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On the rotational symmetry of 3-dimensional
�-solutions

By Richard H. Bamler at Berkeley and Bruce Kleiner at New York

Abstract. In a recent paper, Brendle showed the uniqueness of the Bryant soliton among
3-dimensional �-solutions. In this paper, we present an alternative proof for this fact and show
that compact �-solutions are rotationally symmetric. Our proof arose from independent work
relating to our Strong Stability Theorem for singular Ricci flows.

1. Introduction

In his celebrated paper [8], Perelman characterized the singularity formation of 3-dimen-
sional Ricci flows. More specifically, he proved that singularities are always modeled on �-solu-
tions, which he classified in a qualitative way. Roughly speaking, such solutions are either
quotients of the round shrinking sphere or cylinder or they are diffeomorphic to R3; S3 or
RP 3 and contain large regions that are asymptotically cylindrical. A prominent example in the
R3-case is the Bryant soliton, which is rotationally symmetric. In [8], Perelman conjectured
that the Bryant soliton is the only �-solution on R3.

In a series of papers [2, 3], Brendle proved this conjecture (see also related results on
the mean curvature flow of Brendle and Choi [4, 5]). First, in [2] he proved uniqueness of the
Bryant soliton under the additional assumption that the �-solution is a soliton. Second, in [3]
he showed the following two theorems, which imply Perelman’s conjecture.

Theorem 1.1. Any rotationally symmetric �-solution on R3 is homothetic to the Bryant
soliton.

Theorem 1.2. Any �-solution on R3 is rotationally symmetric.

Here rotationally symmetric means that the solution admits an isometric O.3/-action
whose principal orbits are 2-spheres. The proof of Theorem 1.2 relies on the earlier uniqueness
theorem from [2] and on Theorem 1.1.

The corresponding author is Bruce Kleiner.
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In the same paper, Brendle remarks that the techniques in his paper can be adapted to the
compact case, thereby proving:

Theorem 1.3. Any 3-dimensional �-solution is either rotationally symmetric or homo-
thetic to a quotient of the round shrinking sphere.

In this paper we offer an alternative proof of Theorem 1.3. This proof arose from inde-
pendent work on questions relating to singular Ricci flows and their strong stability properties.
Our primary motivation is to share this different approach with the community since the ideas
may be useful in other contexts. We also want to provide a detailed argument covering both the
compact and non-compact cases. We emphasize that we acknowledge Brendle’s prior solution
to this problem and note, moreover, that our argument relies on Brendle’s Theorem 1.1.

We now give a brief sketch of our argument. Like Brendle’s proof, our proof relies on
a stability result that states that the degree of rotational symmetry improves as we move forward
in time. We establish this stability property in two steps. In Section 3, we first consider the
linearized problem and show that rotational symmetry is stable under the flow modulo a few
modes, which can be removed by reparameterization. In Section 4, we use a limit argument
and the Strong Stability Theorem for Ricci flow spacetimes from our paper [1] to reduce the
non-linear case to the linear case.

Both steps of our proof are different from Brendle’s approach. For example, we employ
a different iteration scheme that allows us to avoid having to localize several estimates in the
linear and non-linear cases. As a result we do not have to deal with error terms arising from
the boundary. In addition, we use of the Strong Stability Theorem to directly compare metrics
with rotationally symmetric ones. This approach replaces Brendle’s analysis of approximate
Killing fields.

2. Preliminaries

2.1. The Ricci–DeTurck equation and its linearization. We briefly recall the Ricci–
DeTurck equation. For more details we refer to [1, Appendix A] (where the same notation is
used) or [9]. Let .gt /t2Œt1;t2� and .g0t /t2Œt1;t2� be Ricci flows on a manifoldsM;M 0, respectively
and consider a family of diffeomorphisms .�t WM 0 !M/t2Œt1;t2�, evolving by the harmonic
map heat flow

àt�t D 4g 0t ;gt
�t D

nX
iD1

�
r
gt

d�t .ei /
d�t .ei / � d�t .r

g 0t
ei
ei /
�
;

where ¹eiºniD1 is a local frame field on M 0 that is orthonormal with respect to g0t . Then the
pullback

gt C ht WD
�
��1t

��
g0t � gt

satisfies the Ricci–DeTurck equation

àt .gt C ht / D �2Ric.gt C ht / �LXgt .gtCht /.gt C ht /;

where the vector field Xgt
.gt C ht / is defined by

Xg.g
�/ WD 4g�;g idM D

nX
iD1

�
r
g
ei
ei � r

g�

ei
ei
�
;
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for a local frame ¹eiºniD1 that is orthonormal with respect to g�. The Ricci–DeTurck equation
has the following analytical structure:

(2.1) ràtht D 4gt
ht C 2Rmgt

.ht /CQgt
Œht �;

where the left-hand side uses Uhlenbeck’s trick

.ràtht /ij D .àtht /ij �
1

2
gpq

�
hpj àtgqi C hipàtgqj /;

.Rmgt
.ht //ij D g

pqRpij
uhqu

and the last term has the structure

Qgt
Œht � D

�
.gCh/�1�g�1

�
�
�
r
gt ;2hCRmgt

�ht /C .gCh/
�1
� .gCh/�1�rgth�rgth:

The linearization of (2.1) is called the linearized Ricci–DeTurck equation

(2.2) ràtht D 4gt
ht C 2Rmgt

.ht /:

The following fact, which has also been used in [2, 3], will be important for us.

Lemma 2.1. If w WM � Œt1; t2�! R solves the heat equation àtw D 4gt
w on a Ricci

flow background .M; .gt /t2Œt1;t2�/, then its Hessian ht WD r2wt solves (2.2) on the same Ricci
flow background.

Proof. Let .Xt /t2Œt1;t2� be a time dependent vector field that evolves by the heat equa-
tion

(2.3) ràtX D 4gt
X:

Then in any orthonormal frame

ràtriX
j
� riràtX

j
D P�

j

ik
Xk CRik rkX

j
CriRjk X

k

D �rkRij X
k
CrjRik X

k
CRik rkX

j ;

while
4riX

j
� ri4X

j
D �2Riklj rkX

l
CRik rkX

j
� rlRilkj X

k :

Combining both equations and applying the second Bianchi identity yields

ràtriX
j
�4riX

j
D �2Riklj rkX

l :

So ht WD LXt
gt solves (2.2). Lastly, observe that by the Bianchi identity X WD 1

2
rgtw solves

(2.3). So ht D 1
2
Lrwt

gt D r
2wt solves (2.2).

2.2. Linearized Ricci–DeTurck flow on the round cylinder. We show that bounded
ancient solutions to the linearized Ricci–DeTurck flow on the round cylinder must be Hessians
of a very special form. This will be used in the proof of Proposition 3.1. We remark that the
following results are similar to [3, Proposition 6.1].

