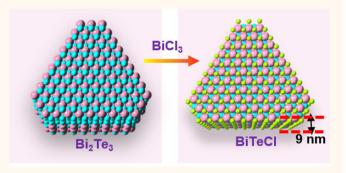


www.acsnano.org

Epitaxial Synthesis of Highly Oriented 2D Janus Rashba Semiconductor BiTeCl and BiTeBr Layers

Debarati Hajra, Renee Sailus, Mark Blei, Kentaro Yumigeta, Yuxia Shen, and Sefaattin Tongay*

Cite This: ACS Nano 2020, 14, 15626–15632


ACCESS

Metrics & More

Article Recommendations

s Supporting Information

ABSTRACT: The family of layered BiTeX (X = Cl, Br, I) compounds are intrinsic Janus semiconductors with giant Rashba-splitting and many exotic surface and bulk physical properties. To date, studies on these materials required mechanical exfoliation from bulk crystals which yielded thick sheets in nonscalable sizes. Here, we report epitaxial synthesis of Janus BiTeCl and BiTeBr sheets through a nanoconversion technique that can produce few triple layers of Rashba semiconductors (<10 nm) on sapphire substrates. The process starts with van der Waals epitaxy of Bi₂Te₃ sheets on sapphire and converts these sheets to BiTeCl or BiTeBr layers at high temperatures in the presence of chemically reactive BiCl₃/BiBr₃

inorganic vapor. Systematic Raman, XRD, SEM, EDX, and other studies show that highly crystalline BiTeCl and BiTeBr sheets can be produced on demand. Atomic level growth mechanism is also proposed and discussed to offer further insights into growth process steps. Overall, this work marks the direct deposition of 2D Janus Rashba materials and offers pathways to synthesize other Janus compounds belonging to MXY family members.

KEYWORDS: Janus, epitaxy, inversion-symmetry, van der Waals gap, bismuth tellurohalide, Raman spectroscopy

ismuth telluro chloride (BiTeCl), a recently discovered inversion-asymmetric topological insulator (TI)¹ is a member of the family of noncentrosymmetric Janus Rashba-semiconductors BiTeX (X = Cl, Br, I), which have recently generated a strong interest due to their versatile quantum phases. 1-9 This family of layered materials features intrinsic "Janus"^{2,3} sublayers consisting of individual layers of metal, halogen, and chalcogen atoms stacked together in triplelayers (TLs), separated along the hexagonal c-axis of the crystal by a weak van der Waals (vdW) force (Figure 1a-d). This special atomic arrangement induces charge-separation along the stacking direction and large built-in electric field within each Janus layer. 1,4 Similar to other BiTeX materials, heavy Bi atom-induced spin-orbit coupling (SOC) and lack of inversion symmetry lifts the spin degeneracy in the bulk and surface electronic states of BiTeCl causing spin-polarized "Rashba" states 1-5 as predicted in theoretical models, 6 and experimentally confirmed by angle-resolved photoemission spectroscopy (ARPES).^{4,6}

Rashba splitting makes BiTeCl and BiTeBr a strong candidate for use in spintronics. ^{1,5} For example BiTeCl is a narrow-gap semiconductor $(E_{\rm g}\sim 0.8~{\rm eV})^6$ which has been demonstrated to have *n*-type and *p*-type surface states for Te

and Cl terminated exfoliated flakes.⁶ So far BiTeCl/BiTeBr are the only strong-inversion-asymmetric TI, with the only other candidate being HgTe with weak inversion asymmetry.¹⁰ Interestingly, superconductivity is shown to exist in BiTeCl at pressures above 5 GPa¹¹ which is rarely observed in TIs. These properties in one layered material make Janus Rashbasemiconductors BiTeX a promising candidate for spintronic and optoelectronic applications and offer opportunities to study the interplay of contrasting quantum phenomena coexisting in a single material.

Previous electronic transport studies on Janus Rashba BiTeX have been mostly carried out on samples mechanically exfoliated from bulk crystals^{12,13} grown by topotactic method.¹⁴ Although this technique can transfer highly crystalline samples, only samples of nonscalable size (both

Received: July 31, 2020 Accepted: October 16, 2020 Published: October 22, 2020

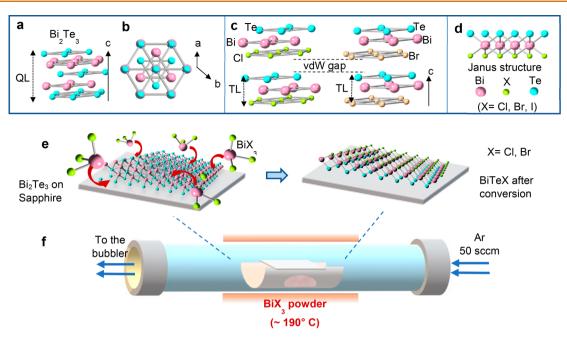


Figure 1. Overviews of triple-layer (TL) in Janus BiTiX (X = Cl, Br, and I) and schematic of their epitaxial synthesis. a,b. Hexagonal crystal structure of one quintuple layer (QL) Bi₂Te₃ and c. noncentrosymmetric Janus structure of BiTeCl and BiTeBr. d. Triple-layer structure of BiTeX family showing two different faces of a single Janus layer. e. Schematic outline of the conversion processand f. implemented experimental setup for conversion process of Bi₂Te₃ into BiTeCl or BiTeBr.

