) =
λij

umax
ij − 1

(umax
ij − uij), (7)

where we select umax
ij = 4. We made this choice using the

empirical results reported in (Cohen et al., 2016, Table 2) where
the number of active customers in the platform looking for
drivers for a surge price greater than 4 is negligible. Using (7),
our static problem becomes a Quadratic Program (QP) with
linear constraints.

For all three experiments we let the operational cost and
rebalancing cost be equal and proportional to the travel time,

coij = crij = αTij, where we select α = 0.72 by transforming

the distance-based cost suggested in (Bösch et al., 2018, section
2.1.2) for a midsize vehicle to a time-based cost (dollars per
minute). Additionally, we let the base price be a multiplier of
the operational cost p0ij = βcoij where we select β = 1.75 which

can be interpreted as the minimum margin over the operation
cost that the platform is willing to charge. We set the cost of
losing customers due to the absence of vehicles in that region to
be cp = $5, and the car ownership cost be cf = $1.98 per vehicle
per hour as suggested in AAA (2019).

5.1. Joint Solution
We are interested in understanding the achievable benefits of
solving the joint problem over different static approaches. We
refer toPij+Rij as the joint strategy stated in (4), which solves the
pricing and rebalancing for every origin and destination. First,
we compare Pij + Rij with an individual pricing policy Pij that
only adjusts prices without rebalancing the system, equivalent to
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FIGURE 5 | NYC.

solving (1). In the same spirit, we also consider the policy Rij

of only solving the rebalancing problem (3) with a fixed set of
prices, in particular for this policy we set u = $2.66 which is
the maximizer of (7). Third, we consider a sequential approach
Rij → Pij which involves solving the the rebalancing and using
its solution to solve the pricing problem. Our motivation for this
methodology comes from the fact that current MoD platforms

tend to separate their pricing and rebalancing processes. Note
that the sequential policy Pij → Rij is not included because once
the pricing problem is solved, the system is already balanced and
the rebalancing problem becomes trivial (i.e., r = 0). Finally, we
also consider the joint with fixed prices by origin policy Pi + Rij

which is motivated by the fact that current MoD services only
use the origin (not the destination) when setting surge prices
(see Chen et al., 2015; Cohen et al., 2016).

In Table 1 , we report the relative deviation between a policy π

and the joint policyPij+Rij. Formally, let Jπ be the optimal value
of (4a) for a policy π . Then, the relative deviation is (JPij+Rij −

Jπ )/Jπ , which measures the improvement in performance of
Pij+Rij relative to policy π . In Table 1, we observe thatPij+Rij

outperforms all the other policies, highlighting the benefit of
solving this problem using a joint approach. In particular, we
observe that each of the individual strategies performs on average
worse than strategies that optimize both pricing and rebalancing.
Also, it is relevant to stress the 2% to 3% deviation of the policy
with fixed surge price by origin, as it matches our expectations of
the relevance of considering the destination when pricing. This
happens because considering the destination in the pricing policy
helps to balance the system via the selection of prices.

5.2. Fleet Size Selection and System
Utilization
An important challenge for MoD systems is to properly select
the correct number of drivers or autonomous vehicles to satisfy
demand. One of the benefits of our static formulation is that
its solution includes the variable m indicating the minimum
fleet size to operate the system. However, this value is calculated
assuming the steady-state solution of the system and does not
account for the variance and perturbations that occur in the
real world. In this experiment, we are interested in analyzing
how this fleet size suggestion behaves in a more dynamic
environment where perturbations exist. To test this, we have
built a simulator of the MoD system which is publicly available
on an online repository2. The variance (or randomness) of
the simulation comes from the Poisson processes modeling the
modulated customer arrivals and rebalancing vehicle departures.
The customer arrivals times come from a Poisson process
with a rate estimated from the data and modulated by the
static prices. Similarly, the rebalancing events arrive following
a Poisson process with rate equal to the solution of the
static problem.

We perform this experiment using the EMA network for
which we first solve problem (4). Let the optimal solution to (4)
be u∗, r∗, and m∗. Then, in our simulator we fix prices to u∗

and vary the fleet size by selecting m = γm∗ for γ = [0, 3].
Note that γ = 1 is equivalent to using the suggested fleet size
m∗. We run our simulations until a steady-state is reached, using
two different rebalancing policies: fluidic and N+1. In Figure 6

we observe that the fleet size m∗ performs very well. The top
left plot shows that for γ ≤ 1 the profit increases as we add
vehicles to the fleet. This happens since the fleet size is too small
to provide service to the platform’s demand. In contrast, for

2https://github.com/salomonw/mobility-on-demand-control
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TABLE 1 | Relative deviation in of each policy compared to the joint policy Pij +Rij for different networks and time slots.