In order to facilitate the proof of decay using eigenspace decompositions, we will make
use of appropriate L2-type norms.
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Definition 2.2 (FiberwiseL2-norm). Let .S2�R; .gt /t2.�1;0�/ be the shrinking round
cylinder, and suppose .ht /t2I is a 2-tensor field defined on a time interval I . Then for t 2 I ,
the (normalized) fiberwise L2-norm of ht at r 2 R is

khtkL2.S2�¹rº/ WD

�
1

jS2 � ¹rºj

Z
S2�¹rº

jht j
2 dV

� 1
2

;

where dV and jhj denotes the Riemannian measure and Riemannian norm induced by gt ,
respectively.

Lemma 2.3 (Partial vanishing on the cylinder). Let .ht /t2I be a linearized Ricci–
DeTurck flow on a shrinking round cylinder .S2�R; .gt /t2.�1;0//, with gt D dr2C2jt jgS2 .
Assume that the average of h under the standard O.3/-action vanishes. Then:

(a) supr2R khtkL2.S2�¹rº/ is a non-increasing function of t .

(b) If inf I D �1 and sup.r;t/2R�I khtkL2.S2�¹rº/ <1, then

h D .a1u1 C a2u2 C a3u3/ gS2 ;

where u1; u2; u3 are the coordinate functions on S2 � R3 and a1; a2; a3 2 R.

Proof. This follows from separation of variables and the maximum principle.
The linearized Ricci–DeTurck equation has the form

ràtht D �tht C Rmt .ht / D �
S2

t ht Cr
2
àr ;àrht C Rmt .h/(2.4)

D r
2
àr ;àrht C jt j

�1.�S
2

�1ht C Rm�1.h//:

We have two decompositions of the space �.s2T �.S2 �R// of symmetric 2-tensor fields: the
decomposition

�.s2T �.S2 �R// D �.s2R�/˚ �.s2.T �S2//˚ �.T �.S2/˝ T �R/

induced by the bundle decomposition

s2.T �.S2 �R// ' s2R� ˚ s2.T �S2/˚ .T �.S2/˝ T �R/;

and the decomposition h D
P
j hj induced by the eigenspace decomposition for the fiber

Laplacian �S
2

�1. Straightforward computation shows that these decompositions are compati-
ble with one another, and also with both the linearized Ricci–DeTurck flow and the fiberwise
L2-metric. So it suffices to verify the lemma when h lies in a single summand of each of the
decompositions.

Case 1: h 2 �.s2T �R/˚ �.T �S 2 ˝ T �R/ belongs to the �-eigenspace of �S 2

�1
.

Then Rm.h/ � 0 because iàr Rm D 0, and � > 0 since the zero eigenspace of �S
2

�1 inter-
sects �.s2T �R/˚ �.T �S2 ˝ T �R/ in the rotationally symmetric tensors, which vanish by
assumption. The maximum principle applied to equation (2.4) now gives assertion (a), and if
I D .�1; t0/, then h � 0.

Case 2: h 2 �.s2.T �S 2// belongs to the �-eigenspace of �S 2

�1
. Then h further de-

composes as h D hscalar C htraceless, where hscalar D �gS2 and htraceless is traceless. Further-
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more, this decomposition is invariant under linearized Ricci–DeTurck flow.

� If h D htraceless, then Rm.h/ D �1
2
h, so applying the maximum principle as in Case 1 we

are done.

� If h D hscalar, then Rm.h/ D 1
2
h.

� If � < �1, then we are done by the maximum principle.

� If � � �1, then one has � D �1, because the case � D 0 is excluded by the fact that the
O.3/-average of h vanishes.

Hence (2.4) reduces to the direct sum of three copies of the standard heat equation. Now asser-
tion (a) follows from the maximum principle, while if I D .�1; t0/, then ràrh � àth � 0 by
a gradient estimate.

2.3. A semilocal maximum principle. In this subsection we restate the semilocal max-
imum principle from [1, Proposition 9.1] in a slightly different form for the case in which the
background flow is a �-solution and the perturbation h evolves by the linearized Ricci–DeTurck
flow.

Proposition 2.4 (Semilocal maximum principle). For any E > 1 there are constants
L D L.E/;H D H.E/; C D C.E/ <1 such that the following holds.

Let .M; .gt /t�0/ be a �-solution, T < 0 and .x0; t0/ 2M � Œ�T; 0�. Consider the para-
bolic neighborhoodPL.x0; t0/ WD P.x0; t0; LR�1=2.x0; t0// and let .ht /t2Œ�T;0� be a solution
to the linearized Ricci–DeTurck flow equation (2.2) on PL.x0; t0/ \M � Œ�T; 0�. Then for any
a � 0 we have�

e�Hat
jhj

RE C aE

�
.x0; t0/ �

1

100
sup

PL.x0;t0/\M�Œ�T;0�

e�Hat
jhj

RE C aE
(2.5)

C C sup
PL.x0;t0/\M�¹�T º

e�Hat
jhj

RE C aE
:

If PL.x0; t0/ \M � ¹�T º D ;, then the last term can be omitted.

Proof. The proof is similar to that of [1, Proposition 9.1] and essentially follows by
rescaling the factor a. For convenience of the reader we provide a proof here.

After applying a time-shift and parabolic rescaling, we may assume without loss of gen-
erality that t0 D 0 and R.x0; 0/ D 1. Fix E > 1 and Li ;Hi ; Ci !1 and consider a sequence
of counterexamples .hi;t /t2Œ�Ti ;0�, .Mi ; .gi;t /t�0/, .xi ; 0/ 2Mi � Œ�Ti ; 0�, ai � 0 with the
property that R.xi ; 0/ D 1. After multiplying .hi;t /t2Œ�Ti ;0� by a scalar, we may assume that

(2.6) jhi j.xi ; 0/ D 1:

Next, we may assume that the .Mi ; .gi;t /t�0/ are �-solutions for some uniform � > 0, because
otherwise the flows .M i ; .gi;t /t�0 would be quotients of the round shrinking sphere for large i
(see [1, Lemma C.1 (a)]) and we could pass to the universal covers. So, after passing to a sub-
sequence, we may assume that the pointed flows .Mi ; .gi;t /t�0; xi / smoothly converge to
a pointed �-solution .M1; .g1;t /t�0; x1/. Lastly, after passing to a subsequence, we may
assume that the limits a1 WD limi!1 ai 2 Œ0;1� and T1 WD limi!1 Ti 2 Œ0;1� exist.
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The assumption that the tensor fields .hi;t /t2Œ�Ti ;0� are counterexamples to (2.5) implies

sup
PLi

.xi ;0/\Mi�Œ�Ti ;0�

e�Hiai t
jhi j

RE C aEi
� 100

1

1C aEi
;

sup
PLi

.xi ;0/\Mi�¹�Ti º

e�Hiai t
jhi j

RE C aEi
� C�1i

1

1C aEi
:

We can now argue as in the proof of [1, Proposition 9.1] that T1 D1 and that, after passing to
a subsequence, the tensor fields .hi;t /t2Œ�Ti ;0� converge to a solution .h1;t /t2.�1;0� of the lin-
earized Ricci–DeTurck equation on .M1; .g1;t /t�0/. If a1 > 0, then limi!1 e�Hiai t D 0

for all t < 0 and therefore h1 � 0, which contradicts (2.6). On the other hand, if a1 D 0,
then (2.6) implies jh1j � C 0RE for some C 0 <1. Together with the Vanishing Theorem
[1, Theorem 9.8], this implies h1 � 0, again contradicting (2.6).

