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Collisions in a dilute polydisperse suspension of spheres of negligible inertia interacting
through non-continuum hydrodynamics and settling in a slow uniaxial compressional
flow are studied. The ideal collision rate is evaluated as a function of the relative
strength of gravity and uniaxial compressional flow and it deviates significantly from a
linear superposition of these driving terms. This non-trivial behaviour is exacerbated by
interparticle interactions based on uniformly valid non-continuum hydrodynamics, that
capture non-continuum lubrication at small separations and full continuum hydrodynamic
interactions at larger separations, retarding collisions driven purely by sedimentation
significantly more than those driven purely by the linear flow. While the ideal collision
rate is weakly dependent on the orientation of gravity with the axis of compression, the
rate including hydrodynamic interactions varies by more than 100 % with orientation. This
dramatic shift can be attributed to complex trajectories driven by interparticle interactions
that prevent particle pairs from colliding or enable a circuitous path to collision. These
and other important features of the collision process are studied in detail using trajectory
analysis at near unity and significantly smaller than unity size ratios of the interacting
spheres. For each case analysis is carried for a large range of relative strengths and
orientations of gravity to the uniaxial compressional flow, and Knudsen numbers (ratio
of mean free path of the media to mean radius).

Key words: breakup/coalescence, Stokesian dynamics, particle/fluid flow

1. Introduction

Collision and subsequent coalescence of drops or aggregation of particles influences the
evolution of many commonly encountered systems. The non-continuum hydrodynamics
and coupling of differential sedimentation with turbulence, which are expected to play
an important role in driving collisions between particles of 5 to 50 μm radii in a gas,
will be studied in detail. We treat turbulence experienced by colliding particles as a
persistent uniaxial compressional flow in line with the model by Saffman & Turner
(1956) which forms the basis of their well-known prediction for the ideal collision
rate of non-sedimenting drops in isotropic turbulence. Particles much smaller than the

† Email address for correspondence: dlk15@cornell.edu
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Kolmogorov scale, which is O(1 mm) in many applications such as droplets in clouds and
aerosol reactors, experience turbulence as a local linear flow consisting of superimposed
straining and rotational motions with the former being most effective in driving collisions.
The distribution of straining flows in turbulence is skewed toward motions resembling
uniaxial compressional motion (see Ashurst et al. 1987). While the strain rate in turbulence
only persists for a strain of approximately 2.3 (see Yeung & Pope 1989) Brunk, Koch &
Lion (1998) found only approximately a 20 % change of the ideal collision rate when
accounting for the finite correlation time of the strain rate.

The frozen flow field treatment of turbulence is applicable to a wide range of aerosol
collision problems. The aggregational growth of carbon black, pigments and other
commercially valuable materials occurs in the turbulent gas flow of an aerosol reactor
(see Buesser & Pratsinis 2012). Thus coupling of the velocities induced by turbulence
with differential sedimentation and shaped by non-continuum hydrodynamics will be
crucial in determining the collision rate. The results of this study could provide a better
understanding of the design of flow conditions to produce a desired degree of aggregation.
In clouds the evolution of droplets in the size gap, of 15 to 40 μm radius, is not
fully understood. At this bottleneck condensation and coalescence driven by differential
sedimentation are both slow processes. For drops in this size range, turbulence driven
motion is expected to augment differential sedimentation to enhance the coalescence rate
while non-continuum hydrodynamics will play a major role in shaping it.

Collision of spheres settling in a local linear flow may arise in many non-turbulent
systems. In systems designed to remove particles such as porous aerosol filters (see
Jaworek et al. 2018) and impactors (see Malá et al. 2013) interparticle collisions driven
by gravity and the local linear flow may affect the particle size distribution in non-dilute
aerosols. The efficiency of atomization of drops in applications such as engines can be
impeded by coalescence (see Laurent & Massot 2001) driven by deceleration of the spray,
experienced by droplets of different size as a differential body force, and a local uniaxial
compressional flow in the jet.

Hydrodynamic interactions play an important role in interparticle collisions in a gas
or liquid. Continuum hydrodynamic lubrication forces do not allow collisions to occur
in finite time. Thus, other interparticle interactions become crucial to obtain a non-zero
collision rate. In a gas, collision can occur due to the breakdown of the continuum
(Sundararajakumar & Koch 1996; Chun & Koch 2005). We will see that for drop sizes
where straining flow and sedimentation typically compete, non-continuum lubrication gas
flow is more important than other considerations that may lead to collision including
van der Waals attractions, mobility of the interface of the water droplets with air and
compressibility of the gas. Thus, we will evaluate the collision rate of particles driven
by the coupled action of gravity and uniaxial compressional flow in the presence of a
non-continuum gas. Additionally, since deformation of the droplets is not expected to be
important we will treat them as hard spheres.

One of the earliest studies on coalescence was carried out by Smoluchowski (1918)
who found the ideal collision rate for two non-interacting spheres, with species i
of radius ai and number density ni, settling in a quiescent fluid with a relative
velocity of Vrel to be n1n2π[a1 + a2]2Vrel. Zeichner & Schowalter (1977) determined
the collision rate of non-interacting spheres in a frozen uniaxial compressional flow to
be [4π/(3

√
3)]n1n2γ̇ [a1 + a2]3, where γ̇ is the compression rate. The coupled system

of spheres settling in linear flow has not been analysed and will be the focus of
this study. Literature exists that studies the uncoupled problems of particle motion
due the linear flow (see Curtis & Hocking 1970; Wang, Zinchenko & Davis 1994)
or sedimentation (see Davis 1984) and includes continuum hydrodynamic interactions
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Collision of settling spheres in a compressional gas flow 910 A10-3

and colloidal forces with focus typically on van der Waals attractions. These collision
studies are pertinent to particle motion in liquids where the van der Waals force is the
predominant mechanism to overcome lubrication forces and enable surface-to-surface
contact. In contrast, particle collision in a gas usually results from the non-continuum
behaviour of the medium (see Sundararajakumar & Koch 1996; Chun & Koch 2005), but
this case has not been extensively studied. For sedimenting spheres (Davis 1984) used
a Maxwell slip approximation. This is only an accurate description of non-continuum
behaviour at separations much larger than the mean free path of the gas. However,
during a collision, particle pairs will pass through all possible separation gaps including
those comparable to and smaller than the mean free path. The non-continuum behaviour
valid at all separations was calculated by Sundararajakumar & Koch (1996) and used
by Chun & Koch (2005) for a monodisperse suspension coagulating due to isotropic
turbulence. There is no comparable study for a polydisperse system, frozen linear flow or
differential sedimentation. In our study, we will analyse the collision rate for polydisperse
spheres settling in a linear flow while interacting through non-continuum hydrodynamic
interactions.

The collision dynamics and rate can be influenced by the inertia of the particles or
drops, which is much larger than the inertia of the gas. An estimate of the particle inertia
is the Stokes number Sti = τp,i/τf , where the particle response time of species i is τp,i =
2ρ(ai)

2/(9μ), μ = ρf ν is the dynamic viscosity of the gas, ν its kinematic viscosity, ρ is
the particle density, ρf is the fluid density, g acceleration due to gravity and the flow time
scale is τf .

The turbulent dissipation rate ε is typically of the order of 0.01 m2 s−3 in a cloud,
leading to a time scale for turbulent shear flow of τf = (ν/ε)1/2 = 3.9 × 10−2 s. The Stokes
number based on turbulent shear then ranges from 0.07 to 0.5 across the size gap ai = 15
to 40 μm. Although these values are not asymptotically small, the first effect of particle
inertia at modest Stokes number is to enhance the local pair probability without changing
the local collisional dynamics (Sundaram & Collins 1997). This enhancement has been
extensively studied (Ireland, Bragg & Collins 2016a,b; Dhariwal & Bragg 2018). At small
Stokes numbers the collision rate can be estimated as the product of the enhanced pair
probability due to inertial clustering and a rate for local inertia-less coalescence (Chun &
Koch 2005). In aerosol reactors ε is higher leading to smaller values of τf , but the smaller
particle sizes compensate leading to similar estimates of St.

For differential sedimentation τf = (a1 + a2)/Vrel where the relative velocity is Vrel =
2ρ((a2)

2 − (a1)
2)g/9μ. The Stokes number based on differential sedimentation for drops

in the size gap (15 to 40 μm) ranges from 5(1 − κ) to 96(1 − κ) and can be quite large
for drops with substantially different radii 1 − κ = O(1). Here, the particle size ratio
κ = a2/a1. However, condensation drives a population of droplets toward monodisperse
size distributions and for drops with 1 − κ = O(10−2), for which turbulent shear and
differential sedimentation compete to control the collision dynamics, the Stokes number
for each driving force is less than one. In the present study we will calculate the collision
rate for inertia-less local collisions recognizing that this calculation will be most accurate
for small drops but may also set a reference rate to be compared with future analyses that
include particle inertia.

In aerosol reactors, an important component of the collision dynamics is the Brownian
motion. However, its effect becomes weak at larger sizes and for the largest particles,
with radii of approximately 1 μm, acceleration-induced body forces can potentially be
significant. Because of the small particle response times of these particles, the acceleration
due to the mean gas flow is larger than that due to the relative motion of the particles,
making the present analysis applicable.
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We consider a dilute system since particle volume fractions are typically small O(10−6)
in clouds (Grabowski & Wang 2013), aerosol reactors (Balthasar et al. 2002) and
separators. Thus, we consider pairwise interactions. The flux of two spheres coming into
contact with each other sets the collision rate. This flux, in turn, is related to the number
density of spheres, the relative velocity of the spheres and the particle pair trajectories
resulting from this relative velocity. The relative velocity is given as the vector sum
of contributions driven by uniaxial compression and differential sedimentation. These
themselves, due to the inertia-less nature of the system, are expressed through a mobility
formulation. These mobilities will capture the hydrodynamic, interparticle interactions.

