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Optical spectroscopy, x-ray diffraction measurements, density functional theory (DFT), density functional

theory + embedded dynamical mean-field theory (DFT+ eDMFT), and crystal-field calculations have been used

to characterize structural and electronic properties of hexagonal M 2Mo3O8 (M = Fe, Mn) polar magnets. Our

experimental data are consistent with the room-temperature structure belonging to the space group P6 3mc for

both compounds. The experimental structural and electronic properties at room temperature are well reproduced

within DFT+ eDMFT method, thus establishing its predictive power in the paramagnetic phase. With decreasing

temperature, both compounds undergo a magnetic phase transition, and we argue that this transition is concurrent

with a structural phase transition (symmetry change from P63mc to P63) in the Fe compound and an isostructural

transition (no symmetry change from P63mc) in the Mn compound.

DOI: 10.1103/PhysRevB.102.115139

I. INTRODUCTION

Materials with coupled magnetic and electric degrees
of freedom have attracted significant attention due to their
importance in designing novel electronic devices, such as
magnetoelectric (ME) tunneling junctions, weak magnetic
field sensors, microwave phase shifters, low-energy consum-
ing electronics, and many other applications [1–4]. For a ME
effect to be observed, the time-reversal and space-inversion
symmetries should be broken. This is always fulfilled in
multiferroics, i.e., materials with simultaneous magnetic and
electric orders, which stimulated a growing interest in their
properties. Many multiferroics are multidomain compounds
which weakens the total ME effect averaged among all do-
mains. Special poling procedures are required to achieve
their full ME potential. In contrast, polar magnets, which
are a subclass of type-I multiferroics [5] and characterized
by crystallization in a polar structure and development of
magnetic order at lower temperatures, can often be grown
as monodomain, which is beneficial for ME applications. In
this paper, using experimental and theoretical techniques, we
study the representative compounds of the M 2Mo3O8 (M is
a transition metal) polar magnet family [6,7], which possess
strong spin-lattice coupling resulting in rich ME properties.
In particular, a large tunable ME effect was reported for

*Author to whom correspondence should be addressed: stantar@
njit.edu

M2Mo3O8 polar magnets in both static [8–10] and dynamic
regimes [11–13]. Also, a giant thermal Hall effect has re-
cently been observed in Zn xFe1− xMo3O8 crystals, revealing
the influence of spin-lattice coupling on low-energy acoustic
phonon modes [14].

ME properties of the system can be described with a ME
tensor, the symmetry of which is determined by crystallo-
graphic and magnetic symmetries. We have found that the
crystal structure of the M 2Mo3O8 at room temperature be-
longs to a polar P63mc space group and consists of M2+

and Mo 4+ layers stacked along the c axis [see Fig. 1(a)].
The M 2+ layer is composed of the corner-sharing MO 6 oc-
tahedra and MO 4 tetrahedra. The orientation of the vertices
of the latter determines the direction of electric polarization
along the c axis. Magnetic M 2+ layers are separated by non-
magnetic trimerized MoO 6 octahedra [see Fig. 1(b)]. Both
compounds, Mn2Mo3O8 and Fe 2Mo3O8, order magnetically
below TC = 41 K for the Mn and TN = 60 K for the Fe com-
pound with the magnetic moments collinear with the c axis
[15]. Neutron scattering experiments showed that the mag-
netic structures are of antiferromagnetic and ferrimagnetic
types for the Fe and Mn compounds, respectively, with dif-
ferent magnetic moments on the octahedral and tetrahedral
sites [see Fig. 1(c)] [15]. Within each M2+ layer, the magnetic
moments on the octahedral and tetrahedral sites are aligned
antiferromagnetically, thus giving rise to a net ferromagnetic
intralayer moment [see Fig. 1(c)]. For the Mn compound, the
ferromagnetic intralayer moments are coupled ferromagnet-
ically, resulting in the ferrimagnetic (FRM) order type. In
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FIG. 1. Schematic overview of the crystal, magnetic, and electric
properties. (a) Room-temperature crystal structure for M2Mo3O8; (b)
layer arrangements of the MoO 6, MO6, and MO 4 polyhedra; (c)
schematic representation of the magnetic properties; and (d) tem-
perature dependence for the variation of the electric polarization for
M2Mo3O8 (M = Fe, Mn) along the c axis (the data were reproduced
from Ref. [10]). The shaded area suggesting the region with struc-
tural changes in (d) is only a guide for the eye.

contrast, for the Fe compound, these intralayer moments are
coupled antiferromagnetically, thus hiding the ferromagnetic
intralayer moment and giving rise to antiferromagnetic (AFM)
order type [see Fig. 1(c)]. Recently it was shown that the
ferromagnetic intralayer moment can be revealed in the Fe
compound either by application of a magnetic field H ||c or
by Zn doping, thus enabling switching between AFM and
FRM order types, which has a substantial implication to the
large magnetic-field-tunable ME effect reported in the Fe
compound [8,9,16].

Combined studies of specific heat, pyroelectric current, and
dielectric susceptibility suggested that ordering of M spins is
concurrent with structural changes in both Fe and Mn com-
pounds, see Fig. 1(d) and Refs. [8,10]. Also, it has been shown
that the changes in polarization P(T ) are similar in both Mn
and Fe compounds [see Fig. 1(d)] [10], which implies that
the atomic displacements are of the same order of magnitude.
The changes in polarization for the Fe compound have been
reproduced using a simple model based on the difference
between the atomic coordinates in the ordered state (obtained
by DFT + U) and in the paramagnetic state (determined by
experiment) [8]. Although these calculations could reproduce
the order of magnitude for P(T ) and suggest that the origin
of these structural changes are the exchange striction effects,
no information about the low temperature (LT) symmetry of
these materials was obtained [8]. Thus, an open question still
exists about the type of the structural phase transition.

The goals of this work are (I) to unravel the nature of
these atomic displacements occurring through the magnetic
transition and learn if they are consistent with breaking the

high temperature (HT) symmetry (structural phase transition)
or with preserving it (isostructural phase transition), and (II)
to prove the predictive powers of the eDMFT method for
the structural and electronic properties in the paramagnetic
state.

To answer these questions, we revised the room-
temperature crystal structures using single-crystal x-ray
diffraction, performed infrared (IR) and Raman studies of
phonon modes in the temperature range 300–5 K, and inves-
tigated the electronic properties, such as the band gap magni-
tude and the crystal-field levels in M 2Mo3O8 (M = Fe, Mn)
compounds. The reason we chose spectroscopic techniques
to probe the symmetry changes across the magnetic transi-
tions is because the number of spectroscopically accessible
electronic and lattice excitations is determined by the crys-
tal’s symmetry, and thus these techniques are very sensitive
to phase transitions upon which the symmetry changes. To
the best of our knowledge, only unpolarized IR transmis-
sion and Raman measurements on polycrystalline M 2Mo3O8

(M = Co) samples have been reported in the literature so
far [17]. We have employed density functional theory (DFT)
and density functional theory + embedded dynamical mean-
field theory (DFT+ eDMFT) to understand better the interplay
of the structural and electronic degrees of freedom in the
paramagnetic state of these materials with complex crystal
structures, see Fig. 1. In addition, we have performed crystal-
field calculations of electronic states of Fe2+ ions both in
tetrahedral and octahedral environments to separate electronic
and lattice contributions to the far-infrared and Raman spectra
of Fe2Mo3O8 in the magnetically-ordered state.

Based on our experimental and theoretical approaches we
will show that (I) the magnetic transition is concurrent with a
structural phase transition in the Fe compound (from P6 3mc
to P63) and an isostructural phase transition in the Mn com-
pound; (II) there is an overall good agreement between the
DFT calculated and room-temperature experimental infrared
and Raman phonon modes apart from some low-frequency
modes positioned below 200 cm− 1 in the Fe compound; (III)
the electronic and structural properties at finite temperature
(in the paramagnetic state) reproduced by DFT + eDMFT are
in very good agreement with the experiment, thus confirming
the predictive powers of the DFT + eDMFT method at finite
temperature; and (IV) the group of spectral lines observed in
the IR and Raman spectra of Fe 2Mo3O8 in 3400–3500 cm− 1

range corresponds to electronic d − d transitions in tetrahe-
drally coordinated Fe 2+ ions and is well reproduced by the
crystal-field calculations.

II. SAMPLES, EXPERIMENTAL TECHNIQUES,

AND CALCULATIONS

M2Mo3O8 (M = Fe, Mn) and FeZnMo 3O8 were grown
using a chemical vapor transport method at the Rutgers
Center for Emergent Materials [8]. Single crystals with nat-
urally terminated faces had a typical size of 0.5 × 0.5 ×
0.5 mm3. Different samples with crystal faces that contained
two different orientations of the c axis, namely in the plane
of the sample and perpendicular to it, have been selected
for spectroscopic experiments. Far-infrared (FIR) reflectivity
measurements were performed for the electric field of light
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directed along and perpendicular to the c axis of the crystals in
the 60− 7000 cm− 1 spectral range using a Bruker v80 interfer-
ometer with a glowbar light source and a 15× Schwarzschild
objective. The spectral resolution in the far-IR experiments
was 2 cm− 1. Micro-Raman experiments have been performed
for the laser light excitation and collection along and per-
pendicular to the c axis of the crystals in the backscattering
configuration using a 532 nm laser, a LN 2-cooled CCD de-
tector, and a single-grating Princeton Instruments SpectraPro
SP-2556 Imaging Spectrograph, which provided a spectral
resolution of about 2 cm− 1. For both FIR reflectivity and
Raman measurements, samples were placed in a LHe-flow
optical cryostat, which allowed us to perform measurements
at temperatures down to 5 K. Ellipsometric measurements
were performed at room temperature only in the near-IR to
ultraviolet (UV) spectral range at 65° angle of incidence using
a J. A. Woollam M-2000 spectroscopic ellipsometer at the
Center for Functional Nanomaterials at Brookhaven National
Lab (CFN-BNL).

Single crystal diffraction data were collected on a Rigaku
Oxford Diffraction SuperNova diffractometer equipped with
an Atlas CCD-detector and CuK α radiation at T = 300 K.
Data collection, cell refinement, and data reduction were car-
ried out using CRYSALISPRO [18]. The JANA2006 software
[19] was used for structure refinement. The absorption cor-
rection was done analytically using a multifaceted crystal
model [20]. Extinction corrections were performed using an
isotropic Becker & Coppens, type 1, GAUSSIAN [21]. Figures
of structures were generated using VESTA [22]. Figures were
prepared in INKSCAPE [23].

Lattice dynamics properties of Fe2Mo3O8 and Mn2Mo3O8

crystals were calculated within the density functional the-
ory using the ab initio norm-conserving pseudopotential
method as implemented in the CASTEP package [24]. Equilib-
rium atomic structures were obtained from the total-energy
minimization method within DFT. Electron exchange and
correlation interactions have been modeled within the local
density approximation [24,25]. Plane wave basis set cutoff
was 750 eV that allowed energy convergence within 10− 7 eV.
The lattice was optimized until residual forces on atoms in
their equilibrium positions did not exceed 5 meV / Å. Lattice
dynamic properties of both compounds were further assessed
via a finite displacement method on a 2× 2 × 1 supercell [26].
Integration over the Brillouin zone was performed over the
5 × 5 × 2 Monkhorst-Pack grid in reciprocal space [27]. For
both materials, no imaginary modes were predicted by the
theory.