Corollary 2.5. For every 1 < E <1 and ı > 0 there is a constant L0 <1 such that
if .M; .gt /t�0/ is a �-solution, .ht / is a linearized Ricci–DeTurck flow on the parabolic ball
PL.x0; t0/ WD P.x0; t0; LR

�1=2.x0; t0//, then

R�E jhj.x0; t0/ � ı sup
PL.x0;t0/

R�E jhj :

Proof. This follows by iterating Proposition 2.4 with a D 0.

3. A Partial Vanishing Theorem for the linearized Ricci–DeTurck flow
on �-solutions

In the following we will consider 3-dimensional rotationally symmetric �-solutions
.M; .gt /t�0/, i.e. solutions that are invariant under an O.3/-action whose principal orbits are
2-spheres. Our goal will be to analyze the linearized Ricci–DeTurck flow on these solutions
and to deduce that this flow decays modulo certain well-understood modes.

As .M; .gt /t�0/ is assumed to be rotationally symmetric, the possible topological types
of M are S2 �R;R3; S3;RP 3. In this section, we will only focus on the non-compact cases,
i.e. the casesM � R3 or S2 �R. Here we equip R3 and S2�R with the standardO.3/-action.
It is a well known fact that in the case M � S2 �R, the flow is homothetic to the round
shrinking cylindrical flow gt D dr

2 C 2jt jgS2 .
We can express gt as a warped product of the following form, away from the center of

rotation if M � R3:

(3.1) gt D p
2.r; t/dr2 C q2.r; t/gS2 :

The symmetric .0; 2/-tensors h that are invariant under theO.3/-action always take the similar
form

h D ep2.r/dr2 Ceq2.r/gS2 :

We will refer to such tensors from now on as rotationally invariant. In the following we will
also consider the three coordinate functions u1; u2; u3 2 C1.S2/ for the standard embedding
S2 � R3. We will often view these functions as smooth functions on S2 �R or R3 n ¹0º. So
u1; u2; u3 are constant in time and along radial geodesics.



Bamler and Kleiner, On the rotational symmetry of 3-dimensional �-solutions 7

The following proposition is the main result of this section. It is similar to the Vanishing
Theorem [1, Theorem 9.8]. The main difference is that we only assume uniform bounds on
h on the initial time-slice, without any weight. As a result, we can only control h at later
times modulo certain modes, which are either rotationally invariant or can be expressed as the
Hessian of a scalar function.

Proposition 3.1. Let .M; .gt /t�0/ be a rotationally symmetric �-solution diffeomor-
phic to R3 or S2 �R and let m 2 Z, � > 0 and C;D <1. Then there is a positive constant
T D T .m; �; C;D; .gt // <1 such that the following holds.

Let .ht /t2Œ�T;0� be a uniformly bounded solution to the linearized Ricci–DeTurck flow
(2.2) on .M; .gt /t�0/ and assume that R.x; 0/ D 1 for some x 2M . Assume that

jr
mh�T j � CR

m=2

on M for all m D 0; : : : ; 3. Then on B.x; 0;D/ we have a decomposition of the form

h0 D h
rot
0 Cr

2
�
f1.r/u1 C f2.r/u2 C f3.r/u3

�
C h00;

where:

(a) hrot
0 is rotationally invariant.

(b) f1.r/u1 C f2.r/u2 C f3.r/u3 is smooth on B.x; 0;D/. This implies in particular that
f1.r/; f2.r/; f3.r/ vanish at the origin in the R3-case.

(c) kh00kCm.B.x;0;D// � �.

The proof of Proposition 3.1 uses the following fact:

(3.2) lim
t!�1

jt jmax
M

R. � ; t / D1 if M � R3:

This fact holds due to Theorem 1.1, which is due to Brendle. We remark that with some extra
work it is possible to remove the dependence on (3.2), hence making the proof of Theorem 1.3
independent of Theorem 1.1.

Before carrying out the proof of Proposition 3.1, we first introduce some general ter-
minology and establish some preliminary lemmas. For the remainder of this section, we will
always assume that we are in the setting of Proposition 3.1.

Averaging via the isometric O.3/-action yields a decomposition

ht D h
rot
t C h

osc
t ;

where hrot
t is rotationally invariant and the average of hosc

t under theO.3/-action vanishes. Both
components still solve the linearized Ricci DeTurck flow equation. It therefore remains to prove
Proposition 3.1 in the case in which ht D hosc

t , with the additional assertion that hrot
0 � 0.

Next, we find a decomposition of ht of the form

(3.3) ht D h
3d;1
t C h

3d;2
t C h

3d;3
t C hrest

t :

Here the first three terms describe the component of hosc
t corresponding to the 3-dimensional

representation of O.3/. More specifically, assume that the O.3/-action on M is described by



8 Bamler and Kleiner, On the rotational symmetry of 3-dimensional �-solutions

the family of diffeomorphisms .�A WM !M/A2O.3/. Then for j D 1; 2; 3 we define h3d;j
t to

be the image of ht under the projection

(3.4) h 7!
1

jO.3/j

Z
O.3/

hAEej ; Eej i�
�
Ah dA;

where we integrate with respect to a bi-invariant measure on O.3/. We also set

hrest
t WD ht �

3X
jD1

h
3d;j
t :

Then h3d;j
t and hrest

t solve the linearized Ricci–DeTurck equation and the image of hrest
t under

the projections (3.4) vanishes. Due to the decomposition (3.3) it suffices to prove Proposi-
tion 3.1 separately for the following two cases:

(A) hrot
t � 0 and ht D h

3d;j
t for some j D 1; 2; 3.

(B) hrot
t � 0 and ht D hrest

t .

So let us assume without loss of generality that Case (A) or (B) holds. Case (A) will be more
subtle and we will mostly focus on this case. Case (B) will follow along the lines with small
modifications and omissions of several technical details. We will point out these differences in
the course of the proof.