For an ideal collision with no interparticle interactions, the relative velocity is solenoidal
everywhere and the pair distribution function at contact equals the square of the number
density in the bulk suspension. Thus, it is possible to evaluate, for a pure uniaxial
compressional flow or pure sedimentation (uncoupled) problem, the collision rate in terms
of an explicit analytical expression (see Smoluchowski 1918; Zeichner & Schowalter
1977). For the coupled problem, we obtain a closed form analytical result as a function
of the strength of gravity relative to the linear flow for the special case in which the
compressional axis is aligned with gravity. For the case of a distribution of compressional
flows whose axes are isotropically distributed, we obtain a numerical result. These results
capture the collision dynamics pertinent to vertically aligned compressional flows and
persistent isotropic turbulent flows, respectively.

Including hydrodynamic interactions changes the pair distribution function and retards
the relative velocity when the spheres approach each other, causing the collision rate to
diminish relative to the ideal case. The collision efficiency, defined as the collision rate
with interparticle interactions divided by the ideal collision rate, is used to quantify this
effect. The collision efficiency cannot be expressed in a closed analytical form even for
uncoupled driving forces. However, it is possible to express it in terms of an integral
over radial positions of an integrand involving the mobilities, which capture interparticle
interactions (see Batchelor & Green 1972; Batchelor 1982; Davis 1984; Wang et al. 1994).
For coupled driving forces, even this is not possible and so trajectory analysis is used in
our study. In this method a test sphere is fixed at the origin and its collision rate with a
set of satellite spheres is evaluated. Satellite spheres leading to collision, i.e. possessing
inward radial velocity during contact, are integrated backward in time until they reach large
separations. At large separations the flux is easier to evaluate since the pair probability
reverts to its bulk value and the relative velocity can be computed without interparticle
interactions. As a result, the collision rate can be evaluated in terms of the collisional area
through which particles destined for collision pass.

The mobility matrix for a pair of particles can be expressed in terms of a set of
coefficients that depend only on the radial separation and capture the hydrodynamic
interactions between the particles. Comprehensive results are available for the mobilities
of unequal sized spheres with continuum Stokes flow interactions (see Jeffrey & Onishi
1984; Jeffrey 1992; Kim & Karrila 2013). However, continuum lubrication does not allow
contact to occur in a finite time and leads to a collision rate of zero. Sundararajakumar
& Koch (1996) showed that non-continuum hydrodynamic interactions allow collisions
to occur in finite time. The importance of non-continuum interactions is quantified
by the Knudsen number, defined as Kn = λ0/a∗, where λ0 is the mean free path and
a∗ = (a1 + a2)/2 is the mean of the sphere radii a1 and a2. We will use an expression for
the non-continuum mobility that is valid when Kn � 1 for all interparticle separations
h∗ including separations h∗/a∗ = O(Kn) that are comparable to the mean free path
of the gas. Tangential mobilities are not expected to be strongly influenced by the
breakdown of continuum, because the continuum flow tangential mobility remains finite
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Collision of settling spheres in a compressional gas flow 910 A10-5

at contact. Thus, continuum hydrodynamics will be used for the tangential motion at all
separations.

The collision rate with non-continuum hydrodynamic interactions depends on the
Knudsen number, representing the strength of non-continuum effects, the orientation
of the compressional axis relative to gravity and the relative strength of gravity and
compressional flow as well as the particle size ratio κ = a2/a1. We will consider κ = 0.9
and 0.5 to sample cases with nearly equal and widely separated radii, and will more
thoroughly span the other parameters to capture important features of the collision
dynamics. Particular attention will be given to the manner in which complex particle pair
trajectories lead to non-trivial behaviour of the observed collision rate. A majority of the
non-trivial behaviour is seen when the satellite and test sphere are close to each other. The
hydrodynamic interactions cause the satellite sphere to be excluded from certain regions or
open up new regions for the collision to occur. In a time-reversed motion, these complex
trajectories include the satellite sphere either starting and ending on the test sphere or
taking a circuitous path around the test sphere. Even at large separations from the test
sphere the satellite sphere trajectories can change direction sharply due to the coupling of
gravity with the uniaxial compressional flow. However, this class of complex trajectories
does not directly affect the collision rate.

In the following sections, we will calculate the collision rate for an inertia-less dilute
system of spheres settling in a uniaxial compressional flow. In § 2 we will set up the
governing equations and present the relevant scales in the system. Then we will evaluate
the ideal collision rate for coupled gravitational and straining driven motion in § 3.
In § 4 we will obtain the uniformly valid radial and tangential mobilities. The former
include non-continuum lubrication as well as a continuum description of hydrodynamic
interactions outside the lubrication regime. The mobilities will be used in § 5 to evaluate
the collision rate for a wide range of values of Kn and the strength and orientation of the
uniaxial compressional flow with respect to gravity. In § 6 we will present results for the
collision efficiency to describe the impact hydrodynamics has on the collision rate. We
will also derive an expression for the collision efficiency in the pure linear flow as well as
the purely gravity driven case. Finally in § 7 we will summarize the results of our study
and discuss their implications.

2. Formulation

The collision rate K12 specifies the number of collisions per unit volume per time
between spheres with radii a1 and a2 and number densities n1 and n2. For drops that
coalesce on collision, K12 can be used to determine the rate of change of the drop number
density. For the simple case in which only two species are present the rate of change of the
number density of one them is given as,

dn1

dt
= −K12. (2.1)

In more general circumstances, the rate constant C12 = K12/(n1n2) can be used in an
integral equation for the drop size distribution. Due to the dilute nature of the suspension
three or higher body interactions are highly unlikely and only the interaction and collision
of two species is considered. The two-species rate Kij can be expressed as an integral of
the flux of particle pairs over the collision area,

K12 = −n1n2

∫
(r′=a1+a2)&(v′·n′<0)

(v′ · n′)P dA′, (2.2)
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II
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α

FIGURE 1. Sketch of the two spheres separated by r and acted on by gravity and uniaxial
compressional flow; ‘I’ is the test sphere of radius a1 placed at the origin. It is approached
by satellite sphere ‘II’ of radius a2; ‘III’, referred to as the collision sphere, is the locus of the
centre of sphere ‘II’ when it is in contact with sphere ‘I’. The axis of compression indicated by
the dash-dot line is inclined at an angle of α relative to gravity.

where v′ is the relative velocity, r′ is the radial separation between the centre of the two
spheres, P is the pair probability and captures the local species concentration relative to
the bulk and n′ represents the outward normal at the contact surface. The radial velocity
is v′ · n′.

To simplify the analysis, we scale the problem. The characteristic length is chosen to
be a∗ = (a1 + a2)/2. This sets the range of non-dimensional radial separations between
the centres of the two spheres to be r = 2 (referred to as the collision sphere) to
∞ (where one sphere does not influence the other). The geometry of the two-species
system is captured through κ = a1/a2 the relative size of the spheres, with κ ∈ (0, 1].
Assuming negligible inertia, of both fluid and particles, allows scaling of the relative
velocity with the characteristic velocity γ̇ a∗, the characteristic velocity in the frozen
uniaxial compressional flow (the imposed linear flow), with γ̇ being the strain rate
along the axis of compression. The relative velocity due to gravity is captured through
Q = (2ρg(a2

2 − a2
1)/[9μ])/(γ̇ (a1 + a2)/2), where g is the acceleration due to gravity, and

μ is the gas viscosity. A sketch of the two sphere system is shown in figure 1. The collision
rate over the collision sphere, which scales as n1n2γ̇ (a1 + a2)

3, can be expressed as,

K12

n1n2γ̇ (a1 + a2)3
= −1

8

∫
(r=2)&(v·n′<0)

(v · n′)P dA. (2.3)

The non-dimensional relative velocity v in an extensional flow with strain rate tensor E
and gravity directed along the negative Z-axis is given as,

vi = Eijrj −
[
A

rirk

r2
+ B

(
δik − rirk

r2

)]
Eklrl

−
[
L

rirk

r2
+ M

(
δik − rirk

r2

)]
Qδk3. (2.4)

The mobility formulation is used because of the inertia-less nature of the system; A and B
correspond to the radial and tangential mobility in linear flow while L and M correspond to
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Collision of settling spheres in a compressional gas flow 910 A10-7

the radial and tangential mobility due to sedimentation. The uniaxial compressional flow
has one of its extensional axes parallel to the Y axis. The other extensional axis and the
compressional axis lie in the X–Z plane. The angle between the compressional axis and
gravity is α. The rate of strain tensor is given as,

E = 1
4

⎡
⎣3 cos 2α − 1 0 −3 sin 2α

0 2 0
−3 sin 2α 0 −3 cos 2α − 1

⎤
⎦ . (2.5)

In spherical coordinates (r, θ, φ) with the polar angle θ measured from the positive
Z axis and the azimuthal angle φ measured from the X axis, the relative velocity is
given as,

vr = −LQ cos θ + (A − 1)r
16

{1 + 3[cos 2θ + cos 2α(1 + 3 cos 2θ)

+ 4 cos 2φ sin2 α sin2 θ + 4 cos φ sin 2α sin 2θ ]}, (2.6)

vθ = 3(B − 1)r
16

(
4 cos 2θ cos φ sin 2α + sin 2θ [2 cos 2φ sin2 α − 1 − 3 cos α]

)
+ MQ sin θ, (2.7)

vφ = − 3
2(B − 1)r sin α sin φ (cos α cos θ + cos φ sin α sin θ) . (2.8)

When calculating the ideal collision rate, there is no interparticle interaction of any
kind and so the mobilities will take the trivial values A = 0, B = 0, L = 1, and M = 1.
For the full collision calculation the mobilities will capture the hydrodynamic interaction.
The uniformly valid mobilities will capture non-continuum lubrication and long range
continuum hydrodynamics.

