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ABSTRACT
Quantifying tensions – inconsistencies amongst measurements of cosmological parameters by different experiments – has
emerged as a crucial part of modern cosmological data analysis. Statistically significant tensions between two experiments or
cosmological probes may indicate new physics extending beyond the standard cosmological model and need to be promptly
identified. We apply several tension estimators proposed in the literature to the dark energy survey (DES) large-scale structure
measurement and Planck cosmic microwave background data. We first evaluate the responsiveness of these metrics to an input
tension artificially introduced between the two, using synthetic DES data. We then apply the metrics to the comparison of Planck
and actual DES Year 1 data. We find that the parameter differences, Eigentension, and Suspiciousness metrics all yield similar
results on both simulated and real data, while the Bayes ratio is inconsistent with the rest due to its dependence on the prior
volume. Using these metrics, we calculate the tension between DES Year 1 3 × 2pt and Planck, finding the surveys to be in
∼2.3σ tension under the "CDM paradigm. This suite of metrics provides a toolset for robustly testing tensions in the DES Year
3 data and beyond.

Key words: methods: statistical – cosmological parameters – cosmology: observations.

1 IN T RO D U C T I O N

Two experiments are generally expected to agree, roughly within the
reported errors, on the measured values of cosmological parameters.
A disagreement between such measurements – a tension – may be
a sign of a mistake in one or both analyses, of unaccounted-for
systematic errors, or perhaps of new physics. A prominent historical
example of such tensions in cosmology is the disagreement between

# E-mail: p.lemos@sussex.ac.uk (PL); mraveri@sas.upenn.edu (MR)

a variety of measurements of the matter density $m in the 1980s
and 1990s that was vigorously debated at the time (Peebles 1984;
Efstathiou, Sutherland & Maddox 1990; Krauss & Turner 1995;
Ostriker & Steinhardt 1995) and eventually turned out to be explained
by the discovery of the accelerating universe (Riess et al. 1998;
Perlmutter et al. 1999).

Presently, the discrepancy between the measurements of
the Hubble constant using the distance ladder, H0 = (74.03 ±
1.42) km s−1 Mpc−1 (Riess et al. 2019), and those from Planck, H0 =
(67.4 ± 0.5) km s−1 Mpc−1 (Planck Collaboration 2018), is much
discussed, as it may be a harbinger of new physics. Similarly, recent
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measurements of the parameter combination1 S8 ≡ σ 8($m/0.3)0.5

from large-scale structure by the Dark Energy Survey (DES; Abbott
et al. 2018) and the Kilo Degree Survey (Asgari et al. 2020; Heymans
et al. 2020) differ from the cosmic microwave background (CMB)
estimates from the Planck satellite at ∼2–3σ significance. These Nσ

quantifications of tension are generally understood to correspond
to probabilities equivalent to 1D normal distribution, so that 1σ

corresponds to 68 per cent confidence that the measurements are
discrepant, 2σ corresponds to 95 per cent, etc.

The challenge is how to convert constraints from two data sets
into such a probabilistic measure of tension between them. There
exist a variety of methods to do this, which are being actively used
in the community. While these tension metrics are expected to give
consistent messages in cases where the two data sets obviously agree
or disagree, in more marginal cases the differences amongst them –
including how much they depend on an analysis’ choice of priors,
assumptions of posterior Gaussianity, and the higher dimensional
shape of the posterior – have the potential to alter the assessment of
whether or not two data sets are in agreement.

In the lead-up to cosmological results expected from the analysis of
DES year 1 to year 3 data (henceforth; simply Y3) and to inform other
future cosmological analyses, we wish to provide a comprehensive
characterization of how several proposed methods compare to one
another. We also wish to confront these results with our intuition
for what these metrics ought to be telling us about the agreement
or disagreement between measurements. We specifically apply the
methods to assess the consistency of DES and Planck. This paper
complements two earlier analyses that test the consistency of probes
within DES (Doux et al. 2020; Miranda, Rogozenski & Krause 2020).

These metrics serve only as diagnostics for whether there is
tension, and not as a solution. If tension exists, it would indicate
either unaccounted-for systematic effects in one or both experiments,
or that the underlying model is inadequate to explain the data.

Our basic approach is to create a suite of simulated DES data sets
with a controlled level of induced tension relative to the best-fitting
Planck 2018 cosmology. We then apply a number of methods to
quantify this synthetic tension and assess their performance. Finally,
we apply the same tension metrics to quantify any tension between
the published constraints from the first year of DES data (DES Y1)
and the Planck 2015 and 2018 data sets.

The paper is structured as follows: we discuss the difficulties
of tension estimation, and present the motivation of the present
problem in Section 2. We then describe our methodology in Section 3.
The different tension metrics studied in this paper are presented in
Section 4. We show results on simulated DES data in Section 5,
apply the tension metrics to DES Y1 in Section 6, and present our
conclusions in Section 7.

2 M OT I VAT I O N

For a tension in a single parameter with an approximately Gaussian
posterior distribution, it is easy to define a robust tension metric, as
one can just report the 1D difference between the posterior means of
the two measurements divided by the quadrature sum of the errors
reported by the two experiments. For example, if Planck reports that
S8 = 0.832 ± 0.013 (Planck Collaboration 2018) and DES reports
S8 = 0.782 ± 0.022 (Troxel et al. 2018), then one simply adds the

1Here, σ 8 is the present-day linear theory root-mean-square amplitude of the
matter fluctuations averaged in spheres of radius 8 h−1 Mpc.
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Figure 1. Toy model example of a set of 2D constraints, where the 1D
projections hide the discrepancy between the two data sets. The darker
and lighter shade correspond to the 68 per cent and 95 per cent confidence
regions, respectively.

errors in quadrature and reports the two results to be different at the
level of

%S8

σS8

= 0.832 − 0.782√
0.0132 + 0.0222

= 2.0 (1)

standard deviations, that is, they are in tension at the 2σ level. How-
ever, as soon as we consider a tension in two or more parameters, this
simple procedure becomes inadequate because full 2D information
cannot be captured by its 1D projections. Fig. 1 gives an example
showing how this intuition breaks down when the parameter space
is multidimensional. If one were to judge consistency between the
two data sets solely through their marginalized 1D constraints, one
would conclude that the two data sets are consistent with each
other. However, as evident from the comparison of their full 2D
parameter constraints, the two data sets are in strong tension. Further
complications arise when, for instance, one or more of the posteriors
are non-Gaussian, or when the two posteriors originate from different
prior assumptions on the parameters of interest.

There is no unique, universally accepted method to quantify ten-
sion under these complicating circumstances. A variety of methods
have been proposed, reviewed, and tested (Charnock, Battye & Moss
2017). Given this array of options, it is not obvious what the best
choice is for a given analysis. In order to aid in this determination,
in this paper, we will describe and study several of these methods in
order to compare their performance when applied to DES data. In
doing so, we distinguish between two kinds of tension:

(i) Internal tensions, between different cosmological probes
within one experiment (e.g. DES cosmic shear versus galaxy clus-
tering within DES).

(ii) External tensions, between different experiments (e.g. DES
versus Planck).

These must be treated differently because data-related systematic
effects within the same experiment are often strongly correlated,
necessitating use of more complex statistical tools when studying
consistency. While our methodology can be applied to either type
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of tension, here we specifically apply it to the case of external
tensions. In addition, we focus on quantifying the tension between the
large-scale structure measurements (via the combination of galaxy
clustering, galaxy–galaxy lensing and cosmic shear, or often referred
to as the “3 × 2pt” probes) from DES, and the CMB measurements
from Planck. Internal tension will be separately and additionally
studied in Doux et al. (2020) using Posterior Predictive Distributions
(PPDs; Gelman et al. 2004), which allow us to quantify tension in the
presence of correlated systematic errors in the data, and to visualize
the source of tension in the data vector. We do not consider the PPD
in this work since it is not well suited to external tensions where there
are many parameters that the two data sets do not share.

The challenge of accurately quantifying tension starts to become
apparent as we investigate the expected performance of the tension
metrics. Naı̈vely, one might think that shifting one parameter by
a controlled number of marginalized N standard deviations would
imply that the tension in the full-dimensional space would also be
Nσ ; or in other words, that the amount of tension in the full, N-
dimensional space is equal to the tension projected2 to the original
dimension. However, this is not the case, because of two effects:

(i) Marginalization can hide tension that can only be seen in higher
dimensions. This is caused by the fact that marginalization leads to
loss of information. This means that the full-dimensional tension
can be larger than that inferred by looking at 1D distributions of the
parameters. This is illustrated with the simple 2D example shown
in Fig. 1: there are two parameters θ1 and θ2, and they are highly
correlated as measured by experiment 1, but largely uncorrelated as
measured by experiment 2. Because experiment 1 determines both
parameters separately quite poorly, 1D plots of the posterior show
general agreement between measurements of the two experiments.
Yet the 2D plot shows that the two contours are significantly
separated. This is because the well-measured combination of θ1 and
θ2 significantly differs between experiment 1 and experiment 2.