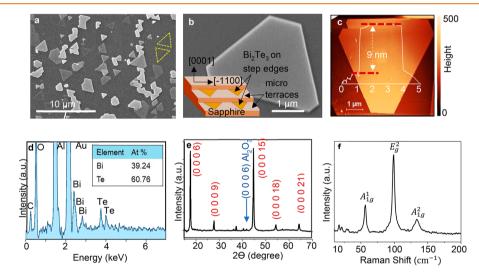


Figure 2. a. Low magnification SEM image of Bi₂Te₃ sheets. Two common orientations of Bi₂Te₃ flakes shown by dashed yellow lines. b. High magnification SEM image of single Bi₂Te₃ nanosheet; The inset shows orientation of the triangular nanosheets with respect to single crystal sapphire substrate on the terraces. c. Atomic force microscopy image of a typical Bi₂Te₃ flake and AFM line scan plot highlighting its height profile. d. Energy dispersive X-ray (EDX) analysis showing 2:3 stoichiometry of Bi₂Te₃ sheets. e. XRD data collected from Bi₂Te₃ nanosheets showing high crystallinity and orientation. f. Raman spectra of Bi₂Te₃ with all vibrational modes.

thickness and lateral size) can be accessed without any substrate orientation control. No thin-film BiTeCl or other Bi based Janus layered growth has been reported to date through bottom-up and scalable epitaxial method.

Here, we report the synthesis of ultrathin BiTeCl and BiTeBr sheets by conversion of Bi_2Te_3 sheets into BiTeX (X = Cl, Br) in the presence of BiX_3 vapor. The method produces flakes as thin as <10 nm with excellent elemental uniformity and crystalline characteristics as confirmed by a variety of characterization techniques. We further offer a possible growth mechanism to explain the conversion process and atomic level chemical reaction to establish the foundations of this type of

growth process. Overall, this work enables a time- and cost-effective growth method for producing Bi based Janus crystals (BiTeX, X = Br or Cl) and offers the opportunity to investigate atomic-level phenomena not previously studied due to the limitations imposed by film thickness.

RESULTS AND DISCUSSION

Topological Bi₂Te₃ vs. Janus BiTeCl vdW layers. Figure 1a-d depicts the crystal structures of Bi₂Te₃ and Janus BiTeX (X = Cl, Br, I). The parent material, Bi₂Te₃, crystallizes in a hexagonal structure with $R\overline{3}m$ spacegroup whereas noncentrosymmetric BiTeCl and BiTeBr belong to hexagonal

P6₃mc and P3m1 space groups, respectively. One unit cell of Bi₂Te₃ contains three quintuple layers (QL) of Te-Bi-Te-Bi-Te stacked together along the c-axis. ¹⁵ Compared to Bi₂Te₃, one unit cell of BiTeX (X = Cl, Br) consists of two(one) triple-layers(TL) of Te-Bi-X sandwich, with a vdW gap between two adjacent TLs perpendicular to the c-axis. ^{13,18} In each TL, Bi-Te and Bi-Cl are bonded covalently while Te-X bonds across the vdW gap are bonded by much weaker vdW forces. Because each Te-Bi-X triple-layer contains different faces (Te vs. X), BiTeX crystals are often referred to as Janus crystals, named after the two-faced Roman God Janus. Here, it is important to note that Bi₂Te₃ and BiTeX have a strongly similar crystal symmetry; possibly one of the factors to promote the conversion process which will be discussed later in the article.

Synthesis Process. Our method starts with the CVD deposition of ultrathin (~5-10 nm) Bi₂Te₃ sheets onto c-cut sapphire substrates. In a typical growth process, Bi₂Te₃ sheets were synthesized using Bi₂Te₃ powder as a precursor in a 1 in. diameter quartz tube furnace by vdW epitaxy using established protocols in the literature. ¹⁶ Bi₂Te₃ powder was kept at 480 °C while target substrates were at 12 cm downstream from the center where the temperature was 200 °C. Prior to the deposition step, (0001) cut sapphire substrates were preannealed at 1850 °C in the presence of Argon gas to introduce atomically flat terraces with step edges along the [-1100] direction (shown in inset of Figure 2b). We find that introducing these sharp steps is helpful in facilitating the nucleation process along the chemically active (lower nucleation barrier) step-edges (for details see the Methods section).

After the growth, mostly truncated triangles of lateral size ~5 μ m and few QL thickness measuring \sim 8–9 nm¹⁶ were obtained along (0001) orientation as shown in the SEM and AFM scan images (Figure 2a-c). Raman microscopy, XRD, and EDX characterizations confirmed the composition and crystallinity of Bi₂Te₃ QL sheets as shown in Figure 2d-f. XRD scans mainly yield {000l} reflections, confirming the layer-by-layer growth mode which produces well-aligned Bi₂Te₃ sheets. The three most prominent Bi₂Te₃Raman peaks were observed at 56 cm⁻¹, 99 cm⁻¹, and 134 cm⁻¹ consistent with the literature. 17 These peaks had narrow full widths at half-maximum (fwhm) (\sim 3, 4, and 6 cm⁻¹, respectively) further confirm the high crystallinity of Bi₂Te₃ QLs. One important observation is that Bi₂Te₃ triangle sheets have two possible orientations with respect to the sapphire substrate, which is shown with dashed outline in Figure 2a. One of the edges of the triangles is parallel to the [-1100]direction of the sapphire substrate (Figure 2b inset). Hexagonal symmetry of [0001] oriented sapphire ultimately guides the growth of hexagonal Bi₂Te₃ with these specific orientations, also observed by other researchers in this field. 19

