
Multi-Agent Path Planning Under Observation Schedule Constraints

Ziqi Yang and Roberto Tron

Abstract— We consider the problem of enhanced security
of multi-robot systems to prevent cyber-attackers from taking
control of one or more robots in the group. We build upon a
recently proposed solution that utilizes the physical measurement
capabilities of the robots to perform introspection, i.e., detect the
malicious actions of compromised agents using other members
of the group. In particular, the proposed solution finds multi-
agent paths on discrete spaces combined with a set of mutual
observations at specific locations to detect robots with significant
deviations from the preordained routes.

In this paper, we develop a planner that works on continuous
configuration spaces while also taking into account similar
spatio-temporal constraints. In addition, the planner allows
for more general tasks that can be formulated as arbitrary
smooth cost functions to be specified. The combination of
constraints and objectives considered in this paper are not
easily handled by popular path planning algorithms (e.g.,
sampling-based methods), thus we propose a method based
on the Alternating Direction Method of Multipliers (ADMM).
ADMM is capable of finding locally optimal solutions to problems
involving different kinds of objectives and non-convex temporal
and spatial constraints, and allows for infeasible initialization.
We benchmark our proposed method on multi-agent map
exploration with minimum-uncertainty cost function, obstacles,
and observation schedule constraints.

Index Terms— Path planning, trajectory optimization, map
exploration, ADMM

I. INTRODUCTION

Multi-robot systems have been applied in different sce-
narios such as field exploration, sensor data collection,
surveillance, etc. A prominent example is modern industrial
automation where multi-robot systems such as those by Fetch
Robotics and Amazon Robotics have been used in commercial
settings for a number of years. Another example is given
by aerial swarms which have been used in precision agricul-
ture [1], 8 forest fire monitoring [2], and other monitoring or
surveillance applications. These multi-robot systems typically
employ well-tested solutions for efficient navigation, collision
avoidance, and safe interactions with humans (commonly by
isolating the robots and humans), In addition, these networked
communications based cyber-physical systems are at risk of
being hacked. As noted in [3], there are increasingly more
high-profile hacking cases; if these incidents were combined
with the physical capabilities of robotic systems, the possible
adverse consequences could range from exploitation of trade
secrets, to production slowdowns, physical property damage,
or even human injury [4]. It is therefore important to layer
multiple defense mechanisms to enhance the cybersecurity
of multi-robot systems.

This work was supported by the National Science Foundation grant NSF
CPS 1932162.

In this paper, we build upon a recently proposed
introspection-based security layer that combines path planning
with the agents’ physical sensors (each having the ablility to
detect other agents) to timely detect compromised robots that
are not following the pre-planned trajectories. In particular, we
want to modify the planned paths for the robots so that they
can observe each other frequently enough at key locations so
that compromised robots do not have the opportunity to reach
forbidden areas (e.g., containing security-sensitive equipment,
or human workers) without being detected. For this reason,
we introduce the concept of an observation schedule that,
at a high-level, trades off traditional path-quality measures
(e.g., length) for increased security. In our proposed solution,
we consider the spatio-temporal constraints induced by the
observation schedule at an equal level with other traditional
path planning constraints.

A previous work [5] provides an algorithm that solves our
problem in a restricted setting: the robots can only move
on a subset of a four-connected grid, and the only type of
path that can be (indirectly) optimized is the maximum path
length. The proposed algorithm is based on a Satisfiability-
Modulo-Theory (SMT) solver, for which the complexity
scales (in a worst-case scenario) exponentially with the
problem size. In this paper, we propose a planner based on
Alternating Direction Method of Multipliers (ADMM) that
can handle similar spatio-temporal constraints while allowing
for continuous configuration spaces and the optimization of
arbitrary smooth cost functions.

Paper contributions. We propose a path planning al-
gorithm based on ADMM, a variation of the Augmented
Lagrangian Method (ALM, [6]). We choose ADMM for its
empirically demonstrated ability to deal with non-convex
and non-smooth optimization problems [7]. To the best of
our knowledge, our path planning algorithm is the first
to handle the spatio-temporal constraints induced by the
observation schedule. Additionally, our formulation allows
the incorporation of a large variety of types of constraints and
the optimization of complex cost functions (e.g., uncertainty
in collaborative map estimation). The main limitation of our
approach is that it can guarantee only local convergence;
however, this can be practically counteracted by using proper
initialization techniques, such as using approximate solutions
to relaxed or lower-scale versions of the problem, and careful
representation of the environment.

