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Fermionic sign structure of high-order Feynman diagrams in a many-fermion system
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The sign cancellation between scattering amplitudes makes fermions different from bosons. We systematically
investigate Feynman diagrams’ fermionic sign structure in a representative many-fermion system—a uniform
Fermi gas with Yukawa interaction. We analyze the role of the crossing symmetry and the global gauge symmetry
in the fermionic sign cancellation. The symmetry arguments are then used to identify the sign-canceled groups
of diagrams. Sign-structure analysis has two applications. Numerically, it leads to a cluster diagrammatic Monte
Carlo algorithm for fast diagram evaluations. This algorithm is about 105 times faster than the conventional
approaches in the sixth order. Analytically, our analysis systematically reveals the relevant diagrams that
dominate the dynamics.
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I. INTRODUCTION

In quantum mechanics, the amplitudes of fermion-fermion
scattering satisfy an anticommutation relation: permuting two
incoming (or outgoing) fermions flips the amplitude’s global
sign. On the one hand, the sign cancellation plays a vital role
in the collective behavior of fermions (For example, it leads to
the electron degeneracy pressure, which prevents matter from
collapsing into a single nucleus [1,2]). On the other hand, the
same sign cancellation leads to the notorious sign problem
in Monte Carlo simulations of many-fermion systems [3,4].
Indeed, a Monte Carlo estimator of physical observable is a
sum of various elementary scattering amplitudes. Even if each
amplitude is precisely calculated, the sign-canceled signal can
be easily overwhelmed by numerical noise. This paper ex-
plores the sign structure of scattering amplitudes in Feynman
diagrams to better understand the fermionic sign cancellation.

In many-body physics, Feynman diagrams describe how
excitations in the system scatter incoming particles. The dia-
gram amplitude, namely the scattering amplitude, is obtained
by summing all diagram topologies and integrating all internal
space-time variables (where the excitations get created and
annihilated). Both steps involve massive sign cancellations
so that the physical scattering amplitude is merely a small
fraction of the total diagram weights. Here we use an example
to illustrate the nontriviality of this problem. We consider a
two-dimensional homogeneous “electron gas” with Yukawa
interaction (see Sec. II for the definition of the Hamilto-
nian). We calculate four diagrams (see Fig. 1), which are the
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third-order contributions to the polarization P (namely, the
system’s linear response function with respect to a screened
external electric field perturbation). They all involve a virtual
particle-hole pair but with different topologies. As shown in
Fig. 1, their amplitudes are functions of the external imag-
inary time. Four diagrams strongly cancel each other: The
summed polarization (the thick black line) is merely 0.1%
of individual diagrams. Later we show such cancellation is
a direct consequence of the emergent charge conservation law
in this diagram group, while each diagram is time dependent,
their sum turns out to be a constant of motion, reflecting the
conservation of total charge in this system.

The above example leads to fundamental questions
we want to address: How does the cancellation occur
in diagrams? Does it originate from the summation of
topologies or the integration of internal variables? Can
one identify the diagram groups that feature massive sign
cancellations? Concrete answers to the above questions are
important at least in two aspects: (i) In fermionic systems,
individual-diagram-based power-counting estimation could
be misleading in many cases due to the cancellations in
diagrams. The sign-canceled-group-based estimation fixes
this problem (see Ref. [5] and Fig. 1 for examples). (ii)
Numerically, the knowledge of sign-canceled diagram groups
alleviates the sign problem in Monte Carlo techniques,
particularly the diagrammatic Monte Carlo methods [6].
In this approach, one calculates the physical observable in
terms of diagrammatic expansions with Monte Carlo (MC)
samplings. The methods have been applied to solve a series
of important problems in the Hubbard model [7–16], many-
electron problem [17–20], Fermi polaron problem [6,21–
28], and frustrated spin systems [29–31]. The conventional
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FIG. 1. The imaginary-time evaluations of four third-order
Hugenholtz diagrams, which contributes to the static and uniform po-
larization of a two-dimensional homogeneous “electron” gas against
an external electric-field perturbation. Summing all four diagrams
(labeled by the thick black line) restores the charge conservation law
which is broken in each diagram. At the temperature T = 0.2TF ,
The polarization amplitude drops three orders of magnitude [from
∼1 to 3.48(1) × 10−3 in the unit of the free-electron polarization
P0(q = 0, ω = 0)] as a result of a massive sign cancellation between
the diagrams.

approaches stochastically sample individual diagrams and
therefore suffer from the severe sign problem caused by the
massive sign cancellation between the diagrams. Recently, a
different generation of algorithms, which sample the summed
weight of groups of diagrams, has been developed [15,19,32–
34]. We will refer them to cluster DiagMC algorithms. With
the proper grouping of the diagrams, those algorithms can
dramatically reduce the sign problem. Indeed, a couple of
cluster DiagMC algorithms are reported to be applicable on
much higher-order diagrams [32], or in problems beyond
the ability of the conventional approaches [33–35]. Despite
the impressive progress, we still lack the design principle on
diagrammatic groups to minimize the sign problem.