Conversion through Solid—gas Reaction. Conversion of Bi₂Te₃ into BiTeCl was carried out in a one-inch diameter quartz tube placed inside a one-zone furnace as schematically shown in Figure 1f. In the big picture, the conversion relies on chemical reaction between Bi₂Te₃ vdW sheets with chemically reactive BiCl₃ vapor to form BiTeCl layers (the transformation process details are offered later in the article). To accomplish that, BiCl₃ powder was placed in an alumina boat kept at the center of the furnace and Bi₂Te₃/sapphire substrates were placed face down above the alumina boat directly facing the BiCl₃ vapor/precursor. To maintain a nonreactive environment

(i.e., to prevent oxidation of $\mathrm{Bi}_2\mathrm{Te}_3$) and to prevent excess BiCl_3 vapor pressure, Ar flow of 50 sccm was maintained during the experiment. Without the Ar flow, $\mathrm{Bi}_2\mathrm{Te}_3$ sheets reacted with ambient oxygen and produced thin layer of tellurium oxide (TeO_x) on the surface which significantly impeded the conversion process.

Our comprehensive studies have shown that growth temperature range and duration ultimately dictate a successful Janus conversion process. For example, any growth at temperatures above 210 °C caused Bi₂Te₃ ultrathin sheets to deteriorate by decomposition process due to the low melting point of Bi₂Te₃. Also, growth temperatures below 180 °C were not sufficient for sublimation of BiCl $_3$ ($T_{\rm melting} \sim 230~{\rm ^{\circ}C}$) and thus prevented the Janus conversion process. Considering the material stability and precursor sublimation, the conversion process only offered very narrow 180 $^{\circ}$ C < $T_{\rm g}$ < 210 $^{\circ}$ C growth temperature range. Even when the temperature range is finely tuned, for longer conversion times (>6 min) most of the thin films suffered major surface degradation, while shorter conversion times resulted in partially converted Janus BiTeCl sheets. In our studies, the optimal growth parameter was 190 °C source zone temperature with 5 min growth duration.

To confirm the presence of BiTeCl sheets, we have used conventional nondestructive Raman spectroscopy. Previously, this method has been widely used to characterize bulk BiTeCl 12,13,20 as well as other Janus crystals with well-established Raman spectra. Vibrational representation of zone-center phonons of BiTeCl can be written as $\Gamma=2A_1+3B_1+2E_1+2E_2$ where all the modes should be observed except silent B_1 modes. After the conversion process, we find that previously established Bi_2Te_3 Raman peaks at 56, 99, and $134~\rm cm^{-1}$ disappear and new peaks emerge (Figure 3a) at 82,

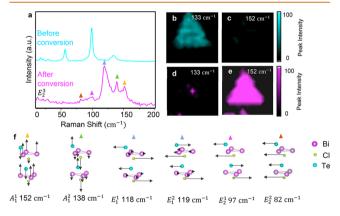


Figure 3. a. Raman Spectra of parent (Bi_2Te_3) and product (BiTeCl) sheets before and after conversion. b,d. Raman mapping of mode A_{1g}^2 at 133 cm⁻¹ in Bi_2Te_3 before and after conversion, respectively. c,e. Raman mapping of A_1^1 mode at 152 cm⁻¹ of BiTeCl before and after conversion, respectively, indicating uniform conversion. f. atomic displacements corresponding to different vibrational modes of BiTeCl.

97, 118, 119, 138, and 152 cm⁻¹ which correspond to E_{2}^2 , E_{1g}^1 , E_{1g}^1 , E_{1g}^2 , and A_1^1 modes, respectively. The rigid layer mode E_2^3 was found at 18 cm⁻¹. We note that while these peaks are located at correct positions, their relative intensities with respect to each other can be different across bulk and thin-film Janus layers (Supporting Information (SI) Figure S2). ¹³ Previously similar thickness induced trends were shown for other vdW materials including MoTe₂, ^{21,22} WSe₂, ²³ and

others²⁴ and is likely related to changes in Raman scattering cross-section with respect to material thickness.

Uniformity Across the Flake and Stability. To assess the uniformity of the conversion process, we provide the Raman mapping data of two different flakes before and after conversion, as seen in Figure 3b—e. Figure 3b,d show the peak intensity plot of A_{1g}^2 mode for Bi_2Te_3 before and after conversion, respectively. As expected, the peak intensity is uniform throughout the sample before conversion and is absent in the sample after conversion. In Figure 3c,e, we show a similar map at $BiTeCl\ A_1^1$ mode before and after conversion. The peak intensity is uniformly distributed over the sample area after conversion, confirming the uniform and complete conversion of Bi_2Te_3 nanosheets into BiTeCl. EDX mapping of elements Bi, Te, and Cl in Figure 4a—d also confirms uniformity in distribution of all three elemental components of BiTeCl.

