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On the rotational symmetry of 3-dimensional
k-solutions

By Richard H. Bamler at Berkeley and Bruce Kleiner at New York

Abstract. In arecent paper, Brendle showed the uniqueness of the Bryant soliton among
3-dimensional «-solutions. In this paper, we present an alternative proof for this fact and show
that compact k-solutions are rotationally symmetric. Our proof arose from independent work
relating to our Strong Stability Theorem for singular Ricci flows.

1. Introduction

In his celebrated paper [8], Perelman characterized the singularity formation of 3-dimen-
sional Ricci flows. More specifically, he proved that singularities are always modeled on k-solu-
tions, which he classified in a qualitative way. Roughly speaking, such solutions are either
quotients of the round shrinking sphere or cylinder or they are diffeomorphic to R3, S3 or
R P3 and contain large regions that are asymptotically cylindrical. A prominent example in the
R3-case is the Bryant soliton, which is rotationally symmetric. In [8], Perelman conjectured
that the Bryant soliton is the only k-solution on R3.

In a series of papers [2, 3], Brendle proved this conjecture (see also related results on
the mean curvature flow of Brendle and Choi [4, 5]). First, in [2] he proved uniqueness of the
Bryant soliton under the additional assumption that the x-solution is a soliton. Second, in [3]
he showed the following two theorems, which imply Perelman’s conjecture.

Theorem 1.1. Any rotationally symmetric k-solution on R3 is homothetic to the Bryant
soliton.

Theorem 1.2. Any k-solution on R3 is rotationally symmetric.
Here rotationally symmetric means that the solution admits an isometric O(3)-action

whose principal orbits are 2-spheres. The proof of Theorem 1.2 relies on the earlier uniqueness
theorem from [2] and on Theorem 1.1.
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In the same paper, Brendle remarks that the techniques in his paper can be adapted to the
compact case, thereby proving:

Theorem 1.3. Any 3-dimensional k-solution is either rotationally symmetric or homo-
thetic to a quotient of the round shrinking sphere.

In this paper we offer an alternative proof of Theorem 1.3. This proof arose from inde-
pendent work on questions relating to singular Ricci flows and their strong stability properties.
Our primary motivation is to share this different approach with the community since the ideas
may be useful in other contexts. We also want to provide a detailed argument covering both the
compact and non-compact cases. We emphasize that we acknowledge Brendle’s prior solution
to this problem and note, moreover, that our argument relies on Brendle’s Theorem 1.1.

We now give a brief sketch of our argument. Like Brendle’s proof, our proof relies on
a stability result that states that the degree of rotational symmetry improves as we move forward
in time. We establish this stability property in two steps. In Section 3, we first consider the
linearized problem and show that rotational symmetry is stable under the flow modulo a few
modes, which can be removed by reparameterization. In Section 4, we use a limit argument
and the Strong Stability Theorem for Ricci flow spacetimes from our paper [1] to reduce the
non-linear case to the linear case.

Both steps of our proof are different from Brendle’s approach. For example, we employ
a different iteration scheme that allows us to avoid having to localize several estimates in the
linear and non-linear cases. As a result we do not have to deal with error terms arising from
the boundary. In addition, we use of the Strong Stability Theorem to directly compare metrics
with rotationally symmetric ones. This approach replaces Brendle’s analysis of approximate
Killing fields.

2. Preliminaries

2.1. The Ricci-DeTurck equation and its linearization. We briefly recall the Ricci—
DeTurck equation. For more details we refer to [1, Appendix A] (where the same notation is
used) or [9]. Let (g¢) ez, ,1,] and (8}7) e[z, 1,] be Ricci flows on a manifolds M, M, respectively
and consider a family of diffeomorphisms (y; : M" — M);e[s, 1> evolving by the harmonic

map heat flow
n

Ofe = Dgrg = Y (V5L @ dxele) —dxi (Ve e)),
i=1
where {e;}'_, is a local frame field on M’ that is orthonormal with respect to g;. Then the
pullback Lk
gt +hy = (X; ) g — 8¢
satisfies the Ricci—DeTurck equation
0r(gr + he) = —2Ric(gs + he) — £x,, (g, +h,) (&1 + he),

where the vector field Xg, (g; + h,) is defined by

n

Xg(g*) = Agxgidy = Z (Vfiei — Vfi*ei),

i=1
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for a local frame {e; }7_, that is orthonormal with respect to g*. The Ricci-DeTurck equation
has the following analytical structure:

(21) Vatht = Agtht + 2ngt (ht) + Qgt [hl]’

where the left-hand side uses Uhlenbeck’s trick

(Vaihodis = @rhe)is — 587 (pj012as + hipdi2a)).
(Rmyg, (h¢))ij = 879 Rpij* hqu

and the last term has the structure
Qg [l = ((g+h) ' —g 1) x (V& 2h+Rmg, xh;) + (g +h) "' *(g+h) "« VEhx V& p,
The linearization of (2.1) is called the linearized Ricci—DeTurck equation

(2.2) Vo, ht = Ng,hy +2Rmyg, (hy).
The following fact, which has also been used in [2, 3], will be important for us.

Lemma 2.1. Ifw: M x [t1,t2] — R solves the heat equation 0;w = A g, w on a Ricci

flow background (M, (g¢)¢e[z, 1,])- then its Hessian hy := V2w, solves (2.2) on the same Ricci
Sflow background.

Proof. Let (X¢)te[s,,1,] be a time dependent vector field that evolves by the heat equa-
tion
(2.3) Vo, X = Ag, X.
Then in any orthonormal frame
VatVin — V,‘Vath = Fle Xk + R Vka + V,’Rjk Xk
= —ViR;; Xk + ViR xk + R Vka,

while
AVi X7 —V;AX7 = <2Ripj Vi X! + Rix Vi X/ — ViR X¥.

Combining both equations and applying the second Bianchi identity yields
Vo, ViX/ — AV; X7 = —2R;p; Vi X'

So h; := £x, g+ solves (2.2). Lastly, observe that by the Bianchi identity X := %Vg *w solves
(2.3).So hy = 1Ly, g = V?w; solves (2.2). o

2.2. Linearized Ricci-DeTurck flow on the round cylinder. We show that bounded
ancient solutions to the linearized Ricci—DeTurck flow on the round cylinder must be Hessians
of a very special form. This will be used in the proof of Proposition 3.1. We remark that the
following results are similar to [3, Proposition 6.1].