(ii) Relatedly, the number of dimensions of the problem also
affects the inferred tension. The significance of a difference in pa-
rameter estimations between two experiments depends on the number
of parameters constrained simultaneously by both experiments. Con-
sider, for example, two experiments that measure the same parameter
θ and obtain a 1D 3σ disagreement. The level of significance of this
result is much higher if θ is the only parameter constrained by both
experiments, than it is if the experiments also measure a hundred
extra parameters, with no significant discrepancies between them.
This common problem of the dilution of true tension with multiple
comparisons is well known in statistics. For example, Heymans et al.
(2020) report a ∼3σ tension with Planck in S8 alone, but a ∼2σ

tension when considering the full multidimensional parameter space.

3 SE T T I N G U P TH E P RO B L E M

The aim of this work is to compare and understand the performance
of different metrics for measuring tension between DES and Planck
constraints on cosmological parameters. If the two experiments
report different values for some cosmological parameters, this might
be an indicator that their results are not compatible. However,
it is important to understand what this discrepancy means when
considering the entire model. To do this, we use synthetic DES
and Planck data sets that have been generated with different input
cosmological parameters in order to produce varying levels of

2In this paper, the terms ‘marginalized over’ and ‘projected’ both mean
‘integrated over the other parameters’.

expected tension. By applying the various tension metrics to these
synthetic data, we can study how they compare to one another and the
known input parameter discrepancies. Note that we do not attempt
to explain the origin of the possible incompatibility in cosmological
parameters reported by two experiments.

We study tension in the context of the flat "CDM cosmological
model. Our parameters are {$m, $b, H0, As, ns}, where $m and $b

are the density parameters for matter and baryons, respectively; H0

is the Hubble constant; and As and ns are respectively the amplitude
and slope of the primordial curvature power spectrum at a scale of k
= 0.05 Mpc−1. We assume one massive and two massless neutrino
species with the total mass equal to the minimum allowed by the
oscillation experiments, mν = 0.06 eV. We do not vary the neutrino
mass in our analysis in the simulated data sets, but we do in the
reanalysis of tension between DES Y1 and Planck of Section 6, to be
consistent with the DES Y1 3 × 2pt analysis choices (Krause et al.
2017). The data and prior choices are further described in Section A.

We use the CosmoSIS framework3 (Zuntz et al. 2015) to extract
the best-fitting cosmological parameters from the Planck 2015
likelihood by sampling it using Nested Sampling (Skilling 2006), via
thePolyChord algorithm4 (Handley, Hobson & Lasenby 2015a, b).
From this chain, we infer the best-fitting values of the "CDM model
parameters according to Planck data and use model predictions from
these values to generate a baseline simulated DES-like 3 × 2pt data-
vector under the Planck cosmology, henceforth referred to as the
baseline cosmology. As previously mentioned, the simulated DES
data are composed of galaxy clustering, cosmic shear, and galaxy–
galaxy lensing correlation functions (Abbott et al. 2018).

3.1 Generating a priori tension

A convenient starting point in our analysis would be synthetically
generated tension in two data sets, corresponding to data vectors
generated at different values of cosmological parameters. Precisely
how different these two sets of cosmological parameters are should
be guided by some preliminary measure of tension. This starting
point is henceforth referred to as the ‘a priori Gaussian tension’, and
in this subsection, we provide a recipe to define it.

Quantifying the a priori tension at parameter level with some
metrics would make our exercise circular and unfair to other metrics,
so it is not a good option. To make progress, we follow a procedure
that at least guarantees that the amount of tension we introduce is
increasing with increasing shifts, and is, by construction, sensitive to
parameters of interest. Using the Planck and DES posteriors obtained
from their respective baseline data vectors, we first compute the
variance in the marginalized 1D posterior distributions for $m and
σ 8, referred to as var(θ ), where θ ∈ {$m, σ 8}. We then shift each
parameter by a multiple of the quantity

δθ =
√

var(θDES) + var(θPlanck) (2)

and generate simulated DES data vectors with either $m or σ 8 shifted
by integer multiples of the corresponding δθ . We indicate the total
shift with %θ ≡ αδθ for a given integer α. We then use those data
vectors to obtain simulated DES chains. We shift σ 8 towards lower
values than Planck’s, and $m towards higher values, for simplicity,
but we would expect to obtain similar results if the shifts were done
in the opposite directions.

3HTTPS://BITBUCKET.ORG/JOEZUNTZ/COSMOSIS/WIKI/HOME
4HTTPS://GITHUB.COM/POLYCHORD/POLYCHORDLITE
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Figure 2. Marginalized 2D posteriors for some of the simulated DES chains used in this work. The darker and lighter shades correspond to the 68 per cent and
95 per cent confidence regions, respectively.

A shift in σ 8 is obtained by changing the input value of As. Shifting
$m, on the other hand, changes the history of structure growth and
thereby σ 8; we compensate for this collateral shift in σ 8 by counter-
shifting As. The DES constraints (shown in the $m–σ 8 plane) from
a representative subset of these shifted synthetic data are shown in
Fig. 2.

If we approximate the difference between the Planck and DES
posteriors as a Gaussian distribution in multiple dimensions we can
now ask, a priori, what the significance of these shifts is (in the
$m–As plane) by computing

χ2 = δθT (CD + CP)−1δθ (3)

where CD and CP are the 2 × 2 covariance matrices in ($m, As)
for DES and Planck, respectively. Because we are changing only two
parameters, the quantity has two degrees of freedom. Note that this is
just the generalization of equation (1) to multiple dimensions. While
the Gaussian approximation is not expected to be accurate, especially
in the tails of the posteriors, it is expected to be a reasonable guess
of the tension that we are inputting into our synthetic examples.

Fig. 3 shows the distribution of shifted parameter combinations
we describe above, as well as the baseline Planck + DES parameter
constraints. Specifically, the contour shows the combined baseline
Planck + DES constraints, while the markers show the best-
fitting values of individual shifted DES-only constraints. We can
immediately see that, in multiple dimensions, the tension that we
attributed to a 1D shift is higher since $m and σ 8 are correlated.

To quantify the significance of the shifts shown in Fig. 3, we
calculate from equation (3) the probability to exceed (PTE) our input
shifts in the Gaussian case. For example, we would like to associate
a ‘1σ tension’ to an $m shift that lies precisely on the edge of the
68 per cent confidence region. We thus adopt a simple 1D Gaussian
conversion

Nσ ≡
√

2 Erf−1(PTE), (4)

where Erf−1 is the inverse error function. Given a PTE, Nσ matches
that probability with the number of standard deviations that an
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Figure 3. 68 per cent and 95 per cent confidence regions of the constraint on
the differences in parameters as measured by DES and Planck, constructed
as discussed in Section 3. The markers indicate the location of the synthetic
input shifts. The corresponding a priori Gaussian tension is shown in Table 1.

equivalent event from a 1D Gaussian distribution would have. Note
that the conversion in Equation (4) is only a convenient proxy
to report high statistical significance results, and does not assume
Gaussianity per se in any of the statistics.

The resulting evaluation of the a priori Gaussian tension is shown
in Table 1. Here, the first column shows the parameter shift applied
to DES data in the ($m, σ 8) space, where each parameter is shifted
by a half-integer multiple of its reported (marginalized) error. The
second column shows the full-parameter-space tension calculated
using Equation (4) as described above. Note that the ‘input shifts’ in
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Table 1. Evaluation of a-priori Gaussian tension for controlled shifts in (σ 8
and $m). The δθ by whose half-integer value we are shifting these parameters
is referring to their respective 1D marginalized posterior as in equation (2).
See equation (4) for the explanation how we convert these shifts into the
“number of sigmas” in the full parameter space, shown in the second column.

