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Abstract. In the example of complex grassmannians, we demonstrate various techniques
available for computing genus-0 K-theoretic GW-invariants of flag manifolds and more gen-
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1 Introduction

Just as quantum cohomology theory deals with intersection numbers between interesting cycles
in moduli spaces of stable maps of holomorphic curves in a given target (say, a Kähler manifold),
quantum K-theory studies sheaf cohomology (e.g. in the form of holomorphic Euler characteris-
tics) of interesting vector bundles over these moduli spaces. While the beginnings of the subject
can be traced back to the 20-year-old note [?] by the first-named author, the foundational work
by Y.-P. Lee [?], and their joint paper on complete flag manifolds, q-Toda lattices and quantum
groups [?], the interest to quantum K-theory expanded in more recent years due to the discovery
of its more diverse relations to representation theory, integrable systems, and q-hypergeometric
functions.

Apparently the interest was initiated by the 2012 preprint [?] by D. Maulik and A. Okounkov,
who connected equivariant quantum cohomology of quiver varieties with R-matrices. In 2014,
this led R. Rimányi, V. Tarasov and A. Varchenko [?] to a conjectural description of the quan-
tum K-ring of the cotangent bundle of a partial flag variety. In even more recent literature
motivated by representation theory (see e.g. [?, ?, ?]), certain q-hypergeometric series, interest-
ing from the point of view of the theory of integrable systems, appeared as generating functions
for K-theoretic Gromov-Witten (GW) invariants of symplectic quiver varieties. In this literature,
K-theoretic computations are based, however, on the quasimap (rather than stable map) com-
pactifications [?] of spaces of rational curves in the GIT quotients of linear spaces. Based on the
experience with mirror symmetry and quantum K-theory of toric varieties [?] one anticipates the
q-hypergeometric generating functions arising from quasimap spaces to nevertheless represent
the “genuine” (i.e. based on stable map compactifications) K-theoretic GW invariants, yet such
invariants of a different kind, or more complicated ones than naively expected. In any case, this
brings up the question of comparison (first attempted by H. Liu [?]) of the two approaches.
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In this paper, we examine in substantial detail the genus-0 quantum K-theory of grassmanni-
ansGrn,N pCq. The grassmannians can be described as the GIT quotients HompCn,CN q{{GLnpCq,
and are perhaps the simplest among homogeneous spaces or, more generally, quiver varieties out-
side the toric class. Most of our methods carry over to other quiver varieties (and all — to any
partial flag manifolds), but we prefer to illustrate the available techniques by way of simplest
representative examples, trading generality for simplicity of notation.

In Sections 2 and 3 we show how the technique of fixed point localization in moduli spaces of
stable maps can be used in order to compute the so-called “small J-function” of the grassmannian
— the generating function for simplest genus-0 K-theoretic GW-invariants of it.

In Section 4 we combine the same technique with the idea known as “non-abelian localization”
[?] in order to prove the invariance of the genus-0 quantum K-theory of the grassmannian under
a suitable infinite dimensional group of pseudo-finite-difference operators. A key point here
(inspired by the appendix in the paper [?] by K. Hori and C. Vafa) is to begin with the toric
quotient HompCn,CN q{{Tn “ pCPN´1qn by the maximal torus Tn Ă GLnpCq, and use Weyl-
group invariant finite-difference operators on n Novikov’s variables of the toric manifold. Just as
in the case of toric manifolds [?], this infinite dimensional group of symmetries is large enough
in order to reconstruct “all” genus-0 invariants of the grassmannian from the small J-function.

In Section 5, we address the aforementioned comparison problem by interpreting (in several
somewhat different ways) the q-hypergeometric series arising from quasimap theory of the cotan-
gent bundle spaces T ˚Grn,N as certain “genuine” K-theoretic GW-invariants, and in particular
show that, contrary to a naive belief articulated in the literature, these series fail to represent
“small” J-functions (of anything).

In Section 6, we apply the invariance result from Section 5 to illustrate the “non-abelian
quantum Lefschetz” principle which characterizes genus-0 quantum K-theory of a complete
intersection in (or a vector bundle space over) the grassmannian.

In Section 7, we show how our techniques can be used to extend (to the case of grassmannians)
the toric results obtained by Y. Ruan and M. Zhang [?] about the level structures in quantum K-
theory. As a by-product, we clarify (hopefully) the phenomenon of level correspondence between
“dual” grassmannians Grn,N “ GrN´n,N discovered recently by H. Dong and Y. Wen [?].

In Section 8, we exhibit a Jackson-type integral formula for the small J-function in the
quantum K-theory of the grassmannian, inspired by the “non-abelian localization” framework
from Section 4. Our logic is the same as in the aforementioned appendix [?] by K. Hori and K.
Vafa, where cohomological mirrors of Grn,N were proposed. However, our mirror formula looks
different (and possibly new, see [?]) even in the cohomological GW-theory.

Namely, our cohomological mirror of the grassmannian has the form of the complex oscillating
integral

I :“

ż

ΓĂXQ

e

´

ř

ij xij ´
ř

i‰i1 yii1
¯

{z
Ź

ij d lnxij
Ź

i‰i1 dyii1
Ź

i d ln
´

ś

j xij{
ś

i1pyii1{yii1q
¯ .

Here XQ is the complex torus in the linear space with coordinates txiju, i “ 1, . . . , n, j “ 1, . . . , N
and tyii1u, i, i

1 “ 1, . . . , n, i ‰ i1, given by n equations

ź

j

xij “ Q
ź

i1

pyii1{yi1iq, i “ 1, . . . n,

and Γ is a Lefschetz thimble in XQ, invariant under the Weyl group Sn acting on the coordinates
txiju, tyii1u by simultaneous permutations of the indices i and i1.

As a mirror symmetry test, let us examine the critical set of the phase function (“superpo-
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tential”) using Lagrange multipliers p1, . . . , pn:

ÿ

ij

xij ´
ÿ

i‰i1

yii1 ´
ÿ

i

pi

˜

ÿ

j

lnxij ´
ÿ

i1‰i

pln yii1 ´ ln yi1iq ´ lnQ

¸

.

The critical points are determined from

xij “ pi, yii1 “ pi ´ pi1 , p
N
i ` p´1qnQ “ 0,

where the third set of equations comes from the constraints. The algebra of functions on the
critical set (which is a finite lattice ZnN Ă Tn) invariant under permutations of pp1, . . . , pnq is
indeed isomorphic to the “small” quantum cohomology algebra of the grassmannian (as described
by formula (3.39) in [?]).

2 The small J-function of Grn,N

Let X :“ Grn,N be the grassmannian of n-dimensional subspaces V Ă CN . Its K-ring K0pXq is

generated by the exterior powers
Źk V of the tautological bundle, k “ 1, . . . , n. Using the split-

ting principle, we will often write them as elementary symmetric functions
ř

1ďi1ă¨¨¨ăikďn
Pi1 ¨ ¨ ¨Pik

of K-theoretic Chern roots of V “ P1 ` ¨ ¨ ¨ ` Pn.