The continuum hydrodynamic interactions between rigid spheres, while relevant at large
separations, do not fully account for the particle dynamics upon close approach. They
yield a mobility for normal motion that decreases in proportion to the gap thickness, so
that the gap cannot go to zero in finite time under the action of a finite compressive force.
For finite time collision events other mechanisms must become important to describe the
relative velocity at small separations between colliding drops. For particles colliding in
air due to the coupled effects of gravity and shearing flows, we expect the breakdown
of the continuum to be the predominant mechanism facilitating collision. To test this
hypothesis, we compare the surface to surface separation at which non-continuum gas flow
modifies the velocity substantially to the separation where other mechanisms such as van
der Waals forces, interface mobility, gas compressibility and drop deformability become
important. We will use h∗ to denote the dimensional surface-to-surface separation. We
will consider water droplets in air, thus assuming the drop-to-medium viscosity ratio to
be about μ̂ ≈ 102 and the density difference to be Δρ ≈ 103 kg m−3. We will consider
similar sized droplets κ = 0.9.

The mean free path of air at an altitude of a few kilometres, the height of typical
atmospheric clouds, is approximately 0.1 μm. At h∗

nc ≈ 0.24 μm the non-continuum
lubrication force is half of its continuum counterpart (see Sundararajakumar & Koch
(1996) for details) and we define this as the critical gap for the onset of non-continuum
effects. The finite viscosity ratio of drop and air allows the drop surfaces to move
tangentially at sufficiently small h∗. The lubrication resistance between two drops
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910 A10-8 J. Dhanasekaran, A. Roy and D. L. Koch

transitions from an O(μVrela∗2/h∗) scaling for nearly rigid drops to an O(μ̂μVrela∗√a∗/h∗)
scaling for a highly mobile interface (Davis, Schonberg & Rallison 1989), where the
relative velocity of two droplets, Vrel, is given as,

Vrel = 2(1 − κ2)(μ̂ + 1)Δρ(a∗)2g
3(3μ̂ + 2)μ

. (2.9)

The gap at which the lubrication force between drops with mobile interfaces becomes
half that for rigid particles is h∗

mob ∼ 1.61 × 10−6a∗, with h∗ and a∗ expressed in μm
here and for the remainder of this section. The attractive van der Waals force acts
against the resistive lubrication force to bring two spheres close together. The van der
Waals radial mobility for this small separation limit is (1 + κ)2h∗/(2κa∗) and it competes

with continuum lubrication at h∗ ∼ [(1 + κ)/(2a∗)]
√

Â/(4πL1Δρκ(1 − κ2)g). Here, Â is
the Hamaker constant and L1 = limr→2(L/(r − 2)) (Davis 1984). For κ = 0.9 we have
h∗

vdW ∼ 1.43/a∗. In § 6 we calculate the relative importance of van der Waals forces with
respect to non-continuum lubrication for influencing sedimentation and shear dominated
collision rates. Lubrication flows can lead to a large increase in pressure. When the
separation between two colliding particles reaches h∗

c ≡ (3μVrela∗/2p0)
1/2, the change in

pressure across the lubrication gap becomes comparable with the atmospheric pressure
po. Thereafter, the gas compresses more easily than it flows out of the gap. Gopinath,
Chen & Koch (1997) showed that this leads to a reduction of the lubrication force
by a factor of two at a separation h∗

com ≈ 0.35h∗
c ≈ 2.8 × 10−5(a∗)3/2. Experiments on

axisymmetric and non-axisymmetric aerosol droplet collisions have shown that different
sets of collision outcomes are possible after the droplets start to deform – ranging
from bouncing to coalescence (Qian & Law 1997; Bach, Koch & Gopinath 2004).
These outcomes would usually be associated with significantly large deformation of
the droplet. Deformability becomes significant when the lubrication pressure becomes
comparable to the Laplace pressure, corresponding to 2σ/a∗ ∼ 3μVrela∗/2h∗2. The gap at
which deformation becomes important is then h∗

def ≈ 6.74 × 10−5a∗2 assuming the surface
tension is σ = 70 mN m−1 (Gopinath & Koch 2002).

The gap thicknesses at which the effects of the physical processes described above
alter the relative velocity by a factor of 2 away from the value based on the continuum
lubrication analysis are shown as a function of drop radius in figure 2. The drop size
range a∗ = 1–100 μm is chosen to correspond to cloud droplets. It is also the range of
length scales at which particles or drops are likely to experience the combined effects of
gravitational settling and shearing motions with low to moderate inertia and little to no
Brownian motion. While there is some influence of van der Waals forces at small particle
size and drop deformation begins to play a role at the largest drop sizes non-continuum
gas flow plays a predominant role in modifying the particle relative velocity at most
separations in this size range.

In an equivalent analysis for aerosol reactors, the upper limit of the range of interest is
1 μm. While colloidal forces are stronger for smaller particles, the higher polydispersity
in this application compared to clouds also makes the acceleration driven non-continuum
hydrodynamic interactions stronger. Thus, there will be a significant region with h∗

nc >

h∗
vdW and so collision rates informed by the breakdown of continuum will be important in

predicting the evolution.
Non-continuum hydrodynamics yield a mobility that decreases slowly as 1/ ln(ln(1/h∗))

with decreasing dimensional gap thickness h∗ so that a finite compressive force can lead to
collision in a finite time period (see Sundararajakumar & Koch 1996). We will incorporate
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100 101 10210–6
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h∗
mob

h∗
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h∗
def

FIGURE 2. The surface-to-surface separation (h∗) at which various physical mechanisms
become significant for water drops in air is plotted as a function of the mean radius (a∗). The
breakdown of continuum occurs at a separation that is independent of the droplet radius. Van der
Waals forces become more important with decreasing a∗, eventually overtaking the breakdown of
continuum at very small sizes. Deformability is the first mechanism to overtake non-continuum
effects at large a∗. Compressibility and interface mobility never overtake non-continuum effects
in the size range under consideration.

non-continuum hydrodynamics into the mobilities in § 4 and present the resulting collision
rate in § 5. To better understand the underlying dynamics, however, we will first calculate
the ideal collision rate, without any interparticle interactions, in the following section.

3. Ideal collision rate

In the ideal rate calculation, P = 1 everywhere due to the absence of interparticle
interactions and the ideal collision rate K0

ij is,

K0
ij

n1n2γ̇ (a1 + a2)3
= −1

2

∫
(r=2)&(v·n′<0)

(v · n′) sin θ dθ dφ, (3.1)

with v determined using (2.6), (2.7) and (2.8) with A = 0, B = 0, L = 1, M = 1
everywhere due to the absence of hydrodynamic interactions.

For the special case, α = 0, it is possible to obtain a closed form expression for (3.1).
On the surface of the collision sphere,

v · n′|α=0 = −Q cos θ − 1
2(1 + 3 cos 2θ) (3.2)

For a purely uniaxial compressional flow (Q = 0 limit) there are two regions where
collisions occur. One is in the northern hemisphere over the north pole with a boundary
at the θ = θ1 circle and the other is over the south pole with boundary at θ2 = π − θ1.
Here, θ1 = cos−1(1/

√
3)). When the motion is purely due to differential sedimentation

(Q → ∞ limit) only the southern hemisphere contributes to the collision rate. Effectively
θ1 = 0 and θ2 = π/2. For intermediate values of Q, equating (3.2) to 0 and solving the
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910 A10-10 J. Dhanasekaran, A. Roy and D. L. Koch

quadratic equation in cos θ , θ1 and θ2 are given by,

θ1,2 = cos−1

(
−Q ±

√
Q2 + 12

6

)
. (3.3)

Here, the positive sign is for θ1 and the negative for θ2. With increasing Q the collision
region in the northern hemisphere grows while the region in the southern hemisphere
shrinks. For Q > 2 the collision region in the southern hemisphere disappears completely.
Using this (3.1) is evaluated and the α = 0 result is given as,

K0
12(α = 0)

n1n2γ̇ (a1 + a2)3
= π

108

[
c+ + H(2 − Q)c−

]
where c± = (

12 + Q2)3/2 ± Q
(
36 − Q2) (3.4)

and H is the Heaviside step function. Insight into the collision rate for α = 0 will be
important to the dynamics of particles in fibrous aerosol filters, impactors and laminar
jets since the flow experienced is expected to be steady and often gravity is aligned
with the compressional axis. This result is shown in figure 3 as a function of relative
strength of gravity to the linear flow. Plotted along with it is the collision rate averaged
over all possible orientation of the compressional axis with gravity. This angle averaged
result will inform the collision rate experienced by particles in isotropic turbulence,
as is the case for cloud droplets and particles in industrial aggregators. From figure 3
it is evident that the α = 0 and the angle averaged result nearly overlap each other
and have the same asymptotic behaviours. As Q → 0 they correspond to pure uniaxial
compressional flow and as Q → ∞ to pure differential sedimentation. The collision rate
for pure uniaxial compressional flow was found by Zeichner & Schowalter (1977) to
be n1n24π/(3

√
3)γ̇ (a1 + a2)

3. Smoluchowski (1918) found the collision rate for pure
differential sedimentation to be n1n22ρg(a2

2 − a2
1)(a1 + a2)

2/(9μ). For intermediate Q
values, the ideal collision rate result is not a linear combination of the rates resulting
from the two driving forces acting independently.

To highlight the slight dependence of the ideal rate on α, the inset in figure 3 gives
the percentage deviation of the α = 0 rate from the angle averaged rate. At moderate Q
the deviation shows a highly non-trivial behaviour. The largest deviation occurs at around
Q ≈ 1.5 with another local extreme at Q ≈ 3.5 and a change of sign at Q ≈ 2.5. Thus,
it is abundantly clear that the ideal collision rate cannot be expressed through any simple
combination of the pure gravity and pure uniaxial compressional flow calculation.