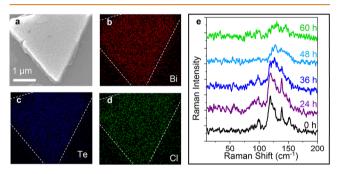


Figure 4. a-d. Elemental composition mapping by SEM-EDX on synthesized BiTeCl ultrathin sheets showing individual contribution of Bi, Te, and Cl. e. Degradation of vibrational response of BiTeCl thin films as observed by Raman spectra taken at several time intervals after exposure to ambient air.

Typically, CVD or PVD grown 2D or vdW materials have been shown to be more prone to environmental degradation effects²⁵ and chalcogen vacancies have been suggested as one of the primary reasons for metastability. To understand the stability of the synthesized BiTeCl vdW sheets, we performed time dependent Raman spectroscopy to study the change in vibrational properties after exposing the thin films in ambient air (Figure 4e). Measurement at 0 h refers to Raman spectra collected immediately after the conversion process and samples were kept in ambient conditions (air and 20 °C) for a prolonged amount of time up to 60 h. In the first 24 h time frame, the Raman spectra had shown no noticeable changes but started to broaden and produce weaker signals beyond 24 h. This can be attributed to an increased number of defects in the material and deviation from Γ = 0 Raman condition whether the defect originates from oxidization or the material degradation process. Prior studies have also shown similar degradation effects on other Te based material systems including GaTe, ZrTe₃, ^{26,27} tellurene, ^{28,29} and others. ^{30,31} These researches show that, reaction with O2 and H2O can be detrimental to tellurium-based thin films. Interplay of multiple degradation mechanisms, for example. adsorption of gaseous molecules (O2, H2O, NO2, NH3, H2S, etc.) from air followed by their dissociation in the presence of vacancies is highly probable. A possible reaction route enhancing surface degradation can be $BiTeX + H_2O = BiTe_{(1-y)}X + Te_yO_x +$ biproducts. Our results suggest that synthesized few layer thick BiTeCl sheets must be either be protected by surface

functionalization,²⁷ encapsulated with other 2D sheets(for example. few layers h-BN)^{32,33} *etc.* or kept under inert gas conditions for increased self-life.

Applicability to other BiTeX Rashba Layers. To investigate the applicability of this technique for growth of materials within the same family, we attempted conversion of BiTeBr and BiTeI in the presence of BiBr₃ and BiI₃ vapor, respectively, from PVD-grown Bi₂Te₃. The conversion of BiTeBr was carried out using a similar experimental setup with the center of the furnace set to 180 °C ($T_{\rm melting}$ of BiBr₃ ~ 220 °C). Raman spectra (Figure 5a–c) taken after the conversion process indicates the presence of BiTeBr. Raman mapping in mode A_1 presented in Figure 5b shows near uniform conversion.

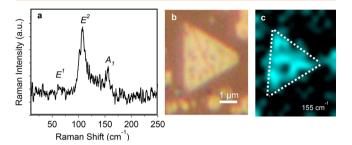


Figure 5. a. Raman spectra of BiTeBr nanosheet after conversion. b. Optical image. c. Raman peak intensity mapping for the BiTeBr A_1 mode at 155 cm $^{-1}$ demonstrating nearly uniform conversion.

Due to higher temperature requirements, the experimental setup was modified for converting BiTeI, in which the center of the furnace was held at 350 °C to allow sublimation of BiI $_3$ ($T_{\rm melting}$ of BiI $_3$ ~ 400 °C). The sapphire substrate with the Bi $_2$ Te $_3$ thin film was placed on a separate Al $_2$ O $_3$ boat 10 cm downstream of the furnace center to avoid damaging the film, in a zone of ~180 °C. This setup did not result in conversion, as BiI $_3$ recrystallizes in the temperature zone 150–250 °C.

We further attempted the growth of SbTeCl and SbTeBr by the same method (S4) where the conversion process did not take place (SI Figure S4). To the best of our knowledge, crystal structures of SbTeCl(Br) are not experimentally established at the time of writing and SbTeI does not belong to Janus family. Lack of similarity between the parent (Sb2Te3) and the product (SbTeX) can be a possible reason for this as we mention in the growth mechanism section.

Growth Mechanism. Here, we present one possible growth mechanism that can account for the Bi₂Te₃ conversion into BiTeX, as few striking structural similarities between these two layered materials can facilitate the conversion process. The crystal structure of both materials consists of individual planes of all the elements (Bi, Te for Bi₂Te₃ and Bi, Te, X for BiTeX). A closer look at the crystal structure of Bi₂Te₃ reveals that the coordination octahedra of Bi atoms consists of six Te atoms which are similar to the coordination octahedra of Bi atoms in BiTeX with the top three Te atoms replaced by X atoms (Figure 6a,b). Bi—Te bond lengths are also close in both materials (3.10–3.29 Å in Bi₂Te₃ and 3.05 and 3.06 Å in BiTeCl and BiTeBr, respectively). These atomic-level structural similarities are suggestive of an energetically favorable conversion process from Bi₂Te₃ to BiTeX.