For calculating electronic properties and optimizations
of internal coordinates, we used both (I) the density func-
tional theory as implemented in WIEN2K package [28] and
(II) a fully charge-self-consistent dynamical mean-field the-
ory method, as implemented in Rutgers DFT + eDMFT code
[29–31]. Throughout the rest of the paper we will refer to
DFT+ eDMFT method as eDMFT. For the DFT part, we
used the generalized gradient approximation Perdew-Burke-
Ernzerhof (GGA-PBE) functional [32], RKmax = 7.0, and
312 k-points in the irreducible part of the first Brillouin zone.
For optimizations of internal coordinates [33,34], a force
criterion of 10− 4 Ry/ bohr was adopted. In order to solve
the auxiliary quantum impurity problem, a continuous-time

quantum Monte Carlo method in the hybridization-expansion
limit (CT-HYB) was used [35], where the five d orbitals for
the Mn and Fe ions (grouped according to the local point
group symmetry) were chosen as our correlated subspaces in
a single-site eDMFT approximation. For the CT-HYB calcu-
lations, up to 400 million Monte Carlo steps were employed
for each Monte Carlo run. In all runs, the temperature was set
to 500 K, i.e., slightly higher than room temperature, to obtain
faster convergence of the calculations for these materials with
the complex crystal structure.

To define the eDMFT projector, we used the quasielec-
tronic orbitals by projecting bands in the large hybridization
window (− 10 to + 10 eV with respect to the Fermi level), in
which partially screened Coulomb interaction has values of
U = 10 eV and JH = 1 eV in both Mn and Fe ions. A nominal
double counting scheme was used [36], with the d -orbital
occupations for double counting corrections for Mn and Fe
chosen to be 5 and 6, respectively.

To explain d − d electronic transitions in Fe 2+ ions in
the magnetically ordered state of Fe 2Mo3O8, we have used
a phenomenological crystal-field theory in the formalism of
Stevens operators [37,38].

III. EXPERIMENTAL AND THEORETICAL RESULTS

A. HT structural properties

The room-temperature crystal structures of Mn2Mo3O8

and Fe 2Mo3O8 compounds have been revised using single-
crystal x-ray diffraction. Our findings at room temperature are
consistent with the previously reported space group symme-
try and structural parameters [6,7,39–41]. The good quality
of our refinements can be seen from the plot of the ob-
served vs calculated structure factors squared,|F |2, satisfying
|F |2 > 3σ(|F |2) shown in Figs. 2(a) and 2(b). From the total
number (5140/ 4325 for Mn2Mo3O8/ Fe2Mo3O8) of mea-
sured reflections, we obtained 271 / 271 unique reflections
satisfying |F |2 > 3σ(|F |2) for Mn 2Mo3O8/ Fe2Mo3O8 com-
pounds that are contributing to the least-squares refinements
calculation (reflections related by symmetries are merged
together). The ratio data/parameters used in the “full least-
squares on F 2” refinement method was 271/ 32 for each
compound. Other parameters commonly used to character-
ize the data refinements are shown as insets in Figs. 2(a)
and 2(b). These parameters are defined as follows: (I) the
residual factor R1 for the reflections used in the refinements,

R1 = |Fobs− Fcalc|
|Fobs|

; (II) the weighted residual factorwR2 for the

reflections used in the refinements, wR2 = w(F 2
obs− F 2

calc)
2

(F 2
obs)

2 ,

where w = 1

[σ(F 2
obs)]

2+ 0.0004F 4
obs

; and (III) the goodness of fit S=

w(F 2
obs− F 2

calc)
2

Nref− Nparam
. In these equations, Fobs and Fcalc represent the

observed and calculated structure factors, Nparam represents
the number of refined parameters, Nref represents the number
of unique reflections used in the refinement, and the sum is
taken over all Nref reflections.

Our crystals reveal the high quality by showing that more
than 98% of detected reflections are indexed by a single
hexagonal domain corresponding to the P6 3mc hexagonal

115139-3



T. N. STANISLAVCHUK et al. PHYSICAL REVIEW B 102, 115139 (2020)

FIG. 2. Structural information from single-crystal XRD. Refinement results for (a) Mn2Mo3O8 and (b) Fe2Mo3O8, comparing calculated
and observed structure factors |F|; although the refinements were done using|F |2, we plot our results in terms of |F|. (c) The azimuthal scan of
Fe2Mo3O8, showing the normalized values of intensity divided by its sigma. The (h, k, l) reflections, where l = even (odd) numbers, indicate
allowed (forbidden) reflections. (d) and (e) Refined crystal-structure parameters for two compounds with the isotropic thermal parameters
assuming the full occupancies.

symmetry. However, we also observed a few very weak for-
bidden reflections within the P6 3mc space group (No. 186).
If these reflections are genuinely observable nuclear Bragg
reflections, then the potential space group describing these
systems should be from the trigonal symmetry such as P3m
(No. 156) or P3 (No. 143), where all the observed reflec-
tions are allowed by symmetry and can be indexed. As this
hypothesis can be an important result related to the interplay
between the true crystal structure and electronic responses
already at room temperature, we designed the azimuthal-angle
measurements to understand the nature of these forbidden
reflections. We chose four representative reflections covering
both allowed and forbidden reflections using the Fe 2Mo3O8

single crystal according to the refection conditions for the
general Wyckoff site. The results of the azimuthal scan
are presented in Fig. 2(c) where we show the evolution of
normalized intensity for a wide range of azimuthal angles

i [i ∈ [1, n] where n is a total number of measured an-
gles, see Fig. 2(c)] (the label for the azimuthal angle
should not be confused with the label, which we introduce
later on, for the electronic wave function). Each intensity
Ii was first divided by the corresponding sigma σi to get
statistically better-defined parameters, and then (I i/σi) was
further normalized by the average intensity I av = 1

n
n
i= 1 Ii.

By comparing the normalized values of intensity (I i/σi)/Iav,
as shown in Fig. 2(c), we were able to see that the normal-
ized values for the allowed reflections are close to the unity
as expected, whereas their counterpart values from forbid-
den reflections are strongly fluctuating upon the azimuthal
angle. This is reminiscent of the observation of forbidden
reflections from the unavoidable multiple diffractions, in-
dicating that the forbidden reflections should be excluded
when determining the crystal structure. Therefore, within our
experimental resolution, the given hexagonal P63mc space

group (No. 186) well describes the crystal structures of
Fe2Mo3O8.

Structural relaxations of the internal atomic coordinates
for fixed experimental lattice constants have been performed
using non-spin-polarized DFT and paramagnetic eDMFT
methods. Structural relaxations have been performed using
various starting artificial structures within subgroups of the
experimental hexagonal space group P63mc (No. 186) such as
trigonal P3m1 (No. 156), P3 (No. 143), and even lower space
groups up to monoclinic symmetry. In each case, the stable
relaxed crystal structures were found to have the hexagonal
symmetry, space group P6 3mc (No. 186) within the error
bar of the calculations. While DFT is a zero-temperature
method, the eDMFT is a finite-temperature method. Thus
eDMFT calculations were performed in the wide tempera-
ture range, and the reported results in this paper correspond
to the high-temperature paramagnetic state (Ttheory = 500 K).
In Table I we report the experimental internal parameters
and the corresponding theoretical parameters obtained from
structural relaxations using the DFT (T = 0 K) and eDMFT
(T = 500 K).

From the results presented in Table I, we see that the
agreement between the experimental fractional coordinates
and those obtained from the eDMFT theoretical relaxations
is much better than the agreement between the experimen-
tal fractional coordinates and those obtained from the DFT
theoretical relaxations. The eDMFT method gives smaller de-
viations (beyond the third digit with respect to the experiment)
while the DFT method gives larger deviations (beyond the
second digit with respect to the experiment).

Converting these discrepancies of internal structural pa-
rameters to displacements in Å along the three crystal-
lographic directions, we find a maximum discrepancy for
eDMFT (DFT) to be |0.06| (|0.27|) for Mn2Mo3O8 and |0.06|
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TABLE I. Internal structural parameters obtained experimentally at room temperature and by using various relaxations methods for
Mn2Mo3O8 (a) and Fe2Mo3O8 (b). During the structural relaxations, the lattice parameters were kept fixed to those reported in the table.

Experiment eDMFT DFT

X Y Z X Y Z X Y Z

(a) Mn2Mo3O8 P63mc No. 186, a = b = 5.79750 Å, c = 10.27070 Å, α = β = 90◦, γ = 120◦

Mn1 1/ 3 2/ 3 0.0659 1/ 3 2/ 3 0.0651 1/ 3 2/ 3 0.0642
Mn2 1/ 3 2/3 0.6277 1/ 3 2/ 3 0.6220 1/ 3 2/ 3 0.6405
Mo 0.1459 0.8541 0.3647 0.1455 0.8544 0.3614 0.1467 0.8532 0.3646
O1 0 0 0.0000 0 0 0.0000 0 0 0.0000
O2 1/ 3 2/ 3 0.2649 1/ 3 2/ 3 0.2619 1/ 3 2/ 3 0.2536
O3 0.4878 0.5122 0.4719 0.4875 0.5125 0.4708 0.4901 0.5099 0.4978
O4 0.8356 0.1644 0.2492 0.8358 0.1641 0.2458 0.8212 0.1786 0.2521

(b) Fe2Mo3O8 P63mc No. 186, a = b = 5.77530 Å, c = 10.05880 Å, α = β = 90◦, γ = 120◦

Fe1 1/ 3 2/ 3 0.0623 1/ 3 2/ 3 0.0625 1/ 3 2/ 3 0.0611
Fe2 1/ 3 2/ 3 0.6226 1/ 3 2/ 3 0.6233 1/ 3 2/ 3 0.6314
Mo 0.1460 0.8539 0.3603 0.1457 0.8543 0.3616 0.1474 0.8526 0.3617
O1 0 0 0.0000 0 0 0.0000 0 0 0.0000
O2 1/ 3 2/ 3 0.2584 1/ 3 2/ 3 0.2600 1/ 3 2/ 3 0.2552
O3 0.4869 0.5130 0.4722 0.4871 0.5190 0.4743 0.4881 0.5119 0.4931
O4 0.8337 0.1662 0.2463 0.8333 0.1667 0.2466 0.8228 0.1772 0.2483

(|0.21|) for Fe 2Mo3O8. We also compute the percentage dif-
ference between the experimental and theoretically obtained

values in the form % err = 1
N

|Qtheory− Qexpt|·100

Qexpt
, where Q is

any of the x, y, or z fractional coordinates and the sum is
taken over all N internal atomic coordinates that are allowed
to displace during the structural relaxations. The computed
percentage error %err is 0.53% (2.3%) for Mn2Mo3O8 versus
0.32% (1.64%) for Fe2Mo3O8 in eDMFT (DFT), correspond-
ingly. The obtained values of discrepancies and percentage
errors show that eDMFT gives much more accurate structural
degrees of freedom compared to non-spin-polarized DFT in
these materials.