In this paper, we investigate two universal mechanisms of
sign cancellation, one of which is imposed by the crossing
symmetry of the two-body scattering. The other is imposed
by the global U (1) symmetry or the charge conservation
law, as previously discussed. We show that the symmetries
constrain the sign-canceled diagram groups’ structure and fix
the internal variables’ arrangements. We numerically test the
idea by calculating the diagrams up to the sixth order for a
representative many-fermion system—the uniform Fermi gas
with Yukawa interaction. We observe massive sign cancella-
tions in the high-order diagrams and find a significant portion
of the overall cancellation originates from the summation of
topologies. We then utilize the grouping scheme to formulate
a highly efficient cluster DiagMC algorithm. Compared with
the conventional approaches, our new algorithm improves the
efficiency by ∼105 at the sixth order.

We have made four contributions in this paper: (1) We
prove that in the imaginary-time and momentum representa-
tion, the charge conservation law is a topological property of
Feynman diagrams. We then clarify its essential role in the
diagrammatic sign structure. (2) We develop the protocol to

quantify the sign cancellations from different mechanisms in
high-order diagrams. It enables a systematic investigation of
the sign-cancellation effects caused by the two symmetries.
(3) A more efficient cluster DiagMC algorithm is proposed.
Thanks to the symmetry analysis, we can optimize the group-
ing scheme systematically. The sign problem is significantly
alleviated as compared to the algorithm proposed in Ref. [33].
(4) Our analysis systematically reveals the relevant diagrams
that dominate the dynamics. The knowledge is useful for
constructing simple yet accurate approximation theory.

We now sketch the content of the paper and outline how it
is organized. In Sec. II, we describe a two-dimensional (2D)
uniform Fermi gas with Yukawa potential, which is used to in-
vestigate Feynman diagrams’ sign structure quantitatively. In
Sec. III, we mathematically formulate the concepts of overall
and topological sign cancellation. We also clarify the relation
between the topological sign cancellation and the efficiency
of a typical cluster DiagMC algorithm. Sections IV and V are
dedicated to crossing symmetry and global U (1) symmetry-
induced sign cancellations. The topological sign cancellation
and efficiency of the cluster DiagMC are quantitatively inves-
tigated. Finally, we outline our conclusions and discuss the
outlook for future development and applications in Sec. VI.

II. INTERACTING FERMIONS MODEL

To study the sign structure of Feynman diagrams at a quan-
titative level, we consider a representative model, which is a
2D uniform spin-polarized interacting Fermi gas described by
the Hamiltonian,

Ĥ =
∫

dk
(2π )2

εk ĉ†
kĉk +

∫
dqdkdk′

(2π )6
V (q)ĉ†

k+qĉ†
k′−q

ĉk′ ĉk, (1)

where ĉ†
k(ĉk) is the creation (annihilation) operator of a

fermion with momentum k, εk = k2/(2m) − μ is the ki-
netic energy shifted with the chemical potential μ. V (q) =
4πe2/(q2 + λ2) is the Yukawa interaction between fermions
with e being the electric charge and λ−1 is the static screening
length. The fermions in this model can be understood as the
electrons with a renormalized Coulomb interaction [33]. We
adapt the natural units h̄ = c = ε0 = kB = 1. With a given
screening length λ−1 and temperature T , the physics of the
system is controlled by the characteristic length scale, namely
the Wigner–Seitz radius rs = (1/πn)1/2 with n being the den-
sity of the fermions.

Hereby we focus on the physical observable polarization
P, which is the linear response function of the system with
respect to a screened external electric field. It is closely related
to the dielectric function, Pauli spin susceptibility and charge
compressibility of the system [36]. More specifically, one
couples the system to a small external electric field δE ,

Ĥ[δE ] = Ĥ +
∫

dq
(2π )2

n̂qδEq, (2)

where n̂ is the charge density operator. We assume the external
electric field does not change with time since we are mainly
interested in the static polarization. The generating functional
for the connected correlation function is the grand potential of
the system �[δE ] = ln Tr exp{−βĤ [δE ]}. In particular, the
two-particle correlation function (charge susceptibility) χ is
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FIG. 2. Some examples of the polarization Feynman diagrams.
The interaction line represents the bare Yukawa interaction. The
Green’s function already resums the Hartree and Fock self-energy.
Therefore, all diagrams contain the Hartree and Fock sub-diagrams
should be excluded.

given by

χ (x1 − x2; ω = 0) = δ2�[δE ]

δE (x1)δE (x2)

∣∣∣∣
δE→0

, (3)

where the indexes x1 and x2 are the spatial coordinates of the
external perturbation. The polarization is the charge response
function with respect to the screened external electric field,
rather than the original field δE . It can be derived from the
charge susceptibility,

P(q, ω = 0) = χ (q, ω = 0)

1 + V (q)χ (q, ω = 0)
. (4)

Numerically, we calculate the static polarization in the
imaginary-time representation,

P(q, ω = 0) = P(q, iωn = 0) =
∫ β

0
dτP(q, τ ), (5)

where iωn is the Matsubara frequency and τ is the correspond-
ing imaginary time.