Proposition. The K-theoretic Poincaré pairing on K0pXq is given by residue formula

χpX; ΦpP qq “ p´1qn ResP“1

ΦpP q
ś

i‰jp1´ Pi{Pjq

p1´ P1q
N ¨ ¨ ¨ p1´ PnqN

dP1 ^ ¨ ¨ ¨ ^ dPn
P1 ¨ ¨ ¨Pn

,

where Φ is any symmetric Laurent polynomial of P1, . . . , Pn.

The formula is obtained as the non-equivariant limit Λ Ñ 1 from its TN -equivariant coun-
terpart, where TN is the torus of diagonal matrices diagpΛ1, . . . ,ΛN q acting on CN .

Proposition. The TN -equivariant K-theoretic Poincaré pairing on K0
T pXq pairing is given by

χT pX; ΦpP,Λqq “

p´1qn

n!
ResP‰0,8

ΦpP,Λq
ś

i‰jp1´ Pi{Pjq
śn
i“1

śN
j“1p1´ Pi{Λjq

dP1 ^ ¨ ¨ ¨ ^ dPn
P1 ¨ ¨ ¨Pn

.

Here Φ is a Laurent polynomial in P and Λ, symmetric in P , χT is the T -equivariant holo-
morphic Euler characteristic, taking values in the representation ring ZrΛ˘s of the torus, and the
residue sum is taken over all poles P1 “ Λi1 , . . . , Pn “ Λin (with this ordering of the equations,
and iα ‰ iβ). The formula is proved by the direct application of Lefschetz’ holomorphic fixed
point formula.

The following q-hypergeometric series has emerged from a study of spaces of rational curves
in the grassmannian based on their quasimap compactifications:

J “
ÿ

0ďd1,...,dn

Qd1`¨¨¨`dn

śn
i“1

śdi
m“1p1´ q

mPiqN

n
ź

i,j“1

śdi´dj
m“´8p1´ q

mPi{Pjq
ś0
m“´8p1´ q

mPi{Pjq
.

Remark 1. The product on the right can be rearranged as

ź

diądj

qp
di´dj

2
q
ˆ

´
Pi
Pj

˙di´dj Pj ´ q
di´djPi

Pj ´ Pi
,
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and therefore may contain nilpotent factors Pj ´ Pi in the denominator. It is not hard to see,
however, that transposing Pi and Pj does not change the sum of terms with a fixed d1`¨ ¨ ¨`dn,
implying that after clearing the denominators, the numerator becomes divisible by Pj ´ Pi
(namely, it changes sign under the transposition, and hence vanishes when Pi “ Pj).

Remark 2. Another consequence of the above rearrangement is that, with the exception of the
term Q0, the series consists of reduced rational functions of q. Namely, the factor at Qd1`¨¨¨`dn

has no pole at q “ 0, and the q-degree of the denominator exceeds that of the numerator by

N
n
ÿ

i“1

ˆ

di ` 1

2

˙

´
ÿ

diądj

ˆ

di ´ dj ` 1

2

˙

ě N ´ n` 1 ě 2.

Theorem 1. (cf. [?, ?]) The series p1 ´ qqJ is the “small J-function” of the grassmannian
Grn,N pCq.

Recall that the genus-0 quantum K-theory of a target space X, the “big J-function” is defined
as

t ÞÑ J ptq :“ 1´ q ` tpqq `
ÿ

d,m,α

Qdφαx
φα

1´ qL0
, tpL1q, . . . , tpLmqy

Sm
0,m`1,d.

Here Q is the Novikov’s variable, tφαu and tφαu are Poincaré-dual bases in K0pXq, t “
ř

k tkq
k

is a Laurent polynomial in q with vector coefficients tk P K
0pXq b QrrQss, and the correlator

represents the K-theoretic GW-invariant computes a suitable holomorphic Euler characteristic
on the moduli spaces of stable maps Xg,m`1,d :“Mg,m`1pX, dq with the input (or “insertion”)
at the marked point (with the index i “ 0, . . . ,m in the above formula) of the form

ř

kpev˚i tkqL
k
i ,

where Li stands for the universal cotangent line bundle at the ith marked point. From among
several flavors of such K-theoretic GW-invariants (ordinary as in [?], or permutation-equivariant
as in [?]), we will currently use the permutation-invariant ones (as the superscript Sm indicates),
i.e. computing the super-dimension of the part of the sheaf cohomology on the moduli space
X0,m`1,d which is invariant under permutations of the m marked points with the indices i “
1, . . . ,m carrying the symmetric inputs tpLiq.

The “small J-function” is obtained from J by setting the input t “ 0. In particular, this
eliminates the role of the permutation group, and so J p0q represents the “ordinary” K-theoretic
GW-invariants. Thus, according to Theorem ??,

J p0q :“ p1´ qq `
ÿ

d,α

Qdφαx
φα

1´ qL0
y0,1,d “ p1´ qqJ.

Theorem ?? is obtained as the non-equivariant limit Λ Ñ 1 from the following result about the
TN -equivariant version J T “big J-function” of the grassmannian.

Theorem 2. (cf. [?, ?]) J T p0q “ p1´ qqJT , where JT “

ÿ

0ďd1,...,dn

Qd1`¨¨¨`dn

śn
i“1

śN
j“1

śdi
m“1p1´ q

mPi{Λjq

n
ź

i,j“1

śdi´dj
m“´8p1´ q

mPi{Pjq
ś0
m“´8p1´ q

mPi{Pjq
.

Note that by the very definition (the same as for J with the correlators taking values in the
representation ring ZrΛ˘s), the function J T is a Q-series with coefficients which are rational
functions of q with vector values in K :“ K0

T pXq b QrrQss. Abusing the language we call such
series rational functions of q, denote the space they form by K :“ Kpq˘q, and call it the loop
space. The part p1´ qq ` tpqq (“dilaton shift”`”input”) belongs to the subspace K` consisting
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of Laurent polynomials (they can have poles only at q “ 0,8), while the sum of the correlators
belongs (as it is not hard to see) to the complementary subspace K´ “ tf P K | fp0q ‰ 8, fp8q “
0.u. It follows from Remark ?? above (which applies to JT as well) that p1 ´ qqJT ” 1 ´ q
mod K´. Thus, the non-obvious statement of Theorem ?? is that p1´ qqJT represents a value
of J T at all.

The technique of fixed point localization we intend to use goes back to paper [?] by J.
Brown, and was adapted to the K-theoretic situation in [?]. The technique, applicable whenever
the target carries a torus action with isolated fixed points and isolated 1-dimensional orbits,
completely characterizes all values of the big J-function J T as the set of those rational functions
f P K which pass two tests: criterions (i) and (ii). They are formulated in terms of specializations
fα of f to the fixed point of the torus action in X. In the case of the grassmannian, take for
example the fixed point V1,...,n “ Spanpe1, . . . , enq where (we may assume by choosing the
ordering) pP1, . . . , Pnq “ pΛ1, . . . ,Λnq:

JTp1,...,nq “

ÿ

0ďd1,...,dn

Qd1`¨¨¨`dn

śn
i“1

śN
j“1

śdi
m“1p1´ q

mΛi{Λjq

n
ź

i,j“1

śdi´dj
m“´8p1´ q

mΛi{Λjq
ś0
m“´8p1´ q

mΛi{Λjq
.