To better understand how these discrepancies between ex-
perimental and theoretical values of the fractional coordinates
affect the properties of the local polyhedron formed between
the central transition ion and the coordinating atoms (ligands),
we have also computed a few quantities which are usually
used to describe geometrically the coordination polyhedron.
These quantities are the average bond length l av(Å), polyhe-
dral volume V (Å3), quadratic elongation λ , and bond angle
variance σ2(deg2 ). The values of these quantities can be auto-
matically computed using the VESTA software and besides
lav and V, which have their usual meaning, the other two
quantities are defined as follows: (I) quadratic elongation λ
is a dimensionless quantity and gives a quantitative measure
of the polyhedral distortion, independent of the effective size

of the polyhedron λ = 1
n

n
i= 1 ( li

l0
)
2
, where n is the coor-

dination number of the central atom, li is the distance from
the central atom to the ith coordinating atom, and l 0 is the
center-to-vertex distance of a regular polyhedron of the same
volume (a regular polyhedron has a quadratic elongation of
1, whereas distorted polyhedra have values greater than 1);
(II) bond angle variance gives a measure of the distortion of
the intrapolyhedral bond angles from the ideal polyhedron
σ2 = 1

m− 1
m
i= 1 (θi − θ0 )2, where m is the number of bond

angles [3 / 2·(number of faces in the polyhedron)], θi is the
ith bond angle, and θ0 is the ideal bond angle for a regular
polyhedron (θ0 is 90° for an octahedron and 109 ◦28 for a
tetrahedron). Bond angle variance is zero for a regular poly-
hedron and positive for a distorted polyhedron. The average
bond length, polyhedron volume, quadratic elongation, and
bond angle variance are scalar quantities, so they provide no
information about the geometry of polyhedral distortions, but
they can be used to quantitatively compare the agreement
between the experimentally determined and theoretically ob-
tained fractional coordinates.

In Figs. 3(a) and 3(b) we give the values of the above-
mentioned quantities for M2Mo3O8, computed based on
fractional coordinates obtained from the experiment, eDMFT,
and DFT relaxations. Besides, we give the percentage error
between the experimental and theoretically obtained values

in the form % err = |Qtheory− Qexpt|·100

Qexpt
, where Q can be any of

the quantities, lav, V, λ , and σ2. The computed percentage
error (% err) of the quantities mentioned above, is orders of
magnitude smaller for eDMFT than DFT, see Figs 3(a) and
3(b).

B. HT electronic properties: Experiment and theory

To confirm the insulating properties of the M 2Mo3O8

compounds, we have performed ellipsometric measurements
of the pseudodielectric function in the ab plane and along
the c axis, see Fig. 4. Our data show that both compounds
are insulators with tangible across-the-gap transitions start-
ing at 8700 cm − 1 (1.08 eV) for Fe 2Mo3O8 and 11 800 cm− 1

(1.46 eV) for Mn 2Mo3O8 compounds. As was discussed in
Sec. III A, the eDMFT method better reproduces the structural
properties than the DFT method does. Now we will present
the electronic properties obtained by these two methods. Fig-
ures 3(c)–3(d) and Figs. 3(e) and 3(f) show the total density
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FIG. 3. Structural and electronic properties of M2Mo3O8. (a) and (b) The comparison between the experiment and theoretical methods for
various quantities defined in Sec. III for the transition-metal polyhedron (MO6 and MO4); %err represents the percentage error (bold numbers)
between the experiment and theory. (c) and (d) The total density of states obtained by using the DFT method for the experimental structures
(black) and for those obtained by using structural relaxations of internal parameters in DFT (green). (e) and (f) The total density of states
obtained by using the eDMFT method for the experimental structures (black) and for those obtained by using structural relaxations of internal
parameters in eDMFT (red). (h) and (i) Spectral functions. (g) and (j) Repetition of (e) and (f).

of states obtained by the DFT and the eDMFT methods,
respectively. As expected, DFT gives a metallic state, but
eDMFT gives an insulating state with gap values ∼ 1.2 eV
for Fe2Mo3O8 and ∼ 1.4 eV from Mn2Mo3O8 [see Figs. 3(h)–
3(i)], which are close to the experimental values of 1.08 and
1.46 eV, respectively. If we also compute the total density of
states for the relaxed crystal structures within the DFT and
eDMFT methods and compare it to the density of states ob-
tained using the experimental structure, we see that within the
DFT method the two electronic structures are different but for
the eDMFT method we get very similar total density of states
for both compounds. The details of the electronic structures
obtained by the eDMFT will be published elsewhere.

C. LT vs HT structural properties: Infrared phonon spectra

Figure 5 shows far-infrared reflectivity spectra domi-
nated by the phonon modes for Fe 2Mo3O8 and Mn 2Mo3O8

compounds measured for two polarizations of the incident
light e||c and e ⊥ c at 85 and 5 K, i.e., above and below

magnetic ordering temperatures in these compounds. To de-
termine parameters of the phonon modes, reflectivity spectra
were fitted using parametrization of the dielectric function
with Drude-Lorentz oscillators [42] and the Kramers-Kronig
transformation as implemented in the REFFIT code [43]. In
this framework the dielectric function is parametrized as
follows:

εab = ε ∞, ab +
n

i= 1

ωi,ab
2Si,ab

ωi,ab
2 − ω2 − iγi,abω

,

εc = ε ∞, c +
m

j= 1

ωj,c
2S j,c

ωj,c
2 − ω2 − iγ j,cω

,

where ωi( j ),ab(c) , Si( j ),ab(c) , and γi( j ),ab(c) are transverse opti-
cal (TO) frequency, oscillator strength, and inhomogeneous
broadening of the ith ( jth) phonon mode polarized along the
ab plane (c axis), and ε∞, ab(c) is the value of the dielectric
function along the ab plane (c axis) at frequencies higher than
that of the highest-energy phonon mode. The extracted fre-
quencies of the phonon modes are listed in Table II. Above the
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FIG. 4. Spectra of real and imaginary parts of pseudodielectric
function of (a) and (b) Fe2Mo3O8 and (c) and (d) Mn2Mo3O8 in the
ab plane (blue curve) and along the c axis (olive curve) in the region
of electronic d − d transitions in Fe2+ and Mo4+ ions at T = 300 K.

magnetic ordering temperature, there are a total of 19 (22) IR
active phonon modes observed for Fe 2Mo3O8 (Mn2Mo3O8)
compound, 10 (9) being polarized along the c axis and 9 (13)
in the ab plane (see Table II and spectra in Fig. 5 for T =
85 K). Below the magnetic ordering temperature, the num-
ber of observed phonon modes does not change for the Mn
compound, while three new peaks at 270, 429, and 470 cm− 1

arise in e ⊥ c spectra for the Fe compound (see spectra in
Fig. 5 for T = 5 K). The inset in Fig. 5(a) shows the tem-
perature dependence of new peaks at 429 and 470 cm − 1 in
more detail. These peaks appear and reach nearly full intensity
as the temperature lowers from 70 to 50 K, and thus their
appearance is associated with the onset of phase transition
at TN = 60 K rather than with a continuous narrowing of the
peaks’ width due to a gradual temperature decrease from
300 to 5 K.

D. LT vs HT structural properties: Raman phonon spectra

Spectra of the optical phonons in the same Fe 2Mo3O8

and Mn 2Mo3O8 crystals have been also studied using Ra-
man scattering. Several backscattering configurations were
utilized: x(z , z) x̄, x(z , y) x̄, z(x , y)z̄, and z(x , x) z̄, where x ||a,
z||c, y⊥ (x, z), the first and the last symbols in Raman nota-
tions correspond to the k-vector direction for the incident and
scattered light, whereas symbols in brackets correspond to
the polarization direction of the incident and scattered light.
In these geometries the following mode symmetries should
become accessible [44] in the P6 3mc crystal structure of
M2Mo3O8 crystals: A 1, E1, E2, and A1 + E2 (see Table IV),
as the in-plane x and y axes could not be distinguished for
a hexagonal crystal. As shown in Fig. 6, the experimental
Raman spectra are highly polarized, which allowed us to
identify positions of the A1, E1, and E2 phonon modes. There
are a total of 31 (34) Raman active modes observed for
Fe2Mo3O8 (Mn2Mo3O8) at 85 K, among which are 9(10)
A1 modes, 11(12) E 1 modes, and 11(12) E 2 modes. As the
temperature is lowered and the Fe compound undergoes the
magnetic ordering, several new lines appear (see Fig. 7).
In particular, two new A 1 modes at 232 and 852 cm − 1, one
new E 1 mode at 748 cm− 1, and five new E 2 modes at 127,
158, 193, 224, and 253 cm − 1 are observed in the spectra of
Fe2Mo3O8 at 5 K. Both new A 1 modes at 232 and 852 cm − 1

are observed in the IR spectra at 85 K, so they are likely
high-temperature modes that are just too weak in the Raman
spectra at 85 K to be resolved. We shall examine whether new
modes correspond to phonons or electronic d − d transitions
in Fe 2+ ions, as the latter are expected to overlap with the
phonon spectra in the Fe2Mo3O8 compound [45]. The number
of modes observed for the Mn compound does not change
between 5 and 300 K, i.e., above and below TC (Mn) = 41 K.
The positions and symmetries of the identified Raman active
modes for Fe2Mo3O8 and Mn2Mo3O8 at both 85 and 5 K are
summarized in Table II. As expected for the polar structure of
the studied compounds, there is a good agreement between
positions of IR- and Raman-active modes barring several
modes of the E 1 symmetry in the Fe 2Mo3O8 compound. In
the frequency range of 860 − 1300 cm− 1, we observe weak
overtones for the optical phonons positioned at 1214 cm− 1 for
Fe2Mo3O8 and at 1103, 1200, and 1220 cm− 1 for Mn2Mo3O8,
which correspond to two-phonon Raman scattering.

E. HT: First principle phonon calculations

We have shown so far that the eDMFT method is in a better
agreement with the experimental data when it comes to the
fractional atomic coordinates. Also, eDMFT can capture the
insulating state of these materials while DFT gives a metallic
state. It is well known that in many cases even if DFT cannot
fully explain the ground state electronic properties, the com-
puted phonons are in good agreement with the experimentally
obtained phonons. In this respect, we computed the phonon
modes at the DFT level for the high-temperature P63mc struc-
ture of M2Mo3O8 (M = Fe, Mn) and the obtained values for
the mode frequencies are given in Table II side by side with
the experimental values obtained from the IR and Raman
measurements. To quantify the agreement between the calcu-
lated and measured phonon frequencies, we are computing the
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FIG. 5. Reflectivity spectra of (a) and (b) Fe2Mo3O8 and (c) and (d) Mn2Mo3O8 in (a) and (c) e⊥ c and (b) and (d) e||c polarizations at 85
(red line) and 5 K (blue line). Three new lines that appear in the e ⊥ c spectra of Fe 2Mo3O8 below the magnetic ordering temperature of Fe
spins TN (Fe) = 60 K are shown with arrows in (a). The inset in (a) shows the temperature evolution of the new modes at 429 and 470 cm− 1,
which appear below TN (Fe) = 60 K.

percentage error % err = 1
N

N
i= 1

|ωi
expt−ω i

theory|
ωi

expt
· 100, which ex-

presses as a percentage the difference between the computed
and measured values of the phonon frequencies (N is the total
number of measured phonon frequencies, ωi

expt and ωi
theory

are the experimental and computed phonon frequencies). A
percentage error very close to zero means that there is a
very good agreement between the theory and the experiment.
Computing the percentage error between the experimental and
calculated frequencies of the IR phonon modes, we obtained
a percentage error of 5.3% and 3.8% for the Mn and Fe
compounds, correspondingly. Another way to compare the
computed and measured phonon frequencies is by calculating

the mean value ωmean = 1
M

M
i= 1

ωi, where M runs over all
computed or measured phonon frequencies. The mean values
for the IR phonon frequencies obtained in experiment vs the-
ory are 430 vs 421 cm − 1 for the Mn compound and 444 vs
421 cm− 1 for the Fe compound. If we compute the percentage
error for the mean values, we obtain 2.1% for Mn and 5.2%
for Fe compounds. From the calculated values, we see that
the overall agreement between the theory and experiment is
within a few percent, which we might consider as a good one.