When the fermionic interaction V (q) is relatively weak, the
polarization can be effectively calculated with the Feynman
diagrammatic technique. One first performs a double power
expansion of the generating functional �[δE ] in both V (q)
and δE , then derives the power series of the charge suscep-
tibility using Eq. (3). Each term in the power series can be
vividly represented by a Feynman diagram. They are con-
nected diagrams composed of bare propagator lines and bare
interaction lines. All of them have two external vertices con-
necting two external perturbations. In the end, the polarization
diagrams can be derived from the charge susceptibility dia-
grams using Eq. (4). Diagrammatically, it means one should
exclude all reducible diagrams that would fall into two pieces
if one interaction line were cut off. We show some of the first
two orders of polarization diagrams in Fig. 2. All diagrams are
real valued in the momentum and imaginary-time representa-
tion.
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FIG. 3. The polarization P(q = 0, ω = 0) versus order n for the
uniform Fermi gas with Yukawa potential at the temperature of
T = 0.04TF . In the infinite-order limit, the extrapolated polarization
is calculated to be P(q = 0, ω = 0) = 0.0504(3). The expectation
value and error bar are marked with the red dashed line and the blue
strip, respectively. The latter includes both the statistical error and
the extrapolation error.

To further improve the convergence of the diagrammatic
series, we replace each bare Green’s function line in the dia-
grams with the renormalized Green’s function which resums
the Hartree-Fock self-energy,

G(k, τ ) = e−εkτ [(1 − nk)θ (τ ) − nkθ (−τ )], (6)

where εk = k2/2m − μ − εHF (k) with εHF (k) the Hartree-
Fock self-energy which does not depend on the imaginary
time. To avoid double counting in the diagrammatic series, all
diagrams which contain at least one Hartree-Fock subdiagram
are removed as shown in Fig. 2.

In our numerical calculation, we fine tune the chemical
potential μ so that the Fermi momentum of the Green’s func-
tion Eq. (6) matches kF = (4/S)1/2/rs, where the spin factor
S = 1 and the radius rs = √

2. As one includes higher-order
quantum corrections, we expect the Fermi momentum, as well
as the Wigner–Seitz radius, to get renormalized. Therefore,
both kF and rs should be slightly different from the actual
physical values. It does not affect the claims in this paper.

The calculations are performed at the temperature T =
0.2TF , unless otherwise specified. We calculate static polar-
ization diagrams P(n)(q = 0, ω = 0) up to order n = 6. The
result is shown in Fig. 3. With the above parameters, we
observe exponential convergence with the truncated diagram
order.

III. OVERALL AND TOPOLOGICAL
SIGN CANCELLATION

This section quantifies the concepts of overall and topolog-
ical sign cancellation in Feynman diagrams. We also clarify
the connection between topological sign cancellation and
cluster diagrammatic Monte Carlo algorithms’ efficiency.
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FIG. 4. Sign cancellation of the polarization diagrams in a two-
dimensional uniform Fermi gas. The ratio F/Fabs represents the
quantum sign cancellation between the diagrams. The small ratio
F n/F n

abs � 1 at the high order indicates most of the diagram weights
get canceled. The ratio Fclu/Fabs estimates the sign cancellation
caused by the diagram topologies rather than the internal variable
integration. Such sign cancellation can be used to improve the sign
problem in the cluster diagrammatic Monte Carlo method. The sign-
optimized cluster algorithm can be γ = (Fabs/Fclu )2 times faster than
the conventional algorithm (see the inset).

We consider a diagrammatic series for a positively defined
physical quantity F [for example, the polarization Eq. (4)],

F n =
∫

[dx]n
∑
ξn

f (n, ξn, x), (7)

where f (n, ξn, x) is the weight of an n-th order diagram with
a topological index ξn and a set of internal variables x (in this
paper, they are the internal momenta and imaginary times).
Due to the sign cancellation between diagrams, we expect F n

to be much smaller than the weight function,

F n
abs =

∫
[dx]n

∑
ξn

| f (n, ξn, x)|, (8)

where sums the absolute weight of the diagrams.
We numerically calculate the ratio F n/F n

abs, where F n is
the power series of the polarization in Fig. 4. As shown in the
red curve in Fig. 4, we find this ratio roughly exponentially
decays to zero with increasing orders, indicating massive sign
cancellations. As a result, while the absolute weight function
F n

abs factorially diverge (the number of Feynman diagrams
diverge as 2nn!), the sign-canceled net contribution to the
polarization exponentially converges. In literature, this effect
is referred to as the sign blessing [22]. In what follows, we
will define the overall sign cancellation as the ratio F n/F n

abs.
We expect a significant amount of the overall sign can-

cellation can be traced back to the sign cancellation between
different diagram topologies before the internal variables are
integrated out. To measure the topological sign cancellation,
one should classify the diagrams into sign-canceled topolog-
ical clusters Cn, then calculate the absolute weight of the

clusters rather than individual diagrams

F n
clu =

∫
[dx]n

∑
Cn

∣∣∣∣∣
∑
ξn∈Cn

f (n, ξn, x)

∣∣∣∣∣. (9)

This weight function satisfies an exact inequality,

F n � F n
clu � F n

abs. (10)

Of course, the magnitude of F n
clu strongly depends on the

choice of the topological cluster Cn and the arrangement of
internal variables. Our overall goal is to find the optimized
topological clusters to make F n

clu as small as possible. We
calculate the ratio F n

clu/F n
abs for the polarization using the clus-

tering scheme discussed in the following section. As shown
in the blue curve in Fig. 4, we find the ratio F n

clu/F n
abs � 1,

indicating a significant amount of the overall sign cancellation
indeed has a topological origin.