Note that the 1st factor contains the product (coming from j “ i):

1
śn
i“1

śdi
m“1p1´ q

mq

with poles at roots of unity, while all other poles are elsewhere (at q “ pΛi{Λjq
´1{m). Each

term of the series considered as rational functions of q can be split (e.g. using partial fraction
decomposition) into the sum of a reduced rational function with poles at the roots of unity and
a rational function with poles elsewhere. The result will be interpreted (or rather termed) as a
meromorphic function in a neighborhood of the roots of unity.

Criterion (i) stipulates that fα, when interpreted as a meromorphic function in a neighborhood
of the roots of unity, must represent a value (over a suitable ground ring) of the big J-function
of the point target space. We will return to this criterion in the next section and explain how it
can be verified.

Criterion (ii) controls residues of fαpqqdq{q at the poles originating from T -equivariant covers
of 1-dimensional orbits. Namely, the tangent space to the grassmannian at the fixed point
Vp1,...,nq carries the torus action with the distinct eigenvalues Λj{Λi, i “ 1, . . . , n, j “ n`1, . . . , N .
Consequently, for each choice of i and j there is a 1-dimensional orbit, which compactifies into
CP 1 connecting this fixed point with another one. For instance, taking i “ 1 and j “ n` 1, we
find such an orbit connecting Vp1,...,nq with Vp2,...,n`1q. Let φ : CP 1 Ñ CP 1 be the map z ÞÑ zm0

ramified at z “ 0,8 (representing the two fixed points which we call α and β). Criterion (ii)
has the form of the recursion relation:

Resq“pΛj{Λiq
1{m0 fαpqq

dq

q
“ ´

Qm0

m0

EupTαXq

EupTφX0,2,m0q
fβ |q“pΛj{Λiq

1{m0 ,

where Eu are equivariant K-theoretic Euler classes: of the tangent space to X at α, and to the
moduli space of degree-m0 stable maps with 2 marked points at the point represented by the
m0-fold cover φ respectively.

We compute Resq“pΛn`1{Λ1q
1{m0 p1 ´ qqJT

p1,...,nqpqqdq{q, replacing d1 with d1 ` m0, assuming
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di “ d1 when i “ n` 1, and using x :“ pΛn`1{Λ1q
1{m0 :

Resq“xp1´ qqJ
T
p1,...,nqpqq

dq

q
“ ´p1´ xq

Qm0

m0
ˆ

1
śN
j“1

śm0
m“1 pj,mq‰pn`1,m0q p1´ x

mΛ1{Λjq

n
ź

j“2

m0
ź

m“1

1´ xmΛ1{Λj
1´ xmΛj{Λn`1

ˆ

ÿ

0ďd1,...,dn

Qd1`¨¨¨`dn

śn`1
i“2

śN
j“1

śdi
m“1p1´ x

mΛi{Λjq

n`1
ź

i,j“2

śdi´dj
m“´8p1´ x

mΛi{Λjq
ś0
m“´8p1´ x

mΛi{Λjq
.

The sum together with the factor 1´x yields p1´ qqJT
p2,...,n`1qpqq|q“x, so it remains to interpret

the recursion coefficient in terms of the Euler classes.
Applying Lefschetz’ fixed point formula on Grn,N pCq, we’ve already used that EupTp1,...,nqXq “

śn
i“1

śN
j“n`1p1 ´ Λi{Λjq. In order to compute EupTφX0,2,m0q, we note that the 1-dimensional

orbit connecting the fixed points Spanpe1, . . . , enq and Spanpe2, . . . , en`1q consists of subspaces
Vt :“ Spanpte1`p1´ tqen`1, e2, . . . , en´1q. Consequently, restricted to CP 1 “ tVtu, the tangent
bundle to the grassmannian, which has the form HompVt,CN{Vtq, can be described in terms of
the Hopf bundle L over CP 1 and its complementary L1 :“ Spanpe1, en`1q{L “ Λ1Λn`1L

´1 as

HompL‘ Spanpe2, . . . , enq, L
1 ‘ Spanpen`2, . . . , eN qq.

On the m0-fold cover φ : CP 1 Ñ CP 1, the contributions to the Euler class of the T -modules
H0pCP 1;φ˚L´1 b Spanpejqq and H0pCP 1;φ˚L1 b Spanpeiq

´1q are respectively

m0
ź

m“0

p1´ xmΛ1{Λjq and
m0
ź

m“0

p1´ xmΛi{Λn`1q.

The contribution of H0pCP 1;φ˚L´1bL1q is (as in the case of X “ CP 1)
śm0
m“´m0,m‰0p1´x

mq.
Combing all the contributing factors, we find

EupTp1,...,nqXq

EupTφX0,2,m0q
“

śn
i“1

śN
j“n`1p1´ Λi{Λjq

śn
i“2

śN
j“n`2p1´ Λi{Λjq

1
śm0
m“´m0,m‰0p1´ x

mq

ˆ
1

śN
j“n`2

śm0
m“0p1´ x

mΛ1{Λjq

1
śn
i“2

śm0
m“0p1´ x

mΛi{Λn`1q
.

Checking that this expression matches exactly the recursion coefficient for JT (the middle line in
the formula for the residue) is the matter of a straightforward (though somewhat cumbersome)
rearrangement of the factors.

Remark 3. Note that the structure of the recursion relations (ii) and the values of the recursion
coefficients completely characterize the big J-function of a particular theory, since criterion (i)
does not involve any additional choices.

3 Quantum K-theory of the point

Genus-0 permutation-equivariant K-theoretic GW-invariants of the point are represented by the
“big J-function” of the form

Jptptq :“ p1´ qq ` tpqq `
8
ÿ

m“2

χ

ˆ

M0,m`1{Sm;
1

1´ L0q
bmi“1 tpLiq

˙

.
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Here Li are the universal cotangent line bundles over the Deligne–Mumford spaces M0,m`1. The
holomorphic Euler characteristic χ on the orbifold M0,m`1{Sm computes the super-dimension
of the Sm-invariant part of the sheaf cohomology on M0,m`1. The insertions tpLiq (and hence
the input tpqq) can be in fact any rational functions of Li (respectively of q) as long as they
don’t have poles at roots of unity. On the contrary, each χ-term is a reduced rational function
of q with poles only at the roots of unity (of order ď m). Both this and the previous claim easily
follow from the general structure of the Lefschetz fixed point formula (applied on M0,m`1{Sm).

As it is explained in [?, ?], the action of permutation groups on the sheaf cohomology is
captured by the above Sm-invariants taking values in an arbitrary λ-algebra, i.e. a ring R
equipped with the Adams operations Ψk : RÑ R. E.g., for τ P R

χ
´

M0,m{Sm;bmi“1pτL
d
i q

¯

:“
1

m!