We validate our algorithm on a benchmark mapping
application on a three robot system where the aim is to
minimize the overall uncertainty on a vector field (estimated
using Kalman filtering) over a finite time horizon with
multiple agents and spatio-temporal constraints (such as

obstacle avoidance and inter-agent observation schedules).
While similar tasks have been considered in other works (see
Section II for a more detailed review), we are unaware of
other planners that can handle the same objective constraints
of the same type considered here.

II. PRIOR WORK

Traditional multi-agent path planning problems are usually
solved in two ways: centralized approach and distributed
approach. Centralized approaches treat the multi-agent as a
single agent system which can be solved using single agent
planning methods: graph search based algorithms like Dijkstra
Algorithms, A∗ [8], [9]; sampling based algorithms like
RRT,RRT ∗, RRT# [10]–[12]; and optimal solvers (which
will be discussed later). This approach can obtain the optimal
result but scales poorly. Distributed approaches treat each
agent separately. By splitting the higher dimensional problem
into several lower dimensional ones and solving individually,
distributed approaches significantly reduce the computation
cost. But there is no guarantee of optimality and completeness.

Many recent works have focused on a combination of
the two approaches. Biased Cost Pathfinding technique [13]
focus on collision prevention by repelling colliding units from
the potential collision locations during the planning phase.
In [14], the authors present an algorithm based on opera-
tor decomposition (OD) and Independence Detection (ID)
technique. Agents are first decoupled into non-independent
subgroups through ID, then OD computes and update these
subgroups in an arbitrary but fixed order.

An area of high interest and activity is the optimization
based approaches. These approaches are customizable to the
task’s specific needs (e.g. maximum surveillance coverage,
minimal energy cost) and constraints (e.g. speed limit and
avoid obstacles). Potential field methods [15] [16] were
introduced for obstacle avoidance. While many motion
planning tasks require a non-convex constraint problem
formulation, most contributors focused on convex problems
and only allow for a few types of pre-specified non-convex
constraints through convexification [17] [18] [19]. Several
optimization techniques like MIQP [20] and ADMM [21]
have been used to reduce computational complexity and to
incorporate more complex non-convex constraints.

Regarding the specific application considered in this paper,
there exists some rich literature on multi-agent mapping
and exploration problems. The goal of these works are
to maximize the coverage of information of an unknown
environment [2], [22] by utilizing the information exchanged
on the network to solve the problem in a distributed fashion.
For example, Rapidly exploring random cycles (RRC) [23], a
variant of RRT, is introduced to generate a periodic trajectory
for multiple sensing robots to explore a dynamic spatio-
temporal field.

III. NOTATION AND PROBLEM FORMULATION

We consider the problem of finding trajectories for multiple
agents that minimize a common objective function while
satisfying different types of spatio-temporal constraints.

We denote qij ∈ Rm as the position of agent i at the
discrete-time index j, with m representing the dimension
of the workspace. For a team of n agents and a task time
horizon T , the overall trajectory of the multi-agent system can
be represented as an aggregated vector q ∈ RnmT . The goal
of our path planning problem is to minimize or maximize an
objective function Φ(q) under a set of nonlinear constraints
described by a set Ω, formally:

min /max Φ(q)

subject to q ∈ Ω.
(1)

In this paper, we assume that there exists an underlying slowly-
time-varying scalar or vector field x whose value needs to be
estimated at a given number of discrete locations. We then
define the cost function Φ(q) to be an approximation of the
minimum uncertainty at any of the given points, and we aim
to minimum such maximize uncertainty. This cost function
and its gradient are defined more precisely in Section V.

For the set Ω, we consider the following types of con-
straints:

1) Start and end locations: We assume that the start and
end locations for each agent, i.e., qi0 and qiT , are given.

2) Velocity constraints: We enforce approximate constraints
on the dynamics of the agents by assuming that they
can move a maximum travel distance in any arbitrary
direction over discrete time periods. This constraint could
be easily modified to use more detailed models.