Now we discuss the relation between the above
weight functions and the efficiency of DiagMC algorithms.
In conventional diagrammatic Monte Carlo approaches
[6,7,9,17,22,37], the weight function Eq. (8) is treated as the
weight of the configuration space spanned by the toplogies,
the internal variables as well as the order of diagrams. It
defines a probability density, ρ(n, ξn, x) = | f (n, ξn, x)|/F n

abs,
which can be efficiently sampled with a Metropolis algorithm.
Supplemented with a normalization scheme, one can use the
Monte Carlo estimator f (n, ξn, x)/| f (n, ξn, x)| to calculate
diagram weight F n.

In contrast to the conventional algorithm, the recent cluster
algorithms [19,32–34] propose to use the weight function
Eq. (9) instead of Eq. (8). It is reported that the sign problem is
greatly alleviated. We derive the following relation to explain
such observation:

εMC(N ) ∼ Z/
√

N . (11)

The detailed derivation is presented in the Appendix. Here N
is the number of Monte Carlo samples, εMC is the statistical
absolute error in a typical set up of DiagMC algorithm, and
Z is the weight of the configuration space. To achieve the
desired relative accuracy, the number of samples should be
proportional to the squared ratio ∼(Z/F n)2. Therefore, the
smaller Z , the less serious sign problem. Indeed, the conven-
tional DiagMC choose Z = F n

abs, while the cluster algorithms
choose Z = F n

clus. we expect the latter improves the efficiency
by a factor

γ = (
F n

abs

/
F n

clu

)2
. (12)

To achieve better efficiency, one should minimize the
weight function F n

clu. Of course, this is quite challenging in
general. In fact, we find that a randomly picked arrangement
of internal variables can hardly improve the sign problem,
namely F n � F n

clu ≈ F n
abs. To make F n

clu small, one has to
carefully group the topology of diagrams and arrange the
internal variables so that the diagrams with similar topologies
maximally cancel with each other before the integration of
internal variables x. Thus, we are motivated to explore the
underlying mechanism of the topological sign cancellation in
the next two sections.
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FIG. 5. Sign cancellation from the crossing symmetry. (a) Any
4-point vertex has a direct and an exchange contribution, which
always cancels with each other. (b) Combining each pair of direct
and exchange interactions into a vertex group 2n Feynman diagrams
into a Hugenholtz diagram. (c) The ratio FHugen/Fabs measures the
sign cancellation between the original Feynman diagrams due to
the crossing-symmetry. The inset shows the corresponding efficiency
improvement factor γ of the cluster diagrammatic Monte Carlo algo-
rithm as the diagram order increases.

IV. TOPOLOGICAL SIGN CANCELLATION

In this section, we explore how different symmetries lead to
the topological sign cancellation between Feynman diagrams.
We focus on the two most common symmetries: The cross-
ing symmetry in the two-fermion scattering amplitudes and
the U (1) global gauge symmetry associated with the charge
conservation.

A. Crossing-symmetry induced sign cancellation

We first discuss the crossing symmetry, which means that
the direct and exchange parts of the two-fermion scattering
amplitude must be antisymmetric. It indicates massive sign
cancellations when the two incoming fermions have similar
momenta and frequencies. Figure 5(a) is the elementary event
of the model Eq. (1), where two fermions directly interact
through the bare Yukawa interaction. For a given Feynman

diagram with n interactions, each interaction line has its di-
rect or exchange contributions. The 2n combination defines a
topological group of similar or equivalent Feynman diagrams
(some may not be polarization diagrams and must be ex-
cluded). We expect a massive sign cancellation in the group. In
literature [38], the combined direct and exchange interactions
are labeled as a single vertex, and the above topological group
of Feynman diagrams is referred to as a Hugenholz diagram.
Figure 5(b) gives a second-order example.

The weight function which quantifies the crossing
symmetry-induced sign cancellation is given by

F n
Huge =

∫
[dx]n

∑
Hn

|h(n,Hn, x)|, (13)

where h(n,Hn, x) is the amplitude of an n-order Feynman
diagram belonging to the same Hugenholz topology H . The
cancellation ratio FHuge/Fabs is shown in Fig. 5(c). We observe
an approximately exponential trend of topological sign can-
cellation as the diagram order increases.

The massive sign cancellation between Feynman diagrams
with the same Hugenholz topology can be used to alleviate
the sign problem in the conventional DiagMC algorithm [33].
As explained in Sec. V, one can implement a cluster DiagMC
algorithm that samples the Hugenholtz diagrams instead of
the Feynman diagrams. In calculations of the polarization
for Eq. (1), this trick improves the efficiency by a factor
γ = (Fabs/FHuge)2, which is depicted in the inset of Fig. 5(c).