4. Mobility

The mobility formulation for Stokesian suspensions is used when the forces acting on
the particles are known and their motion needs to be determined. Thus, it is applicable
to our collision rate calculation in an inertia-less system of spheres driven by a uniaxial
compressional flow as well as an imposed gravitational force. The relative velocity due
to these coupled effects is shown in (2.6), (2.7) and (2.8). We identified A(r) and B(r)
as the radial and tangential mobility in linear flow while L(r) and M(r) correspond
to the radial and tangential mobility due to sedimentation. These mobility components
depend on r and are independent of θ and φ. Hydrodynamic interactions decay as r → ∞
and so A → 0, B → 0 and L → 1, M → 1. Separate calculations for the mobilities can
be performed at moderately large separations ξ = r − 2 = O(1) and in the lubrication
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FIGURE 3. The collision rate for α = 0 (dotted nonlinear curve) and the rate averaged over
α (solid curve) are given as functions of Q, the relative strength of gravity and uniaxial
compressional flow. The pure uniaxial compressional flow (4π/(3

√
3)) and pure differential

sedimentation results ((π/2)Q) are included for reference. The inset shows the percentage
deviation of the α = 0 ideal collision rate (K0

ij(α = 0)) from the angle averaged ideal rate (K0
ij)

as a function of Q.

regime ξ � 1. Continuum lubrication will become important for ξ < 10−1 leading to
a radial mobility that decreases in proportion to ξ that would not allow for contact in
finite time. Sundararajakumar & Koch (1996) showed that non-continuum hydrodynamic
interaction offers a weaker resistance to the radial motion of the two spheres approaching
each other and allows contact in finite time. This, weaker, interparticle force will arise
at ξ = O(Kn), where the Knudsen number is defined as Kn = λ0/a∗, with λ0 being
the mean free path and a∗ = (a1 + a2)/2. Thus, radial motion is set by non-continuum
hydrodynamics for ξ ≤ O (Kn) and full continuum hydrodynamics for ξ ≥ O(1) with a
matching region corresponding to continuum lubrication valid for Kn � ξ � 1. This will
be captured in the uniformly valid radial mobility derived below.

An important aspect of the tangential motion is the spheres rolling at the point of
contact. This is possible due to the finite values tangential lubrication mobilities take
at contact even with continuum hydrodynamics. Non-continuum hydrodynamics is not
expected to be important for the tangential motion of inertia-less spheres, as the O(Kn)
correction to tangential lubrication mobilities is likely to be small. Hence, we will
calculate the uniformly valid tangential mobility over all values of ξ using only continuum
hydrodynamics.

4.1. Radial mobility
To evaluate the radial mobility we will use solutions of the Stokes equations for drops in
bispherical coordinates derived by Wang et al. (1994) and adapt it for hard spheres. They
give the force acting along the line of centres of spheres 1 and 2 as,

F1 = −6πμa1[Λ11(V1 − V2) + Λ12V2] − 6πμa1rγ̇ D1,

F2 = −6πμa2[Λ21(V2 − V1) + Λ22V2] − 6πμa2rγ̇ D2,

}
(4.1)
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where Λij is the non-dimensional resistance giving the force on particle i due to the
velocity of particle j. The resistance experienced by particle i due to the straining motion
along the axis of compression is Di. The authors used Vi and Fi to denote the velocity and
force on spheres i. From this the radial mobility in straining flow is determined to be,

A = 1 − 1
2

D1Λ22 + D2Λ12

Λ11Λ22 + Λ21Λ12
. (4.2)

To obtain the radial mobility for sedimentation from individual resistance functions,
results from Batchelor (1982) are used in combination with (4.1) to obtain,

L = 1
1 − κ2

Λ22 − κ2Λ12

Λ11Λ22 + Λ21Λ12
. (4.3)

The functions Λij(r) and Di(r) are given in the appendix of Wang et al. (1994). The results
pertinent to our study can be obtained by considering the case of infinite viscosity ratio of
drop to medium to obtain the behaviour of hard spheres.

The leading terms in the solution obtained from the bispherical coordinates method
accurately capture far-field continuum hydrodynamics. Using more terms in the series
solution improves accuracy at smaller separation. With enough terms the series solutions
will reproduce the continuum lubrication behaviour of 1 − A and L. This near-field
behaviour corresponds to the mobilities decaying as ξ , which can be related to the
two individual resistance components Λ11 and Λ21 diverging as 1/ξ . This continuum
lubrication behaviour was studied by Batchelor & Green (1972) in linear flow and
Batchelor (1982) for settling particles. They found it would take infinite time for two
spheres experiencing continuum lubrication to make contact with each other. Contact in
finite time is possible through non-continuum hydrodynamics. Sundararajakumar & Koch
(1996) carried out this analysis and found the non-continuum resistance shows a weaker
divergence of O(ln[ln(Kn/ξ)]). This is evident in their evaluated lubrication force for the
non-continuum case, f nc, given in terms of the rescaled radial separation, δ0 = ξ/Kn and
t0 = ln(1/δ0) + 0.4513, as

f nc = π

6

(
ln t0 − 1

t0
− 1

t2
0

− 2
t3
0

)
+ 2.587 δ2

0 + 1.419 δ0 + 0.3847 (δ0 < 0.26)

= 5.607 × 10−4δ4
0 − 9.275 × 10−3δ3

0 + 6.067 × 10−2δ2
0

− 0.2082 δ0 + 0.4654 + 0.05488
δ0

(0.26 < δ0 < 5.08)

= −1.182 × 10−4δ3
0 + 3.929 × 10−3δ2

0

− 5.017 × 10−2δ0 + 0.3102 (5.08 < δ0 < 10.55)

= 0.0452
[
(6.649 + δ0) ln

(
1 + 6.649

δ0

)
− 6.649

]
(10.55 < δ0). (4.4)

Here, the resistivity f nc has been scaled with 3πμVca2
0/λ0, with the characteristic length

given as a0 = 2a1a2/(a1 + a2), the harmonic mean of the two interacting spheres. In our
calculation the characteristic velocity Vc = a∗γ̇ and the characteristic force consistent
with the formulation presented in § 2 and (4.1) is 6πμai(2γ̇ a∗). Please note that the
difference between (4.4) and the equivalent expression presented in Sundararajakumar
& Koch (1996) is due to a typographical error in the previous paper.
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FIGURE 4. The value of Λ11 is plotted as a function of ξ at Kn = 10−2 and κ = 0.9 and
compared with Λbi

11, Λc
11 and Λnc

11 . A small discontinuity at δ0 = 0.26 in the fit presented
by Sundararajakumar & Koch (1996) and given in (4.4) leads to the discontinuity seen at
ξ = 2.6 × 10−3.

In (4.4) it can be seen that for δ0 � 1, f nc reverts to the continuum lubrication result
1/ξ . This continuum lubrication resistance is also approached by the series solution for
ξ � 1. Thus it is possible to obtain the matched resistance, Λ11 and Λ21, that is valid at all
separations. This is given as,

Λ11 = Λbi
11 − Λc

11 + Λnc
11,

Λ21 = Λbi
21 − Λc

21 + Λnc
21.

}
(4.5)

Here, Λbi
11 and Λbi

21 are from the series solution in bispherical coordinates performed by
Wang et al. (1994), Λc

11 and Λc
21 correspond to the continuum lubrication result, while Λnc

11
and Λnc

21 are for the non-continuum resistances. The lubrication results are given as,

Λc
11 = 2κ2

(1 + κ)3

1
ξ

+ c0,

Λc
21 = Λc

11 − Λ12

κ
,

Λnc
11 = 2κ2

(1 + κ)3

f nc

Kn
+ c0,

Λnc
21 = Λnc

11 − Λ12

κ
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.6)

where c0 is a constant used to match the various regimes and so obtain a smooth and
uniformly valid resistance. For the smooth behaviour we choose a transition between
far-field and continuum lubrication at ξ = 10−3 and c0 is evaluated such that Λ11 = Λc

11
at this point. The uniformly valid resistance Λ11 is shown in figure 4 as a function of ξ at
Kn = 10−2 and κ = 0.9 along with Λbi

11, Λc
11 and Λnc

11 .
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FIGURE 5. Values of A and L as a function of ξ for Kn = 10−2 and κ = 0.9.

The uniformly valid Λ11 and Λ21 resistances are used in (4.2) and (4.3) to calculate the
uniformly valid radial mobilities A and L. These will capture non-continuum lubrication
at small separations and full continuum hydrodynamic interactions at larger separations.
These results for A and L are presented in figure 5 as a function of ξ for Kn = 10−2 and
κ = 0.9.

4.2. Tangential mobility
To evaluate the tangential mobilities we will use twin-multipole solutions. For this purpose
we use the analysis carried out by Jeffrey & Onishi (1984) on mobility under the
action of a body force and Jeffrey (1992) on motion in a straining flow. Just like the
normal motion, we will use the radial coordinate ξ = r − 2 for ease of analysis. Unlike
the radial motion we will not consider non-continuum hydrodynamics in the tangential
mobility calculation. Jeffrey & Onishi (1984) evaluated components of the tangential
mobility when a body force acts on the spheres. They calculate the mobilities using the
twin-multipole method. The leading-order terms, expressed in terms of a power series
in 1/r, captures the far field behaviour ξ � 1. With more terms included in the power
series the results can capture behaviour at smaller values of ξ . Spanning all of ξ would
necessitate including all the infinite terms in the power series. Thus, a separate analysis
is carried out for the lubrication behaviour. The lubrication behaviour has been analysed
for the resistance problem (Jeffrey & Onishi 1984). Using these lubrication resistivities a
matrix inversion is performed to obtain the lubrication mobilities. These take the form
(d0 ln(ξ−1)2 + d1 ln(ξ−1) + d2)/(ln(ξ−1)2 + d3 ln(ξ−1) + d4), where d0, d1, d2, d3, d4 are
constants that depend only on κ . The lubrication mobility components can be combined
to obtain the compound near-field tangential mobility for sedimentation Mn (see Batchelor
1982). Similarly the far-field compound tangential mobility for sedimentation Mf can be
obtained. We combine Mf and Mn to obtain M, the uniformly valid compound tangential
mobility due to sedimentation, using exponential smoothing. This is given as,

M = Mn exp
(−ξ

e1

)
+ Mf

[
1 − exp

(
− ξ

e1

)]
. (4.7)
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FIGURE 6. Tangential mobility for sedimentation from twin-multipole (Mf ), lubrication (Mn)
and uniformly valid expressions (M) at κ = 0.9. Here, e1 = 2 × 10−2 is used in (4.7) to obtain
the uniformly valid M.