3) Convex obstacle constraints: We model areas that cannot
be entered by the agents with convex polygons. These
areas can represent physical obstacles, or areas that
the agent should not access (e.g., because they contain
sensitive information). If the environment contains non-
convex obstacles, they can be still modeled using the
union of (possibly overlapping) convex obstacles.

4) Waypoints with flexible deadlines: We assume that we are
given locations that need to be visited by a given agent
in a given time window, although the precise instant in
that time window can be chosen by the planner.

5) Introspection constraints: We assume that two agents
can detect each other’s presence when they are at a
distance of at most dmax from each other.

The observation schedule constraints mentioned in the intro-
duction can be modeled as a combination of constraints 4)
and 5) above (i.e., to require two agents see each other in
the vicinity of a given location). Note that these two types of
constraints are hard to incorporate for some types of planners,
such as those based on potentials or sampling. The precise
mathematical description of the path planning constraints
listed above is given in Section VI.

IV. ALTERNATING DIRECTION METHOD OF MULTIPLIERS

Our proposed path planner is based on the Alternating
Direction Method of Multipliers (ADMM) which is a com-
monly used distributed optimization algorithm [6]. The basic
idea behind ADMM is to split the constraints from the
objective function using a different set of variables z, and
then solve an Augmented Lagrangian formulation of the

optimization problem in (1). More specifically, we can rewrite
the constraint q ∈ Ω using an indicator function Θ, and
include it in the objective function. Then the problem can be
rewritten as:

min Φ(q) +Θ(z)

s.t. q− z = 0
(2)

where Θ is the indicator function of Ω. And the augmented
Lagrangian can then be formulated as:

Lρ(q, z,u) = Φ(q) +Θ(z) + (ρ/2)‖q− z + u‖22 (3)

Thus, the search for optimal variables could be separated
into two parts: an unconstrained optimization of q, and an
optimization of z with constraint qk−z = 0 where qk is the
result of the first part. This separation allows for a certain
amount of violation on the constraints during the process
and does not require a basic feasible solution to start the
algorithm. The general ADMM iterations is shown:

qk+1 := argmin
q

Lρ
(
q, zk,uk

)
(4a)

zk+1 := argmin
z

Lρ
(
qk+1, z,uk

)
(4b)

uk+1 := uk + rk (4c)

where u represents a scaled dual variable, and intuitively
accumulates the sum of primal residuals

rk = qk+1 − zk+1, (5)

which contains the difference between the main variables q
and their copies z.

Remark 1: In practice, the update step of the slack vari-
able z in (4b) can be interpreted as a Euclidean projection
of q+u to the constraint set Ω; this is a consequence of the
definition of Θ(z), and the augmentation term contained in
the Lagrangian (3).

A. Generalization for easier constraint projections
In the traditional application of ADMM, as noted in

Remark 1, the update step for the duplicated variables z
requires a projection to the constraint set Ω. For problems
with convex constraints, such projection is typically feasible
to implement. However, in path planning problems, some
constraints are non-convex, rendering the projection step more
difficult (due to the presence of multiple local minima in the
optimization problem in (2)). To deal with this problem, we
propose a minor generalization of the ADMM formulation (2)
where we allow z to replicate an arbitrary function of the
main variables q (instead of being an exact copy):

max Φ(q) +Θ(z)

s.t. D(q)− z = 0
(6)

where D(q) = [D1(q)T , . . . , Dl(q)T]T is a vertical concate-
nation of different functions for different constraints.

The corresponding update steps are then replaced by:

qk+1 := argmin
q

(Φ(qk) +
ρ

2
‖D(q)− zk + uk‖22) (7a)

zk+1 := Πζ(D(qk+1) + uk) (7b)

uk+1 := uk +D(qk+1)− zk+1, (7c)

where Πζ is the new projection to the modified constraint
set ζ . Since D(q) is the vertical concatenation of Dl(q), the
projection of each set ζl is independent for each constraint and
can be computed separately. The advantage of this formulation
is that we can choose D(q) such that the new constraint set ζ
becomes simple to compute; however, the drawback is that
we “move the non-convexity” to the primal cost function, i.e.,
in the update for q in (7a). Additionally, the function D(q)
can be used to select only the subset of the variables on
which a constraint depends.