In order to facilitate the proof of decay using eigenspace decompositions, we will make
use of appropriate L2-type norms.
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Definition 2.2 (Fiberwise L?-norm). Let (S?xR, (&1)te(—o0,07) be the shrinking round
cylinder, and suppose (/¢);eg is a 2-tensor field defined on a time interval /. Then for ¢ € I,
the (normalized) fiberwise L?-norm of h; atr € R is

1
|S2 > {r}| Js2x{r}

where dV and |h| denotes the Riemannian measure and Riemannian norm induced by gy,
respectively.

1
2
IhellL2(s2x(ry) = ( |h,|2dV) ,

Lemma 2.3 (Partial vanishing on the cylinder). Let (h¢)se; be a linearized Ricci—
DeTurck flow on a shrinking round cylinder (S? xR, (&1)te(—00,0)), With g = dr?+2\t|gg>.
Assume that the average of h under the standard O(3)-action vanishes. Then:

(@) suprer hellL2(s2x(r}) is @ non-increasing function of t.

(b) Ifinf I = —o0 and sup . pyerxr |hellL2(s2x(r}) < 0O, then
h = (aru1 + azuz + aszus) gs2,

where w1, Uz, us are the coordinate functions on S22 cR3anday,as,as € R.

Proof. This follows from separation of variables and the maximum principle.
The linearized Ricci—DeTurck equation has the form

(2.4) Vahe = Achy + Rme(he) = A5 hy + V2 5 hy + Ry (h)
= V2 o he + 117 (A5 by + Rm_y ().

We have two decompositions of the space I'(s?T* (52 x R)) of symmetric 2-tensor fields: the
decomposition

[(s°T*(S%? x R)) = ['(s>R*) @ ['(s>(T*S?)) @ ['(T*(S?) ® T*R)
induced by the bundle decomposition
s2(T*(S? x R)) ~ s?R* @ s2(T*S?) & (T*(S?) @ T*R),

and the decomposition & = ) ; hj induced by the eigenspace decomposition for the fiber
Laplacian AS 21 Straightforward computation shows that these decompositions are compati-
ble with one another, and also with both the linearized Ricci—-DeTurck flow and the fiberwise
L?-metric. So it suffices to verify the lemma when  lies in a single summand of each of the
decompositions.

Case 1: h e T'(s>T*R) @ I'(T*S? ® T*R) belongs to the A-eigenspace of Afi
Then Rm(s) = 0 because i3, Rm = 0, and A > 0 since the zero eigenspace of Afi inter-
sects I'(s?2T*R) & I'(T*S? ® T*R) in the rotationally symmetric tensors, which vanish by
assumption. The maximum principle applied to equation (2.4) now gives assertion (a), and if
I = (—00,1ty), then h = 0.

Case 2: h € T'(s2(T*S?2)) belongs to the A-eigenspace of Af i Then £ further de-
composes as h = h5calar 4 plraceless - where pscalil — oo and 'l s traceless. Further-
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more, this decomposition is invariant under linearized Ricci—-DeTurck flow.

o If h = h'"aeless then Rm(h) = —%h, so applying the maximum principle as in Case 1 we
are done.

o If h = h* then Rm(h) = 1h.
e If A < —1, then we are done by the maximum principle.

e If A > —1, then one has A = —1, because the case A = 0 is excluded by the fact that the
O(3)-average of i vanishes.

Hence (2.4) reduces to the direct sum of three copies of the standard heat equation. Now asser-
tion (a) follows from the maximum principle, while if / = (—o0, #9), then V3. h = 0;h = 0 by
a gradient estimate. |

2.3. A semilocal maximum principle. In this subsection we restate the semilocal max-
imum principle from [1, Proposition 9.1] in a slightly different form for the case in which the
background flow is a x-solution and the perturbation /4 evolves by the linearized Ricci—DeTurck
flow.

Proposition 2.4 (Semilocal maximum principle). For any E > 1 there are constants
L =L(E),H = H(E),C = C(E) < oo such that the following holds.

Let (M, (g¢)t<0) be a k-solution, T < 0 and (xgo,t9) € M x [T, 0]. Consider the para-
bolic neighborhood Py (xg, to) := P(xo.to, LR™Y/%(x0. 1)) and let (ht)te[—T,0)] be a solution
to the linearized Ricci—DeTurck flow equation (2.2) on Pr,(xg,t9) N M x [—T,0]. Then for any
a > 0 we have

) u ! —Hat N
(2.5) (e Har 171 (x0,10) < — sup o—Har M
RE + 4E 100 p, (x0,10)nMX[~T,0] RE + 4E
- |h]
+C sup e Hat—'
P (x0,t0)NM x{~T} RE 4+ 4E

If Pr(x0,%0) N M x{—=T} = @, then the last term can be omitted.

Proof. The proof is similar to that of [1, Proposition 9.1] and essentially follows by
rescaling the factor a. For convenience of the reader we provide a proof here.

After applying a time-shift and parabolic rescaling, we may assume without loss of gen-
erality that tp = O and R(x¢,0) = 1. Fix £ > l and L;, H;, C; — oo and consider a sequence
of counterexamples (h;¢)se[—T;,0] (Mi.(gi,t)t<0), (xi,0) € M; x [-T;,0], a; > 0 with the
property that R(x;,0) = 1. After multiplying (%;,¢);e[—T;,0] by a scalar, we may assume that

(2.6) |hi|(x;,0) = 1.