Here, e1 is set by the value of ξ at which Mf and Mn have the closest value. Figure 6 shows
M for all ξ at κ = 0.9. This result is compared with Mf and Mn .

For the compound tangential mobility B in straining flow we first evaluate the far- and
near-field tangential resistance components in linear flow. This analysis was performed
by Jeffrey (1992). Using this result as well as the results for the components of the
tangential mobilities in sedimentation, it is possible to obtain the components of tangential
mobility in straining flow without any matrix inversion (see Kim & Karrila 2013). Like
the sedimentation problem the lubrication tangential mobility in straining flow has the
form ( f0 ln(ξ−1)2 + f1 ln(ξ−1) + f2)/(ln(ξ−1)2 + f3 ln(ξ−1) + f4) where f0, f1, f2, f3, f4 are
constants depending only on κ . The twin-multipole tangential mobility components in
straining flow are also power series in 1/r, albeit the first non-zero terms are at a higher
power than in the series for sedimentation. These individual components are combined
to obtain the compound lubrication mobility Bn and compound twin-multipole mobility
Bf (see Kim & Karrila 2013). To obtain the uniformly valid result, just like M, we use
exponential smoothing. This is given as,

B = Bn exp
(

− ξ

g1

)
+ Bf

[
1 − exp

(
− ξ

g1

)]
. (4.8)

Here, g1 is set by the value of ξ at which Bf and Bn have the closest value.
Figure 7 shows B and M as functions of ξ at κ = 0.9. It can be seen that they tend to 1 at

large separations and reach a non-zero value as ξ → 0 with a smooth transition between
these two regimes.

5. Collision rate with hydrodynamic interactions

Non-continuum hydrodynamic interactions introduce a Kn dependence of the collision
rate as well as a non-trivial variation with κ , which describes the relative geometry of
interacting spheres. We will span these, along with Q and α, to obtain the important
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FIGURE 7. Values of B and M as functions of ξ for κ = 0.9.

features of the collision dynamics. This will inform evolution of water droplets of radii
15–40 μm representing the bottleneck for collisional growth of water droplets in clouds
as well as act a guide for other systems where non-continuum effects are important. We
consider size ratios κ of 0.9 and 0.5, which represent the spheres being nearly the same size
and noticeably different. For the sake of brevity we will focus primarily on κ = 0.5 in this
section. The results for κ = 0.9 are qualitatively similar and so only the differences will
be noted. The Knudsen number is chosen to be 10−1, 10−2 and 10−3, ranging from a case
where non-continuum effects occur at the onset of lubrication to one with two decades
of near-continuum lubrication. For any chosen size ratio and Kn, we will span Q from
0 to 100. This will capture uniaxial compressional flow dominated as well as differential
sedimentation dominated regimes. The final parameter under consideration is α. We will
first focus our attention on α = 0, the special case with the compressional axis aligned
with the direction of gravity, and then consider a few other orientations: α = 30◦, 45◦, 60◦

and 89◦.
The introduction of interparticle interactions means equation (3.1) is no longer valid as

P /= 1 at r = 2. However, as r → ∞ interparticle interactions decay and P → 1. For the
purposes of the calculation we take this separation to be a large, but finite, value r = r∞.
Thus, we can calculate the collision rate KHI

ij as,

KHI
12

n1n2γ̇ (a1 + a2)3
= −

∫
r∞

(v · n′′)|S dA, (5.1)

where S denotes the collection of satellite spheres, in the large separation limit, that collide
with the test sphere at r = 2, i.e. we have v · n′ < 0 at the collision sphere. At r∞ we
let n′′ correspond to the outward normal of the area element of S; v is obtained from
(2.6), (2.7) and (2.8) along with the mobilities obtained in § 4 that capture the interparticle
interactions. The integral in (5.1) is independent of r∞ for r∞ � 1 as the relative velocity
is solenoidal for r � 1.

Equation (5.1) bypasses evaluation of the pair probability P. To apply this simpler
formulation we use trajectory analysis. In this method a test sphere is placed at the
origin and satellite spheres are evolved to determine those that collide, thus setting S.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

or
ne

ll 
U

ni
ve

rs
ity

 L
ib

ra
ry

, o
n 

20
 A

ug
 2

02
1 

at
 2

2:
18

:3
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
94

2

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.942


Collision of settling spheres in a compressional gas flow 910 A10-17

The computational cost of trajectory evolution can be substantial if the initialization is
over the spherical shell at r∞, because most of the satellite spheres starting on this surface
do not come close to the test sphere. Instead we exploit the quasi-steady nature of the
particle relative velocity and consider time-reversed trajectories that are initialized on the
collision sphere. Seeding on the collision sphere greatly reduces the number of trajectories
that must be computed.

To further reduce the number of initial seeding points for the satellite sphere we select
only those positions where a collision can occur. This is achieved by considering the sign
of the relative velocity at the collision sphere. However, vr = 0 at exactly r = 2, since the
radial mobilities decay even in the presence of non-continuum hydrodynamic interactions.
Thus, we consider small separations ξ << 1. In this region, we can re-write the radial
mobilities as,

1 − A = 1
2

1
Λ11

D1Λ22 + D2Λ12

Λ22 + Λ12/κ
, (5.2)

L = 1
1 − κ2

1
Λ11

Λ22 − κ2Λ12

Λ22 + Λ12/κ
, (5.3)

where Λ11 diverges as ξ → 0. This causes 1 − A, L and by extension the relative velocity,
to decay to 0. However, the 1/Λ11 term does not change the sign of the relative velocity in
(5.2) and (5.3) for ξ << 1. Thus, dividing (5.2) and (5.3) by 1/Λ11 removes the divergent
quantities and we obtain a reduced radial mobility that is given as,

Ared = (A − 1)Λ11 = −0.5
D1Λ22 + D2Λ12

Λ22 + Λ12/κ
, (5.4)

Lred = LΛ11 = Λ22 − κ2Λ12

Λ22 + Λ12/κ

1
1 − κ2

. (5.5)

These reduced radial mobilities can be used to evaluate vr,red from (2.6) and will correctly
indicate the sign of the relative velocity close to contact. This can be used to determine
regions of influx, that contribute to the collision rate, and efflux, where collision does not
occur, on the collision sphere.

For many cases satellite spheres which are in the same influx patch on the collision
sphere will be ‘close’ to each other in the r → ∞ limit. Hence, to determine S

only satellite sphere evolution starting at vr,red = 0, the influx–efflux boundary, in the
time-reversed problem is needed. This further reduces the number of computationally
intensive trajectory calculations that need to be performed. Figure 8 shows this
influx–efflux boundary for a few typical values of Q and α. For small Q, it can be
seen that two distinct influx regions exist on the collision sphere, corresponding to
the two axes of the compressional flow. Increasing Q focuses the trajectories leading
to collision towards the direction of gravity and this results in the influx regions
approaching each other. Eventually, at high enough Q, they merge but still show lobes
corresponding to the lingering influence of the compression axes of the linear flow.
Further increases in Q wash away the traces of uniaxial compressional flow. These results
for the influx–efflux boundary are independent of Kn since 1/Λ11, which incorporates
non-continuum lubrication effects, is absent in vr,red.

Due to the coupling of gravity, linear flow and hydrodynamic interactions, complex
trajectory evolutions are possible under certain circumstances. They can, in the
time-reversed flow, form closed trajectories that start and end on the collision sphere and so
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FIGURE 8. The influx–efflux boundary on the collision sphere for κ = 0.5 is shown for various
configurations. In (a) Q = 2.5, α = 30◦, and there are two influx regions and one efflux region.
The influx region is bound by only one influx–efflux boundary curve, while the efflux region has
two influx–efflux boundary curves encircling it. In (b), with Q = 5 and α = 60◦, the two influx
regions are close to each other. In (c), with Q = 10 and α = 45◦, there is only one influx–efflux
boundary and influx region. A significant portion of the influx region lies in the northern
hemisphere (with Z axis as vertical) indicating that differential sedimentation driven motion has
started to dominate. However, two lobes are still prominent, and a non-trivial portion is still left
in the southern hemisphere, reflecting the lingering effects of the uniaxial compressional flow.
In (d), with Q = 15 and α = 89◦, there is a single influx region lying mainly in the northern
hemisphere and the two lobes are less prominent.

do not contribute to the collision rate. Under certain conditions these can open by satellite
spheres taking circuitous paths leading to new routes to collision. Consequently these
satellite spheres reach r → ∞ with others from a different influx patch on the collision
sphere. In other cases satellite spheres share the same influx patch on the collision sphere
and move together for r = O(1) but get widely separated as r → ∞ due to fixed points
encountered along their paths. Thus satellite spheres on the boundaries of S no longer
directly correspond to those from vr,red = 0. To obtain new boundaries on the collision
sphere we search the influx region and test the behaviour of the trajectories. Instead of
exhaustively spanning we perform a binary search, with the two extremes being a point
on the influx–efflux boundary and the point with maximum |vr,red| in the influx patch
enclosed by it. We span the great circle joining these two points to determine accurately the
location of the transition of trajectory behaviour by setting a high threshold for terminating
the binary search, of 0.01◦. Repeating this exercise allows one to determine accurately the
boundary on the collision sphere that will translate to distinct boundaries for S at r = r∞.
These boundaries are shown in figure 9 for a few select cases and show the distortion
induced by the complex trajectory evolution. We will discuss these results in more depth
later in the section.