In the end, we would like to discuss the crossing-
symmetry-induced sign cancellation between the high-order
scattering amplitudes. They are fermion-fermion scattering
mediated by the excitations of the system. Diagrammatically,
they are 4-point vertex functions with internal structures.
Due to the crossing symmetry, permuting two outgoing (or
two incoming) legs of the vertex flips the entire diagram’s
sign. Therefore, it also makes sense to cluster the diagrams
associated with this high-order crossing symmetry. Interest-
ingly, we find that the rule is given by the parquet equations
[39–41]. Physically, the parquet equations are a nonpertur-
bative technique to self-consistently calculate a two-particle
vertex function from the irreducible vertex functions. How-
ever, there is also a perturbative interpretation: they provide a
set of recursive rules to build higher-order vertex diagrams out
of lower-order subvertex diagrams. The generated diagrams
are automatically organized in a hierarchy of 4-point vertex
(sub)diagrams. Each (sub)diagram consists of direct or ex-
change contributions that greatly cancel with each other. It is
also possible to generalize the crossing-symmetry clustering
for the two-particle scattering to n particles. One then needs
to use the Dyson-Schwinger equations [42,43] instead of the
parquet equations.

B. U (1)-symmetry-induced sign cancellation

The action of the model (1) is invariant under the global
transformation ck exp(−iθ ), where θ is a space-time indepen-
dent phase. This global U (1) symmetry, sometimes referred
to as the global gauge symmetry, guarantees the conservation
of charge (or particle number). It is a property shared by many
quantum systems.
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FIG. 6. (a) Taking second functional derivatives of one gener-
ating functional diagram creates a group of polarization diagrams.
Some topologies may be generated multiple times. The copies, as
well as the inherited internal momentum loops (the colorful loops
with arrows), should be kept as they are. The generated diagram
group automatically obeys the charge conservation law before the in-
tegral of the internal variables. (b) The ratio Fclu/FHugen measures the
sign cancellation between the Hugeholtz diagrams in the conserving
group. The inset shows the corresponding efficiency improvement
factor γ of the cluster diagrammatic Monte Carlo algorithm as the
diagram order increases.

We argue that the total charge conservation leads to a
massive overall sign cancellation between diagrams in the
introduction. Does such cancellation originate from the sum-
mation of diagram topologies? We will approach this problem
in two steps: we first show that in the imaginary-time rep-
resentation, the charge conservation law is a topological
property of diagrams, which means that it can be implemented
before integrating out the internal variables. We then show that
the conserving diagrams inevitably lead to massive topologi-
cal sign cancellation.

Baym and Kadanoff developed a program to construct
conserving approximations using the functional-derivative ap-
proach [44]. They showed that any diagrammatic truncation
of the generating functional [such as �[δE ] in Eq. (3)] ful-
fills a set of conservation laws. Taking the derivative of such
functional then generates conserving approximations for cor-

FIG. 7. (a) A closed fermion loop with n interaction legs and one
external vertex 0 with an external momentum q = 0. (b) The same
fermion loop (before the vertex 0 is inserted) is plotted in a time-
ordered manner. The red dashed line marks the possible time position
of the external τ0. See the main text for more details.

relation functions. Their theory explains the emergent charge
conservation law in the four polarization diagrams in Fig. 1:
they are all functional derivatives of the same vacuum dia-
gram, as shown in Fig. 6(a). The derivative of the vacuum
diagram with respect to δE0 (δE1) splits a Green’s func-
tion G(i, j) into two ∂0G(i, j) ≡ G(i, 0)G(0, j) [the same
for ∂1G(i, j) ≡ G(i, 1)G(1, j)]. Such an operation inserts an
external vertex 0 (1) in the Green’s function line. Since
the external vertices carry zero momentum for the uniform
polarization, the derivatives will not change the internal mo-
menta [the colored loops in Fig. 6(a)]. For some vacuum
diagrams, the above operations may generate several copies
of the same polarization diagrams. However, they have dif-
ferent momentum-loop arrangements and should be kept to
maximize the sign cancellation.

The Baym-Kadanoff theory is about the charge conserva-
tion of the overall weight of the polarization diagrams. In
the imaginary-time and momentum representation, we find
that the conservation is already implemented at the level of
diagram topologies before any explicit integration of the in-
ternal variables. This property is crucial for understanding
the U (1) symmetry-induced sign cancellation but is far from
obvious. Here we provide a constructive proof of the total
charge conservation. A similar approach has been used to
prove the Ward identity in quantum electrodynamics in the
frequency representation [45].

We consider a fermion loop with n interaction legs, as
shown in Fig. 7(a). It is the elementary building block of
all high-order Feynman diagrams. For example, the polariza-
tion diagrams in Fig. 6(a) can all be decomposed into two
fermion loops. All internal momentum variables k1, k2, .., kn

and imaginary-time variables τ1, ..., τn should not be inte-
grated out. The τ variables are in the interval (0, β ) and are
unequal to each other. We now pick one Green’s function and
insert an external vertex 0 with a given momentum q = 0 and
imaginary time τ0. Note that τ0 is the external time, which
evolves from 0 to β. The operation generates n diagrams.
Later, we will show that this is the minimal topological cluster
to implement the total charge conservation law. This statement
is nontrivial because an individual diagram, as the one in
Fig. 7(a), violates the total charge conservation.
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Without loss of generality, we may choose an arbitrary time
order for the internal time variables, as in Fig. 7(b). If one
inserts the external vertex 0 between the vertices i and j, the
two Green’s functions i → 0 → j contribute a weight factor,