F. Temperature-dependent electronic transitions

in Fe2+ ions in Fe2Mo3O8

Figure 8 shows IR reflectivity spectra of Fe 2Mo3O8 in a
wide spectral range from 100 to 4000 cm − 1, which covers

IR active phonons located in the 100 − 800 cm− 1 region, a
broad spectral feature at ∼ 3000 cm− 1 [Fig. 8(a)], and a group

FIG. 6. Raman spectra of (a) Fe2Mo3O8 and (b) Mn2Mo3O8

measured above the magnetic ordering temperature of Fe (Mn) spins
in three complementary scattering geometries: x(z, y) x̄ (green lines),
z(x , y)z̄(red lines), and x(z , z) x̄ (blue lines), where x ||a, z||c, and
y⊥ (x, z). The phonon peaks are labeled according to their irreducible
representations of the P63mc space group.
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TABLE II. Frequencies and symmetries of the experimental IR- and Raman-active phonons at 85 and 5 K, i.e., above and below the
magnetic ordering temperature of M spins, as well as calculated (Calc.) phonons in M2Mo3O8 (M = Fe, Mn). All phonon frequencies are in
cm− 1. ε∞, ab(c) is the value of the dielectric function along the ab plane (c axis) at frequencies higher than that of the highest-energy phonon
mode and is listed at the bottom. Modes which appear in the spectra only below the magnetic ordering temperature of M spins are marked with
LT. Modes with energies which are close to calculated electronic energy levels of Fe2+ ions and which may be related to electronic transitions
rather than phonons are marked with CF.

A1 E1 E2

IR Raman Calc. IR Raman Calc. Raman Calc.

M 85 K 5 K 85 K 5 K 300 K 85 K 5 K 85 K 5 K 300 K 85 K 5 K 300 K

Fea 1 230 230 232 232 139 129 127LT

2 270 269 260 263 267 169 179 158LT

3 371 370 368 369 362 191 194 176 180 147
4 447 447 445 446 446 218 214 216 213 211 193LT

5 454 453 453 453 514 242 242 264 211 205 204
6 556 556 553 553 620 270LT,CF 264 253 268 224LT,CF

7 646 646 643 644 291 292 281 240 253LT,CF 240
8 668 668 336 336 327 333 338 267 268 278
9 725 725 724 724 728 429LT 328 328

10 770 770 769 771 792 452 452 451 454 451 333 334 367
11 853 853 852 838 470LT,CF 448 448 433
12 473 472 481 487 470 466 469 464

13 514 515 504 500 506 513 513 508
549

14 569 558 565 575 559 555 555 548
588 560
660 572

665
15 748LT,CF 737 746 802

743 750 769 769 803

Mnb 1 204 204 240 161 161 159 159 140 140 141
2 261 262 252 252 296 188 188 187 186 184 183 214
3 371 370 369 369 344 221 221 219 219 210 214 214 230

366
4 442 442 274 274 272 272 248 265 265 264

271
5 456 456 454 454 454 307 308 306 307 301 323 324 308
6 546 547 544 544 504 340 341 339 339 397 343 343 379
7 639 640 637 637 560 443 443 442 442 410 442 442 423

430
8 668 668 460 460 459 459 434 461 461 467
9 717 718 717 717 727 475 476 475 475 470 474 474 485

10 780 781 781 781 759 490 490 483 514 514 518
11 844 842 841 841 514 513 513 513 523 555 555 543
12 562 561 560 560 539 733 733 694
13 729 729 690
14 781 781

aFe: ε∝, ab = 4.7, ε∝, c = 5.0.
bMn: ε∝, ab = 6.1, ε∝, c = 4.0.

of weak narrow lines in the 3400 − 3500 cm− 1 region. As
temperature increases from 5 to 85 K, most of the narrow
lines in 3400− 3500 cm− 1 region vanish, while the strong and
broad feature at ∼ 3000 cm− 1 redshifts by several hundred
wave numbers.

Figures 9(a)–9(d) show in more detail temperature de-
pendence of spectral lines in the 2150 − 3600 cm− 1 range
measured for Fe 2Mo3O8 (two different samples referred to

as sample 1 and sample 2 in the text below), FeZnMo3O8

and Mn 2Mo3O8 single crystals. In this spectral range, the
most prominent feature is the broad line at ∼ 3000 cm− 1

observed in Fe 2Mo3O8 sample 1 [see Fig. 9(a)]. As temper-
ature increases, the line redshifts by ∼ 400 cm− 1 [see inset in
Fig. 9(a)] and gradually decreases in intensity but does not
vanish up to room temperature. To explore the behavior of
the line in more detail, we measured the same spectra from a
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FIG. 7. Raman spectra of phonon modes in (a)–(c) Fe2Mo3O8 and (d)–(f) Mn2Mo3O8 measured in (a) and (d) x(z, z) x̄, (b) and (e) x(z, y) x̄,
and (c) and (f) z(x, y)z̄ configurations at 85 and 5 K, i.e., above and below the magnetic ordering temperature of Fe (Mn) spins. In the Raman
notations the following Cartesian coordinate system is used: x||a, z||c, and y⊥ (x, z). New lines which appear in the spectra of Fe2Mo3O8 below
the magnetic ordering temperature TN (Fe) = 60 K are marked with arrows in (a)–(c). The inset in (c) shows the temperature evolution of the
new mode at 127 cm− 1, which appears below TN (Fe) = 60 K.

different (presumably better quality) Fe2Mo3O8 single crystal
[sample 2; see Fig. 9(b)]. Interestingly, the line is absent in the
spectra of Fe 2Mo3O8 sample 2. It is also absent in the spec-
tra of Mn 2Mo3O8 single crystal [see Fig. 9(d)] but present,
although to a lesser degree, in the spectra of FeZnMo3O8

sample [see Fig. 9(c)]. The inconsistency in observation of
this line in the spectra of Fe 2Mo3O8 samples suggests that it
is likely an artifact of the measurements, which may be related
to the quality of the samples.

The group of narrow lines in the 3400 − 3500 cm− 1 re-
gion was observed for both Fe 2Mo3O8 samples but absent in
the spectra of FeZnMo 3O8 and Mn2Mo3O8 samples. As was
shown in Ref. [9], Zn2+ ions prefer to substitute Fe2+ ions in
the tetrahedral (t) coordination. Previous spectroscopic study
[46] of Fe-doped ZnS, CdTe, and MgAl2O4 compounds has
shown that d − d electronic transitions in Fe 2+ (t) ions fall
into the 3000 − 4000 cm− 1 energy range. Thus, we attribute
the observed lines to the d − d electronic transitions in Fe 2+

(t) ions.

Spectra in Fig. 9 also manifest a broad spectral feature at
3250 cm− 1. It is observed in the spectra of Fe2Mo3O8 sample
2 [Fig. 9(b)] and Mn2Mo3O8 [Fig. 9(d)] compounds, and it is
also seen, although less clearly, in the spectra of Fe 2Mo3O8

sample 1 [Fig. 9(a)] and FeZnMo 3O8 [Fig. 9(c)]. Since both
Mn2Mo3O8 and Fe2Mo3O8 samples manifest this feature, we
conclude that it is not related to d− d electronic transitions in
Fe2+ ions.

Figure 10 shows the temperature dependence of IR and
Raman spectra of Fe 2+ (t) d − d electronic transitions mea-
sured in different optical configurations. The positions of
electronic transitions have been identified and summarized in
Table III for T= 5 K. With increasing temperature, intensities
of the Raman-active transitions gradually decrease until they
completely vanish above 52 K, i.e., near the magnetic ordering
temperature TN (Fe) = 60 K of Fe 2Mo3O8 [see Fig. 10(c)].
Infrared-active modes observed in Figs. 10(a) and 10(b) be-
have in a similar way: they decrease in intensity with the
temperature increase and are practically indistinguishable in
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FIG. 8. Infrared reflectivity spectra in the region of phonon
modes and electronic d − d transitions in Fe 2+ ions in tetrahedral
(t) coordination in Fe 2Mo3O8 crystal in (a) e ⊥ c and (b) e ||c polar-
izations at 85 and 5 K.

the spectra above 70 K. At the same time, as we increase
the temperature, two new infrared-active modes at 3358 and
3405 cm− 1 gradually appear to the low energy side of the in-
frared modes observed at T= 5 K (see Fig. 11). Such behavior
is typical for the transitions originating from the first excited
energy levels, which become populated with the temperature
increase. The intensity of the modes reaches a maximum at
T ∼ 40 K above which the lines broaden, and their intensity
decreases until they disappear from the spectra above 70 K.
The broad feature at 3250 cm− 1 marked with an asterisk in
Fig. 11 is the same feature as in Figs. 9(a)–9(d) and is not
related to d − d electronic transitions in Fe2+ ions.

G. Crystal-field calculations

Several new modes which appear in the far-infrared and
Raman spectra of Fe2Mo3O8 below the magnetic ordering
temperature TN = 60 K can be related to either phonons or
d − d electronic transitions in Fe 2+ ions. Crystal-field calcu-
lations can predict the energy levels of Fe 2+ ions and thus
help us to separate the electronic and vibrational contribu-
tions to the spectra. Such calculations have been reported
for Fe2Mo3O8 [45] where the parameters of the model have
been tuned to explain Mössbauer data. In the current study
we attempt to improve upon the model suggested in Ref. [45]
by fitting the model parameters to the expanded experimental
database, which includes our data on electronic transitions
in Fe 2+ (t) ions in 3400 − 3500 cm− 1 range as well as recent
suggestions [12,13] on energy level(s) of Fe2+ (o) ions in the
THz range.