We first emphasize that if Bi₂Te₃ flakes measure thicker than 10 nm these sheets can only be partially converted to BiTeX, but thinner flakes (<10 nm) can easily undergo a full

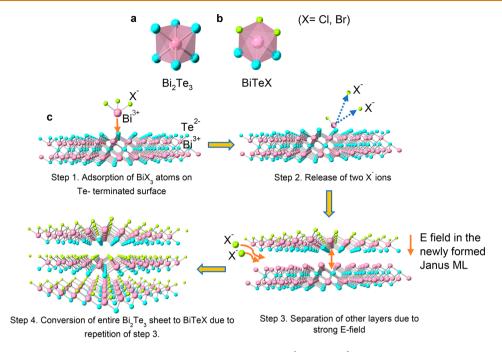


Figure 6. a,b. Similarity between coordination octahedra in Bi_2Te_3 and BiTeX (X = Cl, Br), suggestive of the feasibility of conversion from Bi_2Te_3 and BiTeX. c. Possible steps of the conversion process: Step 1, attraction of Bi^{3+} ions of BiX_3 toward Te^{2-} of Bi_2Te_3 ; Step 2, release of two X^- ions from BiX_3 to maintain neutral charge with the Te layer; Step 3, formation of first BiTeX Janus layer with a high E-field toward the Te-plane which causes adjacent bottom layers to be separated. Intercalation of X^- ions in the newly formed vdW gap converts next layers into BiTeX; Step 4, conversion of entire Bi_2Te_3 sheet due to repetition of Step 3.

conversion. We also note that conversion process does not start from the edges of $\mathrm{Bi_2Te_3}$ since halting the growth process without reaching full conversion does not yield BiTeX at the edge sites. These observations indicate the conversion process starts at the surface of the $\mathrm{Bi_2Te_3}$ flakes and gradually proceeds toward bottom layers.

The atomic mechanism of the conversion process is depicted in detail in Figure 6. First, BiX₃ powder sublimes and goes into gaseous phase $BiX_3(g)$ which in turn reacts with the top surface of Bi₂Te₃. Being an ionic compound, BiCl₃ shares its total charge as Bi3+ and 3X-, while Te terminated Bi2Te3 has a surface charge of Te²⁻. First, Bi³⁺ of a BiX₃ molecule reacts with Te2- terminated surface due to high local partial gas pressure of BiX₃. We argue that two X⁻ ions from BiX₃ are released to maintain charge neutrality with Te2- layers. This forms the first "nucleation site" of BiTeCl, and the process repeats to form the first layer of BiTeX on the surface after rearrangement of the Te atoms into new energetically favorable positions. Once the first layer of BiTeX is formed, a strong electric field (polarization field) directed toward the Te layer develops within the Janus layer. This electric field separates adjacent layers having a net positive charge along the c-axis, creating a vdW gap as observed in various DFT studies. Extra X⁻ species diffuse through the vdW gap via intercalation to form the next BiTeCl layers. Each time a new Janus layer forms, it creates a separation with the adjacent layers until the whole Bi₂Te₃ flake converts into BiTeX. This process is particularly successful for thin sheets (<10 nm) since the number of layers is limited and thus the process time is short. In contrast, thicker sheets require longer conversion time and results in partially converted sheets. To avoid surface degradation of the nanosheets (mentioned earlier), we did not raise the conversion time above 7 min, which was insufficient to fully convert thicker (>10 nm) flakes. Another

potential growth mechanism might be phase transformation of Bi₂Te₃ → BiTe by chalcogen defect generation at growth temperatures, followed by BiTe \rightarrow BiTeCl transformation similar to the process described above. To test this potential route, we have annealed Bi₂Te₃ nanosheets under the same experimental conditions except without the BiCl₃ powder. Comprehensive Raman spectra collected on Bi₂Te₃ sheets-(S5) show no significant changes before and after the annealing process which precludes the possibility of an intermediary BiTe step and makes the latter process unlikely. Although this hypothesis lays a foundation in understanding the conversion process at the trilayer level, future theoretical studies such as calculation of energy of formation at the growth temperature, DFT and charge analysis (e.g., Bader charge analysis) are suggested to understand the feasibility, charge sharing mechanism during adsorption of BiX3 and intercalation of Xspecies.

CONCLUSION

In summary, we have demonstrated the direct synthesis of orientation-controlled ultrathin (\sim 15 layer thick) BiTeCl and BiTeBr Janus layers on sapphire substrates using nanoscale conversion process. These studies show the demonstration of their synthesis in ultrathin form without the need for exfoliating bulk crystals. Comprehensive measurements further confirm the quality and uniformity of these Janus BiTeCl and BiTeBr sheets. A detailed growth mechanism is offered to understand the nature of this transformation process from Bi₂Te₃ to BiTeX vdW sheets. Overall results established ways to deposit these materials in few-layer form and may offer potential ways to extend these results to other 2D Janus crystals belonging to MXY (M = Bi, Sb X = Se and Te, and X = Cl, Br, I) quantum material systems.