Let us now consider Case (A). We first need to analyze the structure of the components
of ht D h

3d;j
t more carefully. For this purpose, fix some t 2 Œ�T; 0� and reparameterize the

radial parameter r such that the representation (3.1) simplifies to gt D dr2 C q2.r/gS2 . Let
�j WD q duj and �j WD q .�duj /, where the star operator is taken fiberwise with respect to
the standard metric on S2. Note that the maximum of j�j jgt

D j�j jgt
on each cross-sectional

2-sphere is equal to 1.

Lemma 3.2. We have on S2 �R or R3 n ¹0º

ht D h
3d;j
t(3.5)

D aj .r/uj dr
2
C bj .r/uj gS2 C cj .r/ .�j dr C dr �j /

C dj .r/ .�j dr C dr �j /;

for some smooth radial functions aj .r/; bj .r/; cj .r/; dj .r/, which extend to smooth odd func-
tions across the origin if M � R3.

Proof. In the following, we will omit the index t . It suffices to verify the characterization
(3.5) along a single S2-fiber. Along such a fiber we can write h D fdr2 C .� dr C dr �/C hk,
where f 2 C1.S2/, � is a 1-form and hk is a symmetric 2-tensor on S2. Note that f , � and
hk are contained in the image of the projection (3.4), where �A denotes the standard action on
S2 and the pullback has to be taken within the appropriate category. It remains to prove that f
is a multiple of uj , � 2 span¹�j ; �j º and hk is a multiple of ujgS2 . This follows from standard
representation theory.

More specifically, let us consider a 3-dimensional representation of O.3/ of the form
span¹�1; �2; �3º, where �j are tensor fields on S2 of arbitrary degree. Assume that the �j are
chosen so that there is an equivariant map span¹�1; �2; �3º ! R3, with �j 7! ej , where O.3/
acts on R3 in the standard way. Then �j must be invariant by rotations along the Rej -axis and
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�j restricted to any great circle passing through ˙ej must satisfy the ODE � 00j D ��j . If �j
is a scalar function or a symmetric 2-tensor, then restricted to any great circle passing through
˙�j it must be even across˙ej . If �j is a 1-form, then it must be odd. These properties uniquely
determine �j up to a multiplicative constant.

Given the coefficient functions aj .r/; bj .r/; cj .r/; dj .r/, we define

Fjht D
.àrq/q2cj � bj
1 � .àrq/2

:

Note that Fj is a zeroth order linear operator on S2 �R or R3 n ¹0º, respectively and Fjht is
a smooth radial function where defined.

Lemma 3.3. The product .Fjht /uj extends to a smooth radial function on M .

Proof. If M � R3, then bj .r/ is an odd function that vanishes to at least second order.
Moreover, since .M; gt / has strictly positive sectional curvature, à3r q.0/ ¤ 0. It follows that
Fjht extends to a smooth odd function across the origin, which implies the statement of the
lemma.

Lemma 3.4. For any smooth radial function f .r/ that extends to a smooth odd function
across the origin when M � R3, the Hessian r2.f uj / is of the form (3.5) and we have

Fj
�
r
2.f uj /

�
D f:

Proof. An elementary computation shows that

r
2.f uj / D .à2r f /uj dr

2
C .�f q�2 C .àrq/q�1àrf /q2 ujgS2

C ..àrf /q�1 � f .àrq/q�2/ .�j dr C dr �j /:

Motivated by the previous lemma, we define in Case (A)

˛Œht � WD
ˇ̌
ht � r

2
�
.Fjht /uj

�ˇ̌
:

So ˛Œht � measures the deviation of ht from being a Hessian of a specific form. In Case (B), we
simply set ˛Œht � WD jht j.

Lemma 3.5. Assume that we are in Case (A) and assume that ˛Œht� � is uniformly
bounded for some t� 2 Œ�T; 0�. Then .Fjht�/uj is a smooth scalar function on M that grows
at most quadratically at infinity. Let .wt /t2Œt�;0� be the solution to the heat equation with initial
condition wt� D .Fjht�/uj . Then eht WD ht � r2wt
is a uniformly bounded solution to the linearized Ricci–DeTurck flow with ˛Œeh� D ˛Œh� on
M � Œt�; 0� and jeht� j D ˛Œeht� �.

Proof. The fact that wt� D .Fjht�/uj is smooth follows from Lemma 3.3. Next, note
that jr2wt� j � jht�j C ˛Œht� � is uniformly bounded. So wt� grows at most quadratically
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at infinity and jr2wj remains uniformly bounded on M � Œt�; 0�. Lemma 2.1 implies that
ht � r

2wt solves the linearized Ricci–DeTurck flow. Next, Lemma 3.4 yields

.Fjeht /uj D �Fj .ht � r2wt /�uj D .Fjht /uj � wt ;
which implies that ˛Œeht � D jeht � r2..Fjht /uj /Cr2wt j D ˛Œht �. The last statement follows
by definition of ˛.

Lemma 3.6. For every ı > 0 there is a ‚ D ‚.ı/ <1 such that if .ht /t2Œ�‚;0� is
a bounded linearized Ricci–DeTurck flow on the shrinking round cylinder .S2 �R; .gt /t�0/
with R. � ; 0/ D 1 and hrot � 0, then ˛Œh�.x; 0/ � ı supM jh�‚j.

Proof. Suppose not. Then for some ı > 0, there is a sequence ‚i !1 and for every i
a linearized Ricci–DeTurck flow .hi;t /t2Œ�‚i ;0� such that ˛Œhi �.x; 0/ � ı, supM jhi;�‚i

j � 1.
Using the fiberwise L2-norm (see Definition 2.2), we have

(3.6) sup
r2R
khi;�‚i

kL2.S2�¹rº/ � sup
S2�R

jhi;�‚i
j � 1;

so by assertion (a) of Lemma 2.3 we have

sup
.r;t/2R�Œ�‚i ;0�

khi;tkL2.S2�¹rº/ � 1:

By (3.6) we may extract a limiting linearized Ricci–DeTurck flow .h1;t /t�0 such that

(3.7) ˛Œh1�.x; 0/ � ı and sup
.r;t/2R�.�1;0�

kh1;tkL2.S2�¹rº/ � 1:

By assertion (b) of Lemma 2.3 and Lemma 3.4 we would haver2.
P3
jD1.Fjh1;0/uj /D h1;0,

and hence ˛Œh1;0� � 0, contradicting (3.7).

The following lemma will reduce the proof of Proposition 3.1 to two elementary bounds
on ˛Œh�.

Lemma 3.7. For any m 2 N, � > 0 and D;C 0 <1 there is a ı D ı.m; �;D;C 0/ > 0
such that the following holds.

If ˛Œh�. � ;�1/ � C 0 onM and ˛Œh�. � ;�1/ � ı on ¹ı � R. � ;�1/ � ı�1º, then the con-
clusion of Proposition 3.1 holds.