Once the angular positions of the seeding points are determined their radial position is
slightly offset from the collision sphere. This is necessary because the very low values of
vr near ξ = 0 make trajectory computation very expensive. Converged results, without too
much computational load, were obtained at an offset of ξ = 10−9.
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FIGURE 9. The boundaries of the collection of trajectories constituting S (at r∞) is shown
for Kn = 10−3 and κ = 0.5. The angles are in degrees. In (a) Q = 2.5 and α = 30◦. This
configuration has two nearly identical patches at r∞ and only one of them has been shown here.
For Q = 5 and α = 60◦, (b,c) show two distinct envelopes of colliding trajectories at r∞. In (b)
the trajectories through the traversal mechanism close to the collision sphere form the bump on
the left end. For Q = 10 and α = 45◦ there is only one envelope of colliding trajectories at r∞
which is shown in (d). Only one envelope of colliding trajectories is expected at higher Q, except
for α ≈ π/2. Two envelopes exist for Q = 15 and α = 89◦, which are shown in (e) and ( f ),
respectively.

The trajectory evolution is performed using the relative velocity to obtain a set of
differential equations in time for the coordinates of the centre of the satellite particle with
the centre of the test sphere placed at origin. These can be obtained from the results given
in (2.6), (2.7) and (2.8) along with the appropriate mobilities, calculated in § 4. We use
an in-built MATLAB solver, known as ‘Ode45’, to step in time and track the trajectory
in the time-reversed flow. To validate this trajectory calculation we evaluated the ideal
collision rate at Q = 0 and found that it agrees extremely well with the theoretical result
of n1n24π/(3

√
3)γ̇ (a1 + a2)

3.
When α = 0, the analysis can be restricted to the φ = 0 (X–Z) plane and only dr/dt and

dθ/dt are needed to describe the trajectory of satellite spheres. The influx–efflux boundary
is a circle on the collision sphere that can be reduced to a point (a single value of θ ) on the
intersection of the sphere with the X–Z plane. The boundary of colliding satellite spheres
at large separations also is circular and again corresponds to a particular value of θ .

For κ = 0.5, figure 10 shows the collision rate as a function of Q for Kn = 10−1, 10−2

and 10−3 at α = 0. The companion figure 11 shows the evolution of the trajectory of
the satellite sphere at a few typical values of Q. For small Q there are two regions
of influx on the collision sphere. One lies in the ‘northern hemisphere’, where gravity
aids the compressional flow and the other in the southern hemisphere where gravity and
compressional flow oppose each other. In the northern hemisphere, as Q increases the flux
increases steadily and smoothly. However, the behaviour of the trajectories lying in the
southern hemisphere at ξ � 1 is non-trivial, so we examine the behaviour in the southern
hemisphere in more detail. In figure 11 for Q = 2.5 there is nothing qualitatively different
between the northern and southern hemisphere trajectories. However, at Q = 6, some of
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FIGURE 10. The collision rate is plotted as a function of Q, the relative strength of gravity to
uniaxial compressional flow, for κ = 0.5, α = 0 and Kn = 10−1, 10−2 and 10−3. The collision
rate is higher for larger values of Kn.

the time-reversed trajectories are closed, i.e. they start and end on the collision sphere.
As a result, a larger than expected region of the southern hemisphere is not populated, in
forward-time evolution, by satellite spheres which come from infinity and this region does
not contribute to the net collision rate. The resulting decrease in collision rate persists as Q
increases at large Kn. However, for Q > 7 and small Kn there is an uptick in the collision
rate. This enhancement occurs as, in the time-reversed flow, the southern hemisphere
satellite spheres that would have formed closed trajectories at smaller Q become open by
going around the efflux region of the collision sphere. In the time-forward trajectories this
corresponds to satellite spheres coming from positive infinity of the Z coordinate having a
new region available for collision on the southern hemisphere. This additional avenue
for collision is possible only under very specific circumstances and was not observed
at Kn = 10−1 and 10−2 or at Q < 7. Only when gravity and lubrication resistance are
strong enough can the satellite spheres traverse around the collision sphere. For Q greater
than approximately 8 this traversal mechanism is the only way satellite spheres from the
southern hemisphere can contribute to the collision rate. In figure 12 the collision rate due
to the two mechanisms operating on southern hemisphere satellite spheres is shown for
7 < Q < 8.2 at Kn = 10−3. It can be seen that the traversal mechanism is possible only
over a short range of Q. The upper end of this range might be extended by decreasing Kn.
Unfortunately, we have not tested this hypothesis for arbitrarily small Kn as the numerical
calculation of the trajectories becomes unstable. However, beyond Q ≈ 11 there is no
valid influx region in the southern hemisphere. Thus, the northern hemisphere is the only
contributor to collision rate in this differential sedimentation dominated regime.

Figure 13 shows the variation of the collision rate for κ = 0.9 as a function of Q for
Kn = 10−1, 10−2 and 10−3. Qualitatively the behaviour is very similar to κ = 0.5. Most of
the important characteristics including closed and traversal trajectories appear at roughly
the same values of Q and Kn. However, the traversal mechanism never becomes the sole
contributor in the southern hemisphere, i.e. a trajectory map similar to figure 11(e) does not
appear for κ = 0.9. Equivalently, the contribution of traversing trajectories to the collision
rate for κ = 0.9 goes to zero at a smaller Q than that illustrated by the non-monotonic
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FIGURE 11. The time-reversed trajectories in the X–Z plane are shown for κ = 0.5, α = 0 and
Kn = 10−3. Symmetry is exploited to analyse only half of the collision sphere. In (a) Q = 2.5
and both the northern and southern trajectories are plotted (with the southern one in green). The
subsequent plots only show trajectories which are in the southern hemisphere for ξ << 1. In
(b) for Q = 6 closed trajectories start to appear. In (c) Q = 7.5 and a few southern hemisphere
trajectories traverse over the efflux region of the collision sphere and pass around the northern
hemisphere with increasing ξ . In (d) Q = 8.1 and it is only by passing around the northern
hemisphere that southern hemisphere trajectories can contribute towards the collision rate. In
(e) Q = 8.5 and there is no route remaining for southern hemisphere trajectories to contribute
towards collision. At Q = 12.5, as seen in ( f ) there are no trajectories arising in the southern
hemisphere of the collision sphere.

curve in figure 12 for κ = 0.5. These qualitative differences do not dramatically change
the overall collision rate.

The collision rate for the inclined problem with α = 30◦, 45◦, 60◦ and 89◦, is shown
as a function of Q in figure 14 at κ = 0.5 and Kn = 10−3 along with the α = 0 result
for comparison. The angular dependence vanishes in the Q → 0 and Q → ∞ limits but
it is much stronger than that for the ideal collision rate at moderate values of Q. The
non-trivial behaviour discussed in § 3 is further exacerbated by hydrodynamic interactions
and primarily manifested through the complex trajectory evolution.

The various features of the trajectory behaviour described above for α = 0 also occur
for non-zero α. Evidence of the complex trajectories can be observed in how they distort
the boundaries of S at r∞, shown in figure 9 in comparison to the influx–efflux boundary
on the collision sphere in figure 8. Hydrodynamic interactions can significantly distort the
boundaries and this is evident when 9(d) is compared against figure 8(c). The protrusion
in figure 9(b) can be attributed to trajectories in the time-reversed flow originating in one
of the influx regions, turning around and ending up with trajectories originating from
the other influx region at r∞. This has, along with the closed trajectories, depleted the
boundary in figure 9(c). However, the impact of these hydrodynamic-interaction induced
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FIGURE 12. The collision rate is plotted for Q, the relative strength of gravity and uniaxial
compressional flow, spanning 7 to 8.2 for κ = 0.5, α = 0 and Kn = 10−3. The monotonically
decreasing curve corresponds to the collision rate due to trajectories that stay in the negative
Z half-space at all separations. The curve with a maximum corresponds to the collision rate of
traversal particles that collide in the southern hemisphere but have positive Z coordinates at large
separations.
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FIGURE 13. The collision rate is plotted as a function of Q, the relative strength of gravity and
uniaxial compressional flow, for κ = 0.9, α = 0 and Kn = 10−1, 10−2 and 10−3. The collision
rate is higher for larger values of Kn.

trajectory topologies on the collision rate is not as dramatic for non-zero α as it is
for α = 0.

Complex trajectories are possible even without hydrodynamic interactions leading to
two widely separated regions for S at r∞, seen in figure 9(e, f ), even though there is
only one influx region, shown in figure 8(d). For α ≈ 90◦ and large Q trajectories that
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FIGURE 14. The collision rate is plotted as a function of Q, the relative strength of gravity
and uniaxial compressional flow, for κ = 0.5, Kn = 10−3 and α = 30◦, 45◦, 60◦ and 89◦ along
with α = 0 for comparison. They start off together at Q = 0 and converge in the Q → ∞ limit.
At intermediate Q the variation with α is large.

are close for r = O(1) become separated as r → ∞ due to the coupling of the uniaxial
compressional flow and gravity. Gravity is strong at large Q and it sets the trajectory
evolution for r = O(1). However, as the separation increases the linear flow induced
velocity increases and, for finite Q, always results in a fixed point in the velocity field.
This fixed point occurs at r = O(Q) and is only observed for large Q, thus this diverging
trajectory evolution is not driven by hydrodynamic interactions. At radial separations
greater than this fixed point satellite spheres follow the linear flow and move (in the
time-reversed flow) in nearly equal portions along each of the two compressional axes
that are nearly orthogonal to the direction of gravity.