B. Adaptive penalty parameter

The penalty parameter ρ plays a very important role in
this method. Intuitively, a small penalty generally allows
the solution of the subproblem (4a) to achieve a lower
cost while allowing more violation of the primal constraints.
Conversely, a large penalty discourages intermediate solutions
from violating the constrains, thus increasing the chance that
the optimization gets stuck in local optimal solutions. In
our application, a static penalty parameter does not work
well. Ideally, we would like to have the first iterations
of the algorithms focus on obtaining a (possibly global)
optimal initial guess (with less regard for the constraints),
while gradually bringing back the constraints during the
optimization, and modifying the initial guess to eventually
satisfy all the constraints. In the ADMM framework, this
idea can be formally implemented by updating the penalty
parameter based on the primal and dual residuals. More
precisely, the penalty parameter is updated according to:

ρk+1 =


τ incrρk if ‖rk‖2 ≤ µ‖sk‖2,
ρk/τdecr if ‖sk‖2 ≤ µ‖rk‖2,
ρk otherwise.

(8)

where rk is the primal residual given in (5), µ, τ incr > 1
and τdecr > 1 are adjustable constants used to adjust the
penalty (in our case µ = 2, τ incr = τdecr = 1.4), and sk is
the dual residual:

sk = −ρ
(
zk − zk−1

)
. (9)

C. Complete algorithm

Algorithm 1 is used to solve the generalized problem
in (6) with dynamic penalty updates. For convergence proofs
regarding this algorithm, see [6].

Algorithm 1 ADMM iteration for problem 2

Initialize q0, z0,u0

while rk 6= 0, sk 6= 0 do
qk+1 := argminq(Φ(qk) + ρk

2 ‖q− zk + uk‖22)
zk+1 := ΠΩ(qk+1 + uk)
uk+1 := uk + qk+1 − zk+1

penalty update (8)
end while

D. Infeasibility detection

In some situations, ADMM might be unable to find a
feasible solution. It is important that we are able to detect
when the problem is infeasible, and ideally identify which
constraints are the cause. According to [24], this can be done
by defining

δu = lim
k→∞

1

k
uk. (10)

The problem is infeasible if δu 6= 0. And since each element
of u independently represents the primal residual status of a
constraint, the problematic constraints corresponds with the
u such that δu 6= 0.

V. MINIMUM UNCERTAINTY MAPPING

In this section, we focus on a particular choice of objective
function Φ(q), in the context of a mapping and estimation
applications, for the optimization problem (1) .

To explore unknown spatially-distributed fields, au-
tonomous agents are usually required to traverse the entire
unknown environment while collecting sensory data to
estimate a corresponding map (which we consider to be
embodied by a vector field). If the quantity under observation
is time-varying, then it is important to consider not only
where the agents will navigate, but also when.

We model the map as a set of locations of interests {cl}nloc

l=1

arranged on a regular grid, where cl is represented as the
coordinate of the locations (this choice is the most natural in
mapping applications, but our proposed method is actually
applicable to any arbitrary arrangement of locations). At
each location cl, we assume that there is a corresponding
slowly-time-varying quantity xlj ∈ Rnx where j represents a
discrete-time index. We denote xj ∈ Rnlocnx as the aggregate
state of the quantities of interest at all locations and at time j.

We model the evolution of xj as a Gaussian random
walk; in addition, we assume that each agent i obtains
a measurement zij for every location in the environment
at every time instant j, but that the confidence in these
measurements quickly diminsh with the distance between the
location cl and the agent position qij . More in detail, we
assume the following model:

xj = xj−1 + vj−1, (11)
zij = xj + wj(qij). (12)

where vj and wj are noise terms distributed according to,
respectively, N (0, Qj) and N (0, Rj(qij)); we assume that
model noise and measurement errors at different locations
and across robots are uncorrelated (and hence independent,
since they have Gaussian distribution), so that Qj and Rj
are diagonal; as already mentioned, the covariance matrix
Rj depends on the agent location (small when near, and
very high when far, the details for this part of the model are
introduced below).