Proof. As discussed earlier, we may assume that we are either in Case (A) or in Case (B).
Assume that the lemma was wrong for some fixed m; �;D;C 0 and pick a sequence of coun-
terexamples .hi /t2Œ�1;0� for a sequence ıi ! 0. In Case (A) setehi;t WD hi;t � r2wi;t , where
.wi;t /t2Œ�1;0� is a solution to the heat equation with initial condition wi;�1 D .Fjhi;�1/uj , as
explained in Lemma 3.5. In Case (B) setehi;�1 WD hi;�1. Then

jehi;�1j � C 0 on M and jehi;�1j � ıi on ¹ıi � R. � ;�1/ � ı�1i º:

It now follows from a standard limit argument thatehi;0 ! 0 locally uniformly in Cm, which
implies assertion (c) of Proposition 3.1 for h00 Dehi;0 for large i , in contradiction to our assump-
tion.

Due to Lemma 3.7, Proposition 3.1 is a consequence of the following lemma.
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Lemma 3.8. Let .M; .gt /t�0/ be a rotationally symmetric �-solution diffeomorphic to
R3 or S2 �R and let ı > 0. Then there are constantsC 0 D C 0.gt /; T D T .ı; .gt // <1 such
that the following holds.

Suppose .ht /t2Œ�T;0� is a uniformly bounded solution to the linearized Ricci–DeTurck
flow with jrmh�T j � Rm=2 for all m D 0; : : : ; 3. Assume that the assumptions of Case (A)
or (B) hold. Then

˛Œh�. � ; 0/ � C 0 on M and ˛Œh�. � ; 0/ � ı on ¹ı � R. � ; 0/ � ı�1º:

Proof. Note that in the cylindrical case, the lemma is a direct consequence of Lem-
ma 3.6. So it suffices to consider the case M � R3.

Fix ı and .M; .gt /t�0/ for the remainder of the proof. The constant T will be deter-
mined in the end of this proof. Assume that .ht /t2Œ�T;0� is given and consider the isometric
O.3/-action on .M; .gt /t�0/.

Claim 1. For any ‚ <1 there is a constant C � D C �.‚/ <1 such that for all
.x; t/ 2M � Œ�T; 0� with t �‚R�1.x; t/ � �T we have ˛Œh�.x; t/ � C �.

Proof. Fix some E 0 > 1 and choose H D H.E 0/ according to Proposition 2.4. Let
a D R.x; t/ and consider the quantity

Q0 WD e�Hat
jhj

RE
0
C aE

0 :

Choose .y; s/ 2M � Œ�T; 0� such that 2Q0.y; s/ > S WD supM�Œ�T;0�Q
0. Then, by Proposi-

tion 2.4 we have
S < 2Q0.y; s/ �

2

100
S C 2C sup

M

Q0. � ;�T /;

whereC DC.E 0/. So S � 4C supM Q0. � ;�T /. This implies that for any .x0; t 0/2M�Œ�T; t �,

jhj.x0; t 0/

2RE
0
.x0; t 0/

� 4CeH‚ �
1

RE
0
.x0; t 0/

:

So jhj � 8CeH‚ on M � Œ�T; t �. Using the derivative bounds of h at time �T and standard
local derivative estimates (see for example [1, Lemma A.14]), we can upgrade this bound to
a derivative bound at time t and therefore, we obtain a bound on ˛Œh�.x; t/.

Fix some arbitrary constant E > 1 and let A <1 be a constant that will be determined
in the following claim. Consider the following quantity on M � Œ�T; 0�:

Q WD
˛Œh�

..jt j C A/R/E C 1
:

Claim 2. There are constants‚ D ‚.E/;A D A.E/ <1 and c D c.E/ > 0 such for
any .x; t/ 2M � Œ�T; 0� with t� WD t �‚R�1.x; t/ � �T and c 2 Œ0; c� we have

(3.8) .QRc/.x; t/ �
1

10
sup
M

.QRc/. � ; t�/:

Proof. The constant ‚ <1 will determined in the end of the proof, depending only
onE. The constant c will be determined in the course of the proof, depending only onE and‚.
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Assume that the statement was wrong for fixed ‚, choose Ai !1 and consider solutions
.hi;t /t2Œ�Ti ;0� to the linearized Ricci–DeTurck flow, as well as points .xi ; ti / 2M � Œ�Ti ; 0�
where (3.8) is violated. By linearity we may assume without loss of generality that

˛Œhi �.xi ; ti / D 1:

Set Ki WD R.xi ; ti / and t�i WD ti �‚K
�1
i � �Ti . In Case (A) set

ehi;t WD hi;t � r2wi;t ;
where .wi;t /t2Œt�

i
;0� is a solution to the heat equation with initial conditionwi;t�

i
D .Fjhi;t�

i
/uj ,

as explained in Lemma 3.5. In Case (B) setehi;t WD hi;t . Then ˛Œehi �.xi ; ti / D ˛Œhi �.xi ; ti / D 1.
So, since (3.8) is violated at .xi ; ti /, we have

(3.9) Rc. � ; t�i /
jehi;t�

i
j

..jt�i j C Ai /R. � ; t
�
i //

E C 1
� Kci

10

..jti j C Ai /Ki /E C 1
:

Choose H D H.E/;L D L.E/ <1 according to Proposition 2.4 and set

fi WD R
c
� e�H.jt

�
i
jCAi /

�1.t�t�
i
/ jehi j
..jt�i j C Ai /R/

E C 1

D Rc.jt�i j C Ai /
�E
� e�H.jt

�
i
jCAi /

�1.t�t�
i
/ jehi j
RE C .jt�i j C Ai /

�E
:

Assume in the following that c � c.‚;L.E// is small enough such that by bounded curvature
at bounded distance we have for every .y; s/ 2M � .�1; 0�,

(3.10) Rc � 10Rc.y; s/ on P.y; s; LR�1=2.y; s//:

Let .yi ; si / 2M � Œt�i ; ti � be a point such that Si WD supM�Œt�
i
;ti �
fi � 2fi .yi ; si /. Then by

Proposition 2.4 (for a D .jt�i j C Ai /
�1) and (3.10)

Si � 2fi .yi ; si / � 2 � 10
�
1
100
Si C C sup

M

fi . � ; t
�
i /
�

for some C D C.E/ <1. After combining this with (3.9) and replacing C by 1000eHC , we
obtain that on M � Œt�i ; ti �

Rc
jehi j

..jt�i j C Ai /R/
E C 1

� Kci
C

..jti j C Ai /Ki /E C 1
:

So on M � Œt�i ; ti � we have

jehi j � C�Ki
R

�c ..jti j C‚K�1i C Ai /R/E C 1
..jti j C Ai /Ki /E C 1

(3.11)

D C

�
Ki

R

�c ..jti j C Ai /RC‚K�1i R/E C 1

..jti j C Ai /Ki /E C 1

D C

�
Ki

R

�c ..jti j C Ai /Ki �K�1i RC‚K�1i R/E C 1

..jti j C Ai /Ki /E C 1
:
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After passing to a subsequence, we may assume that the following limit exists or is
infinite:

Z WD lim
i!1

.jti j C Ai /Ki 2 Œ0;1�:

Let us now consider the parabolically rescaled pointed flows .M; .gi;t WDKigtiCK�1
i
t /t�0; xi /.