G(i, 0)G(0, j) = e−εk (τ j−τi )

⎧⎨
⎩

−nk(1 − nk) τ0 /∈ [τi, τ j]
(1 − nk)2 τ j > τ0 > τi

n2
k τ j < τ0 < τi

= G(i, j)

⎧⎪⎨
⎪⎩

−nk τ j > τi, τ0 /∈ [τi, τ j]
1 − nk τ j < τi, τ0 /∈ [τi, τ j]
1 − nk τ j > τ0 > τi

−nk τ j < τ0 < τi

≡ G(i, j)A(τ0, τi, τ j ), (14)

where A(τ0, τi, τ j ) = 1 − nk or −nk, depending on the order-
ing of τ0,τi and τ j . It is clear that the diagram weight cannot
be a constant of motion as the external time τ0 evolves from 0
to β.

We next show that the summed weight of all n diagrams is
independent of the time evolution of τ0, thus obeys the charge
conservation. We consider the weight

∂0Gloop ≡ ∂0[G(1, 2)G(2, 3) · · · G(n, 1)]

≡ G(1, 0)G(0, 2)G(2, 3) · · · G(n, 1)

+ G(1, 2)G(2, 0)G(0, 3) · · · G(n, 1)

+ · · ·. (15)

Using Eq. (14) and the fact that A(τ0, τi, τ j ) always contains
−nk despite the time ordering, we derive

∂0Gloop

= [A(τ0, τ1, τ2)+ A(τ0, τ2, τ3)+ · · ·+ A(τ0, τn, τ1)]Gloop

=
(

M −
n∑

i=1

nki

)
Gloop, (16)

where the integer constant M is the number of backward-
propagating Green’s functions and the index i sums over all
the Green’s functions. Both quantities should be counted with
the fermion loop in the absence of the external vertex 0. It is
therefore independent of τ0 evolution.

To prove Eq. (16), one may start with τ0 = β so that
τ0 is larger than all internal imaginary-time variables. One
can calculate the factor (M − ∑n

i=1 nki ) using the first two
conditions in Eq. (14). We then prove that this factor does
not change as τ0 decreases from β to 0. Without loss of
generality, we assume τ2 is the largest among the remaining
time variables. As τ0 evolves from τ2 + 0+ to τ2 − 0+, the
weight of G(1, 2) and G(2, 3) abruptly changes. However,
their combined weight remains the same since two of Green’s
functions must propagate in the opposite temporal direction.
As τ0 further decreases, τ0 intersects with Green’s functions,
which are always paired. As a result, the combined weight
never changes. We thus conclude that the summed weight of
n diagrams must be a constant of motion as in Eq. (16). The
derivation can also be generalized to generic charge conserva-
tion law with q 	= 0.

How does the charge conservation lead to the topological
sign cancellation? We show it with an inspiring example.
Consider the n = 2 fermion loop and assume τ1 	= τ2. Most
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FIG. 8. Sign cancellation between two diagram topologies with
a weight w1(k) and w2(k), respectively. We plot w1(k) + w2(k)
(dashed green), |w1(k) + w2(k)| (blue) and |w1(k)| + |w2(k)| (red)
as functions of the internal momentum k. They indicate the sign
cancellation from different mechanisms (see the main text).

of the diagram weights are associated with small momenta
on interaction lines. For clarity, we will simply set all inter-
action momenta to be zero. This fixes the internal momenta
k1 = k2 = k so that k is the only variable in the system.

Inserting the external vertex 0 (τ0 not equal to τ1

and τ2) generates two diagrams 0 → 1 → 2 → 0 and 0 →
2 → 1 → 0, which have weights w1(k) = (1 − nk)2(−nk),
and w2(k) = (1 − nk)(−nk)2. The summed weight is thus
w1(k) + w2(k) = (−nk)(1 − nk)(1 − 2nk). It is independent
of the external time as expected.

We now study the sign cancellation in these two diagrams.
With the definition in Sec. III, the physical, cluster, and abso-
lute weight functions are given by

F =
∫

dk
(2π )2

{w1(k) + w2(k)}, (17)

Fclu =
∫

dk
(2π )2

{|w1(k) + w2(k)|}, (18)

Fabs =
∫

dk
(2π )2

{|w1(k)| + |w2(k)|}. (19)

In Fig. 8, we plot three integrands as functions of the
momentum k. Two mechanisms of sign cancellation are
observed. The first is the cancellation |w1(k) + w2(k)| <

|w1(k)| + |w2(k)| caused by different diagram topologies. It
implies Fclu < Fabs. The second mechanism is implied by the
antisymmetric structure of w1(k) + w2(k) near the Fermi mo-
mentum. It indicates the physical weight F � Fclu since F is
further suppressed by momentum symmetrization operation
k → kF − k. Both are responsible for the small constant of
motion in Fig. 1.