We start with the description of the model. To induce a
transition between two energy levels in the solid, the energy
of the photon (h ν) should be close to the energy difference
between the levels ( E = hν). However, even if the photon

FIG. 9. Infrared reflectivity spectra of (a) Fe 2Mo3O8 sample 1,
(b) Fe2Mo3O8 sample 2, (c) FeZnMo3O8, and (d) Mn2Mo3O8 in e c
polarization at temperatures between 5 and 300 K. The inset in (a)
shows the temperature dependence of the position of the broad peak
at ∼ 2800 cm− 1; the red line is a guide for the eye.

has the proper energy, the intrinsic probabilities of transi-
tion depend on many details of the solid. The mechanism,
by which the photon causes the solid to undergo a transi-
tion between two levels, can be described in terms of the
eigenfunctions of the solid Hamiltonian. In general, the exper-
imentally observed intensity of a transition is proportional to
the square of a matrix elements |ψ f (r, R f )|M|ψ i(r, Ri )|| 2,
where |ψi(r, Ri) and |ψ f (r, R f ) are eigenfunctions of the
Hamiltonian, r are electrons coordinates, R are nuclei coor-
dinates, and M is the corresponding operator associated with
the perturbing potential of the photon which drives a transi-
tion between the initial |ψi(r, Ri ) and the final |ψ f (r, R f )
eigenfunctions [47]. The eigenfunctions |ψ(r, R) depend on
the coordinates of the electrons r and of the nucleus R in the
solid. Because the electrons move much more rapidly than
the nuclei, we can treat the nuclear and electronic motions
separately (Born-Oppenheimer approximation) and write the
eigenfunctions as a product of the electronic eigenfunction
| (r, R) (which depends on the nuclear coordinates R only
in a parametric manner) and the nuclear eigenfunction|χ (R) ,
|ψ(r, R) = | (r, R)|χ (R) . As a result, we can describe the
electronic and vibrational/rotational energy levels indepen-
dently. We note that each electronic state is determined by
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FIG. 10. (a) and (b) Reflectivity spectra of d − d crystal-field
transitions in Fe2+ ions in Fe2Mo3O8 at different temperatures in (a)
e⊥ c and (b) e ||c polarizations. (c) and (d) Raman spectra of d − d
crystal-field transitions in Fe2+ ions in (c) z(x + y)z̄ configuration at
different temperatures and (d) x(z , y) x̄ (green curve), x(z , z) x̄ (blue
curve), and z(x , y)z̄ (red curve) configurations at 5 K, where x ||a,
z||c, and y⊥ (x, z). Inset in (c) shows temperature dependence of the
intensity of 3448 cm− 1 Raman mode.

an electronic eigenfunction | (r, R0) with the correspond-
ing energy eigenvalue E e(R0), which depends on a fixed set
of nuclear coordinates R 0 as a parameter. A plot of E e(R)
gives rise to potential energy surface which is further used
in obtaining the nuclear eigenfunctions |χ (R) and hence
the vibrational/rotational energies Evib(R)/ Erot (R). In con-
clusion, we can say that each electronic state has its own
potential surface characterized by the equilibrium nuclear co-
ordinates R0, and associated with it several vibrational levels
which themselves contain many rotational sublevels. Thus,
during an electronic transition, there is also a change in both
vibrational and rotational levels [48]. If the electronic tran-
sitions are driven by an operator that depends only on the

TABLE III. Frequencies E(cm − 1) of the IR- and Raman-active
d − d electronic transitions in Fe 2+ ions in tetrahedral (t) coordina-
tion in Fe2Mo3O8 at 5 K along with optical configurations in which
they were observed. Transitions are labeled as i → j , where i and
j are ordinal indices of Fe 2+ (t) energy levels obtained from the
crystal-field calculations (see Table V).

IR Raman

Transition E(cm − 1) e⊥ c e||c x(z , z) x̄ x(z , y) x̄ z(x , y)z̄ z(x , x) z̄

3 → 16 3358 •
2 → 18 3405 •
1 → 17 3448 • • •
1 → 19 3467 • • • •
1 → 21 3481 • • • •
1 → 22 3494 • • •
1 → 24 3529 •
1 → 25 3547 •

electronic coordinates M(r ), we can write

|ψ f (r, R f )|M|ψi(r, Ri)| 2

= | f (r, R f )|M| i(r, Ri )| 2 χb Rb
f

χa Ra
i

2,

where the second term is called Franck-Condon factor and
|χa(Ra

i ) and |χb(Rb
f ) are the vibrational eigenfunctions as-

sociated with the initial | i(r, Ri ) and the final | f (r, R f )
electronic states. Qualitatively, we can understand the matrix
elements as a transition that occurs from the lowest vibrational
state |χa(Ra

i,0) of the electronic ground state | i(r, Ri,0 ) to

the vibrational state |χb(Rb
f ) of the excited electronic state

| f (r, R f ,0) that it most resembles in terms of the vibrational
eigenfunction |χa(Ra

i,0 ) [in other words, we can say that

FIG. 11. Reflectivity spectra of d − d crystal-field transitions in
Fe2+ ions in tetrahedral (t) coordination in Fe 2Mo3O8 at different
temperatures in e⊥ c polarization. Inset is a zoom of the rectangular
region showing temperature-dependent spectra of satellite lines at
3358 and 3405 cm− 1 appearing with temperature increase at the low
energy side of the Fe2+ (t) d − d transitions observed at 3467, 3481,
and 3494 cm− 1 at T = 5 K.
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the vibrational eigenfunctions |χa(Ra
i,0) and |χb(Rb

f ) , asso-
ciated with the initial | i(r, Ri,0) and final electronic states
| f (r, R f ,0) , must overlap]. Besides the electronic matrix
elements | f (r, R f )|M| i(r, Ri)| 2, an important factor in
the intensity of an electronic transition is the overlap of the
vibrational eigenfunctions, which is maximum when a vertical
transition occurs between vibrational levels of the upper and
lower electronic states at which the vibrational wave func-
tions have maximum values, which happens for|χa(Ra

i,0 ) and

|χb(Rb
i,0 ) [49]. Calculating matrix elements associated with

an electronic transition is a complex task, but finding out if
they have a finite value is an easier task, and can be achieved
using the group theory. For any atom, molecule, or solid
with a given symmetry group, an important property of the
Hamiltonian is that it must not change if any symmetry trans-
formation from the symmetry group is applied onto it. Due to
this property, the eigenfunctions | (r, R) of the Hamiltonian
transform the same way as the irreducible representations

of the symmetry group, thus the irreducible representa-
tions are used as labels for the eigenfunctions | (r, R), .
If the initial | i(r, Ri ) and the final | f (r, R f ) eigenfunc-
tions and the transition operator M transform as i, f , and

M then | f (r, R f )|M| i(r, Ri )| 2 = 0 (the electronic tran-
sition is allowed) only if the direct product f

∗ ⊗ M ⊗ i

contains the totally symmetric representation 1, otherwise
| f (r, R f )|M| i(r, Ri )| 2 = 0 (the electronic transition is
forbidden), where the * symbol stands for a complex conju-
gate operation in the case where the irreducible representation
has complex characters. For the case of infrared and Raman
spectra, the transition operators M are the dipole moment d (a
vector operator) and the polarizability α (a tensor operator),
respectively [48]. The dipole moment operator has compo-
nents dx , dy, and dz, whose symmetry properties are the same
as those of x, y, and z functions listed in the character table of
the symmetry group. The polarizability operator is symmetric
tensor having six independent components,αi j (i, j = x, y, z)
whose symmetry properties are the same as those of quadratic
functions constructed by binary products of x, y, and z (i.e., x2,
y2, z2, xy, yz, and xz) or combinations of binary products (i.e.,
x2 − y2, etc). For an infrared transition to be allowed, only one
of the three components d x , dy, and dz has to give a nonzero
matrix element, whereas for a Raman transition—only one
of the six components αi j has to give a nonzero matrix
element.

To find out the eigenfunctions of the d electrons for the
Fe2+ ions inside Fe 2Mo3O6, one must write down (I) the
perturbation Hamiltonian which acts on the d electrons of
the Fe 2+ ions when the ions are placed inside a solid such
as Fe 2Mo3O8 and (II) the electronic eigenfunctions of the d
electrons for the free Fe 2+ ions on which the perturbation
Hamiltonian acts.

(I) The perturbation Hamiltonian is based on the crystal-
field theory, as developed in Ref. [45], and has the following
form:

H = HCF + HSO + HSS + Hmol,

where HCF is the crystal field, HSO is the spin-orbit, HSS is the
spin-spin [50,51], and Hmol is the molecular field Hamiltonian

operators with the following forms:

HCF = B0
2O0

2 + B0
4O0

4 + B3
4O3

4
,

HSO = λ LS,

HSS = −ρ (LS)2 + 1
2
LS − 1

3
L(L + 1)S(S + 1) ,

Hmol = gHmμ BS,

where L = i li and S = i si are the total orbital and spin
operators, li and s i are the orbital and spin operators of indi-
vidual electrons, and O0

2(L), O0
4(L), and O3

4(L) are Stevens
operators [37,38]. The other parameters in these equations,
such as B 0

2, B0
4, B3

4, λ, ρ, and Hm, are the model parameters
which are usually determined by fitting the experimental ener-
gies obtained from infrared or Raman spectra; B0

2, B0
4 , and B3

4
are the crystal-field parameters, λ is the spin-orbit coupling,
ρ is the spin-spin interaction, Hm is the molecular field acting
on the total spin of the atom as a consequence of the magnetic
order, g is the gyromagnetic factor of the electron, and μ B is
the Bohr magneton.

(II) Applying the Hund’s rules to the free Fe 2+ ion (with
the 3d 6 electronic configuration in the last shell), we ob-
tain the ground state, which minimizes the electron-electron
interactions constrained by the Pauli principle. This ground
state of the free Fe 2+ ion has total orbital and spin quantum
numbers, L = 2 and S = 2, which correspond to a 5D term
consisting of (2L + 1)(2S + 1) = 25 degenerate states. The
25-fold degeneracy is lifted when the free ion is placed inside
a solid. For example, the (2L + 1) = 5 orbital degeneracy
is lifted by the crystal-field (electric) potential of the local
environment. The crystal-field potential of an ideal O 4 tetra-
hedron with Fe2+ ion in the center lifts the orbital degeneracy
of the 5D multiplet and splits the orbital energy levels in a
triplet (5T2) and a doublet (5E ), in order of increasing energy
[52,53], see Fig. 12(a) (the crystal-field states are labeled by
the irreducible representations of the local point group with
the Fe2+ ion placed at the origin). The order of these energy
states is reversed when the Fe 2+ ion is placed at the center
of an ideal O6 octahedron, see Fig. 12(b) [54]. In Fe2Mo3O8,
the crystal field of the distorted O 4 (O6) tetrahedra (octahe-
dra) partially lifts the orbital degeneracy and splits the orbital
energy levels into two orbital doublets and one singlet. Spin-
orbit coupling and spin-spin perturbation further split (and
mix) the 25 degenerate states of the 5D multiplet into a set of
doublets and singlets, as shown in Figs. 12(a) and 12(b). In the
magnetically-ordered phase, each ion feels a molecular field,
which completely lifts the degeneracy of all 25 states of the
5D multiplet. The cubic symmetry of the O4 (O6) tetrahedron
(octahedron) is strongly distorted in Fe 2Mo3O8, giving rise
to the trigonal local symmetry (C3v point group). Because of
this local symmetry, only three terms (O 0

2, O0
4, O3

4) of the
crystal-field operator are allowed (the crystal field expansion
is written in the basis of angular momentum operators as
described below).