ÿ

hPSm

8
ź

k“1

pΨkτqlkphq strhH
˚pM0,m;bmi“1L

d
i q,

where lkphq denotes the number of cycles of length r in the cycle decomposition of permutation
h. For mode detail, we refer to [?] or [?], where this example is extrapolated to general R-valued
insertions tpLiq. Note that only Ψr with r ą 0 are used in this definition.

We assume that R is complete in the adic topology defined by a certain ideal R` Ă R, which
is respected by the Adams operations Ψk with k ą 0 in the sense that ΨkpR`q Ă Rk`, and
that the input t is “small” in the sense that it takes values in R`. In fact the latter property
guarantees that the m-th χ-term of the series Jpt takes values in Rm` , with assures R`-adic
convergence of the series.

The genus-0 permutation-equivariant GW-invariants of the point target space are completely
described in [?]. Namely, given a ground λ-algebra R, the range of the big J-function t ÞÑ Jptptq,
which is a semi-infinite cone (that we will denote Lpt) in the (completed) space of R-valued
rational functions of q (which we will denote Rpq˘q) is explicitly parameterized as

p1´ qqe
ř

ką0 Ψkpτq{kp1´ qkqp1`R`rq
˘sq.

Here τ P R`, and the notation R`rq
˘s is reserved for the completion in the R`-adic topology

of the space of rational functions of q which have no poles at roots of unity and take values in
R`.

In our arguments, we will take advantage of the possibility to replace one ground λ-algebra
with another related to it by a homomorphism respecting the Adams operations. In simple
terms: If some f P Rpq˘q is known to lie in Lpt (over a given ground ring R), i.e. the part f´
with poles at the roots of unity represents K-theoretic GW-invariants with the input defined by
the part f` with poles away from roots of unity, the same will remain true when the values of
some parameters (coordinates on SpecR) are specialized in a way commuting with Ψk for all
k ą 0.

Another important property of the cone Lpt that we will rely on is its invariance under a
certain group of (pseudo) finite-difference operators. Namely, let R “ QrrQss, where ΨkQ “ Q|k|,
k “ ˘1,˘2, . . . , and let DpqQBQ , Qq be a finite difference operator (which we should assume
“small” in R`-adic sense to assure convergence). It is almost obvious that the linear vector field
f ÞÑ Df in Rpq˘q is tangent to Lpt, and therefore eD preserves Lpt. Moreover, according to a
result from [?], Lpt is preserved by the operator

f ÞÑ e
ř

ką0 ΨkpDpqkQBQ , Qqq{kp1´ qkq f .

Our goal in this section is to verify that the series JT
p1,...,nq from the previous section sat-

isfies criterion (i), i.e. that it represents a value of Jpt when interpreted as a meromorphic
function of q in a neighborhood of roots of unity. For this, we begin with the ground ring
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R “ QrΛ˘1 , . . . ,Λ
˘
N srrQ1, . . . , Qnss, with the Adams operations acting by ΨkpΛ˘1

j q “ Λ˘kj ,

ΨkpQiq “ Q
|k|
i , and set R` “ pQ1, . . . , Qnq. In particular, taking τ “ Q1 ` ¨ ¨ ¨ ` Qn, we

find that Lpt Q p1´ qqJpt, where Jpt is the following product of q-exponential functions:

Jpt :“e
řn

i“1

ř

ką0 Q
k
i {kp1´q

kq

“

n
ź

i“1

8
ÿ

di“0

Qdii
śdi
m“1p1´ q

mq
“

ÿ

0ďd1,...,dn

Qd1
1 ¨ ¨ ¨Q

dn
n

śn
i“1

śdi
m“1p1´ q

mq
.

Following [?], we are going to use Q-independent finite-difference operators of the form Dl,Λ :“
´qΛp1 ´ ql¨QBQq, where l ¨ QBQ :“

ř

i liQiBQi , and Λ is a formal variable added to the ground
ring, ΨkΛ :“ Λ|k|. The corresponding Lpt-preserving operator is

Γl,Λ :“ e´
ř

ką0 Λkp1´ qkl¨QBQqqk{kp1´ qkq.

This expression is in fact the asymptotical expansion near the unit circle on the q-plane of the
ratio:

0
ź

m“´8

p1´ Λql¨QBQqmq{
0
ź

m“´8

p1´ Λqmq.

The ratio and its asymptotical expansion act on monomials Qd “ Qd1
1 ¨ ¨ ¨Q

dn
n the same way:

Γl,ΛQ
d “ Qd

ś0
m“´8p1´ Λqm`pl¨dqq
ś0
m“´8p1´ Λqmq

“ Qd
śl¨d
m“´8p1´ Λqmq

ś0
m“´8p1´ Λqmq

.

Note that the right hand side is a rational function of q with poles away from roots of unity.
Therefore, Γl,Λp1´qqJpt is a point of Lpt over the ground ring RrrΛss which, being a Q-series with
coefficients which are rational function of q and Λ, is a point of Lpt over RrΛ˘s, and will turn
into a point of Lpt over R when Λ is replaced by any non-trivial monomial from QrΛ˘1 , . . . ,Λ

˘
N s,

e.g. Λi{Λj with i ‰ j.

In order to complete our fixed point localization proof of Theorem ??, we apply to Jpt the
following operators (where l “ 1i contains 1 in the i-th position and 0 everywhere else):

˜

n
ź

i“1

N
ź

j“1,j‰i

Γ´1
1i,Λi{Λj

¸˜

n
ź

i,j“1

Γ1i´1j ,Λi{Λj

¸

Jpt “

ÿ

0ăd1,...,dn

Qd1
1 ¨ ¨ ¨Q

dn
n

śn
i“1

śN
j“1

śdi
m“1p1´ q

mΛi{Λjq

n
ź

i,j“1

śdi´dj
m“´8p1´ q

mΛi{Λjq
ś0
m“´8p1´ q

mΛi{Λjq
.

The terms of the last sum are interpreted as meromorphic functions in the neighborhood of
roots of unity, i.e. with poles (which come from the factors with i “ j in the left product) at
the roots of unity only.

When multiplied by 1 ´ q, the latter series lies in Lpt over the ground λ-algebra R “

QrΛ˘srrQ1, . . . , Qnss. The substitution Q1 “ ¨ ¨ ¨ “ Qn “ Q (which induces a homomorphism
of λ-algebras R Ñ R0 :“ QrΛ˘srrQss) yields therefore a series which lies in the range Jpt over
R0. It actually coincides with the localization p1´ qqJT

p1,...,nq of JT at the indicated fixed point.