We formulate the estimation problem using Kalman Fil-
ters (KFs, [25]) which also provides a straightforward way
to quantify the uncertainty in the map model. In particular,
for our purposes, we are interested in finding paths that

best reconstruct the field x, i.e., that achieve the minimum
uncertainty; therefore, we use the fact that the uncertainty
of the estimates for KFs does not depend on the actual
measurements zij . Hence, we can ignore the estimates of
each state xj , and instead focus on its estimated covariance Pj .
Following (11), the KF covariance iteration for Pj can be
written as:

P fj = Pj−1 +Qj−1,

Kj = P fj

(
P fj +Rj(q)

)−1

,

Pj = (I −Kj)P
f
j .

(13)

For our application, however, it is more convenient to work
with the information form of the KF since we would like to
model states and measurements as having zero information
(i.e., infinite variance): as in the case of the initial field
value x0; and of measurements of locations that are outside of
the agent’s sensor footprint. Hence, we replace the covariance
matrix Pj with its inverse, the information matrix Yj :

Yj = P−1
j , Y fj = (P fj)−1. (14)

The information matrix can then be initialized as
zero (Y0 = 0) to model the fact that we do not have any
a priori information on the field.

From (13), the information matrix update step can be
written as:

Yj = (I + Yj−1Qj−1)
−1
Yj−1 + Ij(q) (15)

Ij(q) = Rj(q)−1 (16)

where Ij ∈ Rnm is the inverse of the measurement covariance
matrix which is a function of q. We formulated this function
using a Gaussian radial basis function, specifically:

[Ij]ll =

n∑
i=1

K exp

(
−‖cl − qij‖

2

2σ2
c

)
, l ∈ [1, . . . , nm]

(17)
where cl is the coordinate of the field restoration location
that needs to be calculated, and σc depends on the radius
and accuracy of the robot’s sensor.

The derivative of Yj can be computed as:

∂Yj
∂qij

= −

(
QT

∂Yj−1

∂q

)(
QT

∂Yj−1

∂q

)T

(I + Yj−1Qj−1)(I + Yj−1Qj−1)T
+
∂Ij
∂qij

. (18)

Note that (18) is recursively defined starting with ∂Y0

∂qij
= 0.

We then formulate the map exploration problem with the
goal of finding the trajectory q that maximizes the minimum
information along any of the directions YT where T is the
task time horizon:

argmax
q

softmin (diag (YT (q)))

s.t. ∀i ∈ [0, T], ∀j ∈ N,
q ∈ Ω,

(19)

where the function softmin is defined as a smooth approxi-
mation of the min function, defined as:

softmin(a1, . . . , an) = log(ea1 + · · ·+ ean). (20)

VI. PATH PLANNING CONSTRAINTS

In this section, we provide mathematical descriptions
for a variety of constraints. As introduced in Section IV-
A, constraints are decoupled and reformulated as mapping
functions D(q) = z and constrained sets ζ. Also, instead of
solving a possibly non-convex optimization problem in (4b),
projections to the constrained sets Πζ(z) will do the work.

A. Start and end locations

For each agent, we fix the starting and end locations,
i.e., qi0 and qiT . These are simply enforced by removing them
from the optimization variables. However, for applications
where the agents are modeled with more complex dynamics,
we would need to include qiT as a variable, and add the
corresponding linear constraint to the optimization.

B. Velocity constraint

Since we are using a discrete formulation, the velocity
of an agent can be approximated by taking the difference
between adjacent waypoints on the trajectory. We then define
the function D(q) to return the velocity vectors for the i-th
agent at time step j:

Dij(q) = qij − qi(j−1), j ∈ {1, . . . , T} (21)

and the constraint set is:

ζij =
{
z | ‖z‖ ≤ vmax

}
. (22)

The projection operator Πζ(z) for this constraint implies that
the projection of the vector z is inside a sphere with a radius
of vmax which can then be written as:

Πζ(z) =

{
vmax

z
‖z‖ if ‖z‖ > vmax,

z otherwise.
(23)

C. Convex obstacles

In our motivating scenarios, there are areas that the agents
should not visit, because they represent forbidden zones or
obstacles to avoid. We model these zones using convex
polygons defined by several hyperplanes and having the
normal vectors of these hyperplanes pointing outside the
obstacles. We enforce the constraints at each discrete time
step qij (enforcement of the constraints between these points
can be achieved by making the obstacles sightly bigger
than its actual size). For a convex area, waypoints stays
unchanged it they are outside the zone, and if the waypoints
are inside the zone, the constraint function D(q) returns the
least negative distance from the waypoints to the zone defined
by hyperplanes which is represented as:

Di(q) =

 d11

...
dnm

 (24)

where

dij = max(min(dijk, 0)), (25)

dijk = pT
ijnk −mk, (26)

and nk is the normal vector and mk is the scalar offset
defining the k-th hyperplane. The corresponding constraint
set is simply

ζ = {z | z = 0}, (27)

with a projection function:

Πζ(z) = 0. (28)

The motivating idea for (24) and (28) is to find waypoints
inside the zone and project them to the closest boundary. As
mentioned before, non-convex obstacles can be handled by
the union of (possibly overlapping) convex obstacles.

D. Waypoints with flexible deadlines

In this type of constraint, we assume that an agent needs
to go through a spherical ball around a given point p with a
radius of dmax for some time instant j belonging to a given
time window [t1, t2]. In this case, we define the function
D(q) to return the smallest distance from the point p to any
point on the trajectory restricted to the relevant time window.
This can be expressed precisely in the following form:

Di(q) = min
i∈{1...,n},j∈{t1,...,t2−1}

(
dist(p,−−−−−−→qijqi(j+1))

)
(29)

with the constraint set:

ζ = {z | z < zmax} (30)

where dist(p,−−−−−−→qijqi(j+1)) returns the distance between the
fixed point p and the segment −−−−−−→qijqi(j+1). Note that this
function returns the smallest distance between (p, qij) and
(p, qi(j+1)) if the projection of the point p does not lie on
the line segment −−−−−−→qijqi(j+1); as a consequence, this constraint
does not need to be satisfied exactly at one of the points
on the discretized trajectory, but it can also be satisfied “en
route” on the segment between them. The projection Πζ(z)
for this constraint can be written as:

Πζ(z) = min(z, zmax). (31)

Note that (30) and (31) are equivalent to (22) and (23), except
for the fact that the quantity in (29) is always a positive scalar.

E. Introspection constraint

In this type of constraint, the agents are required to be
in physical proximity of each other for some time instant j
belonging to a given time window [t1, t2] (e.g., to inspect
each other, or to exchange data). We write the function for
the constraint as:

D(q) = −−−→qalqbl, (32)

l = argmin
j∈[t1,t2]

||−−−→qajqbj || (33)

where a, b are the indices of the pair of agents required for
a mutual inspection. With this definition, the constraint set
and the projection operator are the same as (22) and (23).

F. Implementation as a Matlab toolbox

We implemented our planner in Matlab. We structured our
code in a modular way, so that different sets of constraints
among the types already described in this section can be
easily incorporated; new constraints can be added by simply
specifying the corresponding function D(q), its Jacobian
(to enable the use of gradients during minimization), and
the projection operator Πζ . For the primal unconstrained
optimization step (7a), we used the standard Matlab routine
fminunc; nonetheless, our framework also supports custom
solvers tailored for the special structure of the given problem
(for instance, we have written a solver for quadratic problems).
We will release our code to the community as an open source
package.

VII. RESULTS

In this section, we apply our ADMM path planning
algorithm to an instance of a map exploration problem, and
test the algorithm in both simulations and an experimental
testbed. The environment to be explored, with three agents,
is a 10m× 10m region. We set the sensor accuracy for each
agent in (17) to σc = 1; And assuming that the robots can
meaningfully collect information on the underlying vector
field for data locations no further than a radius of 3m. The
maximum distance for the velocity constraints vmax is set
to 0.5m/dt.

A. Simulations

Our baseline test is one that only considers the velocity
constraint, the result can be seen in Figure 1a. The contours
show the estimated accuracy for the map which is the result
of the information matrix (the larger the better). The elements
in the resulting entries of the information matrix for this test
has a max of 5.5 and a min of 1.8. Note that the forbidden
zones (obstacles) were not included as constraints which
explains the zone violation by the agents. The trajectories are
initialized as straight lines with the agents moving at uniform
speed from their start to their goal locations. After running our
proposed method, the trajectories assume boustrophedon-like
patterns. These patterns have been traditionally proposed for
coverage problems, but here they appear as a byproduct of our
cost function while taking into account the spatio-temporal
behavior of the uncertainty; for instance, the trajectories of
agent 1 and agent 2 appear to be very close, which would be
suboptimal in terms of minimizing the maximum uncertainty;
in fact, agent 1 reaches the point closest to agent 2’s path
well after agent 2 has left the corresponding point on its
trajectory; in a sense, agent 1 and agent 2 automatically take
turns to cover that location.