Next, we may assume that the (M;, (gi,r)s<o) are k-solutions for some uniform « > 0, because
otherwise the flows (M, (g;.s)s<o would be quotients of the round shrinking sphere for large i
(see [1, Lemma C.1 (a)]) and we could pass to the universal covers. So, after passing to a sub-
sequence, we may assume that the pointed flows (M;, (g )s<o0,Xx;) smoothly converge to
a pointed «-solution (Muo, (800.r)1<0, Xoo). Lastly, after passing to a subsequence, we may
assume that the limits doo := lim; 00 @; € [0, 00] and T := lim; o0 T; € [0, 00] exist.
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The assumption that the tensor fields (%;,¢);e[—T1;,0] are counterexamples to (2.5) implies

—Hoar Bl
sup e~Hiait 1L 409 :
PL; (x;,0)NM; X[T; 0] RE t+af 1+af
—H.ait |h; ] 1 1
sup e Midit —— — < C7 —m—.
Py, (x; 0)NM; x{~T;} RE +af =" 1+af

We can now argue as in the proof of [1, Proposition 9.1] that T, = oo and that, after passing to
a subsequence, the tensor fields (h;,¢);e[T;,0] converge to a solution (feo,t) te(—o0,0] Of the lin-
earized Ricci—DeTurck equation on (Moo, (g00,t)r<0)- If doo > 0, then lim; o0 e~ Hiait —
for all + < 0 and therefore sy, = 0, which contradicts (2.6). On the other hand, if aoso, = 0,
then (2.6) implies |hoo| < C’RE for some C’ < oo. Together with the Vanishing Theorem
[1, Theorem 9.8], this implies /s, = 0, again contradicting (2.6). D

Corollary 2.5. Foreveryl < E < oo and § > 0 there is a constant L' < oo such that
if (M, (g¢)t<0) is a k-solution, (h;) is a linearized Ricci—-DeTurck flow on the parabolic ball
Pr(x0.10) := P(xo.t0, LR™Y2(x¢,10)), then

R7E|n|(x0.t0) <8 sup R E|n|.

P (x0,t0)

Proof. This follows by iterating Proposition 2.4 with @ = 0. O

3. A Partial Vanishing Theorem for the linearized Ricci-DeTurck flow
on k-solutions

In the following we will consider 3-dimensional rotationally symmetric «-solutions
(M, (g¢)r<0), i.e. solutions that are invariant under an O(3)-action whose principal orbits are
2-spheres. Our goal will be to analyze the linearized Ricci—DeTurck flow on these solutions
and to deduce that this flow decays modulo certain well-understood modes.

As (M, (g¢)r<o) is assumed to be rotationally symmetric, the possible topological types
of M are S? x R,R3, $3 R P3. In this section, we will only focus on the non-compact cases,
i.e. the cases M ~ R3 or S? x R. Here we equip R> and S2 xR with the standard O(3)-action.
It is a well known fact that in the case M ~ S? x R, the flow is homothetic to the round
shrinking cylindrical flow g, = dr? + 2|t|gg>.

We can express g; as a warped product of the following form, away from the center of
rotation if M ~ R3:

(3.1) gr = pA(r.0)dr? + ¢*(r.t)gso.

The symmetric (0, 2)-tensors & that are invariant under the O(3)-action always take the similar
form
h="p2(r)dr* + G*(r)gs>.

We will refer to such tensors from now on as rotationally invariant. In the following we will
also consider the three coordinate functions u1, u2,u3 € C*(S?) for the standard embedding
§2 c R3. We will often view these functions as smooth functions on SZ x R or R3 \ {0}. So
U1, Un,us are constant in time and along radial geodesics.
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The following proposition is the main result of this section. It is similar to the Vanishing
Theorem [1, Theorem 9.8]. The main difference is that we only assume uniform bounds on
h on the initial time-slice, without any weight. As a result, we can only control /4 at later
times modulo certain modes, which are either rotationally invariant or can be expressed as the
Hessian of a scalar function.

Proposition 3.1. Let (M, (g:)i<o0) be a rotationally symmetric k-solution diffeomor-
phic to R3 or S> x R and let m € Z, n > 0 and C, D < oo. Then there is a positive constant
T =T(m,n,C,D,(g:)) < oo such that the following holds.

Let (ht)te[—T,0] be a uniformly bounded solution to the linearized Ricci-DeTurck flow
(2.2) on (M, (g¢)1<0) and assume that R(x,0) = 1 for some x € M . Assume that

IV"h_r| < CR™?
on M forallm = 0,...,3. Then on B(x,0, D) we have a decomposition of the form

ho = hy' + V2(fi(ruy + fo(r)uz + f3(r)us) + hy,
where:

(a) hy" is rotationally invariant.

(b) fi(ryur + fa(r)uz + f3(r)usz is smooth on B(x,0, D). This implies in particular that
f1(r), f2(r), f3(r) vanish at the origin in the R3-case.

© lIngllemBex,0,0)) =1
The proof of Proposition 3.1 uses the following fact:

(3.2) lim |t|max R(-,t) = oo if M ~ R3.
t—>—00' M
This fact holds due to Theorem 1.1, which is due to Brendle. We remark that with some extra
work it is possible to remove the dependence on (3.2), hence making the proof of Theorem 1.3
independent of Theorem 1.1.

Before carrying out the proof of Proposition 3.1, we first introduce some general ter-
minology and establish some preliminary lemmas. For the remainder of this section, we will
always assume that we are in the setting of Proposition 3.1.

Averaging via the isometric O(3)-action yields a decomposition

ht — h;Ot + h(t)SC7

where 1" is rotationally invariant and the average of £9°° under the O(3)-action vanishes. Both

components still solve the linearized Ricci DeTurck flow equation. It therefore remains to prove

Proposition 3.1 in the case in which i, = h?*, with the additional assertion that 4" = 0.
Next, we find a decomposition of /; of the form

(3.3) he = B3N 4 132 4 133 4 hies,

Here the first three terms describe the component of /9% corresponding to the 3-dimensional
representation of O(3). More specifically, assume that the O(3)-action on M is described by
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the family of diffeomorphisms (¢4 : M — M)e0(3)- Then for j = 1,2, 3 we define h?d’j to
be the image of /; under the projection

(3.4) (Ae;,8;) pLhdA,

his ——
103)| Jo@)

where we integrate with respect to a bi-invariant measure on O(3). We also set

3
3d,j
WEti=hy =Y .
j=1
Then h?d’j and A’ solve the linearized Ricci-DeTurck equation and the image of /'™ under
the projections (3.4) vanishes. Due to the decomposition (3.3) it suffices to prove Proposi-
tion 3.1 separately for the following two cases:

(A) B =0and h; = h3* for some j = 1,2,3.
(B) A = 0and h; = A

So let us assume without loss of generality that Case (A) or (B) holds. Case (A) will be more
subtle and we will mostly focus on this case. Case (B) will follow along the lines with small
modifications and omissions of several technical details. We will point out these differences in
the course of the proof.