Similar to the case of crossing symmetry, the U (1)-
symmetry-induced sign cancellation is also useful to reduce
the sign problem in the conventional DiagMC algorithm [33].
In Sec.V, we provide the protocol to classify Hugenholtz di-
agrams into conserving groups. In this algorithm, one sample
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the diagrams with the weight function

F n
clu =

∫
[dx]n

∑
Cn

∣∣∣∣∣
∑

Hn∈Cn

h(n,Hn, x)

∣∣∣∣∣. (20)

where h(n,Hn, x) is the amplitude of Feynman diagrams
generated from Hugenholtz topology Hn which belong to the
conserving group Cn. Since each group in this scheme respects
the topological conservation law as defined in Eq. (15), we
expect F n

clu/F n
Huge � 1. Indeed, with the polarization of the

model (1), as shown in Fig. 4(b), we find this ratio decays
approximately exponentially with diagram orders. Compared
to the Monte Carlo scheme with Hugenholtz diagrams, the
new scheme further improves the efficiency by a factor γ =
(F n

clu/F n
Huge)2 as shown in the inset of Fig. 5(b). Combining

the Hugenholtz and conserving grouping schemes, the overall
efficiency gain compared to the conventional DiagMC is the
factor γ = (F n

abs/F n
clu )2. We plot this quantity in the inset of

Fig. 4 At the order 6, we find this factor is of the magnitude
105. Note that we have not incorporated the momentum sym-
metrization operation in our algorithm, as discussed in Fig. 8.
We expect that it will further alleviate the sign problem, and
we plan to implement it in future publications.

V. CLUSTER DIAGRAMMATIC MONTE
CARLO ALGORITHM

A. Diagram grouping

Here we summarize the algorithm to group the diagrams.
To ensure massive sign cancellation, one must choose proper
topologies as well as internal variables. We will follow the
symmetry arguments proposed in the previous section to
achieve this goal. We illustrate the key steps as follows:

(i) Generate all order-n Hugenholtz vacuum diagrams for
the generating function. A fast algorithm is developed in
Ref. [46]. For each vacuum diagram, one then labels 2n time
variables and chooses n + 1 independent momentum loops.
An example of a second-order diagram can be found in
Fig. 6(a), where we label the independent momentum loops
with different colors and the imaginary-time variables (i.e.,
vertex labels) with numbers. All diagrams must share the same
set of variables to be sampled altogether by a Monte Carlo al-
gorithm. To maximize efficiency, it is also essential to choose
all loop variables to be fermionic. The main contributions of
all integrals come from a thin shell near the Fermi momentum.

(ii) For each order-n vacuum diagram, we generate a group
of order-n + 1 polarization diagrams featuring both the global
U (1) symmetry and the crossing symmetry (if possible). This
is achieved in two steps: one first inserts two external vertices
0 and 1 to the Green’s functions in the vacuum diagram in all
possible ways, as shown in Fig. 6(a). One then expands each
Hugenholtz diagram into 2n Feynman diagrams, meanwhile,
eliminates one-interaction-reducible diagrams. In both steps,
the derived diagram inherits the internal-variable arrangement
of the parent diagram (In the first step, one may need to add
one external momentum loop variable if transfer momentum
between two external vertices is nonzero).

We symmetrize the external vertices 0 and 1, which reduces
the diagram number by a factor of two. Nevertheless, the
above operations may generate multiple copies with the same

topology but the different internal-variable arrangement, as
shown in Fig. 6(a). Those copies are required by the symmetry
and the conservation law.

In the end, we point out that the above scheme achieves
better sign cancellation than the scheme proposed in Ref. [33].
One of the most significant differences is that the previous
scheme only keeps one copy for each topology, thus violating
the symmetry and resulting in considerably less topological
sign cancellation.

B. Monte Carlo algorithm

We will only briefly explain the protocol because we use
the standard Monte Carlo integration algorithm to calculate
the diagram weights.

The configuration space in our algorithm consists of the
diagram order n, imaginary-time variables and momentum
loop variables. The probability density of the order n � 1
contribution is given by the weight function,

ρ(n � 1, x) ∝
∑
Cn

∣∣∣∣∣
∑

Hn∈Cn

h(n,Hn, x)

∣∣∣∣∣, (21)

where x represents all internal variables, and h(n,Hn, x) is
the amplitude of an n-order Feynman diagram belonging to
the Hugenholz topology Hn, and Cn is the collection of order
n conserving groups.

To normalize the integral, we also include a special zeroth-
order “diagram”,

ρ(n = 0) ∝ 1, (22)

which is simply a normalization constant without any internal
variables.

The minimal set of Monte Carlo updates includes three
operations: Increase or decrease diagram order by one (add
or remove a pair of internal variables), and randomly select
an internal variable to update. The standard Metropolis algo-
rithm is used for the acceptance probability. By adjusting the
reweighting factor of each order, we find all updates are quite
efficient.

A detailed discussion of the statistical error-bar estimation
is given in the Appendix.

VI. CONCLUSION

In conclusion, we reveal the fermionic sign structure of
high-order Feynman diagrams constrained by the crossing
symmetry and the charge conservation law, which are two uni-
versal features of many-fermion systems. As a by-product, we
prove that the charge conservation law is a topological prop-
erty of Feynman diagrams in the imaginary-time/momentum
representation. With modern numerical techniques, we inves-
tigate the significance of sign cancellations from the crossing
symmetry and the conservation law.