Therefore p1 ´ qqJT
p1,...,nq, when interpreted as a series of meromorphic functions near roots of

unity, satisfies criterion (i). Due to the Weyl group symmetry between all fixed points, and
between all 1-dimensional orbits connecting them, this finishes the proof of Theorem ??.
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4 Non-abelian localization and explicit reconstruction

The approach to computing GW-invariants of GIT quotients via non-abelian localization (and
eventually quasimap compactifications) was proposed by A. Bertram, I. Ciocan-Fontanine and
B. Kim [?] following their proof [?] of the Hori-Vafa conjecture. The conjecture (formulated in
the appendix to [?]) gave a novel proposal for the mirrors of GIT quotients CM{{G. The idea,
illustrated by K. Hori and C. Vafa in the example of the grassmannians, was to replace the
factorization by a semi-simple G with the (cohomologically equivalent to it) succession of the
factorizations by its maximal torus T and then by its Weyl group W “ NpT q{T . The first step
yields a toric manifold, whose mirror and genus-0 GW-invariants are well-understood. In the
case of the grassmannian Grn,N “ HompCn,CN q{{GLnpCq, it is the product rX :“ pCPN´1qn

of projective spaces. Its small TN -equivariant (K-theoretic) J-function is p1´ qqJT
rX
, where

JT
rX
“

ÿ

d1,...,dně0

Qd1
1 ¨ ¨ ¨Q

dn
n

śN
j“1

śn
i“1

śdi
m“1p1´ q

mPi{Λjq
,

where Pi are the Hopf bundles over the factors. The second step can be described this way:

JT “ JTΠg{t|Q1“¨¨¨“Qn“Q,Λ0“1, where JTΠg{t :“
ź

i‰j

Γ1i´1j ,Λ0Pi{Pj
JT
rX
.

The Γ-operators here,

Γ1i´1j ,Λ0Pi{Pj
“ e´

ř

ką0pΛ0Pi{Pjq
kp1´ q

kQiBQi
´kQjBQj qqk{kp1´ qkq,

correspond to the roots of g, i.e. in our case of g “ glnpCq to the line bundles Pi{Pj for i ‰ j.
Explicitly JTΠg{t “

ÿ

d1,...,dně0

Qd1
1 ¨ ¨ ¨Q

dn
n

śN
j“1

śn
i“1

śdi
m“1p1´ q

mPi{Λjq

ź

i‰j

śdi´dj
m“´8p1´ q

mΛ0Pi{Pjq
ś0
m“´8p1´ q

mΛ0Pi{Pjq
.

According to [?], p1´qqJTΠg{t represents a value of the big J-function of the super-space ΠE, where

E is a vector bundle over rX, equal to ‘i‰jPj{Pi in the case at hands, which is associated with the
adjoint action of the maximal torus on g{t, and Π indicates the parity change of the fibers. By
definition, the quantum K-theory of such a super-space is obtained by systematically replacing
the virtual structure sheaves Og,m,d of the moduli spaces rXg,m,d with Og,m,d bEuCˆpft˚ ev˚Eq,
where the subscript in the K-theoretic Euler class indicates it is equivariant with respect to the
scalar action of Λ0 P Cˆ on the fibers of E, and ft : rXg,m`1,d Ñ rXg,m,d and ev : rXg,m`1,d Ñ rX
are respectively the forgetting of and evaluation at the last marked point.

On the other hand, the explicit reconstruction results of [?] tell us how to parameterize the
entire big J-function of a toric manifold (or super-manifold) from one value of it. Namely, the
range of the big J-function, LΠg{t in our example, is invariant under the action of a huge group,
P, of pseudo-finite-difference operators in Novikov’s variables Q1, . . . , Qn. It is generated by the
exponentials eD of any (R`-adically small) finite-difference operators DpPqQ1BQ , Q, qq, and by
operators of the form1

e
ř

ką0 ΨkpDpPqkQBQ , Q, qq{kp1´ qkq.

The orbit of p1 ´ qqJT
rX

under this group is the whole of L
rX

(and moreover, picking suitable

operators as described in [?] one obtains an explicit parameterization of L
rX
).

1Note that above operators Γ1i´1j ,Λ0Pi{Pj
are the compositions of the operators of multiplication by

e
ř

ką0 ΨkpΛ0Pi{Pjq{kp1´q´kq, whose cumulative effect, according to the Adams-Riemann-Roch (see [?]), is to trans-

form L
ĂX to LΠg{t, and of the operators of this form with D “ qΛ0Piq

QiBQi {Pjq
QjBQj which preserve LΠg{t.
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Theorem 3. Elements of the orbit of p1 ´ qqJTΠg{t under the subgroup PW of the operators
invariant with respect to the Weyl group, in the specialization Q1 “ ¨ ¨ ¨ “ Qn “ Q,Λ0 “ 1 turn
into values of the big J-function of the grassmannian.

We conjecture that a similar result holds universally for non-singular GIT quotients, i.e. that
LC{{G is obtained from LWΠg{t (where Πg{t is the super-space over the base C{{T defined as

explained above) by specializing the Novikov ring to its W -invariant part, and passing to the
limit Λ0 “ 1.

Proof. The proof of the theorem is based on TN -fixed point localization. It should be obvi-
ous after Section 3 that the criterion (i) of the fixed point method is invariant under P even
before the specialization to Qi “ Q,Λ0 “ 1. To verify (ii), take localizations pJTΠg{tqp1,...,nq and

pJTΠg{tqpn`1,2,...,nq of JTΠg{t (thinking of the fixed points Spanpe1, . . . , enq and Spanpe2, . . . , en`1q

in the grassmannian). The ambiguity in the ordering of the values Pi “ Λi1 becomes irrelevant
in the limit Q1 “ ¨ ¨ ¨ “ Qn “ Q due to the W -symmetry. Before the limit, we take here
P1 “ Λ1, . . . , Pn “ Λn for the first fixed point, and P1 “ Λn`1, P2 “ Λ2, . . . , Pn “ Λn for the
second. For x “ pΛ1{Λn`1q

´1{m0 , we have

Resq“xpJ
T
Πg{tqp1,...,nq

dq

q
“ ´

Qm0
1

m0
Coeff

p2,...,n`1q
p1,...,nq pm0q pJ

T
Πg{tqpn`1,2,...,nq|q“x.

This is simply the recursion relation (ii) for the target space rX “ pCPN´1qn corresponding to
the 1-dimensional TN -orbit connecting two fixed points, Spanpe1q and Spanpen`1q in projection
to the first factor CPN´1, and constant (and equal to Spanpeiq, i “ 2, . . . , n) in the other
projections. The recursion coefficient here turns into the correct one for the grassmannian in
the limit Λ0 “ 1 and Q1 “ Q.

Note that operators P ki q
kQiBQi specialize to Λki q

kQiBQi at the fixed point Spanpe1, . . . , enq,
and for i ą 1 commute with Qm0

1 , while for i “ 1 we have

Λk1q
kQ1BQ1Qm0

1 “ Qm0
1 qkm0Λk1q

kQ1BQ1 ”
mod 1´qm0

Λ1
Λn`1

Qm0
1 Λkn`1q

kQ1BQ1 .

This implies that for any finite difference operator D regular at q “ pΛ1{Λn`1q
´1{m0 , the local-

izations pDJTΠg{tqp1,...,nq and pDJTΠg{tqpn`1,2,...,nq of DJTΠg{t also satisfy the above recursion relation
with the same recursion coefficient. In fact this direct verification is not even necessary, since it
simply elucidates in terms of fixed point localization the general fact that LΠg{t is P-invariant.