Let us now consider Case (A). We first need to analyze the structure of the components
of hy = hfd’j more carefully. For this purpose, fix some ¢ € [T, 0] and reparameterize the
radial parameter r such that the representation (3.1) simplifies to g; = dr? + ¢*(r)gg>. Let
i :=qduj and v; := g (*du;), where the star operator is taken fiberwise with respect to
the standard metric on S2. Note that the maximum of |i4|g, = |vj|g, on each cross-sectional
2-sphere is equal to 1.

Lemma 3.2. We have on S? x R or R3 \ {0}
(3.5) hy = b4

=a;(r)u; dr? + bi(ryujgs>+cj(r)(ujdr +dru;)
+dj(r)(vjdr +drvj),

for some smooth radial functions a;j(r),bj(r),c;(r),d;(r), which extend to smooth odd func-
tions across the origin if M ~ R3.

Proof. In the following, we will omit the index ¢. It suffices to verify the characterization
(3.5) along a single S 2-fiber. Along such a fiber we can write i = fdr2 + (§dr + dr &) + hll,
where f € C%(S52), £ is a 1-form and Al is a symmetric 2-tensor on S2. Note that f, £ and
hll are contained in the image of the projection (3.4), where ¢4 denotes the standard action on
S?2 and the pullback has to be taken within the appropriate category. It remains to prove that f
is amultiple of u;, § € span{u;,v;} and hll is a multiple of u;jgg2. This follows from standard
representation theory.

More specifically, let us consider a 3-dimensional representation of O(3) of the form
span{ty, T2, T3}, where 7; are tensor fields on S 2 of arbitrary degree. Assume that the T; are
chosen so that there is an equivariant map span{zy, 72, 73} — R3, with 7; > e;, where O(3)
acts on R3 in the standard way. Then 7; must be invariant by rotations along the Re;-axis and
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7; restricted to any great circle passing through £e; must satisfy the ODE tj’/ =-—7;. If 75
is a scalar function or a symmetric 2-tensor, then restricted to any great circle passing through
=+7; it must be even across £e;. If 7; is a 1-form, then it must be odd. These properties uniquely
determine 7; up to a multiplicative constant. |

Given the coefficient functions a; (r), bj(r),c;j(r), d;(r), we define

©rq)q*c; — b;
Fihy = DL 3T
T 1 - (0,9)?

Note that ; is a zeroth order linear operator on S? x R or R3 \ {0}, respectively and F;h; is
a smooth radial function where defined.

Lemma 3.3. The product (¥;h;)u; extends to a smooth radial function on M.

Proof. If M ~ R3, then b () is an odd function that vanishes to at least second order.
Moreover, since (M, g;) has strictly positive sectional curvature, 93¢ (0) # 0. It follows that
Fjh; extends to a smooth odd function across the origin, which implies the statement of the
lemma. |

Lemma 3.4. For any smooth radial function f(r) that extends to a smooth odd function
across the origin when M ~ R3, the Hessian V?( fu;) is of the form (3.5) and we have

75 (V2(fup) = f
Proof.  An elementary computation shows that

V2(fuj) = @ f)ujdr* + (—fq=> + (0rq)q "0, f)q* ujgs>
(@ g = fOrq™) (1 dr +dr u)). o

Motivated by the previous lemma, we define in Case (A)
alhe] = |he = V2((Fjhouy)|.

So «[h;] measures the deviation of /1; from being a Hessian of a specific form. In Case (B), we
simply set a[hy] := |hy].

Lemma 3.5. Assume that we are in Case (A) and assume that alhs+] is uniformly
bounded for some t* € [—T,0]. Then (¥jhs)u; is a smooth scalar function on M that grows
at most quadratically at infinity. Let (W) se[s+ 0] be the solution to the heat equation with initial
condition Wy = (Fjhes)uj. Then

f}\l’t = ]’lt — Vzw,

~

is a uniformly bounded solution to the linearized Ricci-DeTurck flow with a[h] = a[h] on
M x [t*,0] and |hy=| = afhe=].

Proof. The fact that wyx = (¥;h)u; is smooth follows from Lemma 3.3. Next, note
that |V2ws+| < |hsx| + a[hs+] is uniformly bounded. So w;+ grows at most quadratically
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at infinity and |V2w| remains uniformly bounded on M x [t*,0]. Lemma 2.1 implies that
h; — V2w, solves the linearized Ricci-DeTurck flow. Next, Lemma 3.4 yields

(Fihoyu; = (F5(he = V2wp))uj = (Fihuj —wy,

which implies that a[?z}] = |71/, — V2((Fjhe)uj) + V>w;| = alh;]. The last statement follows
by definition of «. O

Lemma 3.6. For every § > 0 there is a ® = O(8) < oo such that if (hy)ie—o,0] IS
a bounded linearized Ricci—DeTurck flow on the shrinking round cylinder (S% x R, (g¢)1<0)
with R(-,0) = 1 and h*" = 0, then a[h](x,0) < §supy, |h—o.

Proof.  Suppose not. Then for some § > 0, there is a sequence ®; — oo and for every i
a linearized Ricci-DeTurck flow (h;¢)se[—@;,0] Such that a[h;](x,0) > &, supy, |h; —e,| < 1.
Using the fiberwise L2-norm (see Definition 2.2), we have

(3.6) sup [|hi,—e; lL2(s2x¢ry) = sup |hi—e;| =1,
reR S2xR

so by assertion (a) of Lemma 2.3 we have
sup IhillL2(s2xry) = 1-
(r,t)eERx[—0;,0]
By (3.6) we may extract a limiting linearized Ricci-DeTurck flow (hoo,s)s<o such that
(3.7) alhoo](x,0) > 8 and sup Ihoo,tlL2(s2xgrp) = 1-
(r,t)ERx(—00,0]

By assertion (b) of Lemma 2.3 and Lemma 3.4 we would have V2 (213:1 (Fihoo,00uj) = hoo,0,
and hence a[ho,0] = 0, contradicting (3.7). ]

The following lemma will reduce the proof of Proposition 3.1 to two elementary bounds
on «[h].