By the compactness theory of �-solutions and after passing to a subsequence, we may assume
that these pointed flows smoothly converge to a pointed �-solution .M1; .g1;t /t�0; x1/ with
R.x1; 0/ D 1. By (3.11), the correspondingly rescaled flows .eh0i;t WD Kiehi;tiCK�1

i
t /t2Œ�‚;0�/

satisfy a bound of the form

(3.12)
ˇ̌eh0i ˇ̌gi

� CR�c
..jti j C Ai /Ki �RC‚R/

E C 1

..jti j C Ai /Ki /E C 1
:

Here the scalar curvature is taken with respect to the rescaled metrics. Since the right-hand side
converges to a finite limit, the sequence eh0i is locally uniformly bounded, so after passing to
a subsequence, we may assume that it smoothly converges to a linearized Ricci–DeTurck flow
.eh1;t /t2.�‚;0� on M1 � .�‚; 0� with

(3.13) ˛Œeh1�.x1; 0/ D 1:
Case 1: Z D limi!1.jti j CAi /Ki D1. Then passing (3.12) to the limit, we get

that
jeh1j � CR�cRE

onM1 � .�‚; 0�. Assume that 2c < E � 1. For every ı0 > 0, if‚ � ‚.ı0; E/, we may apply
Corollary 2.5 with E replaced by E � c to obtain that

jeh1j � ı0CR�cRE on P.x1; 0; 1/; m D 0; : : : ; .ı0/�1:

When ı0 smaller than some constant depending only on C D C.E/ and E, we may deduce
bounds on jrmeh1j.x1; 0/ that contradict (3.13).

Case 2:Z D limi!1.jti j CAi /Ki <1. We claim that then .M1; .g1;t /t�0; x1/
must be isometric to the standard round shrinking cylinder withR. � ; t /D .1C2jt j/�1. Assume
not. Then supM

R. � ;ti /
Ki

would be uniformly bounded and therefore .jti j C Ai / supM R. � ; ti /

would be uniformly bounded as well. By (3.2) this would imply that jti j remains bounded.
However, since Ai !1, we also must have supM R. � ; ti /! 0, contradicting the fact that
jti j remains bounded.

Passing (3.12) to the limit, we get that

jeh1j � CR�c ..Z C‚/R/E C 1
ZE C 1

D C.1C 2jt j/c
..Z C‚/.1C 2jt j/�1/E C 1

ZE C 1
:

Assume in the following that c � c.‚/ such that .1C 2‚/c � 2. Then

lim sup
t&�‚

jeh1;t j � C.1C 2‚/c ..Z C‚/.1C 2‚/�1/E C 1
ZE C 1

� 2C
.Z C 1/E C 1

ZE C 1
� 2C

2EZE C 2E C 1

ZE C 1
� 2C.2E C 1/:

By Lemma 3.6, if ‚ is larger than some constant depending on C D C.E/, then one has
˛Œeh1�.x1; 0/ < 1

2
, contradicting (3.13).



14 Bamler and Kleiner, On the rotational symmetry of 3-dimensional �-solutions

By combining Claim 1 with Claim 2 for c D 0 and observing that Q � ˛Œh�, we obtain
that Q � C � on M � Œ�T; 0�. Therefore, we have

˛Œh�. � ; 0/ � C �
�
.AR. � ; 0//E C 1

�
;

which implies the first bound of the lemma for some C 0 D C 0.E/, since R is uniformly
bounded. In order to prove the second bound, it suffices to show that Q can be made arbi-
trarily small on ¹ı � R. � ; 0/ � ı�1º if T is chosen sufficiently large. To see this choose
x0 2 ¹ı � R. � ; 0/ � ı

�1º and assume that Q.x0; 0/ � ı0 > 0. We can inductively construct
a sequence of points .x0; t0/ D .x0; 0/; .x1; t1/; : : : by the following algorithm:

� If tiC1 WD ti �‚R�1.xi ; ti / < T , then stop the algorithm at .xi ; ti /.

� Otherwise, use Claim 2 with c D c to find a point xiC1 2M with

.RcQ/.xiC1; tiC1/ � 10.R
cQ/.xi ; ti /:

So if .xi ; ti / is defined, then .RcQ/.xi ; ti / � ı0 and

.RcQ/.x0; 0/ � 10
�i .RcQ/.xi ; ti / � 10

�i max
M�.�1;0�

RcC �:

It remains to show that the sequence .xi ; ti / exist for large enough i if T is chosen sufficiently
large. To see this, note that whenever .xi ; ti / is defined, we have

ti � tiC1 D ‚R
�1.xi ; ti / � ‚

�
Q.xi ; ti /

.RcQ/.xi ; ti /

�1=c
� ‚

�
C �

ı0

�1=c
:

So for fixed i and sufficiently large T , we have tiC1 � �T and the algorithm can be continued.

4. The main argument

4.1. Choice of constants and terminology. In the following, we will define the scale
of a point x by �.x/ WD jRmj�1=2.x/ 2 .0;1�.

We will first fix some constants, which we will use throughout this section. LetE <1 be
the constant from [1, Theorem 1.7] (Strong Stability of Ricci flow Spacetimes) and fix E > E.
Based on this choice, let "can WD "can.E/ > 0, again according to [1, Theorem 1.7].

We will now fix a constant mcan 2 N according to the following (trivial) lemma.

Lemma 4.1. There are constants Dcan <1, mcan 2 N and "0can > 0 such that the fol-
lowing holds.

Let .M; g; x/ be a pointed Riemannian manifold and .M; g; x/ the pointed final time-
slice of a �-solution. Assume that there is a diffeomorphism onto its image

 W BM .x;Dcan/!M

such that  .x/ D x and such that for � WD �.x/,

k��2 �g � gk
Cmcan .BM .x;Dcan//

< "0can:

Then .M; g/ satisfies the "can-canonical neighborhood assumption at x.
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Let D be a constant, whose value will be determined later in Lemma 4.5. Using this
constant and the constant mcan 2 N, we now define a quantity ˇ that measures the degree to
which a metric is locally O.3/-invariant.