We use the solution of the baseline test to initialize another
test with some additional constraints: two forbidden zones
(shown as colored boxes in Figure 1), and one inspection
constraint between robot 1 and robot 2 at time 40. Note that
the initial trajectories, from the baseline test, is infeasible
since the agents cross the forbidden zones (see Figure 1a);
our algorithm is capable of handling the new constraints and
returning a feasible solution, as shown in Figure 1b. Note

(a) Baseline test with only velocity constraint

(b) Forbidden zone and inspection constraints added
to the baseline test

(c) Additional constraints added on top of 1b

Fig. 1: Resulting trajectories for map exploration task under
different constraints.

Fig. 2: Experiment of a team of three robots where agent 1
and agent 2 meet at the pre specified time and location.

that the algorithm corrects the trajectory for agent 2 from
near the right edge of the purple obstacle to the left of the
obstacle. Resulting entries of the information matrix for this
case have a max of 7.2 and a min of 1.4.

We further increased the number of constraints in a third
test: we added a waypoint constraint for the location at [7, 7]
(at any point in the mission), and robot 1 and robot 3 were
asked to meet at about time 70. The result can be seen in
Figure 1c with resulting entries of the information matrix
having a max of 10.0 and a min of 1.3.

B. Experiments

The simulation result in the second test case, Figure 1b,
has been selected for experimental validation using a team
of three real robots. The goal of this experiment is to
see if the plans can be followed despite the mismatch
between the approximated behavior used in our algorithm
and the actual robots. Our platform consists of three modified
ground robots, iRobot Create2, that are controlled with a
Raspberry Pi, and tracked using an OptiTrack Motion Capture
System. For visual reference, we use short-throw projectors
to visualize the environment and the paths. Each robot is
controlled by an embedded PD controller which is fed the
sequence of waypoints given by the planner. The full setup
is shown in Figure 2. We verified, by inspection, that the
robots successfully followed the waypoints designed by our
algorithm while meeting the observation constraint. Full
results can be viewed in the accompanying video submission.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a path planning algorithm
that can generate optimal trajectories for multi-agent systems
while satisfying complex spatio-temporal constraints. This
planner can be used to support new methods to enhance
the security of networks of robots against malicious take-
overs of agents. Our solution is based on an application
and modification of the ADMM framework. Simulation and
experimental results show that our method, while based on
local optimization, is able to obtain solutions for non-trivial
planning problems involving cumulative cost functions, way-
points with flexible deadlines, and introspection constraints.

A Matlab implementation of our method will be released as
an open-source flexible toolbox. The current toolbox does not
scale well for problems involving many agents and longer time

horizons, future work is to distribute the primal optimization
problem in (7) among each agent using the techniques
introduced in [7], [18], [21], and to replace the high-dimension
optimization problem with several lower-dimensional ones. In
addition, collision avoidance is not considered in the current
implementation, but will be introduced in the future.

REFERENCES

[1] G. Pajares, “Overview and current status of remote sensing applica-
tions based on unmanned aerial vehicles (uavs),” Photogrammetric
Engineering & Remote Sensing, vol. 81, no. 4, pp. 281–330, 2015.

[2] B. J. Julian, M. Angermann, M. Schwager, and D. Rus, “Distributed
robotic sensor networks: An information-theoretic approach,” The
International Journal of Robotics Research, vol. 31, no. 10, pp. 1134–
1154, 2012.

[3] M. Brunner, H. Hofinger, C. Krauß, C. Roblee, P. Schoo, and
S. Todt, “Infiltrating critical infrastructures with next-generation attacks,”
Fraunhofer Institute for Secure Information Technology (SIT), Munich,
2010.

[4] C. Forrest, “Robot kills worker on assembly line, raising concerns
about human-robot collaboration,” https://tinyurl.com/y2tzg4te, March
2017.