6. Collision efficiency

The collision rate evaluated in § 5 is reduced compared to the ideal rate computed in
§ 3 as a result of non-continuum hydrodynamic interactions. To show the extent of this
retardation and obtain insight into the hydrodynamic interactions, the collision efficiency
is calculated. For κ = 0.9, the collision efficiency as a function of Q obtained by dividing
the rate with interactions (from figure 13) by the ideal collision rate is shown in figure 15.
Similarly, figure 16 shows the collision efficiency for κ = 0.5. These two figures span a
larger range of Q than the figures for the collision rates to better illustrate the large Q
asymptotic behaviour. The collision efficiency asymptotes at large Q indicating that the
sedimentation dominated regime has been reached. This asymptotic value is significantly
lower than the Q = 0 result for both size ratios under consideration. Comparing the results
at the two size ratios indicates that collision is more efficient for nearly similar spheres
across all values of Q.

In the asymptotic limits of Q = 0 and Q → ∞, it is possible to obtain the collision
efficiency without explicitly evaluating the collision rate through trajectory analysis. This
analytical result was first derived by Batchelor & Green (1972) for particles with van
der Waals interactions in linear flows and by Batchelor (1982) for sedimenting particles.
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FIGURE 15. The collision efficiency is plotted as a function of Q, the relative strength of gravity
and uniaxial compressional flow at α = 0 for κ = 0.9 and Kn = 10−1, 10−2 and 10−3. The
collision efficiency decreases with decreasing Kn.
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FIGURE 16. The collision efficiency is plotted as a function of Q, the relative strength of gravity
and uniaxial compressional flow at α = 0 for κ = 0.5 and Kn = 10−1, 10−2 and 10−3. For all Q
and Kn the collision efficiency is lower than that for κ = 0.9.

We extend it to the case of hydrodynamic interactions with breakdown of continuum in the
lubrication regime. The procedure involves computing the pair probability evolution and
is shown for the differential sedimentation dominated case, Q → ∞. A similar derivation
is possible for the pure uniaxial compressional flow, Q = 0.

The pair probability density satisfies,

vr
∂P
∂r

+ vθ

1
r

∂P
∂θ

= −P∇ · v. (6.1)
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Using the method of characteristics we obtain,

ln
[

P|r=2

n1n2

]
=
∫ ∞

2

∇ · v

vr
dr, (6.2)

along trajectories where
dθ

dr
= vθ

rvr
. (6.3)

Expanding ∇ · v and simplifying we get,∫ ∞

2

∇ · v

vr
dr =

∫ ∞

2
d(ln vr) +

∫ ∞

2

(
2
r

+ 1
vr

1
r sin θ

∂(vθ sin θ)

∂θ

)
dr. (6.4)

The relative velocity for the pair is

vr = −LQ cos θ,

vθ = MQ sin θ.

}
(6.5)

The second integral on the right-hand side of (6.4) can be shown to be always independent
of θ . In the limit of r → ∞ it can shown using (6.5) in conjugation with (6.3) that θ
approaches 0 or π. Hence the first integral evaluated at the upper limit will be independent
of θ . Thus only its lower limit, which is the relative radial velocity at the collision sphere,
depends on θ . At the collision sphere the relative radial velocity goes to zero and the pair
probability (the left hand term in (6.4)) diverges but their product is a finite value. This
quantity integrated over the surface of the collision sphere using the expression given in
(2.3) gives the collision rate. This θ independent result is given as,

K12

n1n2γ̇ (a1 + a2)3
= vr,∞ exp

[∫ ∞

2
dr
[

2
r

− 2MQ
rLQ

]]
. (6.6)

Here, vr,∞ is the radial velocity in the large separation limit at θ = 0. The scaling of the
collision rate, presented (2.3), is retained here. To obtain the ideal rate result from (6.6)
we set L = M = 1 and so obtain the collision efficiency as,

KHI
12

K0
12

= exp
[

2
∫ ∞

0
dξ

L − M
(2 + ξ)L

]
(Q → ∞). (6.7)

Carrying out a similar analysis, the collision efficiency for pure uniaxial compressional
flow is,

KHI
12

K0
12

= exp
[

3
∫ ∞

0
dξ

B − A
(2 + ξ)(1 − A)

]
(Q = 0). (6.8)

The integrals over the radial coordinate in (6.7) and (6.8) can be evaluated numerically
to obtain the collision efficiency of the pure differential sedimentation and pure
uniaxial compressional flow, respectively. For κ = 0.9 and κ = 0.5 these are shown in
figure 17. The collision efficiency monotonically decreases with decreasing Kn at both
the asymptotes in Q and at both size ratios. Consistent with figures 15 and 16 we observe
that κ = 0.9 shows a higher collision efficiency at both the high and low Q asymptotes
compared to κ = 0.5. However, the effects of Q and Kn on the collision efficiency are
more pronounced than that of the size ratio.
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FIGURE 17. The collision efficiency is plotted as a function of Kn for the pure differential
sedimentation and pure uniaxial compressional flow cases at κ = 0.9 and κ = 0.5. The two
curves with the highest collision efficiency correspond to the pure uniaxial compressional flow
while the two lowest are for pure differential sedimentation. In each case κ = 0.9 is more efficient
than κ = 0.5 at all values of Kn.

Figure 17 shows a larger slope for the collision efficiency variation with ln Kn of settling
spheres when compared to that in the uniaxial compressional flow. This linear flow has
fixed points at θ of 0, 90 and 180 degrees while differential sedimentation has them
at 0 and 180 degrees. Thus, in collisions through differential sedimentation the rate of
change of the tangential velocity is lower relative to uniaxial compressional flow field.
Although the particle relative velocities are not solenoidal, one might expect based on
mass conservation that the radial relative velocity for the settling problem is lower and
therefore the integrand in (6.7) is higher when compared to the exponent in (6.8). Hence,
the differential sedimentation collision efficiency is more sensitive to Kn and results in
a larger relative change for a given change in mean sphere size when compared to the
uniaxial compression calculation.

To compare the full continuum against the Maxwell slip approximation used by Davis
(1984) we compute (6.7) and (6.8) with only the last term in the non-continuum force
equation (4.4). For κ = 0.5 the comparison is shown in figure 18 for both the Q = 0 and
∞ asymptotes. For large Q the two results are nearly indistinguishable while at Q = 0 the
full non-continuum analysis leads to higher efficiencies.

Our earlier discussions on the relevant collision physics highlighted that the van der
Waals force is primarily responsible for droplet collisions when the droplet mean radius
is smaller than approximately 6 μm (see figure 2). To quantitatively analyse the effect
of the competition of interparticle attractive potential and non-continuum physics on the
collision efficiency, we consider the two limiting problems – differential sedimentation
and pure uniaxial compressional flow. With the inclusion of the van der Waals force, (2.6)
takes the modified form

vr = −LQ cos θ + (A − 1)r
16

{1 + 3[cos 2θ + cos 2α(1 + 3 cos 2θ)

+ 4 cos 2φ sin2 α sin2 θ + 4 cos φ sin 2α sin 2θ ]} − G
NF

dΦ12

dr
, (6.9)
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FIGURE 18. The collision efficiency is plotted as a function of Kn for the pure differential
sedimentation and pure uniaxial compressional flow cases at κ = 0.5. The two curves with the
highest collision efficiency correspond to the pure uniaxial compressional flow while the two
lowest are for pure differential sedimentation. The solid line is the full non-continuum result
while the dashed lines are the Maxwell slip.

where G is a scalar mobility associated with the relative velocity due to a central potential
Φ12. Here, NF = 3πγ̇ a3

1κ(1 + κ)μ/2 Â is a non-dimensional parameter characterizing the
relative importance of viscous shear and van der Waals forces. The Hamaker constant Â
for water droplets in air is approximately 5.1 × 10−20 J (Davis 1984). The relative strength
of van der Waals to differential sedimentation for a1 = 10 μm water droplets in air is
QNF ≈ (4 × 103)κ(1 − κ2). Similar to the axisymmetric mobilities A and L, G can be
obtained from the non-dimensional resistances Λij to be

G = 1
1 + κ

Λ12 + κΛ22

Λ11Λ22 + Λ21Λ12
. (6.10)

The methodology described in § 4.1 to incorporate non-continuum lubrication in Λ11
and Λ12 allows us to develop a uniformly valid G that has the correct near-field
asymptotic form. Consistent with the radial nature of van der Waals force, the equations
for vθ and vφ (2.7) and (2.8) remain unaltered. Most calculations of droplet collisions
with van der Waals forces consider Hamaker’s unretarded form of the interaction
energy. This entails neglecting the finite propagation speed of electromagnetic waves
and solving a quasi-steady electrostatic problem for induced molecular dipoles. When
droplet separations are comparable or larger than the London wavelength (≈0.1 μm)
the propagation of electromagnetic waves in the medium needs to be considered (Russel
et al. 1991). We consider the retarded form of the van der Waals potential (Φ12) as given
by Zinchenko & Davis (1994), obtained by an analytical integration of the dispersion
energy between two molecules that has O(1/r6) near-field (London) and O(1/r7) far-field
(Casimir–Polder) forms. We consider 10 μm droplets, a size corresponding to comparable
effects of van der Waals force and non-continuum physics. To calculate NF for uniaxial
compressional flow we choose a γ̇ corresponding to Q ≈ 3, which translates to a 5 %
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FIGURE 19. Competition of interparticle attraction and non-continuum lubrication – the
collision efficiency is plotted as a function of size ratio (κ) for pure differential sedimentation
and pure uniaxial compressional flow cases for a1 = 10 μm. The continuous lines correspond
to uniaxial compressional flow while the dashed lines are for differential sedimentation. The
circles are the collision efficiencies resulting from non-continuum hydrodynamic interactions
in the absence of van der Waals forces, the triangles are for van der Waals with continuum
hydrodynamic interactions and the diamonds are for van der Waals with non-continuum
hydrodynamic interactions. Also included are the results from Davis (1984) and Rosa et al. (2011)
for differential sedimentation.

change in the collision rate from its value for pure uniaxial compressional flow. This
corresponds to γ̇ ≈ 8 × 102(1 − κ) per second.