Definition 4.2 (Pointed roundness). Let .M; g; x/ be a complete, pointed Riemann-
ian manifold. We define ˇ.x/ to be the infimum over all ˇ0 > 0 with the following property:
There is a pointed Riemannian manifold .M; g; x/ that admits an isometricO.3/-action whose
generic orbits are 2-spheres, and such that BM .x;D/ is relatively compact, as well as a diffeo-
morphism onto its image

 W BM .x;D/!M

such that  .x/ D x and such that for � WD �.x/,

��2 �g � g


CmcanC100.BM .x;D//

< ˇ0:

If .M; g/ is the time-t -slice of a Ricci flow, then we will write ˇ.x; t/ instead of ˇ.x/.

Note that ˇ is an upper semi-continuous function. A standard limit argument yields:

Lemma 4.3. If ˇ � 0 on M , then .M; g/ admits an isometric O.3/-action whose gen-
eric orbits are 2-spheres.

We will moreover use the following asymptotic roundness property of �-solutions.

Lemma 4.4. Let .M; .gt /t�0/ be a �-solution on R3 or S3. In the case M � S3, we
additionally assume that Theorem 1.3 already holds for any �-solution on R3. Then there is
a sequence ti & �1 such that supM ˇ. � ; ti /! 0.

This lemma is the same as [3, Lemma 2.7].

Proof. The case M � R3 is a consequence of the rigidity discussion of Hamilton’s
Harnack inequality [6] and Brendle’s uniqueness result of the Bryant soliton among �-solutions
that are solitons [2]. The proof is the same as in [3], so we omit it here.

The caseM � S3 follows from the fact that the flow is either homothetic to the shrinking
round sphere or any rescaling limit for t & �1 is a shrinking round cylinder or is diffeomor-
phic to R3 and therefore rotationally symmetric by assumption.

Lastly, we will also use:

Lemma 4.5. There are universal constantsD;C0 <1 with the following property. Let
.M; g/ be complete and supM ˛ � ˇ� � C�10 . Then there is a completeO.3/-invariant metric
g0 on M whose generic orbits are 2-spheres such that for all m D 0; : : : ; mcan C 90,ˇ̌

�mrm.g0 � g/
ˇ̌
� C0ˇ

�:

Proof. Standard gluing argument.

4.2. The main stability estimate. Our main estimate will be the following proposition.
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Proposition 4.6. Given any �-solution .M; .gt /t�0/ that is not a constant curvature
space form, we can find constants ˇ > 0 and A <1 such that the following holds for any
.x; t/ 2M � .�1;�A�.

If ˇ � ˇ on M � Œt � AR�1.x; t/; t �, then

ˇ.x; t/ �
1

10
sup

M�Œt�AR�1.x;t/;t�

ˇ:

Proof. Fix .M; .gt /t�0/; choose ˇi ! 0, Ai !1. Assume that the statement of the
proposition was wrong and choose a sequence of counterexamples .xi ; ti / 2M � .�1;�Ai �
such that ˇ � min¹ˇi ; 10ˇ.xi ; ti /º on M � Œt � AiR�1.xi ; ti /; ti �. Let

gi;t WD R.xi ; ti /gtiCR�1.xi ;ti /t

be the parabolically rescaled flow on which R.xi ; 0/ D 1. We will only work with the pointed
sequence of �-solutions .M; .gi;t /t�0; xi / from now on. After passing to a subsequence, we
may assume that the pointed flows .M; .gi;t /t�0; xi / smoothly converge to some limiting
pointed �-solution .M1; .g1;t /t�0; x1/. This limit is non-compact since ti � �Ai & �1
and the �-solution .M; .gt /t�0/ was assumed not to have constant sectional curvature. More-
over, .M1; .g1;t /t�0; x1/ is O.3/-invariant, because ˇi ! 0.

For each i let
ˇ�i WD sup

M�Œ�Ai ;0�

ˇgi
� ˇi ! 0:

Let T > 0 be a constant whose value we will determine later. By Lemma 4.5, we can find for
large i a complete O.3/-invariant metric g0i;�T on M such that for m D 0; : : : ; mcan C 90,

(4.1)
ˇ̌
�m. � ;�T /rm.g0i;�T � gi;�T /

ˇ̌
� C0ˇ

�
i

Recall that C0 is a universal constant. Let M0i be the Ricci flow spacetime with initial condition
.M; g0i;�T / on the time-interval Œ�T; 0�. More specifically, we require M0i to be 0-complete
and satisfy the "0-canonical neighborhood assumption below some small enough scale for any
"0 > 0. The existence of M0i is guaranteed by [7].

We will now compare .M; .gi;t /t2Œ�T;0�/ with M0i and express M0i as a Ricci–DeTurck
flow on the background .gi;t /t2Œ�T;0�, after modification by a family of diffeomorphisms.
Unfortunately, both flows may a priori differ significantly far away from xi , so we will only be
able to express M0i as a Ricci–DeTurck flow in a large parabolic neighborhood around xi .

In the following, we will apply the Strong Stability Theorem [1, Theorem 1.7] to com-
pare .M; .gi;t // with the Ricci flow spacetime M0i . Note that the former can be viewed as
a Ricci flow spacetime, as explained in [1, sec 5]. Fix some arbitrary number ı > 0 and choose
" D ".ı; T;E/, where T is the constant from this proof. Then we can find a sequence of scales
ri ! 0 such that

C0ˇ
�
i D "r

2E
i :

Set (with respect to gi;�T )

Ui WD
®
jRmgi

j. � ;�T / < ."ri /
�2
¯
�M:

Then on Ui

jgi;�T � g
0
i;�T j � C0ˇ

�
i D "r

2E
i < "r2Ei

�
jRmgi

j. � ;�T /C 1
�E
:
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For each i choose t�i 2 Œ�T; 0� maximal such that M0i restricted to the time-interval Œ�T; t�i /
satisfies the "can-canonical neighborhood assumption at scales < 1. Set t�i WD �T , if no such
maximum exists. Note that, since .M; .gi;t // is a �-solution, it satisfies the "can-canonical
neighborhood assumption at all scales by definition. So all assumptions of the Strong Stability
Theorem hold on the time-interval Œ�T; t�i / for � D idU . By the Strong Stability Theorem, we
then obtain for each i a subset bU i �M � Œ�T; t�i / such that

jRmgi
j � r�2i on M � Œ�T; t�i / n bU i

and a time-preserving diffeomorphismb�i W bU i !M0i such that

hi;t WD b��i;tg0i;t � gi;t
evolves by Ricci–DeTurck flow on M � Œ�T; t�i / and such that

(4.2) jhi;t j � ır
2E
i .jRmgi

j C 1/E D
ıC0

"
� ˇ�i .jRmgi

j C 1/E :