Evaluation of a priori Gaussian tension
($m, σ 8) shift full-par-space N-σ

%σ8 = −0.5 × δσ8 0.02 σ

%$m = +0.5 × δ$m 0.09 σ

%σ8 = −1 × δσ8 0.4 σ

%$m = +1 × δ$m 1.0 σ

%σ8 = −1.5 × δσ8 1.1 σ

%$m = +1.5 × δ$m 2.3 σ

%σ8 = −2 × δσ8 2.0 σ

%$m = +2 × δ$m 3.8 σ

%σ8 = −3 × δσ8 3.7 σ

%$m = +3 × δ$m > 5 σ

%σ8 = −5 × δσ8 > 5 σ

%$m = +5 × δ$m > 5 σ

$m lead to higher tension than those in σ 8. This is because shifting
$m while keeping σ 8 fixed also leads to a shift in As, which increases
the tension in the full-dimensional space.

Finally, let us note that the a priori tension, by its construction, does
not contain stochastic noise, as it effectively measures the distance
in the space of input cosmological parameters. This is in contrast
with all of the tension metrics that we study below, which are applied
to random realizations of data that do contain noise. The fact that
the effectively noiseless input tension is being compared to tension
measurements applied on noisy data are one reason why we do not
expect a perfect match between the two. We will return to this point
in Section 5.

4 T E N S I O N M E T R I C S

This section describes the tension metrics that we will be comparing
in this work. Several metrics have been proposed for quantifying
tension between cosmological data sets. In this work, we select a
series of methods that we believe to be appropriate to our data,
and which are distinct enough to highlight the strengths and failure
modes of each metric. We separate the tension metrics into two
subcategories, since while all methods aim to quantify tension
between data sets, they answer slightly different questions:

(i) Evidence-based methods seek to answer the question:
Given hypothesis H1: ‘The assumed model is capable of generating
the data observed by both experiments’, and hypothesis H2: ‘The
assumed model is not capable of generating the data observed by
both experiments’, which hypothesis is preferred by the data under
the assumed model’?

(ii) Parameter-space methods seek to answer the question:
What is the statistical significance of the differences between the
posteriors for experiments A and B, within the parameter space
analysed by both experiments?

All of the tension metrics that we consider solve the problems
that we have discussed in Section 2 by considering all dimensions of
parameter space. In addition, since they provide results in terms of
probabilities, they are independent of the specific parametrizations
that are used.

The remainder of this section describes these tension metrics. The
results for these metrics will be shown in Section 5.

4.1 Bayesian evidence ratio

The Bayesian evidence ratio, or Bayes ratio R, is an evidence-based
method, defined for independent data sets A and B as (Marshall,
Rajguru & Slosar 2006):

R ≡ ZAB

ZAZB

. (5)

Here, ZD is the Bayesian Evidence, defined as the probability of
measuring the observed data D for a given model M, which can be
obtained marginalizing over all the model parameters θ :

ZD ≡ P (D|M) =
∫

dθ P (D|θ,M)P (θ |M). (6)

Henceforth, we adopt the following notation for Bayes’ theorem:

P = L × +

Z
(7)

where P ≡ P (θ |D, M) is called the posterior, L ≡ P (D|θ, M) is the
likelihood, and + ≡ P(θ |M) is the prior. The Bayesian Evidence is a
difficult quantity to calculate, as it requires integrating a probability
distribution over a large number of dimensions. One of the most
frequently used tools to calculate Bayesian Evidences is Nested
Sampling (Skilling 2006), which also produces posterior distribu-
tions. There exist publicly available codes for Nested Sampling
calculations, such as MULTINEST (Feroz, Hobson & Bridges 2009)
and POLYCHORD (Handley et al. 2015a, b).

In the Bayes ratio R as written in equation (5), the numerator
requires both data sets to be simultaneously explained by the same
parameter values within the model, while the denominator allows
each data set to be explained by different parameter values (still
within the same assumed underlying model). A more intuitive
interpretation (Amendola, Marra & Quartin 2013; Raveri & Hu
2019; Handley & Lemos 2019) uses Bayes theorem to rewrite
this as

R = P (A|B, M)
P (A|M)

, (8)

(where data sets A and B can be interchanged). That is, does the
existence of data set B make the data set A more or less likely
than it would be in the absence of B, all within the context of
assumed model M? Therefore, a ratio of probabilities R ( 1 is
interpreted as the data sets being consistent, while R ) 1 indicates
that the data sets are in tension. This tension metric has several
desirable properties: it is a global statistic (that is, operates on the full
parameter space), and it is symmetric between data sets (so tension
between data A and data B is the same as tension between B and A).
For these reasons, R was used in Abbott et al. (2018), to quantify
tension between the DES Y1 measurements and external data
sets.

This new interpretation carries an important issue, which is R’s
dependence on the prior volume: as described by Handley & Lemos
(2019), equation (5) can be rewritten as:

R ≡
∫

dθ
PAPB

+
. (9)

For a flat and uninformative prior, R is therefore proportional to
the prior volume. For example, doubling the prior volume doubles
the value of R, and increases the agreement between the data sets
independently of the shape of the posteriors. As an extreme case, one
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Figure 4. Example of the prior-volume dependence of R. In amber and red are two Gaussians that are at a 3σ tension. The black dotted line is the prior (note
that it is not normalized, to make it easier to visualize). When we use a uniform prior in the range [ − 10, 10] (left-hand panel), R is much smaller than one,
which means the data sets are in tension. When we increase the prior to [ − 200, 200] (right-hand panel), R becomes greater than one, indicating agreement.
This example, although extreme, illustrates a possible issue of the Bayes ratio as a tension metric.

Table 2. Jeffreys’ scale used by (Abbott et al. 2018) to quantify agreement
or tension between data sets (Jeffreys 1939).

log R Interpretation

>2.3 Strong agreement
(1.2,2.3) Substantial agreement
(− 1.2, 1.2) Inconclusive
(− 2.3, −1.2) Substantial tension
<−2.3 Strong tension

could increase the prior range arbitrarily to make any two posteriors
consistent according to R. This is illustrated by Fig. 4, which gives
two equal-width Gaussians horizontally offset by 3σ . The Bayes
ratio is close to zero when the prior encompasses relatively tightly
the bulk of the two distributions, but goes up to R > 1 if the prior
is made sufficiently wide. In the latter case, the Bayes-ratio-logic
says that the two Gaussians are close to each other relative to the
width of the prior, and hence are reported to not be in any tension.
This prior dependence is therefore a central feature of the Bayes
ratio. Nevertheless, such a prominent role for the prior may be
worrying in situations when physically motivated priors are not
available.

A second concern about the Bayes ratio R is that its raw numerical
value needs calibration. R is the ratio of probabilities (see equation 5)
and one often uses the Jeffreys’ scale (Jeffreys (1939); see Table 2) to
convert the different outcomes to interpretations about the presence
of tension between data sets. However, the boundaries in Jeffreys’
scale are arbitrary, and they lack obvious interpretation as a statistical
significance.

Both the interpretation and the calibration problem can be cir-
cumvented if another tension metric is used to calibrate the Bayes
ratio. In this paper, we use the simulated data vectors described in
Section 3 to calibrate the Bayes ratio outcomes (along with those
from other tension metrics). Note, however, that this calibration is
very specific to our choice of the problem, such as the observables,
the parameter space, or the priors we employ. Our results would not
be generalizable to an arbitrary cosmological analysis.

4.2 Bayesian suspiciousness

Bayesian Suspiciousness (Handley & Lemos 2019) is an evidence-
based method, introduced as an alternative to the Bayes ratio from
Section 4.1 for the case of priors which, instead of being motivated
by prior knowledge, are purposefully wide and uninformative. This
is the case for DES, where wide priors are chosen with the goal of
obtaining DES-only constraints. The idea is the following: We divide
the Bayes ratio R in two parts, one that quantifies the probability of
the data sets matching given the prior width, and another one that
quantifies their actual mismatch. The first part is quantified by the
information ratio I, defined as:

log I ≡ DA + DB − DAB, (10)

where D is the Kullback–Leibler Divergence (Kullback & Leibler
1951):

D ≡
∫

P log
(

P
+

)
dθ . (11)

The Kullback–Leibler Divergence is particularly well suited to
eliminate the prior dependence from the Bayes ratio, as it quantifies
how much information has been gained going from the prior + to the
posterior P . Therefore, it encloses the prior dependence that we want
to eliminate. The Kullback–Leibler Divergence has been extensively
used in cosmology (e.g. Hosoya, Buchert & Morita 2004; Verde,
Protopapas & Jimenez 2013; Seehars et al. 2014, 2016; Grandis
et al. 2016; Nicola, Amara & Refregier 2019).