METHODS

Bi₂Te₃ vdW Sheet Synthesis. Bi₂Te₃ vdW sheets were grown on c-cut sapphire by physical vapor deposition in a single-zone Lindberg tube-furnace (model TF55030A-1). A c-cut sapphire substrate was preannealed at temperature 1850 °C in Argon atmosphere for 1 h to create parallel terraces on the substrate-surface along [-1100] direction. During the growth 2 mg of Bi₂Te₃ (Alpha Aesar, 99.98%) powder was placed in a quartz boat in a one-inch diameter quartz tube at the center of the furnace (480 °C) and sapphire substrate was kept at 12 cm downstream from the center in a separate quartz boat where the temperature is \sim 200 °C. Though the tube was cleaned with 200 sccm Ar prior to the experiment, no gas flow was maintained during the growth. The pressure inside the tube was maintained at 200 mTorr. The temperature was raised from room temperature to 480 °C at 20 °C/min and was kept at 480 °C for 5 min. At the end of the process the furnace was allowed to cool to room temperature naturally.

BiTeCl(Br) Conversion. BiTeCl(Br) conversion process was performed in the same furnace. Five mg of BiCl(Br)₃ powder (Sigma-Aldrich, 99.99% trace metal basis) was kept at the center of the furnace in an Al₂O₃ boat with Bi₂Te₃ deposited substrate above it. Temperature was raised to ~190 (200) °C at 20 °C/min rate and Argon flow of 50 sccm was maintained during the experiment. An average growth time of ~5 min was maintained for both materials, after which the furnace was allowed to cool to room temperature. Before beginning the conversion process the quartz tube was purged by Argon flow at 200 sccm to remove unwanted impurities. This technique has been repeated to more than 25 samples before concluding the work.

Atomic Force Microscopy. Atomic force microscopy images were acquired by NT-MDT AFM-system in semicontact mode by Silicon tips with Al-coatings.

XRD. X-ray diffraction data from Bi_2Te_3 thin films were acquired by high resolution Panalytical X'Pert Pro MRD with Cu $K_{\alpha 1}$ wavelength. Fixed divergence slits were used as the incident beam optics and detection of the diffracted rays was done by X'Celerator detector.

Raman Spectroscopy. Raman spectroscopy measurements were done with a homemade Raman microscope in backscattering geometry with unpolarized 532 nm incident laser (1.3 mW) in backscattering geometry with spectral resolution 1 cm⁻¹. Scattered light intensity was measured without any analyzer at the detector. To avoid oxidation of thin films under Laser sample was kept in a vacuum chamber with quartz window at 100 mTorr during the measurement. For Raman mapping a different Renishaw spectrometer with polarized incident light of wavelength 488 nm was used with backscattering geometry.

Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy. Scanning electron microscopy (SEM) of $\mathrm{Bi}_2\mathrm{Te}_3$ nanosheets was done with an Amray 1910 field electron scanning electron microscope at 15 keV with $\sim\!2$ nm resolution. The sapphire substrate with $\mathrm{Bi}_2\mathrm{Te}_3$ was fixed on an Al sample holder by carbon tape. Prior to SEM imaging, the substrate was coated with 20 nm gold to avoid the effect of sample charging. EDX spectra and elemental mapping were acquired with the same microscope with EDAX Octane Series Silicon Drift Detector.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.0c06434.

Bulk growth and characterization of BiTeCl; analysis of Raman spectra of bulk and thin film BiTeCl samples; Sb-based Janus thin-film growth; temperature treatment of Bi_2Te_3 thin films (PDF)

AUTHOR INFORMATION

Corresponding Author

Sefaattin Tongay – Materials Science and Engineering, School for Engineering of Matter Transport of Energy, Arizona State University, Tempe, Arizona 85287, United States;

orcid.org/0000-0001-8294-984X; Email: sefaattin.tongay@asu.edu

Authors

Debarati Hajra — Materials Science and Engineering, School for Engineering of Matter Transport of Energy and Department of Physics, Arizona State University, Tempe, Arizona 85287, United States

Renee Sailus — Materials Science and Engineering, School for Engineering of Matter Transport of Energy, Arizona State University, Tempe, Arizona 85287, United States

Mark Blei – Materials Science and Engineering, School for Engineering of Matter Transport of Energy, Arizona State University, Tempe, Arizona 85287, United States

Kentaro Yumigeta — Materials Science and Engineering, School for Engineering of Matter Transport of Energy and Department of Physics, Arizona State University, Tempe, Arizona 85287, United States

Yuxia Shen — Materials Science and Engineering, School for Engineering of Matter Transport of Energy, Arizona State University, Tempe, Arizona 85287, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acsnano.0c06434

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge the use of facilities within the Eyring Materials Center at Arizona State University supported in part by NNCI-ECCS-1542160. S.T acknowledges support from DOE-SC0020653, NSF CMMI 1933214, NSF DMR 1552220, and DMR 1955889.