Lemma 3.7. Foranym € N, n > 0and D,C’ < oo thereisad = §(m,n, D,C’) >0
such that the following holds.

Ifalh](-,—=1) < C'on M and a[h](-,—1) < §on {8 < R(-,—1) <871}, then the con-
clusion of Proposition 3.1 holds.

Proof. Asdiscussed earlier, we may assume that we are either in Case (A) or in Case (B).
Assume that the lemma was wrong for some fixed m, n, D, C’ and pick a sequence of coun-
terexamples (h;);e[—1,0] for a sequence §; — 0. In Case (A) setE,, = his — Vzwi,t, where
(wit)¢e[—1,0] 1s @ solution to the heat equation with initial condition w;,—1 = (¥jhi—1)u;, as
explained in Lemma 3.5. In Case (B) set h; —; := h; —1. Then

lhi—i|<C' onM  and  |h;i_i| <& on{8 <R(-.—1)<8}.

It now follows from a standard limit argument that 711-30 — 0 locally uniformly in C™, which
implies assertion (c) of Proposition 3.1 for i, = h; ¢ for large i, in contradiction to our assump-
tion. ]

Due to Lemma 3.7, Proposition 3.1 is a consequence of the following lemma.
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Lemma 3.8. Let (M, (g:):<0) be a rotationally symmetric k-solution diffeomorphic to
R3 or S? x R and let § > 0. Then there are constants C' = C'(g;), T = T(8,(g:)) < oo such
that the following holds.

Suppose (h¢)ie[—T,0] is a uniformly bounded solution to the linearized Ricci-DeTurck
flow with [V™h_g| < R™? for all m = 0, . ..,3. Assume that the assumptions of Case (A)
or (B) hold. Then

alh](-,00<C" on M and alh](-,0) <8 on{s < R(-,0) <5 1}.

Proof. Note that in the cylindrical case, the lemma is a direct consequence of Lem-
ma 3.6. So it suffices to consider the case M ~ R3.

Fix § and (M, (g:)s<o) for the remainder of the proof. The constant 7" will be deter-
mined in the end of this proof. Assume that (/1;);¢[—T,0] is given and consider the isometric
O(3)-action on (M, (g¢)r<o0)-

Claim 1. For any © < oo there is a constant C* = C*(0©) < oo such that for all
(x,t) € M x [=T,0] witht — OR™(x,t) < =T we have a[h](x,t) < C*.

Proof. Fix some E’ > 1 and choose H = H(E’) according to Proposition 2.4. Let
a = R(x,t) and consider the quantity
||
RE' +aE""
Choose (y,s) € M x [T, 0] such that 2Q"(y,s) > S := sups 1,0 Q'- Then, by Proposi-
tion 2.4 we have

Q/ — e—Hat

2
S <20'(y,s) < —S +2Csup Q'(-,-T),
100 Y.

where C = C(E’). So S <4C supy, Q'(-,—T). This implies that for any (x’, ") € Mx[-T, 1],
! 4!
|h|(/x,f) < 4CeHO. /1 '
2RE (x', 1) RE'(x', 1)
So || < 8CeHf® on M x [T, t]. Using the derivative bounds of / at time —7 and standard

local derivative estimates (see for example [1, Lemma A.14]), we can upgrade this bound to
a derivative bound at time ¢ and therefore, we obtain a bound on «[h](x, ). ]

Fix some arbitrary constant £ > 1 and let A < oo be a constant that will be determined
in the following claim. Consider the following quantity on M x [—T, 0]:

. alh]
Q= ((t] + ARE + 1

Claim 2. There are constants ® = O(E), A = A(E) < oo andc¢ = ¢(E) > 0 such for
any (x,t) € M x [=T,0l witht* :=t — OR Y(x,t) > —T and c € [0,¢] we have

(3.8) (QR)(x.1) = - sup(QRY)(-. ).

Proof. The constant ® < oo will determined in the end of the proof, depending only
on E. The constant ¢ will be determined in the course of the proof, depending only on £ and ©®.
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Assume that the statement was wrong for fixed ®, choose A; — oo and consider solutions
(hi,t)¢e[~T; 0] to the linearized Ricci-DeTurck flow, as well as points (x;,#;) € M x [-T;,0]
where (3.8) is violated. By linearity we may assume without loss of generality that

alhi](x;. t;) = 1.
Set K; := R(x;,t;) and ¢/ :=t; — @Ki_l > —T;.In Case (A) set

1. 2.
hi,t = hz,t -V Wi,

where (w; ;) te[r+,0] is a solution to the heat equation with initial condition w; ,+ = (Fjh;, e uj,
as explained in Lemma 3.5. In Case (B) set h; s := h; ;. Then a[h;](x;,t;) = a[h;](x;, t;) = 1.
So, since (3.8) is violated at (x;, t;), we have

B ] . 10
(5[ + ADR(- . 1))" + 1 (] + ADKi)* + 1

(3.9) RE(-.,t))

Choose H = H(E), L = L(E) < oo according to Proposition 2.4 and set

i |

. .— R€ .e—H(Iti*l—i-A,-)—l(t—tl.*)
. ((Jt*| + ADR)E +1

i
RE + (|t} + A)~E~

= RE(|t*| + Aj)E . o~ HUT I+ AN a—tF)

Assume in the following that ¢ < ¢(®, L(E)) is small enough such that by bounded curvature
at bounded distance we have for every (y,s) € M x (—o0, 0],

(3.10) R¢ < 10R (y,s) on P(y,s, LR"Y%(y,s)).

Let (yi,si) € M x [t;",1;] be a point such that S; := suppsye* 1,1 fi < 2fi (Vi si). Then by
Proposition 2.4 (fora = (|¢}*| + A;)™!) and (3.10)

Si <2fi(yi,si) =2- 10(@&- +C supﬁ(~,t,-*))
M
for some C = C(E) < oo. After combining this with (3.9) and replacing C by 1000e C, we
obtain that on M x [t*, #;]
7] _ c

c

(6 + ADRE +1 = 77 (] + ADKDE + 1

c

Soon M x [tf,1;] we have
(3.11) [hi] < c(ﬁ)c((m' + O + ADR)E +1
R (| +ADKDHE +1
K\ ((lt/| + AR + OK;TR)E +1
%)
K;i
R

C( (1] + ADKHE + 1
c( )C((|Zz‘| + ADKi - K7 'R+ OK;'R)E 41
((|ti] + ADKHE + 1 '
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After passing to a subsequence, we may assume that the following limit exists or is
infinite:
Z = _lim (t; | + A;)K; € [0, o0].