The part of the Bayes ratio R that is left after subtracting the
dependence on prior volume depends only on the actual mismatch
between the posteriors, and it is what we call Bayesian suspiciousness
S:

log S = log R − log I . (12)

As explained in Section 4.1 and in Handley & Lemos (2019), the
main concern regarding the Bayes ratio R is that the tension can be
‘hidden’ by widening the priors. S can be understood as the version
of R that corresponds to the smallest priors that do not significantly
alter the posterior. It also has two useful qualities that R lacks: It
does not depend on the prior volume and, in the case of Gaussian
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posteriors, it follows a χ2
d distribution, where d is the effective number

of degrees of freedom constrained by both data sets. Therefore, we
can assign a tension probability pT as the p-value of the distribution.
This tension probability quantifies the probability of the observed
tension occurring by chance. While the chi-squared interpretation
relies on the approximation of Gaussian posteriors,5 the rest of this
section does not, so the value and sign of S can be used to measure
tension for any posterior distributions.

To obtain the value of pT, we need to calculate the effective number
of dimensions constrained by the combination of the data sets. While
there are several available methods to do this, we propose using the
Bayesian Model Dimensionality (Handley & Lemos 2019):

d = 2
∫

P
(

log
P
+

− D
)2

. (13)

This formula is analogous to the more traditional Bayesian Model
Complexity (BMC; Spiegelhalter et al. 2002) used in previous
cosmological analyses (e.g. Kunz, Trotta & Parkinson 2006; Bridges
et al. 2009), with which it shares the property that it is formed
of Bayesian quantities and recovers a value of d = 1 for the 1D
Gaussian case. But while the BMC requires the use of either the
mean or maximum-posterior parameter values and is hence subject to
sampling error (i.e. numerical noise due to a finite length of a MCMC
chain), equation (13) does not suffer from these issues (Handley &
Lemos 2019).

While the suspiciousness is according to our definition an
evidence-based method, it has been recently shown (Heymans et al.
2020) that it can be reformulated as the difference of the log-
likelihood expectation values of joint and individual data sets, leading
to a relation between the suspiciousness and the goodness-of-fit loss
introduced in Section 4.5 (Joudaki et al. 2020) through the Deviance
Information Criterion (Spiegelhalter et al. ) This shows that despite
them being defined very differently, there are fundamental relations
between these statistics.

All the quantities discussed in this subsection can be simply
obtained from a single nested sampling chain (in the case of the BMD,
or even an MCMC chain), which means that their computational cost
is the same as that of the Bayes ratio introduced in Section 4.1. Nested
sampling can also give us an estimate of the sampling error by re-
sampling the sample weights (Higson et al. 2018). Joachimi et al.
(2020), noted that this method can lead to noise in the dimensionality
calculation. This noise was included in this work, and contributes to
the error in the estimate of the tension probability. All calculations
are implemented in the PYTHON package ANESTHETIC6 (Handley
2019); an example on how to calculate these quantities can be found
atHTTPS://GITHUB.COM/PABLO-LEMOS/SUSPICIOUSNESS-COSMOSIS.

4.3 Parameter differences

Another estimator that we consider is the Monte Carlo estimate of
the probability of a parameter difference as described in Raveri,
Zacharegkas & Hu (2020). This is a parameter-space method, which
relies on the computation of the parameter difference probability

5As pointed out by Handley & Lemos (2019), non-Gaussian posteriors can be
‘Gaussianized’ using Box–Cox transformations (Box & Cox 1964; Joachimi
& Taylor 2011; Schuhmann, Joachimi & Peiris 2016) that preserve the value of
S. Therefore, the chi-squared interpretation of S derived in the Gaussian case
can be approximately valid even for posteriors that do not look Gaussian, even
if it is not guaranteed that both posteriors can be Gaussianized simultaneously.
6HTTPS://GITHUB.COM/WILLIAMJAMESHANDLEY/ANESTHETIC

density P(%θ ). In the case of two uncorrelated data sets, this is
given by the convolution integral:

P(%θ ) =
∫

Vp

PA(θ )PB (θ − %θ )dθ (14)

where PA and PB are the two parameter posterior distributions and Vp

is the support of the prior, i.e. the region of parameter space where the
prior is non-vanishing. Notice that this probability density has been
marginalized over the value of the parameters and only constrains
their difference.

Once the density of parameter shifts is obtained one can quantify
the probability that a genuine shift exists:

% =
∫

P(%θ )>P(0)
P(%θ ) d%θ (15)

which is the posterior mass above the iso-probability contour for
no shift, %θ = 0. Note that since equation (15) is the integral of a
probability density, it is invariant under reparametrizations.

Equations (14 and 15) look straightforward, but their evaluation
is greatly complicated in parameter spaces with a large number
of dimensions. In such cases (which are typical in cosmological
applications), the posterior samples cannot be easily smoothed or
interpolated to a continuous function, and we are left to work
exclusively with NA samples from the posterior PA and NB from
PB, i.e. discrete representations of the posteriors of interest. Each
one of the NANB pairs of samples corresponds to one term on the
right-hand side of Equation (14; with %θ = θA − θB, where θA and
θB are the parameter values for that pair).7

To make progress, we perform the integral in Equation (15) with a
Monte Carlo algorithm. One computes the Kernel Density Estimate
(KDE) probability of %θ = 0 and then the KDE probability of each
of the samples of the parameter difference posterior. The number
of samples with KDE probability above zero divided by the total
number of samples is the Monte Carlo estimate of the integral in
Equation (15) and the error can be estimated from the binomial
distribution. This approach largely mitigates the need for an accurate
estimate of the optimal KDE smoothing scale. In practice, we use
a multivariate Gaussian kernel with smoothing scale fixed by the
Silverman’s rule (Chacón & Duong 2018).

We use the implementation of this tension estimator in the
TENSIOMETER8 code.

4.4 Parameter differences in update form

Another parameter-space method that we consider is the update
difference-in-mean (UDM) statistic, as defined in Raveri & Hu
(2019). This compares the mean parameters determined from one
data set, θ̂A, with their updated value, θ̂A+B , obtained after adding
another data set. The shifts in parameters are then weighted by their
inverse covariance to give

QUDM = (θ̂A+B − θ̂A)T
(
CA − CA+B

)−1
(θ̂A+B − θ̂A) (16)

where CA and CA+B are the posterior covariances of the single data
set A and the joint data set A + B. If the parameters θ̂A and θ̂A+B

are Gaussian distributed then QUDM is chi-squared distributed with
rank(CA − CA+B ) degrees of freedom. These degrees of freedom are
the parameters that are measured by both data sets A and B and

7In the case of weighted samples, the weight of the parameter difference
sample is the product of the two weights.
8DMA
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are the only ones that can actively contribute to a tension between
the two. For both fully informative and uninformative priors, the
statistical significance of a shift in θ̂A+B − θ̂A is the same as the
shift in θ̂A − θ̂B since both of them are weighted by their inverse
covariance. We note that in non-update form and for uninformative
priors, i.e. equation (3), parameter differences are equivalent to the
Index of Inconsistency (Lin & Ishak 2017a, b, 2019), while providing
a clear assessment of statistical significance rather than interpretation
on the Jeffreys’ scale.

There are two main advantages of using QUDM instead of non-
update difference in mean statistics: parameter-space directions that
can exhibit interesting tension are identified a priori, i.e. before
explicitly measuring the tension, to aid physical interpretation; non-
Gaussianities are mitigated since we can select the most constraining
and Gaussian of two data sets.

As shown in Raveri & Hu (2019), an effective method to compute
QUDM in practice consists of breaking down the calculation as a sum
over the Karhunen–Loéve (KL) modes of the covariances involved.
We indicate these modes with φa and their corresponding generalized
eigenvalue with λa. The modes φa are uncorrelated for both data set A
and A + B. For a given KL mode, λa − 1 is the improvement observed
for the variance in the value of that mode when the second data set
is added to the first. To avoid sampling noise in the calculation of
QUDM, we restrict our calculation to modes that satisfy:

0.2 < λa − 1 < 100. (17)

The lower bound removes directions along which data set B is not
updating A, while the upper bound removes directions along which
A is not updating B. In both cases, with perfect knowledge of the
covariances these directions would not contribute to the end result.

We notice here that the procedure of identifying the KL modes
can be performed a priori, before looking at the data, starting from
the Fisher matrix. We also point out that the set of KL modes is
invariant under linear parameter transformations while the principal-
component decomposition is not.

The KL decomposition of parameter shifts allows to investigate
the physical origin of the reported tensions. As discussed in Wu et al.
(2020), we can write the parameters’ Fisher matrix F = (C)−1 as a
sum over KL components:

Fαα =
∑

a

F a
αα =

∑

a

φa
αφa

α/λa. (18)

The fractional Fisher information F a
αα/Fαα ∈ [0, 1] tells us how

important a given KL mode is in constraining a cosmological
parameter. Low values mean that the KL mode can be removed from
the full decomposition without altering the parameter constraint.