We conclude that when D is W -invariant, p1 ´ qqDJTΠg{t specializes at Q1 “ ¨ ¨ ¨ “ Qn “ Q

and Λ0 “ 1 into a point in the loop space K (corresponding to the grassmannian) which satisfies
the correct recursion relation, and hence belongs to LGrn,N

. �

Remark 4. Of course, the above argument applies more generally than the grassmannian
example, and works whenever a torus (TN in this case) acts on C{{Tn and C{{G with isolated
fixed points and isolated one-dimensional orbits. In particular, it applies to twisted quantum
K-theories studied in [?] and generalizing the above transition from rX “ pCPN´1qn to Πg{t.
Namely, let E “ EpP1, . . . , Pnq P K

0
TN pGrn,N q be a virtual vector bundle (for this, E needs to

be symmetric in Pi). It can be used to “twist” the virtual structure sheaves of the moduli spaces
of stable maps — for both targets, Πg{t and Grn,N :

Og,m,d ÞÑ Og,m,d b e
ř

k‰0 Ψkpµk ft˚ ev ˚Eq{k,

where µk are some prefixed elements of the ground ring R (and, abstractly speaking, should
better be taken from R` as a precaution lest the modifying expression diverges). Then the big
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J-functions in the twisted quantum K-theories of Πg{t and Grn,N are related the same way as
described in the theorem: For any W -invariant value of the twisted J-function of Πg{t (in place
of JTΠg{t), the elements of its orbit under PW in the limit Q1 “ ¨ ¨ ¨ “ Qn “ Q specialize into
values of the big J-function in the twisted quantum K-theory of the grassmannian.

5 Balanced I-functions and T ˚Grn,N

In some recent literature motivated by representation theory (see e.g. [?, ?, ?]), quantum K-
theory of symplectic quiver varieties plays a role, and among them, the cotangent bundles of
the grassmannians (rather than the grassmannians per se) take the place of the target spaces.
K-theoretic computations in the quasimap compactifications of spaces of rational curves in
such targets lead A. Okounkov and his followers to q-hypergeometric functions quite interesting
from the point of view of the theory of integrable systems. To illustrate one specific property
(apparently important in their theory for technical reasons) consider the series

IT “
ÿ

0ďd1,...,dn

Qd1`¨¨¨`dn
n
ź

i“1

N
ź

j“1

di
ź

m“1

1´ qmY Pi{Λj
1´ qmPi{Λj

ˆ

n
ź

i,j“1

śdi´dj
m“´8p1´ q

mPi{Pjq
ś0
m“´8p1´ q

mPi{Pjq

ś0
m“´8p1´ q

mY Pi{Pjq
śdi´dj
m“´8p1´ q

mY Pi{Pjq
.

Here Y P Cˆ (denoted in [?] and elsewhere by ~) represents the circle acting by scalar multipli-
cation on the fibers of a vector bundle over the compact base (which is meant to be T ˚Grn,N
in our example). Note that the series is formed of fractions p1´ qmY Xq{p1´ qmXq, which are
bounded both as q Ñ 0 and q Ñ 8. In the fixed-point computations on quasimap spaces of
symplectic targets, this property of generating functions being balanced (in terminology of [?])
is a by-product of tensoring the virtual structure sheaf with the square root of the determinant
bundle of the moduli space (i.e. in effect computing indexes of real Dirac operators rather than
holomorphic Euler characteristics). The questions we will address here are about the place of
the series IT and its close counterparts in the “genuine” (i.e. based on stable map compactifica-
tions) quantum K-theory of the grassmannian: Does IT represent a value of the big J-function
of any version of quantum K-theory, and if so, then what version and on which space? Is it the
small J-function in that theory? We will give several different affirmative answers to the first
question, and negative to the second.

Theorem 4. The series p1 ´ qqIT represents a value of the torus-equivariant, permutation-
invariant big J-function of ΠTGrn,N (the odd tangent bundle of the grassmannian).

Initially the interest in GW-theory of ΠE for a bundle E over a compact base is motivated
by the fact that in the non-equivariant limit Y Ñ 1, GW-invariants of ΠE, when the limit exist,
turn into GW-invariants of the zero locus of a generic section of E (which in the case of E “ TX
consists of χpXq isolated points).

Proof. We can follow the same route as that of Theorem ??. The localization

ITp1,...,nq “
ÿ

0ďd1,...,dn

Qd1`¨¨¨`dn
n
ź

i“1

N
ź

j“1

di
ź

m“1

1´ qmY Λi{Λj
1´ qmΛi{Λj

ˆ

n
ź

i,j“1

śdi´dj
m“´8p1´ q

mΛi{Λjq
ś0
m“´8p1´ q

mΛi{Λjq

ś0
m“´8p1´ q

mY Λi{Λjq
śdi´dj
m“´8p1´ q

mY Λi{Λjq
.
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of IT at the fixed point p1, . . . , nq in the grassmannian, together with such localizations at
other fixed points, pass the test (i) of the fixed point theory, and the residues at the poles
q “ pΛj{Λiq

1{m0 satisfy the recursion relation of the familiar form (ii) with suitable recursion
coefficients. This should be obvious after our analysis of the series JT in Section 3 and Section 2
respectively. Moreover, according to Remark ??, it only suffices to match the values of these re-
cursion coefficients with those in GW-theory of ΠTGrn,N . Using the notation x “ pΛn`1{Λ1q

1{m0

and our result from Section 2, we find the recursion coefficient corresponding to the pole at q “ x
in the form

´
Qm0

m0

EupTp1,...,nqXq

EupTφX0,2,m0q
as before, times the modifying factor

N
ź

j“1

m0
ź

m“1

p1´ xmY Λ1{Λjq
n
ź

i“2

m0
ź

m“1

1´ xmY Λi{Λn`1

1´ xmY Λ1{Λi

where the target X “ Grn,N . Unsurprisingly, the modifying factor is almost reciprocal to the
expression for EupTp1,...,nqXq{EupTφX0,2,m0q. They differ by the presence of Y in each factor, and
by the extra factor 1´xm0Y Λ1{Λn`1 (actually equal to 1´Y , and excluded from the expression
in Section 2 where Y “ 1). In our computation of H0pCP 1;φ˚pTXqq, the latter (zero) factor
represents the line spanned by the vector field zm0Bzm0 (infinitesimally rescaling the target CP 1),
and falls out of TφX0,2,m0 because of the infinitesimal automorphism zBz of the source CP 1.
Thus, the factor 1´Y remains present in EuCˆpft˚ φ

˚pTXqq. Note that Y was introduced as the
character of Cˆ-action on T ˚X. The action on TX is given therefore by Y ´1, but the definition
of the K-theoretic Euler class as the exterior algebra of the dual bundle restores the factors
Y everywhere. Thus, the modifying factor coincides with EuCˆpft˚ φ

˚pTXqq{EuCˆpTp1,...,nqXq,
and the recursion coefficient altogether has the required form

´
Qm0

m0

EupTp1,...,nqΠTXq

EupTp1,...,nqpΠTXq0,2,m0q
. �

Corollary 1. The series p1´qqIT {p1´Y qq represents a value of the torus-equivariant, permutation-
invariant big J-function in the quantum Hirzebruch K-theory of the grassmannian Grn,N .