To describe the magnetic ground state of the Fe 2+ ions
inside a solid, one needs to solve Schrödinger’s equation
H = E in order to get the energies (E) and the eigenfunc-
tions ( ) of both ground and excited states. Considering the
commutation relations between H, L, and S, the eigenfunc-
tions of the operator H can be written as linear combinations
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FIG. 12. Energy diagram of the splitting of the ground 5D term of the Fe 2+ (3d6) free ion by the (a) tetrahedral and (b) octahedral
crystal fields combined with spin-orbit and spin-spin interactions as well as the molecular field due to the magnetic ordering Fe spins below
TN (Fe) = 60 K in Fe2Mo3O8. Green lines in (a) correspond to observed infrared and Raman modes in 3400− 3500 cm− 1 range. Blue lines in
(a) correspond to observed infrared modes attributed to electronic transitions from the first two excited levels of Fe 2+ (t) ions. Cyan lines in
(a) correspond to new modes, which appear in the far-infrared and Raman spectra at T < TN and can be tentatively attributed to electronic
transitions in Fe2+ (t) ions by the crystal-field calculations. Green lines in (b) correspond to THz modes observed in Refs. [12,13] which can
be related to electronic transitions in Fe 2+ (o) ions. Blue lines in (b) correspond to new Raman modes observed at T < TN , which can be
attributed to electronic transitions in Fe2+ (o) ions by the crystal-field calculations.

of the free ion eigenfunctions |LSMLMS classified by the set
of quantum numbers L, S, ML , and MS , where ML and MS are
the quantum numbers of the projections of the L and S opera-
tors along a quantization axis. The free ion eigenfunctions can
be written as |LSMLMS  = | LML ⊗ | SMS , where ⊗ is the di-
rect product of the orbital |LML and spin |SMS states. Using
the Hamiltonian parameters given in Ref. [45], we computed
all eigenfunctions i (i ∈ [1 .. 25]). For each i state we have
identified the corresponding irreducible representation [55]
and used this symmetry information as a constraint in our fits
of the Hamiltonian parameters. By symmetry constraints dur-
ing the fitting procedure, we mean matching the experimental
lines in infrared and Raman spectra with those computed
electronic transitions, which are allowed by symmetry in the
geometry of measurements of experimental lines. We note that
due to the molecular field present in the magnetic state, the
point group symmetry is artificially lowered from C 3v to C3

(magnetic ordering along the c axis breaks the vertical mirror
plane symmetry), thus all the eigenfunctions i are labeled by
the irreducible representations i of the C3 point group. The
character tables for C 3v and C3 point groups are reproduced
in the Appendix. The energies of the electronic states of Fe2+

ions in both oxygen environments (O 4 and O6) are given in
Table V, together with their irreducible representations. So
far we know that IR lines observed in 3400–3500 cm− 1 range
at T < TN (see Fig. 10 and Table III) are due to electronic
transitions of the Fe 2+ ions inside a tetrahedral oxygen (O 4)
environment. By fitting these lines, we obtained the Hamil-
tonian parameters for the tetrahedral site: B 0

2(t ), B0
4(t ), B3

4(t ),
λ(t ), ρ(t ), and Hm(t ). The crystal-field Hamiltonian param-
eters B 0

2(o), B0
4(o), B3

4(o) for the octahedral site were fitted
against the low-energy crystal-field level(s) reported in the
literature [12,13]. When fitting the octahedral data, the spin-
orbit coupling and spin-spin interactions were kept the same
as for the tetrahedra, λ(o) = λ (t ), ρ(o) = ρ (t ). Due to the
scarce availability of the experimental data for the octahedra,
more than one solution can be found. Here we report the so-
lution which is in agreement with the magnetization data (the
difference between Fe2+ magnetic moments for the octahedra
and tetrahedra is ∼ 0.5 μ B) reported in Ref. [8].

Since we know the irreducible representations of each
eigenfunction and the irreducible representations for various
components of dipole d or polarizability α operators, we
can predict which transitions are IR or Raman active using
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TABLE IV. Wyckoff position, site symmetry, and irreducible
representations of atoms for M2Mo3O8 (M = Fe, Mn) (space group
P63mc).

Wyckoff Site
Atom notation symmetry Irreducible representations

M1 2b C3v A1 + B1 + E1 + E2

M2 2b C3v A1 + B1 + E1 + E2

Mo 6c Cs 2A1 + A2 + 2B1 + B2 + 3E1 + 3E2

O1 2a C3v A1 + B1 + E1 + E2

O2 2b C3v A1 + B1 + E1 + E2

O3 6c Cs 2A1 + A2 + 2B1 + B2 + 3E1 + 3E2

O4 6c Cs 2A1 + A2 + 2B1 + B2 + 3E1 + 3E2

Mode classification
Гacoustic = A1 + E1

ГRaman = 9A1(xx, yy, zz) + 12E1(xz, yz) + 13E2(xy, xx − yy)
ГIR = 9A1(z) + 12E1(x, y)
Гsilent = 3A2 + 10B1 + 3B2

symmetry considerations. For the C 3 point group, the com-
ponents of dipole and polarizability operators transform
according to either 1 or 2 + 3 representations (see
Table VIII in the Appendix). If the direct product of rep-
resentations corresponding to the complex conjugate final
states ( ∗

1 , ∗
2 , or ∗

3 ), the dipole/polarizability operator ( 1

or 2 + 3), and the initial state ( 1, 2 or 3) contains the
totally symmetric representation 1, the transition is allowed,
otherwise it is forbidden. For example, consider electric dipole
transitions observable in the IR spectra at 5 K. These transi-
tions originate from the ground state 3 as it is the only state
which is appreciably populated at T = 5 K = 3.5 cm− 1 (see
positions of first excited energy levels in Table V, which are
above 45 cm− 1). The z (x, y) component of the electric dipole
operator transforms as 1 ( 2 + 3). A direct product of rep-
resentations corresponding to transitions due to z component
of electric dipole operator, i.e., when an electric field of light
e is parallel to the c axis, is

excited
∗ ⊗ 1 ⊗ 3 = excited

∗ ⊗ 3, (1)

and due to x, y components of electric dipole operator, i.e.,
when e⊥ c is

excited
∗ ⊗ ( 2 + 3) ⊗ 3 = excited

∗ ⊗ 1 + excited
∗ ⊗ 2,

(2)

where excited
∗ is the complex conjugate representation of

the excited state. If excited = 1, then for e ||c geometry [see
Eq. (1)], the direct product is excited

∗ ⊗ 3 = 1 ⊗ 3 = 3,
which does not contain the totally symmetric representation

1. Thus, an electric dipole transition from the 3 ground
state to the 1 excited state is forbidden when e ||c, based on
symmetry arguments. On the other hand, for e⊥ c geometry
[Eq. (2)] the direct product is ∗

1 ⊗ 1 + ∗
1 ⊗ 2 = 1 + 2,

which contains the fully symmetric representation 1. Thus,
an electric dipole transition from the 3 ground state to the 1

excited state is allowed when e⊥ c. In a similar way, selection
rules for electric dipole transitions from any initial state to any
final state can be deduced. For the C3 point group, components
of the magnetic dipole operator transform in the same way

as components of electric dipole operator, thus if a transition
is electric dipole active for e ||c (e ⊥ c), then it is also mag-
netic dipole active for h ||c (h ⊥ c). To derive selection rules
for Raman spectra, we need to consider transformations of
polarizability tensorα. For example, the direct product of rep-
resentations corresponding to the Raman transition between
the ground state 3 and excited state 3 activated due to αzz

component of polarizability tensor, which transforms as the

1 irreducible representation, is ∗
3 ⊗ 1 ⊗ 3 = ∗

3 ⊗ 3 =
2 ⊗ 3 = 1. Since the direct product contains 1 represen-

tation, the 3 → 3 transition is allowed in Raman spectra
due to αzz component, i.e., in a geometry when electric fields
of incident and scattered light are parallel to the c axis. Selec-
tion rules for IR and Raman transitions in various geometries
for the C 3 point group are summarized in Table IX in the
Appendix.

IV. DISCUSSION

A. HT symmetry: Analysis of phonon modes

The combined measurements of single-crystal x-ray
diffraction at room temperature and the phonon measurements
provide important information about the complex crystal
structure of M 2Mo3O8 (M = Fe, Mn). Our single-crystal x-
ray diffraction measurements showed that the crystal structure
of these materials at room temperature (also termed as high
temperature through this paper) is described by the P6 3mc
space group, agreeing with the previously reported data in the
literature [6–8].

Using the P6 3mc space group, we have carried out the
group-theoretical analysis which predicts 21 IR active phonon
modes, 9A1 + 12E1, where A 1 modes are polarized along
the c axis (e ||c) and E 1 modes—perpendicular to the c axis
(e⊥ c), as shown in Table IV. Our IR data measured at
85 K, i.e., above magnetic ordering temperatures in M2Mo3O8

(M = Fe, Mn), reveals 10(9) A1 and 9(13) E1 modes for
Fe2Mo3O8 (Mn2Mo3O8), which is in accord with the group
theory prediction, thus confirming once again the noncen-
trosymmetric space group P6 3mc of these materials at high
temperatures. Similarly, the group theory predicts 34 Raman
active phonon modes, 9A1 + 12E1 + 13E2, and Raman mea-
surements performed at 85 K reveal 9(10) A1, 11(12) E1,
and 11(12) E 2 modes for Fe 2Mo3O8 (Mn2Mo3O8) in good
agreement with the prediction for the space group P6 3mc.
The group-theoretical analysis gives the number of modes
and their types, but does not provide information about their
frequencies. To better understand our data, we performed DFT
calculations of phonon modes. The computed frequencies are
shown in Table II, along with the experimental frequencies.
The crystal structure of M 2Mo3O8 crystals possessing Fe 2+

ions in both tetrahedral and octahedral coordination and Mo2+

trimmers is rather complex, and so are the underlying atomic
motions corresponding to phonon modes. To have a better
insight into the latter, in Fig. 13 we show, as an example,
the atomic displacements corresponding to two A 1 modes
observed in the spectra of Fe 2Mo3O8. The highest frequency
A1 mode at 852 cm− 1 involves simultaneous deformations of
both Fe and Mo octahedra while the most intense Raman
A1 mode at 446 cm− 1 is solely due to the motion of MoO 6

octahedra.
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TABLE V. Crystal-field energies E(cm − 1) and irreducible representations i (i = 1, 2, 3) of corresponding wave functions of Fe 2+ ions
in tetrahedral (t) and octahedral (o) environments of C 3 point symmetry group in Fe 2Mo3O8. In our notation, the crystal-field level with an
ordinal index n (n ∈ [1 · · ·25]) and irreducible representation i corresponds to i

n wave function. Modes which may be related to phonons
are marked with Ph. Mode of unknown origin observed in Ref. [12] at 77 cm− 1 is marked with ?.