[5] K. Wardega, R. Tron, and W. Li, “Resilience of multi-robot systems
to physical masquerade attacks,” in 2019 IEEE Security and Privacy
Workshops (SPW). IEEE, 2019, pp. 120–125.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers,” vol. 3, no. 1, pp. 1–122, 2011.

[7] Y. Wang, W. Yin, and J. Zeng, “Global convergence of admm in
nonconvex nonsmooth optimization,” Journal of Scientific Computing,
vol. 78, no. 1, pp. 29–63, 2019.

[8] H. M. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, and S. Thrun, Principles of robot motion: theory, algorithms,
and implementation. MIT press, 2005.

[9] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning
for autonomous vehicles in unknown semi-structured environments,”
International Journal of Robotics Research, vol. 29, no. 5, pp. 485–501,
2010.

[10] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[11] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime
motion planning using the RRT*,” 2011, pp. 1478–1483.

[12] F. Hauer and P. Tsiotras, “Deformable rapidly-exploring random trees,”
in Robotics: Science and Systems, 2017.

[13] A. Geramifard, P. Chubak, and V. Bulitko, “Biased cost pathfinding.”
2006.

[14] T. S. Standley, “Finding optimal solutions to cooperative pathfinding
problems,” in Twenty-Fourth AAAI Conference on Artificial Intelligence,
2010.

[15] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential
field techniques for robot path planning,” IEEE transactions on systems,
man, and cybernetics, vol. 22, no. 2, pp. 224–241, 1992.

[16] S. S. Ge and Y. J. Cui, “New potential functions for mobile robot path
planning,” IEEE Transactions on Robotics and Automation, vol. 16,
no. 5, pp. 615–620, 2000.

[17] X. Liu and P. Lu, “Solving nonconvex optimal control problems by
convex optimization,” Journal of Guidance, Control, and Dynamics,
vol. 37, no. 3, pp. 750–765, 2014.

[18] R. Van Parys and G. Pipeleers, “Online distributed motion planning
for multi-vehicle systems,” 2016 European Control Conference, ECC
2016, pp. 1580–1585, 2016.

[19] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” International
Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[20] D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic
program trajectory generation for heterogeneous quadrotor teams,” in
2012 IEEE international conference on robotics and automation. IEEE,
2012, pp. 477–483.

[21] J. Bento, N. Derbinsky, J. Alonso-Mora, and J. S. Yedidia, “A message-
passing algorithm for multi-agent trajectory planning,” in Advances in
neural information processing systems, 2013, pp. 521–529.

https://tinyurl.com/y2tzg4te

[22] M. Schwager, B. J. Julian, M. Angermann, and D. Rus, “Eyes in
the sky: Decentralized control for the deployment of robotic camera
networks,” Proceedings of the IEEE, vol. 99, no. 9, pp. 1541–1561,
2011.

[23] X. Lan and M. Schwager, “Rapidly exploring random cycles: Persistent
estimation of spatiotemporal fields with multiple sensing robots,” IEEE
Transactions on Robotics, vol. 32, no. 5, pp. 1230–1244, 2016.

[24] G. Banjac, P. Goulart, B. Stellato, and S. Boyd, “Infeasibility
Detection in the Alternating Direction Method of Multipliers for
Convex Optimization,” 2018 UKACC 12th International Conference
on Control, CONTROL 2018, p. 340, 2018. [Online]. Available:
https://doi.org/10.1007/s10957-019-01575-y

[25] B. D. Anderson and J. B. Moore, Optimal filtering. Courier
Corporation, 2012.

https://doi.org/10.1007/s10957-019-01575-y

	INTRODUCTION
	Prior Work
	Notation and Problem Formulation
	Alternating Direction Method of Multipliers
	Generalization for easier constraint projections
	Adaptive penalty parameter
	Complete algorithm
	Infeasibility detection

	Minimum Uncertainty Mapping
	Path Planning Constraints
	Start and end locations
	Velocity constraint
	Convex obstacles
	Waypoints with flexible deadlines
	Introspection constraint
	Implementation as a Matlab toolbox

	Results
	Simulations
	Experiments

	Conclusion and future work
	References