Let us now consider the parabolically rescaled pointed flows (M, (g; s := K; 844K 1,)1<0, Xi).
By the compactness theory of k-solutions and after passing to a subsequence, we may assume
that these pointed flows smoothly converge to a pointed k-solution (Moo, (800,r) <0, Xoo) With
R(x00,0) = 1. By (3.11), the correspondingly rescaled flows (FE;J = KiE,ti+Ki_lt)l€[—®,0])
satisfy a bound of the form

((|ti| + ADK; - R+ OR)E +1
((Jti] + ADKHE +1

Here the scalar curvature is taken with respect to the rescaled metrics. Since the right-hand side
converges to a finite limit, the sequence /4 is locally uniformly bounded, so after passing to

(3.12) [hi], <CR™*

a subsequence, we may assume that it smoothly converges to a linearized Ricci-DeTurck flow
(hoo,t)te(—®,0] on Moo x (=0, 0] with

(3.13) a[hoo](Xoo, 0) = 1.

Case 1: Z =lim; o (|t;| + A;)K; = oo. Then passing (3.12) to the limit, we get
that _
|hoo| < CRRE
on My x (=@, 0]. Assume that 2¢ < E — 1. Forevery §’ > 0,if ® > O(§’, E), we may apply
Corollary 2.5 with E replaced by E — ¢ to obtain that

Hoo| <8'CRCRE  on P(xs0,0,1), m=0,....(8)"".

When § smaller than some constant depending only on C = C(E) and E, we may deduce
bounds on |[V™h%°|(x0, 0) that contradict (3.13).

Case2: Z =lim; ,(|t;| + A;)K; < 0co. We claim that then (Moo, (800,s) <0, Xoo)
must be isometric to the standard round shrinking cylinder with R(-,¢) = (1+2|¢|)~!. Assume
not. Then supy, R( RC1) would be uniformly bounded and therefore (|;| + A;) supys R(-, )
would be umformly bounded as well. By (3.2) this would imply that |¢;| remains bounded.
However, since A; — oo, we also must have sup,, R(-,#;) — 0, contradicting the fact that
|t; | remains bounded.

Passing (3.12) to the limit, we get that

(Z+O)R)E +1 (Z+0)a+2th)™HE +1
ZE +1 ZE +1 '
Assume in the following that ¢ < ¢(®) such that (1 + 20)¢ < 2. Then

(Z +0)1 +20)"HE 11

[Hoo| < CR™€ = C(1+2t)°

lim sup |E>o,t| <C(l+ 2®)C(

N\N—O ZE +1
(Z+DE +1 2B7E 1 2F 1] £
<20-~"—"——<2C <2C2% +1).
- ZE+1 ZE +1 =207+

By Lemma 3.6, if © is larger than some constant depending on C = C(E), then one has
A[hoo](X00,0) < %, contradicting (3.13). i
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By combining Claim 1 with Claim 2 for ¢ = 0 and observing that Q < «[h], we obtain
that Q < C* on M x [T, 0]. Therefore, we have

alh](-,0) < C*((AR(-,0)F +1),

which implies the first bound of the lemma for some C’ = C’(E), since R is uniformly
bounded. In order to prove the second bound, it suffices to show that O can be made arbi-
trarily small on {§ < R(-,0) <87} if T is chosen sufficiently large. To see this choose
xo € {8 < R(-,0) <§7!} and assume that Q(xg,0) > &’ > 0. We can inductively construct
a sequence of points (xg, fo) = (x0,0), (x1,11), ... by the following algorithm:

o Iftiy1 :=t; — OR™(x;,t;) < T, then stop the algorithm at (x;, ;).

* Otherwise, use Claim 2 with ¢ = ¢ to find a point x; 41 € M with
(REQ)(Xi41,ti+1) = 10(R Q) (xi. 1;).
So if (x;, t;) is defined, then (R Q)(x;,t;) > & and

(R°Q)(x0.0) < 107" (R°Q)(x;.;) < 107" max R°C*.
M x(—00,0]
It remains to show that the sequence (x;, t;) exist for large enough i if 7" is chosen sufficiently
large. To see this, note that whenever (x;, ;) is defined, we have

. . _ —1(y. 1) < O(xi,t;) /e C* 1/c
it = OK (x”f’)—®(m) EG)(7) ~

So for fixed i and sufficiently large 7', we have ;1 > —T and the algorithm can be continued.
O

4. The main argument

4.1. Choice of constants and terminology. In the following, we will define the scale
of a point x by p(x) := |[Rm|~Y/2(x) € (0, x].

We will first fix some constants, which we will use throughout this section. Let £ < oo be
the constant from [1, Theorem 1.7] (Strong Stability of Ricci flow Spacetimes) and fix £ > E.
Based on this choice, let gcan := can(E) > 0, again according to [1, Theorem 1.7].

We will now fix a constant m¢,, € N according to the following (trivial) lemma.

Lemma 4.1. There are constants D¢y < 00, Mean € N and €., > 0 such that the fol-
lowing holds.

Let (M, g, x) be a pointed Riemannian manifold and (M ,g,X) the pointed final time-
slice of a k-solution. Assume that there is a diffeomorphism onto its image

Y1 BM (%, Do) > M
such that ¥ (xX) = x and such that for A := p(x),

||A'_2w*g _EHCchan(Bﬁ(f’Dcan)) < géan'

Then (M, g) satisfies the &cu,-canonical neighborhood assumption at x.
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Let D be a constant, whose value will be determined later in Lemma 4.5. Using this
constant and the constant m¢,, € N, we now define a quantity B that measures the degree to
which a metric is locally O(3)-invariant.