Network EMA EMA mid Anaheim Chicago Manhattan

AM (%) AM (%) MD (%) PM (%) NT (%) AM (%) MD (%) PM (%) NT (%)

Pi +Rij 0.30 0.40 1.2 0.80 1.20 1.2 2.00 1.00 1.00 1.0 1.80

Pij 7.05 55.9 50.3 58.5 1.27 4.07 27.5 68.9 2.49 7.40 49.2

Rij 27.1 29.3 71.6 17.4 19.8 18.9 25.8 40.3 38.3 40.5 68.4

Rij → Pij 1.20 6.56 7.24 4.07 0.16 0.50 2.7 7.15 0.42 1.18 6.34

FIGURE 6 | Performance indicators for different fleet sizes. Upper left plot shows the expected profit per minute. The upper right plot shows the percentage of time

that vehicles are rebalancing. The lower left shows the percentage of customer requests that were rejected because there were no available vehicles to serve the

customer. Finally, the lower right plot shows the revenue per minute.

γ > 1, we see that the profit decreases as γ increases. This is
because the negative fixed cost of owning and maintaining an
extra vehicle in the fleet is higher than profit it can produce (since
most demand is already satisfied). As a result, this experiment
suggests that solving (4) provides an automated procedure to
determine a nominal fleet size. In addition, we are interested
in quantifying the utilization for different fleet sizes. In other
words, we would like to measure how much time the fleet of
vehicles spends waiting for customers, transporting a passenger,
or driving to rebalance the system. Figure 7 shows the results
for a simulation of the system for a total time of 10 h where
we observe that vehicle utilization, defined as the time that a
vehicle is either transporting a customer or rebalancing, is around
75% compared with typical private vehicle utilization of 5%.
Interestingly, the percentage of the total time that vehicles are
rebalancing is practically negligible. We believe this value is small
because the pricing policy is helping the system to be balanced, in
other words, the “User” flow in Figure 7 is helping to balance the

system. This is an interesting observation as there is an ongoing
debate on the congestion effects thatMoD rebalancing has caused
in our cities (Fitzsimmons and Hu, 2017; Wollenstein-Betech
et al., 2020b).

5.3. Responsiveness
One characteristic that static policies lack is their responsiveness
to system perturbations or to changes in the environment. For
example, consider the case when a sports event or concert
finishes and all its attendees are requesting a transportation
service to reach their destinations. In this situation, the steady
demand is perturbed for a certain amount of time. We showcase
this situation by running 15 simulations of the EMA network
over a time period of 10 h. For each of these simulations
we intentionally perturb the system between minutes 300 and
380 by multiplying the demand from a particular region to
all its destinations by a constant factor; in this example we
use 3. We select the update rule of parameter θ(t) to be the
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FIGURE 7 | System utilization over different fleet sizes. At the suggested fleet

size, corresponding to γ = 1.0, we observe that vehicle utilization is around

70% compared to 5% for private vehicles.

naive approach presented in section 4.3 with τ = 10 min
and � = 15.

Figure 8 shows the trajectory of the (i) profit per minute,
(ii) the fraction of loss requests due to a lack of vehicles
in the region, and (iii) the percentage of empty driving. We
observe that the N+1 controller, which operates in real time, is
capable of responding to demand perturbations in comparison
with the fluidic controller. In the second plot of Figure 8, we
see how the percentage of rejections for the N+1 controller
is lower than the fluidic one within the perturbation range
[300, 380]. Moreover, in the last plot we see how the the N+1
controller increases its empty driving minutes responding to the
demand shift experienced by the system. Finally, in the upper
plot we see minimal differences on profits as we have assumed
that the cost of rejecting a customer is small. In conclusion,
Figure 8 shows that the N+1 controller provides service to
more customers and hence incurs a higher rebalancing cost.
In contrast, the fluidic model lowers its rebalancing costs by
dropping more customers and incurs a reduction in profits
and an additional cost for lost customers. Either strategy could
be efficient for a given cost function but, in general, the N+1
approach is more responsive and customer-friendly as it adjusts
to customer demand in real-time. This is especially important
at times when the system might be transitioning from one
stationary distribution to another, for example from an AM to
MD period.

6. CONCLUSION

In this paper, we have addressed difficult operational decisions
that sharedmobility services face when operating their platforms.
We discussed how to properly select the right number of
vehicles to operate the platform, as well as how to choose prices
to maximize a utility function while providing good service
to customers.

FIGURE 8 | Responsiveness of the dynamic policy vs. a static policy. Between

minutes 300 to 380 (shaded region) we have perturbed the demand of a single

region by multiplying it by a factor of three. We observe in the two lower plots

how the real time controller N+1 responds to this by sending more vehicles to

these region compared with the static fluidic controller. As a result, N+1

provides a better service as the number of customer rejections is lower

compared to the fluidic controller.

Of particular interest, we have designed automated models
that take as input the network topology, the estimated demand
and a willingness-to-pay function of customers, and provide a
framework to define the fleet size, the prices, and a real-time
rebalancing policy for their proper operation.

We observe that it is of high value to design pricing together
with rebalancing policies as well as to consider the customers’
destination when defining prices. Thismodification in the pricing
strategy achieves higher profits for the platform and helps
rebalancing the system in a more equitable fashion, i.e., if a
passengers’ destination is helping to balance the system, her price
will be lower compared with other passengers whose destination
generate imbalances.

Arguably, our model deals with a simple linear willingness-to-
pay function in order to provide tractable optimization models
and be able to compare our results. Nevertheless more flexible
willingness-to-pay functions such as logarithmic or exponential
functions can be explored as part of future research in this area.
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