In Fig. 5, we show the fractional contribution of different KL
modes to the Planck Fisher matrix when it is updated with our
simulated DES measurements. We also report in the figure the error
improvement which is given by

√
λa − 1 for each mode. We have a

total of five modes, equal to the number of parameters that the data
sets have in common and we have sorted them by error improvement
of DES+Planck over Planck alone. The first data set – in this case
Planck – is setting the parameter combinations that are updated for
each mode, while the second data set is setting the improvement
factor. For the first two modes, we can see that DES improves on the
Planck determination of σ 8 by almost a factor two (94 per cent) and
the determination of $mh2 by 26 per cent. DES does not improve
other modes significantly.

We use the implementation of QUDM and related KL decomposition
algorithms in the TENSIOMETER code.
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Figure 5. The fractional Fisher information on cosmological parameters for
Planck computed using the KL modes from its update with simulated DES.
Each line shows the fractional contribution of each KL mode to the total
information on a given parameter. The sum of values in each row is one. The
numbers on top of the figure show the fractional error improvement of DES
over Planck for each KL mode.

4.5 Goodness-of-fit loss

We next consider goodness-of-fit loss which measures how much
goodness of fit degrades when joining two data sets. This is a method
in between evidence- and parameter-based ones since it relies on
both likelihood values and parameters. When fitting two data sets
separately, each probe can individually invest all model parameters in
improving its goodness of fit. However, when the two measurements
are joined, the parameters have to compromise and the quality of
the joint fit naturally degrades. This degradation is quantified by the
estimator:

QDMAP = 2 ln LA(θpA) + 2 ln LB (θpB ) − 2 ln LA+B (θpA+B ) (19)

where θpA, θpB and θpA + B are the Maximum a posteriori (MAP)
parameters measured by the first and second probe and their com-
bination respectively, and L is the data likelihood for the single
and joint probes and is evaluated at the MAP point, θp. We use
the subscript DMAP to denote the difference in MAP estimates. As
discussed in Raveri & Hu (2019), when the likelihoods and posteriors
are Gaussian QDMAP is χ2 distributed with

%Neff = NA
eff + NB

eff − NA+B
eff (20)

degrees of freedom where NA
eff , NB

eff , and NA+B
eff are the respective

numbers of the degrees of freedom

Neff = N − tr
[
C−1

+ Cp

]
(21)

is the number of parameters that a data set ends up constraining
compared to the priors it began with. The goodness of fit is expected
to degrade by one for each measured parameter, and indicates tension
if the decrease is higher. Only the parameters that are constrained
by the data over the prior can contribute to a tension since prior-
constrained parameters cannot be optimized to improve the data fit.
In the limits where the prior is uninformative or fully informative,
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Table 3. The tension between Planck and simulated DES chains for different shifts in σ 8 and $m, calculated via the different tension metrics
described in the main text. The first column refers to the number of 1D standard deviations by which each parameter is shifted, defined in equation
(2). The a priori Gaussian tension is calculated as described in Section 3 and serves only as an order of magnitude approximation of expected results.
The probability results of each of the tension metrics is converted to a number of effective sigmas using equation (4).

1D shift a priori Bayes ratio Eigentension GoF Loss MCMC/Update Suspiciousness
Tension log R Interpretation Param Diffs

Baseline 0 σ 5.7 ± 0.6 Strong agreement 0.5 σ 0.2 σ 0.3/0.3 σ (0.1 ± 0.1) σ

%σ 8 = −0.5 × δσ 8 0.0 σ 6.4 ± 0.6 Strong agreement 0.4 σ 0.4 σ 0.3/0.4 σ (0.2 ± 0.2) σ

%$m = 0.5 × δ$m 0.1 σ 5.4 ± 0.6 Strong agreement 1.3 σ 0.7 σ 0.9/0.8 σ (0.5 ± 0.2) σ

%σ 8 = −1 × δσ 8 0.4 σ 5.5 ± 0.6 Strong agreement 1.1 σ 0.8 σ 1.0/0.8 σ (0.3 ± 0.2) σ

%$m = 1 × δ$m 1.0 σ 3.5 ± 0.5 Strong agreement 2.3 σ 1.9 σ 1.8/1.7 σ (1.5 ± 0.3) σ

%σ 8 = −1.5 × δσ 8 1.1 σ 3.6 ± 0.6 Strong agreement 2.0 σ 1.2 σ 1.8/1.9 σ (1.5 ± 0.3) σ

%$m = 1.5 × δ$m 2.3 σ − 0.4 ± 0.6 No evidence 3.3 σ 3.0 σ 2.8/2.7 σ (2.9 ± 0.4) σ

%σ 8 = −2 × δσ 8 2.0 σ 0.3 ± 0.6 No evidence 2.6 σ 2.1 σ 2.7/3.0 σ (2.2 ± 0.4) σ

%$m = 2 × δ$m 3.8 σ − 4.8 ± 0.6 Strong tension 4.1 σ 3.9 σ 3.4/3.6 σ (4.1 ± 0.6) σ

%σ 8 = −3 × δσ 8 3.7 σ − 6.2 ± 0.6 Strong tension 4.3 σ 3.4 σ 4.6/4.8 σ (3.7 ± 0.5) σ

%$m = 3 × δ$m > 5 σ − 16.2 ± 0.6 Strong tension > 5.4 σ 6.2 σ 5.3/5.3 σ (5.9 ± 0.7) σ

%σ 8 = −5 × δσ 8 > 5 σ − 26.3 ± 0.6 Strong tension > 5.4 σ 5.8 σ 6.8/8.8 σ (6.3 ± 0.8) σ

%$m = 5 × δ$m > 5 σ − 47.0 ± 0.6 Strong tension > 5.4 σ 10.0 σ 6.6/8.1 σ (9.6 ± 1.2) σ

QDMAP is the likelihood expression for parameter shifts discussed in
the previous sections and its statistical significance should match the
one obtained with parameter-shift techniques.

Notice that this estimator requires Gaussianity in both data space
and parameter space. This is a stronger requirement than just approx-
imate Gaussianity in parameter space, and limits its applicability in
practice. Most of the likelihoods that we use here are Gaussian in data
space with the exception of the large-scale CMB likelihood. This can
be thought to be a prior on the optical depth of re-ionization, τ , which
would not contribute to the tension budget since it is not shared with
DES and hence allows us to use QDMAP.

We use the implementation of QDMAP in the TENSIOMETER code.

4.6 Eigentension

The goal of the eigentension parameter-space method is to identify
well-measured eigenmodes in the data and compare the parameter
constraints of two experiments within the subspace spanned by
the well-measured eigenmodes. Here, we briefly describe the steps
taken to quantify the tension between the fiducial Planck and DES
constraints in this paper, and refer the reader to Park & Rozo (2019)
for a more detailed discussion and testing of the method.

We begin by identifying the well-measured parameter subspace
by following these steps:

(i) Obtain the parameter covariance matrix from a set of fiducial
constraints for DES and identify the eigenvectors of this covariance
matrix.

(ii) For each eigenvector, take the ratio of its variance in the prior
to its variance in the posterior. If this ratio is above 102, identify the
eigenvector as well-measured or robust.

(iii) Project the fiducial Planck constraints and the various DES
constraints along the subspace spanned by the robust eigenvector(s),
and create importance sampled chains of equal length for each
constraint.

For (i), we use constraints from a fiducial DES analysis with a
noiseless data vector generated from theory under the Planck best-
fitting parameters and the true DES Y1 covariance matrix. This

allows the ad hoc choice of 102 as the threshold value in (ii), which
we make after examining the eigenvectors from (i), to be a priori.
We identify one well-measured DES eigenvector:

eDES = σ8$
0.57
m (22)

that has a variance ratio of 2665, and construct importance sampled
chains of length 105 along this eigenmode. With the projected chains
in hand, we quantify tension between two constraints i and j as
following; we

(i) construct the chain of differences %e = ei − ej between the
importance sampled chains for i and j.

(ii) approximate the probability surface for %e via KDE , and
identify the iso-probability contour that crosses the origin, i.e. %e =
0N, where N is the number of robust eigenvectors identified.

(iii) integrate the probability surface within the origin-crossing
contour, and convert the integral to Gaussian sigmas.

For (ii), we use a Gaussian KDE with bandwidths determined
from Silverman’s rule of thumb, and a straightforward Monte Carlo
integration with 1.28 × 107 random draws, which is sufficient to
quantify tensions up to 5.4σ .