The diagrammatic sign structure knowledge is used to op-
timize the internal-variable arrangements and construct the
sign-canceled diagram groups. We then propose a cluster
Diagrammatic Monte Carlo algorithm, which samples the
sign-canceled diagram groups instead of individual diagrams.
Compared to the conventional algorithm, we achieve an effi-
ciency boost up to a factor ∼105 at the diagram order 6.
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Besides the numerical application, identifying the sign-
canceled groups provides important hints in constructing
approximation theory for many-fermion systems. The dia-
grams in Fig. 1, which form a sign-canceled group, provides
a particularly relevant example. The massive sign can-
cellation between those diagrams results in an emergent
“unreasonably” small number, invalidating the conventional
power-counting argument. It indicates that the relevance of
perturbation in fermionic systems is better discussed in the
context of sign-canceled groups rather than individual dia-
grams.

In this work, we focus on the sign-cancellation effects
induced by the crossing symmetry and the global gauge sym-
metry. The established sign-cancellation mechanisms and the
diagram grouping schemes apply to any physical models with
these two symmetries. The magnitude of the sign cancellation
varies with the specific form of interactions and spatial di-
mensions of the problem. For example, the sign-cancellation
induced by the crossing symmetry could be stronger for the
contact interaction than the Yukawa interaction in Eq. (1).
Therefore, most of the conclusions in this work are universal
and can be easily adapted to other problems.

In the end, we summarize open questions for future work.
There are questions associated with the charge conservation
law in the topological structure of diagrams. Are there similar
properties for other conservation laws (e.g., energy, momen-
tum, and angular momentum)? Does the type of internal
variables (space versus momentum, time versus frequency)
matter? One probably needs to formulate a stronger version
of the celebrated Baym-Kadanoff theory to address the above
questions. There are also technical problems. For example, in
Sec. IV B, we point out that the momentum symmetrization
operation k → kF − k leads to a significant sign cancellation
as indicated by Fig. 8. However, it is not clear how to im-
plement it in the Monte Carlo algorithm to alleviate the sign
problem.
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APPENDIX A: STATISTIC ERROR ESTIMATION IN
DIAGRAMMATIC MONTE CARLO ALGORITHMS

In our diagrammatic Monte Carlo algorithm, the configu-
ration spaces consist of two subspaces: The physical diagrams
with orders n � 1 and the normalization “diagram” with the
order n = 0. The weight function of the latter, g(x), should
be simple enough so that the integral G = ∫

g(x)dx is explic-
itly known. In our algorithm we use a constant g(x) ∝ 1 for

simplicity. In this setup, the physical diagram weight F can
be calculated with the equation

F = FMC

GMC
G, (A1)

where the MC estimators FMC and GMC are measured with

FMC = 1

N

[ Nf∑
i=1

f (xi )

ρ f (xi )
+

Ng∑
i=1

0

]
,

GMC = 1

N

[ Nf∑
i=1

0 +
Ng∑

i=1

g(xi )

ρg(xi )

]
. (A2)

For simplicity, here we have suppressed the labels such as the
order n and the topological index ξn in the diagram weight
f (xi ), so that the total amplitude is a simple integral F =∫

f (x)dx. The probability density of a given configuration
is proportional to ρ f (x) = | f (x)| and ρg(x) = |g(x)|, respec-
tively. In the total MC steps N , the physical diagrams are
sampled for Nf times, and the normalization “diagram” are
for Ng times.

Now we estimate the statistic error. According to the
propagation of uncertainty, the variance of F in Eq. (A1) is
given by

σ 2
F =

(
G

GMC

)2

σ 2
FMC

+
(

GFMC

G2
MC

)2

σ 2
GMC

, (A3)

where σFMC and σGMC are variance of the MC integration FMC

and GMC, respectively. In the Markov chain MC, according to
definition the variance of FMC can be written as

σ 2
FMC

= 1

N

[ Nf∑
i

(
f (xi )

ρ f (xi )
− F

Z

)2

+
Ng∑
j

(
0 − F

Z

)2
]

=
∫ (

f (x)

ρ f (x)
− F

Z

)2
ρ f (x)

Z
dx +

∫ (
F

Z

)2
ρg(x)

Z
dx

=
∫

f 2(x)

ρ f (x)

dx
Z

− F 2

Z2
. (A4)

Here Z = Z f + Zg and Z f /g = ∫
ρ f /g(x)dx are the partition

sums of the corresponding configuration spaces. Due to the
detailed balance, one has Z f /Zg = Nf /Ng.

Similarly, the variance of GMC can be written as

σ 2
GMC

=
∫

g2(x)

ρg(x)

dx
Z

− G2

Z2
. (A5)

By substituting ρ f (x) = | f (x)| and ρg(x) = |g(x)|, the vari-
ances of FMC and GMC are given by

σ 2
FMC

= 1

Z2
(ZZ f − F 2),

σ 2
GMC

= 1

Z2
(ZZg − G2). (A6)

With Eq. (A3), we derive the variance of F as

σ 2
F = Z

(
Z f + F 2

G2
Zg

)
− 2F 2

≈ Z2
f . (A7)
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The approximations are based on the facts that F � Z (mas-
sive sign cancellation), and Z f � Zg. The final expression is
simple but heuristic: The variance of F only depends on the

partition sum Z f . The statistical error after N MC steps is

ε ∼ σ

N1/2
= Z f

N1/2
. (A8)
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