REFERENCES

- (1) Chen, Y.; Kanou, M.; Liu, Z.; Zhang, H.; Sobota, J.; Leuenberger, D.; Mo, S.; Zhou, B.; Yang, S.; Kirchmann, P. Discovery of a Single Topological Dirac Fermion in the Strong Inversion Asymmetric Compound BiTeCl. *Nat. Phys.* **2013**, *9*, 704–708.
- (2) Yagmurcukardes, M.; Qin, Y.; Ozen, S.; Sayyad, M.; Peeters, F.; Tongay, S.; Sahin, H. Quantum Properties and Applications of 2D Janus Crystals and Their Superlattices. *Appl. Phys. Rev.* **2020**, *7*, 011311.
- (3) Li, H.; Qin, Y.; Ko, B.; Trivedi, D. B.; Hajra, D.; Sayyad, M. Y.; Liu, L.; Shim, S. H.; Zhuang, H.; Tongay, S. Anomalous Behavior of 2D Janus Excitonic Layers under Extreme Pressures. *Adv. Mater.* **2020**, *32*, 2002401.
- (4) Ma, Y.; Dai, Y.; Wei, W.; Li, X.; Huang, B. Emergence of Electric Polarity in BiTeX (X= Br and I) Monolayers and the Giant Rashba Spin Splitting. *Phys. Chem. Chem. Phys.* **2014**, *16*, 17603–17609.
- (5) Crepaldi, A.; Moreschini, L.; Autes, G.; Tournier-Colletta, C.; Moser, S.; Virk, N.; Berger, H.; Bugnon, P.; Chang, Y.; Kern, K. Giant Ambipolar Rashba Effect in the Semiconductor BiTeI. *Phys. Rev. Lett.* **2012**, *109*, 096803.
- (6) Landolt, G.; Eremeev, S. V.; Tereshchenko, O. E.; Muff, S.; Slomski, B.; Kokh, K. A.; Kobayashi, M.; Schmitt, T.; Strocov, V. N.; Osterwalder, J. Bulk and Surface Rashba Splitting in Single Termination BiTeCl. *New J. Phys.* **2013**, *15*, 085022.
- (7) Eremeev, S. V.; Nechaev, I. A.; Koroteev, Y. M.; Echenique, P. M.; Chulkov, E. V. Ideal Two-Dimensional Electron Systems with a

- Giant Rashba-Type Spin Splitting in Real Materials: Surfaces of Bismuth Tellurohalides. *Phys. Rev. Lett.* **2012**, *108*, 246802.
- (8) Fiedler, S.; Bathon, T.; Eremeev, S. V.; Tereshchenko, O. E.; Kokh, K. A.; Chulkov, E. V.; Sessi, P.; Bentmann, H.; Bode, M.; Reinert, F. Termination-Dependent Surface Properties in the Giant-Rashba Semiconductors BiTeX (X= Cl, Br, I). *Phys. Rev. B: Condens. Matter Mater. Phys.* **2015**, 92, 235430.
- (9) Ishizaka, K.; Bahramy, M.; Murakawa, H.; Sakano, M.; Shimojima, T.; Sonobe, T.; Koizumi, K.; Shin, S.; Miyahara, H.; Kimura, A. Giant Rashba-Type Spin Splitting in Bulk BiTeI. *Nat. Mater.* **2011**, *10*, 521–526.
- (10) Gui, Y.; Becker, C.; Dai, N.; Liu, J.; Qiu, Z.; Novik, E.; Schäfer, M.; Shu, X.; Chu, J.; Buhmann, H. Giant Spin-Orbit Splitting in a HgTe Quantum Well. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2004**, *70*, 115328.
- (11) Ying, J.-J.; Struzhkin, V. V.; Cao, Z.-Y.; Goncharov, A. F.; Mao, H.-K.; Chen, F.; Chen, X.-H.; Gavriliuk, A. G.; Chen, X.-J. Realization of Insulating State and Superconductivity in the Rashba Semiconductor BiTeCl. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2016**, 93, 100504.
- (12) Akrap, A.; Teyssier, J.; Magrez, A.; Bugnon, P.; Berger, H.; Kuzmenko, A. B.; Van Der Marel, D. Optical Properties of BiTeBr and BiTeCl. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2014**, *90*, 035201.
- (13) Heid, R.; Bohnen, K. P.; Chis, V.; Volodin, V.; Kokh, K. A.; Tereshchenko, O. E.; Echenique, P. M.; Chulkov, E. V.; Sklyadneva, I. Y. Lattice Dynamics of Bismuth Tellurohalides. *Phys. Rev. B* **2012**, *86* (9), 094302–1–094302–8 2012.
- (14) Jacimovic, J.; Mettan, X.; Pisoni, A.; Gaal, R.; Katrych, S.; Demko, L.; Akrap, A.; Forró, L.; Berger, H.; Bugnon, P. Enhanced Low-Temperature Thermoelectrical Properties of BiTeCl Grown by Topotactic Method. Scr. Mater. 2014, 76, 69–72.
- (15) Zahid, F.; Lake, R. Thermoelectric Properties of Bi₂Te ₃ Atomic Quintuple Thin Films. *Appl. Phys. Lett.* **2010**, *97*, 212102.
- (16) Lee, H.-Y.; Chen, Y.-S.; Lin, Y.-C.; Wu, J.-K.; Lee, Y.-C.; Wu, B.-K.; Chern, M.-Y.; Liang, C.-T.; Chang, Y. H. Epitaxial Growth of Bi₂Te₃ Topological Insulator Thin Films by Temperature-Gradient Induced Physical Vapor Deposition (Pvd). *J. Alloys Compd.* **2016**, 686, 989–997.
- (17) Humlíček, J.; Hemzal, D.; Dubroka, A.; Caha, O.; Steiner, H.; Bauer, G.; Springholz, G. Raman and Interband Optical Spectra of Epitaxial Layers of the Topological Insulators Bi₂Te₃ and Bi₂Se₃ on BaF₂ Substrates. *Phys. Scr.* **2014**, *2014*, 014007.
- (18) Shevelkov, A.; Dikarev, E.; Shpanchenko, R.; Popovkin, B. Crystal Structures of Bismuth Tellurohalides BiTeX (X= Cl, Br, I) from X-Ray Powder Diffraction Data. *J. Solid State Chem.* **1995**, *114*, 379–384.
- (19) Chen, L.; Liu, B.; Ge, M.; Ma, Y.; Abbas, A. N.; Zhou, C. Step-Edge-Guided Nucleation and Growth of Aligned WSe₂ on Sapphire via a Layer-Over-Layer Growth Mode. ACS Nano 2015, 9, 8368–8375.
- (20) Zhou, W.; Lu, J.; Xiang, G.; Ruan, S. Vibrational Properties of Layered BiTeCl Single Crystal. *J. Raman Spectrosc.* **2017**, 48, 1783–1788.
- (21) Kuiri, M.; Das, S.; Muthu, D.; Das, A.; Sood, A. Thickness Dependent Transition from the 1T' to Weyl Semimetal Phase in Ultrathin MoTe 2: Electrical Transport, Noise and Raman Studies. *Nanoscale* **2020**, *12*, 8371–8378.
- (22) Chen, B.; Sahin, H.; Suslu, A.; Ding, L.; Bertoni, M. I.; Peeters, F.; Tongay, S. Environmental Changes in MoTe₂ Excitonic Dynamics by Defects-Activated Molecular Interaction. *ACS Nano* **2015**, *9*, 5326–5332.
- (23) Sahin, H.; Tongay, S.; Horzum, S.; Fan, W.; Zhou, J.; Li, J.; Wu, J.; Peeters, F. Anomalous Raman Spectra and Thickness-Dependent Electronic Properties of WSe ₂. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2013**, *87*, 165409.
- (24) Cao, Y.; Sheremetyeva, N.; Liang, L.; Yuan, H.; Zhong, T.; Meunier, V.; Pan, M. Anomalous Vibrational Modes in Few Layer