4.7 Other metrics

As mentioned in the introductions, a plethora of methods to quantify
tension can be found in the cosmological literature. Our work does
not investigate all of these methods, as this would make the analysis
too wide in scope. For example, Hyperparameters (Hobson, Bridle
& Lahav 2002; Luis Bernal & Peacock 2018) are more useful to
construct a posterior from data sets in tension, by factoring in possible
unknown systematic effects. The surprise (Seehars et al. 2016) is best
suited for experiments that are an update from a previous version
with less data. PPDs (Feeney et al. 2019) are similar in nature to the
evidence ratio as shown in Lemos et al. (2020). Other methods are
not considered as they closely resemble others, such as Amendola
et al. (2013), Martin et al. (2014), and Joudaki et al. (2017) being
based on the Bayesian Evidence ratio, and Lin & Ishak (2017a),

MNRAS 505, 6179–6194 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/4/6179/6298244 by U
niversity of Pennsylvania Library user on 20 August 2021



6188 DES Collaboration

Adhikari & Huterer (2019), and Lin & Ishak (2019) being different
versions of parameter differences in update form.

5 R E S U LT S U S I N G SI M U L AT E D D E S DATA

In this section, we apply the tension metrics described in Section 4 to
the simulated vectors obtained as outlined in Section 3, and compare
the results to our a priori expectation from Section 3. Our results are
shown in Table 3 and graphically illustrated in Fig. 6.

We first note that our estimates of a priori Gaussian tension should
be only used as an rough indication and are generally lower than the
tension evaluated by the metrics that we study. This is because the
a priori Gaussian tension does not have noise in the data vector
while the tensions simulations do. This noise realization is the same
for all the shifts, which explains the fact that the a priori tension
is systematically lower in all results with respect to other tension
estimators. We can see this in the baseline case, where in a noiseless
case all metrics would obtain perfect agreement (a ‘0σ ’ tension), but
instead the noise leads to small discrepancies.

When applying parameter-shift estimators in both MCMC and
update form we can see, from Table 3 and Fig. 6, that, for tensions
measured up to 5σ , the two estimates agree very well, to within
0.3σ . This overall result is reassuring since these two estimators
are measuring the same sense of tension between the two data
sets. This agreement is also expected since the distributions that we
consider are roughly Gaussian in the bulk of the distribution. At high
statistical significance, MCMC results are lower in both cases and this
suggests that the decay of the tails of the distribution is slower than a
Gaussian distribution. For the parameter update, we observe that the
two parameter combinations, discussed in Section 4.4, DES+Planck
significantly improves over Planck-only do not appreciably change
throughout the test cases.

In case of either fully informative or uninformative priors, the
statistical significance of Goodness of Fit (GoF) loss is expected to
match the one reported by parameter-shift estimators. As we can
see from Table 3 that is the case at low statistical significance.
Non-Gaussianities in the form of slowly decaying tails violate the
assumptions used by the GoF loss estimator, while their impact
can be mitigated by parameter shifts in update form. As a result,
as statistical significance increases, in Table 3 the two estimates
differ. In particular, as expected, GoF loss overestimates statistical
significance since this estimator is assuming Gaussian decay in the
tails.

For eigentension, we make use of the metric on the simulated
vectors, making use of the robust DES eigenvector and the Monte
Carlo sampling procedure discussed in Section 4.6. Note that
the eigentension metrics are calculated only up to 5.4σ , or 1 in
1.28 × 107; beyond this probability we simply quote that the tension
is greater than 5.4σ and consider the tension to be definitive. The
results are in good agreement with other tension metrics, in particular
the two parameter shift estimators, with which eigentension shares
the general approach of quantifying tensions at the parameter space
level.

With suspiciousness, as shown in Table 3 and in Fig. 6, we obtain
good agreement with the rest of tension metrics, especially when we
consider the sampling error estimated from repeated re-samplings
for the weights of the chain. To assign a tension probability, we need
to calculate the Bayesian Model Dimensionality, for which we get d
= 2.3 ± 0.1. At high statistical significance, suspiciousness seems
to agree particularly well with GoF loss. This is reassuring since
the two estimators coincide in the Gaussian limit with uninformative
priors.

In Table 3, we also show the results for the Bayes ratio, interpreted
with the Jeffreys’ scale as used by Abbott et al. (2018), and shown
in Table 2. As we can see from the table, the interpretation of
R transitions very quickly from ‘Strong Agreement’ to ‘Strong
Tension’. To further investigate the relation between R and the other
metrics, we plot them against each other in Fig. 7. This immediately
highlights that the Jeffreys’ scale that we use to interpret the Bayes
ratio results lacks granularity in how it quantifies physical tensions.
Coherently across different estimators the interpretation of R goes
from one extreme case to the other in a probability interval that covers
about one standard deviation. Fig. 7 also clearly shows the bias of
the evidence ratio toward agreement. The value of R = 1, which
separates agreement and disagreement for our choice of priors is at a
probability level that roughly corresponds to 3σ (i.e. a probability of
the discrepancy occurring by chance of pT ∼ 0.003). We note that the
offset between R = 1 and 50 per cent probability events is set by the
prior width and would hence change when changing the prior. Fig. 7
also shows that the evidence ratio, interpreted with the Jeffreys’ scale,
would still signal a strong tension, if present, while lacking granular-
ity in the discrimination of mildly statistically significant tensions.

In Section 4, we made a distinction between parameter-space
methods and evidence-based methods. We find that all our
tension metrics agree well not only amongst themselves, but
also qualitatively with the a priori Gaussian tension calculations
described in Section 3. This is a non-trivial result, as both the
calculations and the fundamental questions that the various methods
are trying to address differ.

The only exceptions to this good agreement are given by the sta-
tistically significant σ 8 shifts where the spread between the three pa-
rameter difference estimators is smaller than the difference between
them GoF loss and suspiciousness; and the smaller a priori shifts in
$m, for which the a priori Gaussian tension estimate is smaller than
the results from eigentension and suspiciousness. Since the input
calculation used a noiseless data vector and simulated DES data
vectors had noise, these disagreements are expected. They are likely
to be caused by the noise introduced in the chains used by the tension
metrics, and will have a more significant impact on the small shifts.

Based on these results, we propose a methodology to quantify
tension between data sets that exploits the strengths of all the
different methods, summarized by Fig. 8. Within the parameter-based
approach, we recommend to generate a Monte Carlo parameter
difference distribution and observe where the zero-difference point
stands provided we have enough samples of the posterior distribution
in its tail, as this method has no problem with non-Gaussianities, and
has the advantage of providing useful visualizations in the form of
confidence regions generated directly from the difference chain itself.
However, if the number of samples in the tension tail is insufficient,
this parameter-difference distribution will not be reliable enough to
make statements about tension. In this case, either Eigentension or
parameter differences in update form provide reliable metrics of
tension. These two methods are also useful in identifying the physics
behind the tension, as they provide characteristic parameter combina-
tions along with the identified tensions lie. Since it does not offer mit-
igation of non-Gaussianities, we do not recommend using goodness-
of-fit loss on its own, but rather as a cross-check with other metrics.

For the evidence-based methods, if we have a well-motivated prior,
such as the posterior from a previous experiment or a physically
motivated one, we can calculate the tension using the Bayes ratio.
However, as discussed in the text, experiments such as DES and
Planck often choose wide priors in order to obtain posteriors that do
not depend on previous experiments. The arbitrariness in the choice
of width of those priors means that we cannot use the Bayes ratio, as
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Figure 6. A graphical illustration of the main results of Table 3. Different points show the tension calculated by each tension metric as a function of the input
shifts. The error bars in the green points correspond to sampling errors, which can be calculated for evidence-based methods by re-sampling the nested sampling
weights.

-20 -15 -10 -5 0 5 10

Bayes Ratio (logR)

0

1

2

3

4

5

6

7

Te
ns

io
n

(N
σ
)

logR strong

logR substantial

logR inconclusive

Eigentension

Goodness of Fit Loss

MCMC Parameter Shifts

Update Parameter Shifts

Suspiciousness
1

3.1 × 10−1

4.5 × 10−2

2.6 × 10−3

6.3 × 10−5

5.7 × 10−7

1.9 × 10−9

2.5 × 10−12

Te
ns

io
n

(1
−
P

)

Figure 7. Tension estimates given by different metrics versus the corresponding Bayes ratio. Shaded regions highlight Jeffreys’ scale used to interpret the
Bayes ratio, with the vertical line separating ‘Tension’ to the left and ‘Agreement’ to the right.

discussed in Section 4.1, unless we calibrated R using Fig. 7, but that
would require recalibration if any details of the analysis changed.
In the case of wide and uninformative priors, the suspiciousness
answers the same question as the Bayes ratio but correcting for the
prior volume effect. We recommend its use over the Bayes ratio in
general since it has the additional desirable property of having a
‘tension probability’ interpretation under a Gaussian approximation,
without any need for calibration.