Definition 4.2 (Pointed roundness). Let (M, g, x) be a complete, pointed Riemann-
ian manifold. We define (x) to be the infimum over all 8’ > 0 with the following property:
There is a pointed Riemannian manifold (Mg , X) that admits an isometric O(3)-action whose
generic orbits are 2-spheres, and such that BM (x, D) is relatively compact, as well as a diffeo-
morphism onto its image o

v :BME D)—> M
such that ¥ (x) = x and such that for A := p(x),

-2 — /
H/\ Vvrg — gHCmcan-i—lOO(Bﬁ(f,D)) <p.
If (M, g) is the time-¢-slice of a Ricci flow, then we will write 8(x, ¢) instead of B(x).

Note that f is an upper semi-continuous function. A standard limit argument yields:

Lemma 4.3. If =0on M, then (M, g) admits an isometric O(3)-action whose gen-
eric orbits are 2-spheres.

We will moreover use the following asymptotic roundness property of x-solutions.

Lemma 4.4. Let (M, (g;):<0) be a ic-solution on R3 or S3. In the case M ~ S3, we
additionally assume that Theorem 1.3 already holds for any k-solution on R3. Then there is
a sequence t; \y —oo such that supy, B(-,t;) — 0.

This lemma is the same as [3, Lemma 2.7].

Proof. The case M ~ R3 is a consequence of the rigidity discussion of Hamilton’s
Harnack inequality [6] and Brendle’s uniqueness result of the Bryant soliton among «-solutions
that are solitons [2]. The proof is the same as in [3], so we omit it here.

The case M ~ S3 follows from the fact that the flow is either homothetic to the shrinking
round sphere or any rescaling limit for # \ —oo is a shrinking round cylinder or is diffeomor-
phic to R3 and therefore rotationally symmetric by assumption. |

Lastly, we will also use:
Lemma 4.5. There are universal constants D, Cy < oo with the following property. Let

(M, g) be complete and supy; o < f* < Cy L Then there is a complete O(3)-invariant metric
g’ on M whose generic orbits are 2-spheres such that for allm = 0, ..., Mcuy + 90,

PV (&' = g)| = Cop™.
Proof. Standard gluing argument. |

4.2. The main stability estimate. Our main estimate will be the following proposition.



16 Bamler and Kleiner, On the rotational symmetry of 3-dimensional k-solutions

Proposition 4.6. Given any k-solution (M, (g:):<o) that is not a constant curvature
space form, we can find constants B > 0 and A < oo such that the following holds for any
(x,1) € M x (—o0,—A].

IfB<BonMx|[t—AR Y(x,1),1], then

1
B(x,t) < m sup B.
Mx[t—AR~1(x,t),t]

Proof. Fix (M, (g:)t<o0); choose Ei — 0, A; — oo. Assume that the statement of the
proposition was wrong and choose a sequence of counterexamples (x;,#;) € M x (—o0, —A;]
such that B < min{B;, 10B(x;,t;)} on M x [t — A; R~ (x;,1;),1;]. Let

git = R(Xi, 1i)&4 4 R-1(x; 1)t

be the parabolically rescaled flow on which R(x;,0) = 1. We will only work with the pointed
sequence of «-solutions (M, (gi,¢)r<o0,x;) from now on. After passing to a subsequence, we
may assume that the pointed flows (M, (gi)s<o,x;) smoothly converge to some limiting
pointed k-solution (Moo, (800,t)1<0, Xoo). This limit is non-compact since #; < —A; \( —00
and the «-solution (M, (g:):<o) was assumed not to have constant sectional curvature. More-
over, (Moo, (800,t)1<0. Xo0) 1 O(3)-invariant, because Ei — 0.

For each i let

Bii= sup  Bg <B; 0.
MX[_Ai 50]
Let T > 0 be a constant whose value we will determine later. By Lemma 4.5, we can find for
large i a complete O(3)-invariant metric g/ _,. on M such that form =0, ..., mcan + 90,
@.1) 0" (. =T)V"™ (g} _ — gi.—1)| = Cop}

Recall that Cy is a universal constant. Let M be the Ricci flow spacetime with initial condition
(M, glf,_T) on the time-interval [T, 0]. More specifically, we require M’ to be 0-complete
and satisfy the &’-canonical neighborhood assumption below some small enough scale for any
&’ > 0. The existence of M is guaranteed by [7].

We will now compare (M, (gi,1)se[-T,0]) With M and express M as a Ricci-DeTurck
flow on the background (g; )se[—T,0]. after modification by a family of diffeomorphisms.
Unfortunately, both flows may a priori differ significantly far away from x;, so we will only be
able to express M as a Ricci—DeTurck flow in a large parabolic neighborhood around x;.

In the following, we will apply the Strong Stability Theorem [1, Theorem 1.7] to com-
pare (M, (gi)) with the Ricci flow spacetime M. Note that the former can be viewed as
a Ricci flow spacetime, as explained in [1, sec 5]. Fix some arbitrary number § > 0 and choose
e =¢(8, T, E), where T is the constant from this proof. Then we can find a sequence of scales
r; — 0 such that

C() :81* = 87’l~2 E.

Set (with respect to g; )
Ui := {|Rmg,|(-.—T) < (er;) 2} C M.
Then on U;

E
18— — & _7| = Cof = er?® < er?® (Rmg,|(-.~T) +1)".
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For each i choose ¢ € [T, 0] maximal such that M restricted to the time-interval [T, )
satisfies the ecp-canonical neighborhood assumption at scales < 1. Set zi* := —T, if no such
maximum exists. Note that, since (M, (g;)) is a k-solution, it satisfies the &cyn-canonical
neighborhood assumption at all scales by definition. So all assumptions of the Strong Stability
Theorem hold on the time-interxal [-T,1) for ¢ = idy. By the Strong Stability Theorem, we
then obtain for each 7 a subset U; C M x [T, 1) such that

Rmg,| > 7% on M x [-T,t%) \ Ui
and a time-preserving diffeomorphism ai U i = M such that
hit = $?‘,tg§,, — &t
evolves by Ricci-DeTurck flow on M x [T, ) and such that

_ 8Co

(4.2) |hi] < 8r2E (Rmg, | + 1)E = BF (IRmg, | + DE.

e
Case 1: 7" = Oforlarge i. After passing to a subsequence, h; /B converges to a lin-
earized Ricci-DeTurck flow (hoo,s)se[—T,0] On the background flow (Meo, (g00,t) <0, Xoo)s
which is uniformly bounded due to (4.2). By standard local parabolic derivative estimates
(see for example [1, Lemma A.14]) and Arzela—Ascoli, we may assume that the convergence
hit/BF — E,o,t is locally smooth on Mo, x (=T, 0] and is locally C <80 on Moo x [T, 0].
Moreover, by (4.1) we have form = 0,. .., mca + 80,

P (-, =T)|V"hoo —1| < Co.