- WTe₂ Revealed by Polarized Raman Scattering and First-Principles Calculations. 2D Mater. **2017**, *4*, 035024.
- (25) Li, Q.; Zhou, Q.; Shi, L.; Chen, Q.; Wang, J. Recent Advances in Oxidation and Degradation Mechanisms of Ultrathin 2D Materials under Ambient Conditions and Their Passivation Strategies. *J. Mater. Chem. A* **2019**, *7*, 4291–4312.
- (26) Yang, S.; Cai, H.; Chen, B.; Ko, C.; Özçelik, V. O.; Ogletree, D. F.; White, C. E.; Shen, Y.; Tongay, S. Environmental Stability of 2D Anisotropic Tellurium Containing Nanomaterials: Anisotropic to Isotropic Transition. *Nanoscale* **2017**, *9*, 12288–12294.
- (27) Yang, S.; Qin, Y.; Chen, B.; özçelik, V. O.; White, C. E.; Shen, Y.; Yang, S.; Tongay, S. Novel Surface Molecular Functionalization Route to Enhance Environmental Stability of Tellurium-Containing 2D Layers. ACS Appl. Mater. Interfaces 2017, 9, 44625–44631.
- (28) Wang, X. H.; Yang, A. J.; Koratkar, N.; Chu, J. F.; Lv, P. L.; Rong, M. Z. Effects of Adatom and Gas Molecule Adsorption on the Physical Properties of Tellurene: A First Principles Investigation. *Phys. Chem. Chem. Phys.* **2018**, 20, 4058–4066.
- (29) Xu, W.; Gan, L.; Wang, R.; Wu, X.; Xu, H. Surface Adsorption and Vacancy in Tuning the Properties of Tellurene. *ACS Appl. Mater. Interfaces* **2020**, *12*, 19110–19115.
- (30) Walia, S.; Sabri, Y.; Ahmed, T.; Field, M. R.; Ramanathan, R.; Arash, A.; Bhargava, S. K.; Sriram, S.; Bhaskaran, M.; Bansal, V. Defining the Role of Humidity in the Ambient Degradation of Few-Layer Black Phosphorus. 2D Mater. 2017, 4, 015025.
- (31) Gao, J.; Li, B.; Tan, J.; Chow, P.; Lu, T.-M.; Koratkar, N. Aging of Transition Metal Dichalcogenide Monolayers. *ACS Nano* **2016**, *10*, 2628–2635.
- (32) Ahn, S.; Kim, G.; Nayak, P. K.; Yoon, S. I.; Lim, H.; Shin, H.-J.; Shin, H. S. Prevention of Transition Metal Dichalcogenide Photodegradation by Encapsulation with h-BN Layers. *ACS Nano* **2016**, *10*, 8973–8979.
- (33) Fan, D.; Zhou, Q.; Lv, X.; Jing, J.; Ye, Z.; Shao, S.; Xie, J. Synthesis, Thermal Conductivity and Anti-Oxidation Properties of Copper Nanoparticles Encapsulated within Few-Layer h-BN. *Ceram. Int.* **2018**, 44, 1205–1208.
- (34) Papazoglou, A.; Rentzeperis, P. The Crystal Structure of Antimony Telluroiodide, SbTeI. Zeitschrift für Kristallographie-Crystalline Materials 1983, 165, 159–168.