Recall that the Hirzebruch χ´Y -genus of a compact complex manifold M is defined by

χ´Y pMq :“
dimM
ÿ

p“0

p´Y qpχpM ; ΩppMqq “ H˚pM ; EuCˆpTMqq,

where the rightmost interpretation assumes that Y P Cˆ acts fiberwise on the tangent bundle
by Y ´1. More generally, one can define the (classical) Hirzebruch K-theory by replacing the
structure sheaves OM with OM bEuCˆpTMq. The quantum Hirzebruch K-theory of a target X
is defined by similarly modifying the virtual structure sheaves of the moduli spaces Xg,m,d using
their virtual tangent bundles:

Og,m,d ÞÑ Og,m,d b EuCˆpTXg,m,dq.

According to a result from [?], the theory thus obtained can be expressed via the ordinary
quantum K-theory, implying in particular Corollary ?? (see Remark ?? below). However, it also
follows from our fixed point approach. Namely, the big J-function of (permutation-invariant)
quantum Hirzebruch K-theory has the form

1´ q

1´ qY
` tpqq `

ÿ

d,m,α

Qdφαxφ
α 1´ qY L0

1´ qL0
, tpL1q, . . . , tpLmqy

Sm
0,m`1,d,
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where the correlators are defined using the virtual structure sheaves of the Hirzebruch K-theory.
This is not an ad hoc definition, but is dictated by the general formalism; the dilaton shift and the
first input embody respectively: the Euler class (of the universal line bundle q´1) corresponding
to the genus, and the reciprocal of the equivariant Euler class of L´1

0 . Consequently, the recursion

coefficient of the fixed point theory acquires a new factor 1´ Y : the residue of 1´qY L0

1´qL0

dq
q at the

pole q “ L´1
0 (equal in our computations to pΛ1{Λn`1q

´1{m0). But the above explanation why
this factor belongs to EuCˆpft˚ φ

˚pTXqq means it does not belong to EuCˆpTφX0,2,m0q. The
latter occurs in Lefschetz’ fixed point formula for the modified virtual structure sheaf. The net
result is that the recursion relation (ii) remains the same as in the theory of ΠTX. Note that a
scalar factor, such as 1{1´ qY in p1´ qqIT {p1´ qY q has no effect on the recursion relation (a
fact indicating that the range L Ă K of the big J-function is an “overruled cone”). The role of
this factor is to guarantee that modulo Q, the series equals the dilaton shift, and hence the rest
of the series is Q-adically small as required.

Remark 5. By the way, 1{p1´ qY q “
ř

mě0 Y
mqm is considered a “Laurent polynomial” in q

i.e. an element of K` in Hirzebruch K-theory, as it doesn’t have poles relevant in localization
theory. The correlator part of the big J-function in the quantum Hirzebruch K-theory clearly
satisfies J |q“8 “ Y J |q“0, and this condition defines the new space K´. The general result
of [?], which applies to the all-genera permutation-equivariant quantum K-theory, says that
the total descendant potential DY

X for the Hirzebruch version of the theory is obtained from the
“ordinary” one, D0

X , by three transformations: the Eulerian twisting corresponding to the bundle
E “ TX ´ 1 (in genus 0, this has practically the same effect as the twisting by TX, producing
the big J-function of ΠTX), and the above changes in the dilaton shift and polarization K “

K`‘K´. The transformations correspond to the three summands in the virtual tangent bundles:

TXg,m,d “ ft˚ ev˚pTX ´ 1q ` ft˚p1´ L
´1q ´ pft˚ j˚OZq

˚,

where L is the universal cotangent line over Xg,m`1,d at the m ` 1-st marked point, and j :
Z Ñ Xg,m`1,d is the inclusion of the nodal locus. Here ft˚ ev˚ TX represents variations of
stable maps from pointed curves with a fixed complex structure, ft˚pL

´1q represents variations
of the complex structure of the curves, while the last term is supported on the virtual divisor
ftpZq Ă Xg,m,d where the combinatorics of the curves changes, and accounts for the difference
between the virtual tangent bundle and the sheaf of vector fields tangent to this divisor.

Another form of Theorem ?? can be derived from Serre’s duality. The cotangent line bundle
L of a pointed nodal curve and its canonical bundle K are related by L “ KpDq, where D :“
řm
i“1 σi is the divisor of the marked points (i.e. away from the nodes, a section of L is a

differential allowed to have 1st order poles at the markings).
Given a bundle E over X, on Xg,m,d we have

ft˚ ev˚E “´ pft˚K ev˚E_q_

“´ pft˚ ev˚E_q_ ` pft˚p1´ Lq ev˚E_q_ ´
m
ÿ

i“1

ev˚i E.

Applying the quantum Adams–Riemann–Roch (Theorem 2 in [?]), we find that tensoring of
Og,m,d with Eu´1

Cˆppft˚p1´ Lq ev˚E_q_q in the correlators of permutation-equivariant quantum

K-theory is equivalent to the change p1 ´ qq ÞÑ p1 ´ qqEu´1
CˆpEq in the dilaton shift. The

same change of this inputs: t ÞÑ Eu´1
CˆpEqt, is effected by tensoring with the Euler classes of

´ ev˚i E. In other words, the dilaton-shifted total descendant potential of the theory twisted by
Eu´1ppft˚ ev˚E_q_q is obtained from the one twisted by EuCˆpft˚ ev˚Eq by the transformation
DΠEpqq ÞÑ DΠEpEu´1

CˆpEqqq. The potentials are considered as quantum states in suitable Fock
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spaces, and the transformation is induced by the map f ÞÑ Eu´1
CˆpEqf between two copies of the

loop space K (equipped with two different symplectic structures: based on the Poincare pairing
χpX; Eu´1

CˆpEqabq on the source space, and χpX; EuCˆ abq on the target. Consequently, the big J-
functions in the genus-0 theory are related by the inverse transformation: JΠE ÞÑ EuCˆpEqJΠE .
Applying all this to E “ TGrn,N , we arrive at the following conclusion.

Corollary 2. (cf. [?]) The series EuCˆpTGrn,N qp1´qqI
T represents a value of the big J-function

in the torus-equivariant, permutation-invariant quantum K-theory of the grassmannian Grn,N
twisted by

O0,m,d ÞÑ O0,m,d b Eu´1
Cˆppft˚ ev˚pT ˚Grn,N qq

_q.

One more way of modifying virtual structure sheaves, which was recently introduced and
explored by Y. Ruan and M. Zhang [?], consists in tensoring Og,m,d with a power of the deter-
minant line bundle pdetpft˚ ev˚Eqq´l, thereby bringing the level structure (of level l) into the
quantum K-theory. Note that in terms of K-theoretic Chern roots L1, . . . , LM of a vector bundle
E ,

EupEq
EupE˚q

“

śM
k“1p1´ L

´1
k q

śM
k“1p1´ Lkq

“ p´1qML´1
1 ¨ ¨ ¨L´1

M “ p´1qdim Epdet Eq´1.