Case 1: t�
i
D 0 for large i . After passing to a subsequence, hi;t=ˇ�i converges to a lin-

earized Ricci–DeTurck flow .eh1;t /t2Œ�T;0� on the background flow .M1; .g1;t /t�0; x1/,
which is uniformly bounded due to (4.2). By standard local parabolic derivative estimates
(see for example [1, Lemma A.14]) and Arzela–Ascoli, we may assume that the convergence
hi;t=ˇ

�
i !

eh1;t is locally smooth onM1 � .�T; 0� and is locally CmcanC80 onM1�Œ�T; 0�.
Moreover, by (4.1) we have for m D 0; : : : ; mcan C 80,

�m. � ;�T /
ˇ̌
r
meh1;�T ˇ̌ � C0:

Let � > 0 be a constant whose value will be determined later and apply Proposition 3.1,
assuming that T is large enough depending on �;D;mcan; C0. This yields the following decom-
position on B.x1; 0; 2D/: eh1;0 D hrot

0 Cr
2f C h01;0;

where hrot
0 is rotationally symmetric with respect to the standard O.3/-action on .M; g1;0/,

f 2 C1.B.x1; 0; 2D// and kh0
1;0kCmcanC100.B.x1;0;2D//

� �.
Define the maps �i W B.x1; 0; 2D/!M1 by

�i .z/ WD expz

�
ˇ�i �

1

2
rfz

�
:

Since ˇ�i ! 0, the restrictions �i jB.x1;0;1:9D/ are diffeomorphisms onto their images for
large i , which smoothly converge to the identity. Define the metrics

g�i WD �
�
i .g1;0 C ˇ

�
i h

rot
0 /

on B.x1; 0; 1:9D/. Then, as i !1,

1

ˇ�i

�
g�i � .g1;0 C ˇ

�
i h

rot
0 /
�
D

1

ˇ�i

�
��i g1;0 � g1;0

�
C ��i h

rot
0 � h

rot
0 ! L 1

2
rf g1;0 D r

2f:

It follows that
1

ˇ�i

�b��i;0g0i;0 � g�i � D 1

ˇ�i

�b��i;0g0i;0 � .g1;0 C ˇ�i hrot
0 /
�
�
1

ˇ�i

�
g�i � .g1;0 C ˇ

�
i h

rot/
�

D
1

ˇ�i
hi;0 � h

rot
0 � r

2f ! h01;0:
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So, assuming that � is smaller than some universal constant, we obtain that ˇ.xi ; 0/ � 1
10
ˇ�i

for sufficiently large i , in contradiction to our choice of xi .

Case 2: After passing to a subsequence t�
i
< 0 for all i . Recall that for each i the flow

M0i satisfies the "can-canonical neighborhood assumption below some positive scale r 0i > 0. So
by the maximality of t�i and an openness argument, we can find a point yi 2M0i ;t�

i
of scale

�.yi / < 2 in the time-t�i -slice that violates the "can
2

-canonical neighborhood assumption. After
rescaling the flow M0i parabolically by ��2.yi / and applying a time-shift so that the point yi
is contained in the time-0-slice and has scale 1, we obtain a sequence of singular flows M00i on
time-intervals of the form Œ�T �i ; 0� that satisfy the "can-canonical neighborhood assumption at
scales < 2

�i
.

Case 2a: After passing to a subsequence, T �1 WD limi!1 T
�
i

exists. Similarly as in
Case 1, we can apply the Strong Stability Theorem to compare the each flow M00i with the cor-
respondingly parabolically rescaled and time-shifted flow .M; .�2i gi ;t�i C��2

i
t /t2Œ�T �

i
;0�/. Since

(4.1) remains preserved under rescaling and ˇ�i ! 0, the Strong Stability Theorem yields that
a larger and larger neighborhood of yi in M00i;0 becomes closer and closer to an open subset
in .M; �2i gi ;t�i / in the CmcanC80-sense. Since .M; �2i gi;t�i / is a time-slice of a �-solution, this
contradicts the choice of yi for large i via Lemma 4.1.

Case 2b: T �
i
!1. In this case we must have limi!1 �i D 0. Assuming that "can is

smaller than some universal constant, we can argue as in [8, 12.1] to show that, after pass-
ing to a subsequence, the pointed flows .M00i ; yi / smoothly converge to a pointed ancient
non-singular flow .M 001; .g

00
1;t /t�0; y1/ with non-negative sectional curvature that satisfies

the 2"can-canonical neighborhood assumption at all scales. Therefore .M 001; .g
00
1;t /t�0; y1/ is

a �-solution, in contradiction to the choice of yi for large i .

4.3. Proof of Theorem 1.3.

Proof of Theorem 1.3. It suffices to consider the case in which .M; .gt /t�0/ is not the
quotient of a round sphere or a round cylinder. ThereforeM is must be diffeomorphic to R3; S3

or RP 3. By passing to the double cover, the case RP 3 can be reduced to the case S3. So, we
only need to consider the case in which .M; .gt /t�0/ is diffeomorphic to R3 or S3, but not the
shrinking round sphere. By proving the theorem first in the R3-case, we may moreover assume
that the theorem is already true in this case when proving the case M � S3. Thus Lemma 4.4
will be applicable in both cases.

Define ˇ WM � .�1; 0�! R as in Definition 4.2 and let ˇ;A be the constants from
Proposition 4.6.

Choose ˇ0 2 .0; ˇ�. We will show in the following that ˇ � ˇ0 on M � .�1; 0�. By
letting ˇ0 ! 0, this will imply that ˇ � 0, which implies rotational symmetry by Lemma 4.3.

By Lemma 4.4 there is a sequence ti & �1 such that

(4.3) sup
M

ˇ. � ; ti /! 0:

Fix some large i for which supM ˇ. � ; ti / � ˇ
0 and choose t�i � ti maximal such that ˇ � ˇ0

on M � Œti ; t�i /.
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If t�i D 0 for infinitely many i , then ˇ � ˇ0 everywhere and we are done. So assume that
t�i < 0 for large i . In the following we will only consider such indices i . By maximal choice
of t�i and the upper semi-continuity of ˇ, there is a point yi 2M such that ˇ.yi ; t�i / �

ˇ 0

2
.

Next, we argue that
t�i � ti < AR

�1.yi ; ti /:

In fact, if the opposite inequality were true, then we could apply Proposition 4.6 (recall that
ˇ0 � ˇ) and conclude that ˇ.y; t�i / �

ˇ 0

10
, in contradiction to the choice of yi .

Let now Qi WD R.yi ; t
�
i /. After passing to a subsequence, we may assume that

T WD lim
i!1

.t�i � ti /Qi

exists and that the pointed and parabolically rescaled flows .M; .Qigt�i CQ�1
i
t /t�0; yi / con-

verge to a pointed �-solution .M1; .g1;t /t�0; y1/. By (4.3) we obtain that g1;�T is rota-
tional symmetric. So g1;0 must be rotational symmetric as well, in contradiction to the choice
of yi for large i .
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