Let n > 0 be a constant whose value will be determined later and apply Proposition 3.1,
assuming that 7" is large enough depending on 1, D, mcan, Co. This yields the following decom-
position on B(Xeo,0,2D): _

hooo = h§' + V2 f + .
where /" is rotationally symmetric with respect to the standard O(3)-action on (M, goo,0),

f € C®(B(xe0,0,2D)) and ||h, ol ¢men+100(B(xos,0,2D)) = -
Define the maps y; : B(Xo0,0,2D) — M by

xi(2) := exp, (,3,* . %sz).

Since B — 0, the restrictions x;|p(x.,,0,1.9p) are diffeomorphisms onto their images for
large i, which smoothly converge to the identity. Define the metrics

gl = X7 (goo,0 + BT HGY)
on B(Xxs0,0,1.9D). Then, as i — oo,

1 1
g (87— (@oo0 + AINGY) = 55 (27 8000 — Bo0.0) + AT MG — 5" = Ly p8oo0 = a2
i i
It follows that
(¢;k,0gz/‘,0 - gz*) = E(‘pzog:‘,o — (800,0 + ﬁ?h{)m)) - F(gl* — (8000 + ﬂ;khmt))
1 l
1
=—h
B}

1
h

rot 2 /
i0—hg = V7f = hy o
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So, assuming that 7 is smaller than some universal constant, we obtain that B(x;,0) < 1—10 B
for sufficiently large 7, in contradiction to our choice of x;.

Case 2: After passing to a subsequence tli" < Oforalli. Recallthatforeachi the flow
M/ satisfies the e.,,-canonical neighborhood assumption below some positive scale r/ > 0. So
by the maximality of #* and an openness argument, we can find a point y; € M, tr of scale
p(yi) < 2 in the time-¢*-slice that violates the 8“‘“ -canonical neighborhood assumptlon After
rescaling the flow M parabohcally by p2(yi) and applying a time-shift so that the point y;
is contained in the time-0-slice and has scale 1, we obtain a sequence of singular flows M on
time-intervals of the form [—T7*, 0] that satisfy the &.,,-canonical neighborhood assumption at

2

scales < =.
0i

Case 2a: After passing to a subsequence, Ty, :=lim; o T i* exists. Similarly as in
Case 1, we can apply the Strong Stability Theorem to compare the each flow M with the cor-
respondingly parabolically rescaled and time-shifted flow (M, (,ol.2 gitr+ pi_zt)te[_Ti*,O]). Since
(4.1) remains preserved under rescaling and 8* — 0, the Strong Stability Theorem yields that
a larger and larger neighborhood of y; in M, becomes closer and closer to an open subset
in (M, p?git*) in the C™=nt8% genge. Since (M P7g;. 1#) is a time-slice of a x-solution, this
contradicts the choice of y; for large i via Lemma 4.1.

Case 2b: T i* — 00. In this case we must have lim; s, p; = 0. Assuming that &,y is
smaller than some universal constant, we can argue as in [8, 12.1] to show that, after pass-
ing to a subsequence, the pointed flows (M7, y;) smoothly converge to a pointed ancient
non-singular flow (Mg, (g5 ¢)<0, Yoo) With non-negative sectional curvature that satisfies
the 2&.4n-canonical neighborhood assumption at all scales. Therefore (M7, (g/o/o’,), <0, Yoo) 18
a k-solution, in contradiction to the choice of y; for large i. m)

4.3. Proof of Theorem 1.3.

Proof of Theorem 1.3. It suffices to consider the case in which (M, (g;):<o) is not the
quotient of a round sphere or a round cylinder. Therefore M is must be diffeomorphic to R3, §3
or R P3. By passing to the double cover, the case R P3 can be reduced to the case S3. So, we
only need to consider the case in which (M, (g;)s<o) is diffeomorphic to R3 or S3, but not the
shrinking round sphere. By proving the theorem first in the R3-case, we may moreover assume
that the theorem is already true in this case when proving the case M ~ §3. Thus Lemma 4.4
will be applicable in both cases.

Define 8 : M x (—o00,0] — R as in Definition 4.2 and let B, A be the constants from
Proposition 4.6.

Choose B’ € (0, B]. We will show in the following that 8 < 8’ on M x (—o0,0]. By
letting 8 — 0, this will imply that 8 = 0, which implies rotational symmetry by Lemma 4.3.

By Lemma 4.4 there is a sequence #; \, —oo such that

4.3) supB(-,t;) — 0.
M

Fix some large i for which sup,, B(-,#;) < B’ and choose #* > t; maximal such that < g’
on M x [t t}).
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If t* = 0 for infinitely many i, then B < B’ everywhere and we are done. So assume that
<0 for large i. In the following we will only consider such indices i. By maximal choice
of t* and the upper semi-continuity of 3, there is a point y; € M such that B(y;,?) > B
Next, we argue that
ll-* - < AR_I(y,-,t,-).

In fact, if the opposite inequality were true, then we could apply Proposition 4.6 (recall that

B’ < B) and conclude that B(y, t¥) < %, in contradiction to the choice of y;.

Letnow Q; := R(y;.t]"). After passing to a subsequence, we may assume that
T := lim (l‘l-* —1)0;
1—>00

exists and that the pointed and parabolically rescaled flows (M, (Q;g:*+0;'t)1<0, yi) con-
verge to a pointed k-solution (Mo, (800,t)1<0, Yoo). By (4.3) we obtain that goo, 7 is rota-
tional symmetric. So goo,0 must be rotational symmetric as well, in contradiction to the choice
of y; for large i. |
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