Tetrahedral site Octahedral site

n EVarret
calc [45] i E tetra

calc i Eexpt E Varret
calc [45] i E extrap

calc i E octa
calc i Eexpt

25 4371.2 1 3544.1 1 3547 11228 2 11 340 2 9229.4 2

24 4362.1 2 3531.0 2 3529 11210 3 11 295 1 9178.6 3

23 4355.8 3 3506.4 3 11200 1 11 272 3 9161.7 1

22 4354.6 1 3495.9 1 3494 11190 1 11 261 1 9135.3 1

21 4346.2 2 3482.9 2 3481 11170 2 11 250 3 9091.2 3

20 4344.5 3 3481.3 3 11170 3 11 250 2 9091.2 2

19 4334.0 1 3465.9 1 3467 11151 3 11 238 3 9045.0 3

18 4333.8 2 3453.3 2 11141 2 11 226 1 9019.6 2

17 4332.5 3 3445.6 3 3448 11131 1 11 204 2 8997.1 1

16 4318.0 1 3415.7 1 11112 1 11 158 1 8946.3 1

15 548.1 3 681.6 3 575.8 3 698.6 3 792.2 1

14 540.8 2 652.4 2 566.3 1 694.7 1 741.5 1 748Ph

13 537.6 1 651.7 1 565.3 2 669.6 2 664.2 3

12 522.9 3 618.2 3 555.6 2 647.7 1 636.0 2

11 522.6 2 618.1 2 552.3 3 644.8 2 539.9 2

10 473.6 1 571.1 1 544.7 1 641.7 3 531.4 3

9 447.8 1 505.3 1 525.3 1 612.8 1 473.9 1 470Ph

8 242.8 3 317.2 3 316.3 3 396.9 3 302.9 3

7 230.1 2 274.9 2 270Ph 302.8 2 346.9 2 267.5 2 270Ph

6 192.4 2 238.8 2 227.6 2 287.7 2 257.6 1

5 187.4 3 226.6 1 224Ph 224.1 3 273.8 3 253.2 2 253Ph

4 184.9 1 224.3 3 182.5 1 236.5 1 243.2 3

3 20.5 1 57.3 2 58.3 1 84.5 1 77.0 1 77?[12]
2 15.4 2 48.3 1 17.2 2 62.1 2 45.0 2 45[12,13]
1 0.0 3 0.0 3 0.0 3 0.0 3 0.0 3

As has been shown in Sec. III E, using the percentage
error to quantify the agreement between the theory and the
experiment, we obtain a reasonable agreement within 6%
difference. By calculating the percentage error for the indi-
vidual IR phonon frequency (5.3% for the Mn and 3.8% for
the Fe compound) and for the mean (2.1% for the Mn and
5.2% for the Fe compound), we conclude that the agreement
is better for the Mn than for the Fe compound. Indeed, by
comparing phonon frequencies in Table II, the frequency as-
signment seems to be good across the whole spectral range

for the Mn compound, whereas the calculated low energy
phonon frequencies are shifted to higher energies compared
to the experimental data for the Fe compound. The reason
for this discrepancy could be due to the fact that the ground
state electronic structure is not properly accounted within
nonspin polarized DFT. Since eDMFT correctly describes the
insulating ground state and reproduces well the experimental
structural properties, it would be interesting to compute the
phonon modes at the eDMFT level [56].

TABLE VI. Parameters P tetra
calc and Pocta

calc (cm− 1 ) of the crystal-field model used in calculations of the electronic d − d transitions in Fe 2+

ions in tetrahedral and octahedral sites, respectively. Parameters PVarret
calc (cm− 1) are reproduced here from Ref. [45]. Parameters P extrap

calc (cm− 1 )
have been used in a preliminary model for the octahedral site and utilize values for the spin-orbit coupling λ, the spin-spin interaction ρ, and
the molecular field Hm from the model for the tetrahedral site Ptetra

calc , and the rest of the parameters from the model PVarret
calc .

Tetrahedral site Octahedral site

P PVarret
calc [45] Ptetra

calc PVarret
calc [45] Pextrap

calc Pocta
calc

Dq 400.0 302.8 –1000 –1000 –685
A2 –22.6 –33.3 –396.0 –396.0 –596.0
A4 –528.9 –399.4 –170.0 –170.0 –332.0
λ –100.0 –116.5 –100.0 –116.5 –116.5
ρ 1.0 1.1 1.0 1.1 1.1
Hm 5.0 18.2 5.0 18.2 13.6
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FIG. 13. Atomic displacements corresponding to (a) the highest-
frequency A1 mode at 852 cm− 1 and (b) the highest-intensity Raman
A1 mode at 446 cm− 1 in Fe2Mo3O8 obtained from the DFT calcula-
tions. FeO4 tetrahedra and FeO 6 octahedra are shown in green and
MoO6 octahedra are shown in gray.

B. HT electronic and structural predictions

Insulating materials with simultaneous magnetic and elec-
tric order, called multiferroic materials, usually belong to the
class of correlated materials. Modeling the magnetic and elec-
tric properties of multiferroic materials is still a challenging
problem. For example, the first step in modeling the electric
polarization in these materials requires knowledge of two ex-
perimental or two theoretical crystal structures; the first one is
the high-temperature reference crystal structure where usually
polarization is zero and the material is found in the paramag-
netic state, and the second one is the low-temperature crystal
structure of the multiferroic phase where usually the atomic
displacements (that give rise to finite polarization changes)
with respect to the reference state are induced by the long-
range magnetic order. The chances of finding theoretically the
two crystal structures, especially the high-temperature refer-
ence structure, has improved due to the recent development of
forces for correlated materials in eDMFT [33,57]. While the
low-temperature crystal structures can be obtained by spin-
polarized DFT, in many cases non-spin-polarized DFT fails
to give acceptable results for the high-temperature reference
structure, see for example, Table I and Fig. 3. When that
happens, one can find an artificial spin-polarized state, which
could sometimes give good agreement with the experimen-
tal crystal structure even though, in this case, the electronic
properties of the experimental paramagnetic state are mis-
represented by the artificial spin-polarized state in DFT [58].
The materials studied here are pyroelectrics, which means that
the structure possesses already built-in electric moment, and
any structural changes induced by temperature, pressure, and
magnetic order can induce changes in the electric polariza-
tion. Thus, attempts to obtain the high-temperature reference
crystal structure in pyroelectric materials by using an artifi-
cial spin-polarized state in DFT poses a problem since any
type of magnetic order has exchange striction, by which we
mean movements of the ligand ions in order to maximize the
magnetic energy gain. For example, for Fe2Mo3O8 it has been
shown in Ref. [8] that the obtained distortion pattern depends
on the type of the spin-polarized DFT. Thus, it is difficult to
obtain accurate fractional atomic coordinates using DFT for
the pyroelectric materials.

Here we performed structural relaxations of the fractional
atomic coordinates for fixed lattice parameters using DFT
and eDMFT at high temperatures. As discussed in Sec. III
and shown in Table I and Fig. 3, eDMFT gives much better
agreement with the experimental structural data than DFT
does. In addition to a better reproduction of structural prop-
erties, eDMFT reproduces very well the electronic properties.
For example, Figs. 3(e) and 3(f) show that the total density
of states computed for the crystal structure with the relaxed
fractional atomic coordinates is almost identical with the total
density of states computed for the experimental structure.
This is not the case for the same calculations using non-spin-
polarized DFT, see Figs. 3(c) and 3(d). Thus, based on these
calculations, we can conclude that the coupling between the
electronic and lattice degrees of freedom is captured much
better in eDMFT than in DFT.

Previously published successful results of structural
relaxation in a paramagnetic metallic state, in an insulating
ordered state [59], together with the current structural
relaxations in the paramagnetic insulating state, strengthen
further the predictive power of the eDMFT method for the
electronic and structural properties at all temperatures in
correlated materials.

C. LT structural changes

As we discussed previously, our room-temperature IR and
Raman phonon data agree well with the group theory predic-
tions based on the P63mc space group, which was determined
by the single-crystal x-ray diffraction measurements. To the
best of our knowledge, there are no reports about the sym-
metry at low temperature. From the measurements of the
electrical polarization, see Fig. 1(d), we observed an increase
in the electrical polarization concomitantly occuring with the
magnetic ordering. This increase suggests that there are struc-
tural changes at the magnetic transition in both compounds.
Since these materials are pyroelectric, which means that the
change in electrical polarization can happen without breaking
the symmetry, it is not clear whether the structural changes
at the magnetic transition are due to (I) an isostructural phase
transition (no change of symmetry away from P6 3mc) or (II)
a genuine structural phase transition (the symmetry is lowered
from P63mc).

As we have shown so far, three new IR-active modes (E 1

modes at 270, 429, and 470 cm − 1) and eight new Raman-
active modes (A 1 modes at 232 and 852 cm − 1, E1 mode at
748 cm− 1, and E2 modes at 127, 158, 193, 224, and 253 cm− 1)
appear in the spectra of Fe 2Mo3O8 below TN (Fe) = 60 K.
Both new A1 Raman modes are observed in the IR spectra at
85 K and, thus, they are likely high-temperature modes. The
other new lines could be either due to new phonons (signaling
the presence of a structural phase transition at T∼ TN ), or due
to d − d electronic transitions in Fe2+ ions.

To test the possibility of the electronic origin of the lines,
we have used a crystal-field model developed in Ref. [45],
which we further tuned to match our spectroscopic data.
Table V shows the computed energies and symmetries of Fe2+

electronic states in tetrahedral and octahedral coordinations
using several sets of Hamiltonian parameters. E Varret

calc are the
energies obtained using the Hamiltonian parameters P Varret

calc
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given in Ref. [45] and reproduced in Table VI. E tetra
calc are ob-

tained by fitting the Hamiltonian parameters Ptetra
calc to the d − d

electronic transitions in Fe2+ (t) ions in 3400–3500 cm− 1. The
calculated energies for the Fe 2+ (t) ions agree well with the
experimental values, except for the 3440 cm − 1 line, which
does not have a calculated counterpart. This line is weak and
may correspond to a hybrid excitation, such as a vibronic
mode, rather than a pure electronic transition.

The experimental data for the Fe2+ (o) electronic levels to
fit our model against is scarce. Recent THz measurements of
Fe2Mo3O8 compounds doped with Zn suggest [12,13] that
a line observed at 1 .25-1.4 THz =∼ 45 cm− 1 in compounds
with the doping levels > 0.25 can be related to electronic
transition in Fe 2+ (o) ions. Zn doping at levels > 0.25 also
leads to the appearance of another line at 2.3 THz = 77 cm− 1

[12], but its origin is not clear yet. Due to the lack of exper-
imental data, we utilized λ and ρ parameters from our fits of
tetrahedra levels and used the rest of Hamiltonian parameters
from Ref. [45]. The energy levels E extrap

calc obtained with this

set of parameters (P extrap
calc ) are shown in Table V. Two calcu-

lated energy levels at 62.1 and 84.5 cm − 1 are in reasonable
proximity to the experimental lines at 45 and 77 cm− 1, respec-
tively. According to selection rules shown in Table IX of the
Appendix, electronic transitions from the ground 3 state to
the 2 level at 62.1 cm− 1 and to the 1 level at 84.5 cm− 1

should be observed in h ⊥ c geometry, which was used for
observation of 45 and 77 cm− 1 lines [12,13]. Although further
experimental studies are needed to clarify the origin of the
77 cm− 1 line, the above arguments suggest that it could be
related to electronic transition in Fe2+ (o) ions. Assuming this
is the case, we tuned Hamiltonian parameters to achieve the
best agreement with the 45 and 77 cm − 1 lines. During the
fit, we also used an additional constraint that the calculated
difference in magnetic moments for tetrahedral and octahedral
sites should match the experimentally determined value of
∼ 0.5 μ B, as reported in Ref. [8]. The obtained energies E octa

calc
and symmetries i (i = 1, 2, 3) of the electronic states of Fe2+

(o) ions are given in Table V.
The Hamiltonian parameters that we obtained from our

fits are given in Table VI. To be consistent with the litera-
ture, instead of giving the crystal-field parameters B’s, we are
giving a different set of parameters (A2, A4, Dq) which are re-
lated to the B’s by the formulas [45]: B0

2 = A2

3
, B0

4 = A4

12
+ Dq

18
,

B3
4 = − 20Dq

9
√

2
. For cubic crystal fields without tetrahedral distor-

tion, only two parameters are needed: H̃CF = B̃0
4O0

4 + B̃3
4O3

4,

where B̃3
4 = B3

4 and B̃0
4 = −

√
2

40
B3

4. We note that the spin-spin
Hamiltonian that we used in our modeling [50,60] is different
by a sign from the one used in Ref. [45]. Also, the value
we obtained for the spin-spin parameter ρ is similar to other
reported values for Fe2+ ions [59–63].