Figure 19 shows that for a reference sphere of a1 = 10 μm, the collision efficiency
obtained using only non-continuum lubrication is always higher than that obtained using
van der Waals attractive force for both uniaxial compressional flow and differential
sedimentation. This confirms our initial hypothesis that collision physics for larger droplets
(>10 μm) is driven by non-continuum physics rather than interparticle attraction.

With increasing a1 the effects of van der Waals would diminish further with respect to
non-continuum lubrication. The role of particle inertia becomes important with increasing
particle size. Most previous studies (Hocking & Jonas 1970) that have considered particle
inertia have treated collision events in an ad hoc manner, collisions are assumed to
have occurred when the gap becomes equal to a fraction of the radius. Rosa et al.
(2011) illustrate this procedure using a cut-off of 0.001a1 and severely under-predict the
collision efficiency, as is evident in the comparison shown in figure 19. The study by
Davis (1984) is an exception where particle inertia was included with hydrodynamic
interactions and van der Waals force in calculating collision efficiency of particle pairs
undergoing differential sedimentation. For a1 = 10 μm the role of particle inertia is small,
our results for collision efficiency with only retarded Van der Waals and non-continuum
hydrodynamic interactions are nearly identical to the calculation of Davis (1984) which
also includes particle inertia (see figure 19). Our current study underlines the importance
of non-continuum physics and thus collision efficiency calculations for larger spheres
would require a combined study of particle inertia, non-continuum lubrication and van
der Waals force.
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7. Discussion and summary

Our study is the first to evaluate the collision rate of a dilute suspension of spheres
when frozen uniaxial compressional flow and gravity are coupled. Our analysis includes
non-continuum hydrodynamics. This non-continuum interaction is important for collision
in gaseous media and has limited treatment in the existing literature. The present study
is also the first to determine the collision rate using the correct form of non-continuum
interactions based on the lubrication results of Sundararajakumar & Koch (1996)
between unequal spheres for coupled linear flow and differential sedimentation and for
sedimentation dominated collisions.

The problem is set up in § 2. We present the rate equation for the collision rate of
two species of spheres. The suspension consists of inertia-less fluid and particles. The
Stokes flow naturally leads to a characteristic velocity based on the compression rate and
the characteristic length, which is the mean radius of the two spheres. Non-dimensional
equations based on these scales contain a characteristic differential sedimentation velocity
Q which becomes a parameter. The non-dimensionalized collision rate equation is in the
form of a surface integral and needs input of the non-dimensional relative velocity as
well as the pair probability at contact, representing the local species concentration relative
to the bulk. We also demonstrated that the breakdown of continuum is important in the
lubrication regime when collision occurs in a gaseous media and this is the most important
physical mechanism facilitating contact in a wide range of systems such as 5–60 μm radius
droplets in clouds and particles in industrial aggregators and aerosol analysis instruments.

Section 3 deals with the ideal collision rate, evaluated numerically based solely on
the relative velocity on the collision sphere. This relative velocity only depends on
the background flow driving it as there are no interparticle interactions. The lack of
interparticle interactions leads the local species concentration to remain equal to the bulk
concentration at all locations and so the collision rate integral is significantly simplified.
The calculated ideal collision rate was presented as a function of Q and the angle α
that the compressional axis makes with gravity. The results differ significantly from a
linear combination of the ideal uniaxial compressional flow and differential sedimentation
collision rates and the ideal rate exhibits a weak α dependence.

The radial and tangential mobilities are computed in § 4. While the non-continuum,
radial mobilities decayed as ξ → 0 the rate at which they decayed was weak,
O(1/ ln[ln(Kn/ξ)]), compared to the continuum mobility, O(ξ), and this allows contact
between the two spheres to occur in finite time. The continuum tangential mobilities
take finite values as ξ → 0, so corrections due to non-continuum gas flow were not
considered. When ξ ≥ O(1) both the radial and tangential mobilities are governed by
continuum hydrodynamic interactions. Uniformly valid approximations to the mobilities
were developed that yield smooth variation between these lubrication and far-field
regimes.

In § 5 the mobilities from § 4 are used to evaluate the collision rate when spheres
interact with each other through hydrodynamic forces. This interparticle interaction
affects the pair probability close to the collision sphere. To bypass calculating the pair
probability, a trajectory analysis was used. The trajectory of the satellite sphere was
tracked from large separations to the point of collision. At large separations the local
species concentration approaches the bulk concentration and hydrodynamic interactions
are negligible, so the flux can be readily calculated. To minimize the expensive trajectory
calculations, time-reversed motion is considered and only trajectories at the influx–efflux
boundary on the collision sphere and boundaries between different types of trajectories are
evaluated.
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We have presented results for the ideal and actual collision rate due to the coupled effects
of sedimentation and uniaxial compressional flow. For most circumstances, these results
when scaled with the ideal collision rate due to compressional flow show an increased
collision rate with increasing gravity Q as is evident from figures 3, 10, 13 and 14.
However, the collision efficiency, presented in § 6 and, plotted in figures 15 and 16 is
considerably smaller at large Q. This can be attributed to the long-range hydrodynamic
interactions due to the net force exerted by the particles on the fluid as they sediment. This
weakening of the sedimentation driven collisions causes the transition from the relatively
low collision rate seen in the uniaxial compression dominated regime to the gravity
dominated regime, where it is linearly increasing with Q, to shift. For the ideal collision
rate in figure 3, the shift occurs at Q ≈ 2.5 while the transition occurs at approximately
7.5 when hydrodynamic interactions are included (figure 13).

From the plots of collision efficiency, especially figure 17, we can observe that smaller
values of Kn retard the collision process more. This can be understood by noting that a
decrease in the relative thickness of the non-continuum layer leads the satellite spheres to
experience stronger continuum lubrication forces.

The influence of hydrodynamic interactions on the collision rate is significantly more
complex than a simple shift in the relative strength of gravity and linear flow or a reduction
in collision rate. Hydrodynamic interactions control the qualitative appearance of complex
trajectories. Surprisingly, these trajectories lead to a non-monotonic dependence of the
collision rate on Q in the range 2.5 < Q < 10 for small enough Kn. These complex
trajectories have been shown in figure 11 and they affect the boundaries of S at large
separations shown in figure 9. Their influence on the collision rate is highlighted in
figure 12 which shows the collision rate caused by different types of trajectories in the
intermediate Q range where the collision rate variation is non-monotonic.

Even without interactions complex trajectory behaviour is observed for large Q and α
nearly 90◦. In this limit there is a fixed point at large separations beyond which satellite
spheres follow the compressional axis instead of gravity and trajectories have very sharp
turns. The boundaries of all of these classes of trajectories have been resolved to accurately
determine their impact on the collision rate.

While we have focused on only two size ratios, κ = 0.5 and 0.9, the influence of the
size ratio seems to be mostly restricted to a moderate decrease of the collision efficiency
with decreasing κ at all Q and Kn. This is evidenced in figure 17, where the collision
efficiency for both size ratios are plotted together in the limits of low and high Q. There
is some qualitative difference with the traversal mechanism, active at moderate Q and
small Kn, dying off faster for κ = 0.9 than 0.5 but this only makes a minor contribution
to the overall collision rate. In fact, it is hard to tell the difference between the curves in
figures 16 and 15.

The collision rate variation across the α parameter space shows a rich behaviour. In
§ 3 the difference between the ideal rate at α = 0 and that averaged over an isotropic
distribution of compressional flows has a complex variation with Q that appears to be a
sum of two Gaussians. With hydrodynamic interactions the effect of α on the collision rate
increases dramatically, with α = 0◦ and 60◦ differing by more than a factor of 2 at Q ≈ 2.5
and Kn = 10−3. There is not a monotonic change of collision efficiency with increasing
α. Neither are shapes of all the curves in 14, showing different α, similar.

Accurate results for the collision rate are important in predicting the evolution of particle
or droplet size distributions. In the size gap (15 to 40 μm radius) of drops in clouds current
predictions for the drop size distributions are not as broad and the time to rain formation
not as short as observed in field experiments (see Grabowski & Wang 2013). The collision
rate predicted by the coupling of the important mechanisms in the size gap, namely
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gravity, turbulence (modelled as a local, uniaxial compressional flow), and non-continuum
hydrodynamic interactions may be expected to improve these predictions. In industrial
reactors collisional growth is an important step towards growing commercially valuable
particles to the desired sizes but polydispersity needs to be limited (see Buesser & Pratsinis
2012). The detailed collision results smoothly spanning a large parameter space obtained
from our study may be useful in designing systems to maximize collisions while limiting
the spread of particle sizes.

The results of our study also inform designs of non-turbulent systems with collisions
driven by settling and a uniaxial compressional flow. In porous aerosol filters improved
understanding of the collision dynamics will aid in promoting aggregation of pollutants
to form larger size aggregates that are more easily filtered. In aerosol impactors, the
knowledge of the collision process can provide an estimate of artefacts that may lead to
errors in measurement of the aerosol size distribution. In diesel fuel spray injectors the
insight provided by our collision study may aid in reducing coalescence resulting in more
efficient and less polluting diesel engines.
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