As pointed out in Fig. 8, different methods require reliable
calculations of different quantities. Parameter-space methods require
a good estimate of the posterior, and particularly of its mean and
covariance matrix. Evidence-based methods require a calculation
of the Bayesian evidence. Therefore, our choice of tension metric
should inform our sampling choices, as further discussed in The
Dark Energy Survey Collaboration (2020).

6 A P P L I C AT I O N TO D E S Y 1 A N D P L A N C K

With a better understanding of the interpretation of each of the tension
metrics, we now revisit the issue of consistency between the DES Y1
cosmology results and those obtained by the Planck collaboration
(Planck Collaboration 2016, 2018). This also serves as a worked
example on real data of how tension between experiments can be
fully quantified.

We choose to investigate three different combinations of DES data
sets: (1) weak lensing-only constraints from Troxel et al. (2018); (2)
constraints from combining the auto and cross-correlation between
weak lensing and galaxy clustering, referred to as the 3 × 2pt
analysis; and (3) constraints from (2) plus cross-correlation with
CMB lensing, referred as the 5 × 2pt analysis (Abbott et al. 2019).
We particularly focus in the second combination, as it provided the
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Figure 8. A practical ‘decision tree’ to measure tension, illustrating when each tension metric should be used.

most powerful constraints from large-scale structure measured by
DES alone. For Planck 2015, we use the small-scale (/ > 30)
measurements of the CMB temperature power spectrum and the
joint large-scale temperature and polarization data. For Planck 2018,
we use small-scale CMB temperature, polarization, and their cross-
correlation measurements combined with large-scale temperature
and and E-mode polarization data. In doing so, we follow the rec-
ommendations of the Planck collaboration in the two data releases.

The results of parameter estimation for these data sets are shown
in Fig. 9 and the results of different tension estimators in Table 4. We
highlight in the table the results that we focus our discussion on.9

We start with MCMC parameter shifts, as it is the parameter-based
method that can give the most accurate value for the tension, thanks
to its ability to go beyond the Gaussian approximation. In Fig. 10,
we can see the posterior of differences between the determination
of σ 8 and $m from different DES data sets and Planck that clearly
shows a tension that is greater than 2σ . In Table 4, we see that in full
parameter space this tension is at the 2.2σ level. We proceed with
suspiciousness as our recommended evidence-based method which
fully confirms the parameter-shift results, giving a 2.4 ± 0.2σ tension
between Planck 2015 and DES 3 × 2pt. We note that applying both
methods provides a useful cross-check of their respective results.
This moderate tension remains when Planck is updated from the
2015 to the 2018 data and for DES 5 × 2pt. This shows that this
tension is robust to the inclusion of CMB polarization data.

To understand the physics behind these discrepancies, it is useful
to consider other methods. Using eigentension, we identify a single
well-measured eigenmode for each DES analysis: σ8$

0.57
m for the

3 × 2pt analysis, and σ8$
0.58
m in the 5 × 2pt case. Both eigenmodes are

very similar to the widely used definition of S8 = σ 8($m/0.3)0.5, and
can be interpreted as representing the ‘lensing strength’ arising from
the large-scale structure of the late-time universe. After measuring
tension exclusively along this direction in parameter space, we find

9The reader might notice that the values of the Bayes ratio reported in Table 4,
in particular for the case DES 3 × 2pt versus Planck 15, differ from the values
reported by Abbott et al. (2018; R = 6.6). This difference has been identified as
originating from sampling issues in the DES Y1 analysis, as will be described
in more detail in The Dark Energy Survey Collaboration (2020).
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Figure 9. 68 per cent and 95 per cent confidence regions of the joint
marginalized posterior probability distributions for DES Year 1 Cosmic Shear,
3 × 2pt and 5 × 2pt likelihoods, and for the Planck 2015 TTTEEE likelihood.

results that are in agreement with other methods. This shows that
the moderate tension between DES and Planck is found along a
parameter space direction that we believe DES is robustly measuring.
Studying parameter updates of DES with respect to Planck gives
similar conclusions. As discussed in the previous section and shown
in Fig. 5, combining DES improves the Planck determination of two
parameters, the first mode projecting mostly on to σ 8 and the second
on to $mh2. The first mode drives most of the tension while the shift
in the second is compatible with a statistical fluctuation. Decrease in
goodness of fit agrees with other estimators.

The Bayes ratio interpreted on the Jeffreys’ scale reports no
significant tension between all data combinations that we consider.
Given the results of the previous section, we can understand this as
the data tension not overcoming the bias of the Bayes ratio towards
agreement. We note that the priors used for the fiducial analyses
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Table 4. The tension between Planck and different data set combinations involving DES Y1 data, calculated via the different tension metrics described in the
main text. In the first column, Planck refers to the combination of the TT, TE, and EE likelihoods. In bold font, we highlight the combinations of DES 3 × 2pt
and Planck, as those are the main focus of this section. The horizontal line separates Planck 2015 and 2018 data set combinations.

Data set Bayes ratio Eigentension GoF Loss MCMC/Update Suspiciousness
log R Interpretation Param Shifts

DES cosmic shear versus Planck 15 2.2 ± 0.5 Substantial agreement 1.8 σ 1.3 σ 1.3/1.2 σ (0.7 ± 0.4) σ

DES 3 × 2pt versus Planck15 1.0 ± 0.5 No evidence 2.4 σ 2.7 σ 2.2/2.2 σ (2.4 ± 0.2) σ

DES 5 × 2pt versus Planck 15 1.1 ± 0.5 Substantial agreement 2.4 σ 2.8 σ 2.1/2.3 σ (2.2 ± 0.3) σ

DES 5 × 2pt versus Planck 15 + lensing 1.0 ± 0.6 No evidence 2.4 σ 2.5 σ 2.1/2.3 σ (2.2 ± 0.4) σ

DES 5 × 2pt + Planck lensing versus Planck 15 6.1 ± 0.6 Strong agreement 1.6 σ 2.4 σ 1.9/2.2 σ (1.8 ± 0.2) σ

DES cosmic shear versus Planck 18 3.3 ± 0.4 Strong agreement 1.5 σ 1.0 σ 1.0/1.1 σ (0.5 ± 0.3) σ

DES 3 × 2pt versus Planck18 2.2 ± 0.6 Substantial agreement 2.2 σ 1.6 σ 2.0/2.3 σ (2.4 ± 0.2) σ
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Figure 10. Joint marginalized posterior distribution of the parameter differences between different DES data selections and Planck 15/18. The distribution
of parameter differences is used to compute the statistical significance of a parameter shift. The darker and lighter shading corresponds to the 68 per cent and
95 per cent C.L. regions, respectively.

in the previous section do not coincide with the priors used in this
section; we thus cannot use the previously derived calibration of the
Bayes ratio.

The mild tension we obtain between Planck and DES, varying
between 2σ and 3σ , should not be overlooked. While this level of
tension could still be a statistical fluke, it is significant enough to
warrant in-depth future investigations. The forthcoming DES Y3
analysis, incorporating a larger fraction of the sky, is expected to
shed light on this matter.

7 C O N C L U S I O N S

In this work, we have explored different methods to quantify
consistency between two uncorrelated data sets, focusing on the
comparison between DES and Planck. The motivation is to decide
on a metric of tension between these two surveys ahead of the DES
Y3 data release. This was done by simulating a set of DES data sets
with values of cosmological parameters chosen to introduce varying
levels of discrepancy with Planck. We calculate the tension for each
simulated DES data set, and compare to an a priori Gaussian tension
expected based on the known true cosmologies for the simulated

data sets. While this work has been performed for the specific case of
DES and Planck, our findings about the different metrics described in
Section 5 apply to any problem of tension quantification. However,
if we wanted to apply the Bayes ratio to a different problem with
uninformative priors, the exercise of calibrating the Bayes ratio
would have to be repeated.