Comparison of new IR- and Raman-active modes, which
appear in the spectra of Fe 2Mo3O8 below TN (Fe) = 60 K,
with the calculated energy levels E tetra

calc for tetrahedral and
E octa

calc for octahedral Fe2+ ions shows that out of nine new
modes only five modes, namely two E 2 modes at 224 and
253 cm− 1 and three E 1 modes at 270, 470, and 748 cm− 1,
can match the calculated electronic transitions based on both
energy proximity and compliance with the selection rules
from Table IX of the Appendix. The other four modes, namely

FIG. 14. Group-subgroup diagram. Possible subgroups of the
high-temperature parent space group P63mc (No. 186) generated by
the SUBGROUPGRAPH software for two formula units per unit cell.

E2 modes at 127, 158, and 193 cm− 1 as well as E 1 mode at
429 cm− 1, are not in the vicinity of any of the calculated
energy levels. Besides the obtained set of parameters, which
gives the best fit between experiment and theory, we also
looked for other solutions that could give a similar agreement.
In order to do this, we included each of the four new modes,
which cannot be explained as electronic transitions, one by
one into the experimental database against which we fit our
model, and we were not able to obtain an equally good fit.

Thus, according to our calculations, at least four of the
new modes which appear in the spectra of Fe 2Mo3O8 below
TN (Fe) = 60 K cannot be explained by electronic transitions
and should be related to new phonon modes. This indicates
the occurrence of structural phase transition concurrent with
the magnetic ordering in Fe2Mo3O8 compound, which agrees
with the conclusion made in Ref. [8]. No spectral changes
have been detected for the Mn 2Mo3O8 compound down to
5 K, suggesting that there is no symmetry change at the mag-
netic ordering. The existence of the structural phase transition
in the Fe compound could be related to the more complex
ground state compared to the one in the Mn compound, or
to the presence of spin-orbit coupling, which is manifested by
the strong Ising-like anisotropy on the magnetic susceptibility
data [15].

D. LT symmetry: Possible space groups

As previously shown, our data for Fe2Mo3O8 is consistent
with a structural transition below TN . To find out the possible
space groups that can describe the crystal symmetry below TN ,
we are using the group-subgroup relations. To generate all the
possible subgroups for the paramagnetic space group P6 3mc
we used the software SUBGROUPGRAPH [64]. Since powder
diffraction could not detect any supercell peaks below TN [65],
we generated our group-subgroup diagram with the constraint
that the number of formula units per primitive unit cell does
not change across the transition. The group-subgroup diagram
generated by the software SUBGROUPGRAPH is shown in Fig.
14. As we can see from this diagram, the low symmetry of
the crystal could be described by one of the nine possible
subgroups.

115139-18



SPECTROSCOPIC AND FIRST PRINCIPLE DFT+ EDMFT … PHYSICAL REVIEW B 102, 115139 (2020)

To limit the number of possibilities for the low-temperature
symmetry we turn our attention to the analysis of the IR and
Raman modes, in particular to the Raman tensors generated
with the software SAM [66] and to the configurations
of the backscattering geometry used to probe the Raman
spectra. Above TN the crystal symmetry is described
by the space group P6 3mc (No. 186) which has 21 IR
active modes (9A1 + 12E1) and 34 Raman active modes
(9A1 + 12E1 + 13E2 ). We note that A1 and E 1 are both
Raman and IR active, whereas E 2 modes are only Raman
active. This is consistent with our Raman and IR data
measured at 85 K, see Table II and Figs. 5(a), 5(b), 6(a),
and 7(a)–7(c). Below T N , our data shows the same trend.
The modes observed in the z(x , y)z̄ Raman spectra at
T < TN , which correspond to E 2 modes at T > TN , do
not appear in the IR spectra measured for e||c and e ⊥ c
configurations at T < TN , see Table II and Figs. 5(a), 5(b),
and 7(a)–7(c). This implies that the low-temperature space
group should have Raman modes that are not IR active. Out
of the nine subgroups shown in Fig. 14, only two subgroups
satisfy this condition, namely space group P6 3 (No. 173)
and Cmc2 1 (No. 36). Space group P6 3 (No. 173) has 36
IR active modes (12A + 121E1 + 122E1) and 62 Raman
active modes (12A + 132E2 + 121E1 + 131E2 + 122E1),
while space group Cmc2 1 (No. 36) has 71 IR active
modes (25A 1 + 21B1 + 25B2) and 93 Raman active modes
(25A1 + 22A2 + 21B1 + 25B2 ). Out of the two groups, the
P63 group is the most parsimonious one which can explain
our IR and Raman data below T N . Besides, no supercell
peaks were observed in powder diffraction measurements
[65] which would otherwise be expected in the case of the
Cmc21 group. Lowering the symmetry from P63mc (No. 186)
to P63 (No. 173) removes the degeneracy of E1 and E2 modes
by splitting them into 1E1 and 2E1, and 1E2 and 2E2 modes,
respectively. This is consistent with our data, see Fig. 7(c),
where the number of E 2 modes observed in z(x , y)z̄ Raman
spectra below 300 cm− 1 nearly doubled across the transition.
Besides, the P63 (No. 173) space group is consistent with the
“apparent” C3 point group symmetry used in modeling the
high energy crystal-field levels for the Fe2+ sites.

In conclusion, we suggest that the best candidate for the
low-temperature crystal structure could be described by the
P63 (No. 173) space group. Further measurements, such as
single-crystal neutron scattering, are necessary to validate our
prediction.

V. CONCLUSIONS

Optical properties and lattice dynamics of hexagonal
M2Mo3O8 (M = Fe, Mn) single crystals have been studied
experimentally in a wide temperature range by means of in-
frared reflectivity and Raman scattering. At 85 K, i.e., above
the magnetic ordering temperature for both compounds, the
far-IR spectra of Fe (Mn) compound reveal 19 (22) IR-active
phonons, 10 (9) of them are polarized along the c axis,
and 9 (13) are polarized within the ab plane. Raman mea-
surements revealed 9(10), 11(12), and 11(12) Raman-active
phonons in x(z , z) x̄, x(z , y) x̄, and z(x , y)z̄ configurations cor-
respondingly for Fe2Mo3O8 (Mn2Mo3O8) compound. Group

theoretical mode analysis and a complimentary density func-
tional theory lattice dynamics calculations are consistent with
the M 2Mo3O8 structure belonging to the high-temperature
P63mc space group determined from single-crystal x-ray scat-
tering. All observed vibrational modes are assigned to the
specific eigenmodes of the lattice. Electronic and structural
properties are well reproduced within the eDMFT method
for the paramagnetic insulator. These results, combined with
previously published results for other electronic states (such
as paramagnetic metal and magnetic insulator), prove the pre-
dictive power of the eDMFT method in correlated materials,
at finite temperatures, over a large electronic, magnetic, and
structural phase space.

At temperatures below T N (Fe) = 60 K, several additional
IR- and Raman-active modes are detected in the experi-
mental spectra of the Fe 2Mo3O8 compound. Crystal-field
calculations show that at least four of the new modes cannot
be explained by d − d electronic transitions in Fe 2+ ions
and should correspond to new phonon modes. This obser-
vation confirms the occurrence of a structural transition in
Fe2Mo3O8 crystal concurrently with the magnetic ordering
of Fe spins. The analysis of our spectroscopic data combined
with group-subgroup theory suggests that the best candidate
for the low-temperature crystal structure is P6 3 (No. 173)
space group. On the other hand, no spectral changes have been
detected for Mn2Mo3O8 compound down to 5 K, whereas the
changes in polarization P(T ) are similar for both Mn and Fe
compounds as they cross the magnetic phase transition. This
suggests that the magnetic ordering occurs simultaneously
with the isostructural phase transition in the Mn compound.
We have also found eight narrow modes in the IR and Raman
spectra in 3400− 3500 cm− 1 range in Fe2Mo3O8 compound at
T = 5 K, which we attribute to the d− d electronic transitions
in Fe2+ ions in tetrahedral coordination.

Note added. Recently, we became aware of the article by
S. Reschke et al. [67] reporting analysis of crystal structure
and phonon modes in Fe 2Mo3O8. The infrared and room-
temperature x-ray diffraction data in Ref. [67] is reproducing
our corresponding data. In addition to infrared measurements,
we report Raman measurements, which give access to the
E2 phonon modes, thus enabling a better description of the
excitations. Based on the combined IR and Raman data as well
as crystal-field calculations, we show that there are at least
four new phonon modes, which appear below T N = 60 K,
indicating the occurrence of the structural transition at TN .
This is different from the conclusion reported in Ref. [67].
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APPENDIX

See Tables VII–XII.
TABLE VIII. Character table for 1, 2, and 3 irreducible

representations of the C 3 point group. 2 and 3 irreducible repre-
sentations are related through complex conjugation: 2

∗ = 3 and

3
∗ = 2.

Activity

C3 E C3 C2
3 IR Raman

1 1 1 1 z, Sz αxx + α yy, αzz

2 1 ωa ω2

(x, y), (Sx , Sy) (αxx − α yy, αxy), (αxz , αyz)
3 1 ω2 ω

aω = e2iπ/ 3.

TABLE IX. Selection rules for electric and magnetic dipole tran-
sitions as well as for Raman transitions in backscattering geometries
utilized in the study, namely x(z , z) x̄, x(z , y) x̄, and z(x , y)z̄, where
x||a, z||c, and y⊥ (x, z), for the C3 point group.

1 2 3

1 e||c; h||c e⊥ c; h⊥ c e⊥ c; h⊥ c
x(z , z) x̄ x(z , y) x̄; z(x , y)z̄ x(z , y) x̄; z(x , y)z̄

2 e⊥ c; h⊥ c e||c; h||c e⊥ c; h⊥ c
x(z , y) x̄; z(x , y)z̄ x(z , z) x̄ x(z , y) x̄; z(x , y)z̄

3 e⊥ c; h⊥ c e⊥ c; h⊥ c e||c; h||c
x(z , y) x̄; z(x , y)z̄ x(z , y) x̄; z(x , y)z̄ x(z , z) x̄

TABLE X. Character table for 1, 2, and 3 irreducible repre-
sentations of the C3v point group.

Activity

C3 E 2C3 3σv IR Raman

A1 1 1 1 1 z αxx + α yy, αzz

A2 2 1 1 − 1 Sz

E 3 2 − 1 0 (x, y), (Sx , Sy) (αxx − α yy, αxy), (αxz , αyz)

TABLE XI. Multiplication table for 1, 2, and 3 irreducible
representations of the C3v point group. The table is symmetric.

1 2 3

1 1 2 3

2 2 1 3

3 3 3 1 + 2 + 3

TABLE XII. Selection rules for electric and magnetic dipole
transitions as well as for Raman transitions in backscattering ge-
ometries utilized in the study, namely x(z, z) x̄, x(z , y) x̄, and z(x , y)z̄,
where x||a, z||c, and y⊥ (x, z), for the C3v point group.

1 2 3

1 e||c h||c e⊥ c; h⊥ c
x(z , z) x̄ x(z , y) x̄; z(x , y)z̄

2 h||c e||c e⊥ c; h⊥ c
x(z, z) x̄ x(z , y) x̄; z(x , y)z̄

3 e⊥ c; h⊥ c e⊥ c; h⊥ c e||c; h||c; e⊥ c; h⊥ c
x(z , y) x̄; z(x , y)z̄ x(z, y) x̄; z(x , y)z̄ x(z , z) x̄; x(z , y) x̄; z(x , y)z̄
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