We have found that the Bayes’ ratio used in the Y1 analysis has
several flaws that make it unsuitable for the quantitative comparison
of DES and Planck. In particular, it is proportional to the width of the
chosen uninformative prior; it relies on the Jeffreys’ scale to interpret
the ratio of probabilities, which needs an unknown calibration that
is problem-dependent (i.e. we would need to build a table such as
Table 3 in every problem to calculate the overall calibration of the
Bayes ratio); and the fact that we can only calculate logarithms of the
probability ratio means that the Jeffreys’ scale used in the DES Y1
analysis (Table 2) will in most cases diagnose extreme agreement or
extreme tension.

As shown in Table 3, the other four tension metrics employed
in this work – eigentension, GoF loss, parameter differences, and
suspiciousness – agree with the a priori tension, as well as amongst
themselves, with the exceptions of small shifts in $m and large shifts
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in σ 8 discussed in Section 5, which are likely the result of noise
introduced in the simulated data vectors. We conclude that any of the
tension metrics can be used for the problem of quantifying tension
between DES and Planck, as they produce similar results.

We use these tension metrics to re-assess the tension between DES
Y1 and Planck 2015, as well as with the latest Planck 2018 results.
We find, similar to our findings from the simulated analyses that the
dependence of the evidence ratio on calibration causes the results
to be inconsistent with what we see in the plots, and what all other
tension metrics indicate. We find that there is a ∼2.3σ between DES
and Planck, which remains when the Planck 2018 likelihood is used.
It remains to be seen how this will evolve when the more powerful
DES Y3 data are used. If the tension is reduced when more data are
considered, we are likely looking at a statistical fluctuation. If the
tension remains or increases, we could be looking at unexplained
systematics in either of the surveys, or evidence of physics beyond
the "CDM model.
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e Inovação, the Deutsche Forschungsgemeinschaft and the Collabo-
rating Institutions in the Dark Energy Survey.

The Collaborating Institutions are Argonne National Laboratory,
the University of California at Santa Cruz, the University of Cam-
bridge, Centro de Investigaciones Energéticas, Medioambientales y
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Lemos P., Köhlinger F., Handley W., Joachimi B., Whiteway L., Lahav O.,

2020, MNRAS, 496, 4647
Lin W., Ishak M., 2017a, Phys. Rev. D, 96, 023532
Lin W., Ishak M., 2017b, Phys. Rev. D, 96, 083532
Lin W., Ishak M., 2019, J. Cosmol. Astropart. Phys., 2021, 009
Luis Bernal J., Peacock J. A., 2018, J. Cosmol. Astropart. Phys., 1807, 002
Mandelbaum R., 2018, ARA&A, 56, 393
Marshall P., Rajguru N., Slosar A., 2006, Phys. Rev. D, 73, 067302
Martin J., Ringeval C., Trotta R., Vennin V., 2014, Phys. Rev. D, 90, 063501
Miranda V., Rogozenski P., Krause E., 2020, preprint (arXiv:2009.14241)
Nicola A., Amara A., Refregier A., 2019, J. Cosmol. Astropart. Phys., 2019,

011
Ostriker J. P., Steinhardt P. J., 1995, Nature, 377, 600
Park Y., Rozo E., 2019, MNRAS, 499, 4638
Peebles P. J. E., 1984, ApJ, 284, 439
Perlmutter S. et al., 1999, ApJ, 517, 565
Planck Collaboration, 2016, A&A, 594, A13
Planck Collaboration, 2018, A&A, 641, A6
Prat J. et al., 2018, Phys. Rev. D, 98, 042005
Raveri M., Hu W., 2019, Phys. Rev. D, 99, 043506
Raveri M., Zacharegkas G., Hu W., 2020, Phys. Rev. D, 101, 103527
Riess A. G. et al., 1998, Astron. J., 116, 1009
Riess A. G., Casertano S., Yuan W., Macri L. M., Scolnic D., 2019, ApJ, 876,

85
Schuhmann R. L., Joachimi B., Peiris H. V., 2016, MNRAS, 459, 1916
Seehars S., Amara A., Refregier A., Paranjape A., Akeret J., 2014,

Phys. Rev. D, 90, 023533
Seehars S., Grandis S., Amara A., Refregier A., 2016, Phys. Rev. D, 93,

103507
Seehars S., Grandis S., Amara A., Refregier A., 2016, Phys. Rev. D, 93,

103507
Skilling J., 2006, Bayesian Anal., 1, 833
Spiegelhalter D. J., Best N. G., Carlin B. P., Van Der Linde A., 2002, J. R.

Stat. Soc., 64, 583
The Dark Energy Survey Collaboration, 2005, preprint(astro-ph/0510346)
The Dark Energy Survey Collaboration, 2021, In preparation
The Dark Energy Survey Collaboration, 2017, MNRAS, 483 4866
To C. et al., 2020, Phys. Rev. D, 126, 141301
Troxel M. et al., 2018, Phys. Rev. D, 98, 043528
Verde L., Protopapas P., Jimenez R., 2013, Phys. Dark Universe, 2, 166
Wu W. K., Motloch P., Hu W., Raveri M., 2020, Phys. Rev. D, 102, 023510
Zuntz J. et al., 2015, Astron. Comput., 12, 45

APPENDIX A: DARK ENERGY SURVEY DATA

The DES (The Dark Energy Survey Collaboration 2005; Abbott
et al. 2016) is a 6-yr survey that has observed over 5000 deg2 in
five filters (grizY) and has probed redshifts up to z ∼1.3. It has also
used time-domain to measure several thousand type Ia supernovae
(SNe Ia). DES can constrain cosmological parameters in several
ways: It can use these SNe Ia, and treat them as standarizable
candles to constrain cosmology through their redshift–luminosity
relation, usually referred to as Hubble Diagram (Hubble 1929;
Kirshner 2004); it can use the distribution of galaxies to measure

Table A1. Cosmological and nuisance parameters and their priors used in
this analysis.

Parameter Prior

Cosmology
$m flat (0.1, 0.9)
As flat (5 × 10−10,

5 × 10−9)
ns flat (0.87, 1.07)
$b flat (0.03, 0.07)
h flat (0.55, 0.90)
$νh2 flat(5 × 10−4, 10−2)

Lens galaxy bias
bi(i = 1, 5) flat (0.8, 3.0)

Intrinsic alignment
AIA flat (−5, 5)
ηIA flat (−5, 5)

Lens photo-z shift (red sequence)
%z1

l Gauss (0.0, 0.007)
%z2

l Gauss (0.0, 0.007)
%z3

l Gauss (0.0, 0.006)
%z4

l Gauss (0.0, 0.01)
%z5

l Gauss (0.0, 0.01)

Source photo-z shift
%z1

s Gauss (0.0, 0.016)
%z2

s Gauss (0.0, 0.013)
%z3

s Gauss (0.0, 0.011)
%z4

s Gauss (0.0, 0.022)

Shear calibration
mi(i = 1, 4) Gauss (0.0, 0.023)

the Baryon Acoustic Oscillation (BAO) feature which was imprinted
by sound waves at the recombination era (z ∼1100), and which
serves as a standard ruler (Eisenstein, Seo & White 2007); it can use
the abundance of galaxy clusters, the largest gravitationally bound
structures in the Universe (Allen, Evrard & Mantz 2011); it can
use the distribution of galaxies to measure the dark matter density
distribution, under the assumption of some bias relating the two,
called galaxy clustering; and it can measure the distortion of light by
intervening matter along the line of sight, referred to as gravitational
lensing (Mandelbaum 2018). When the matter distribution distorting
the path of light is the large-scale structure of the Universe, the
effect is called cosmic shear (Kilbinger 2015). Because in this case
distortions are too small to be detected for individual galaxies,
they are detected through correlations in the shapes and position
of galaxies images.

Using data from the first year of observations (Y1), the DES col-
laboration has already reported constraints on cosmology from BAO
(The Dark Energy Survey Collaboration 2017), galaxy clustering
(Elvin-Poole et al. 2018), cosmic shear (Troxel et al. 2018), the
cross-correlation of galaxy clustering and cosmic shear, referred to
as galaxy–galaxy lensing (Prat et al. 2018), and as a main result,
the combination of the two-point functions from cosmic shear,
galaxy clustering, and galaxy–galaxy lensing, henceforth referred
to as ‘3 × 2pt’ (Abbott et al. 2018). In addition, using data from
3 yr of observations (Y3), DES has also constrained cosmology
from SNe Ia (Abbott et al. 2019a), and galaxy clusters (To et al.
2020). However, as described in Abbott et al. (2019b), the most
powerful constraints from future DES data releases will come from
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combinations of the different probes, as these can break degeneracies
in parameter constraints and significantly increase accuracy.

We adopt the same priors used in the DES Y1 analysis, shown in
Table A1.
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