So, we take E “ T ˚Grn,N , E “ ft˚ ev˚pT ˚Grn,N q, and describe the modification of Og,m,d used in
Corollary ?? as tensoring with both Eu´1

CˆpEq and pdet Eq´1. After the first operation we land in
the theory of the noncompact bundle space T ˚Grn,N , and after the second in the level 1 version of
this theory. The Poincaré pairing changes accordingly into χpX; Eu´1

CˆpT
˚Grn,N qpdetT ˚Grn,N q

´1abq.
By the Riemann–Roch formula, dim E “ p1 ´ gq dimX `

ş

X c1pT
˚Xq, which for g “ 0 yields

p´1qdim E “ p´1qdimGrn,N p´1qNd. The first sign is absorbed by the ratio of the Euler classes (of
T and T ˚) in the Poincaré pairings, and the second by the change Q ÞÑ p´1qNQ, leading to the
following conclusion.

Corollary 3. The series

detpT ˚Grn,N q
´1 EuCˆpT

˚Grn,N q ¨ p1´ qq I
T pp´1qNQq

represents a value of the big J-function in the level 1, torus-equivariant, permutation-invariant
quantum K-theory of the cotangent bundle space T ˚Grn,N .

Explicitly, the product of the determinant and the Eulerian pre-factor differs by the sign
p´1qdimGrn,N from

EuCˆpTGrn,N q “

śN
j“1

śn
i“1p1´ Y Pi{Λjq

śn
i,j“1p1´ Y Pi{Pjq

.

Because of this pre-factor, the series even modulo Q is not equal the dilaton shift 1´ q (as well
as in Corollary ??), which already disqualifies it for the role of the “small” J-function.

In fact the q-hypergeometric series which arises in the K-theoretic computations on the spaces
of quasimaps to the grassmannian is slightly different from the one in Corollary ?? and ??. It
has the form

rIT “
ÿ

0ďd1,...,dn

Qd1`¨¨¨`dn
n
ź

i“1

N
ź

j“1

di´1
ź

m“0

1´ qmY Pi{Λj
1´ qmPi{Λj

ˆ

n
ź

i,j“1

śdi´dj
m“´8p1´ q

mPi{Pjq
ś0
m“´8p1´ q

mPi{Pjq

ś´1
m“´8p1´ q

mY Pi{Pjq
śdi´dj´1
m“´8 p1´ qmY Pi{Pjq

,
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which differs from IT in that in the products of the factors 1 ´ qmY Pi{Λj , the range of m is
not from 1 to di (as for the factors without Y ) but from 0 to di ´ 1 (and similarly for the
factors 1´ qmY Pi{Pj). We claim, however, that p1´ qqrI and p1´ qqp´1qdimGrn,N rIT pp´1qNQq)
represent some values of the big J-functions of the same theories as described in Corollary ??
and ?? respectively.

Namely, consider the version of rIT with Qd1`¨¨¨`dn is replaced with Qd1
1 ¨ ¨ ¨Q

dn
n , and apply to

it the operator

śN
j“1

śn
i“1p1´ Y q

QiBQiPi{Λjq
śn
i,j“1p1´ Y q

QiBQi
´QjBQjPi{Pjq

.

This results in restoring the “missing” factors with m “ di or m “ di ´ dj , and in the limit

Q1 “ ¨ ¨ ¨ “ Qn “ Q yields the series of Corollary ?? (modulo to the sign p´1q
dimGrn,N and the

change Q ÞÑ p´1qNQ). On the other hand, the operator can be written as

e
´
ř

ką0 Y
k

„

řN
j“1

řn
i“1 q

kQiBQiPk
i {Λ

k
j´

řn
i,j“1 q

kQiBQi
´kQjBQj Pk

i {P
k
j



{k
,

and hence belongs to the group PW , which justifies our claim due to Theorem ?? and Remark
??.

The series p1´qqrIT appears to have better chances to pose for the “small” J-function, because
the term with Q0 is 1´ q, and other terms are reduced rational functions of q. And indeed, H.
Liu [?], looking for a stable-map K-theory interpretation of the q-hypergeometric series arising
in the quasimap K-theory of quiver varieties, shows that in the case n “ 1 of projective spaces,
the series p1´ qqrIT is the small J-function in the theory described by Corollary ??. However, he
falls short of sticking to this interpretation, because he finds an example (namely the manifold
of flags in C3) where the similarly twisted small J-function is unbalanced.

In fact none of p1 ´ qqrIT with n ą 1 (and none of other I-series featuring in this section)
represent “small” J-functions, and not because some rational functions are not reduced, but for
much more dramatic reasons. Namely, in our fixed point characterization of the big J-function,
the poles participating in the recursion relations come from the characters of the torus action
on the grassmannian per se: q “ pΛi{Λjq

´1{m. The terms of a balanced I-series containing
the factors 1{p1 ´ qmY Pi{Pjq lead to the poles at q “ pY Λi{Λjq

´1{m, which cannot come from
fixed point localization. Such fractions should therefore be interpreted as elements of K`, i.e.
as geometric series

ř

kě0 q
mkpY Pi{Pjq

k converging in the Y -adic topology. Thus, representing

p1´qqrIT as p1´qq`tpqq mod K´ results in a very complicated value of tpqq, meaning that the
series represents the value of the big J-function with the inputs tpLiq which are rather far from
0. What makes the effect even more dramatic is that it is the input in the permutation-invariant
quantum K-theory, no counterpart of which has been discussed so far in the context of quasimap
spaces.

Apart from this, the interpretation of the series given in Corollary ?? is quite parallel to its
definition [?, ?, ?] in the quasimap theory as a generating function capturing some K-theoretic
GW-invariants of the cotangent bundle of the grassmannian based on the virtual structure
sheaves “symmetrized” by the determinant factors.

Finally, we would like to stress that, although we have formulated Theorem ?? and its
corollaries as statements about the particular I-function, modified slightly in one way or another,
in fact these modifications affect the recursion coefficients in a simple and controllable way,
implying that the whole big J-functions of the respective theories coincide up to these minor
modifications. In particular, Corollary ?? is connected to Theorem ?? by a general phenomenon
called the “non-linear (or quantum) Serre duality” [?]. It relates GW-invariants of the super-
space ΠE and bundle space E_, and was first observed in [?] (for cohomological GW-invariants)
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via fixed point localization. For the full treatment (including higher genus) of the K-theoretic
reincarnation of the quantum Serre duality we refer to [?].

6 Non-abelian quantum Lefschetz

A somewhat different proof of Theorem ?? could be derived from Theorem ?? together with
Remark ??, applied to GW-invariants of the grassmannian Euler-twisted by the tangent bundle

E “
N
ÿ

j“1

n
ÿ

i“1

Λj{Pi ´
n
ÿ

i,j“1

Pj{Pi.

Here we illustrate this approach using as an example Eulerian twistings applied to the dual
tautological bundle E “ P´1

1 ` ¨ ¨ ¨ ` P´1
n .

The Euler-twisted theory (of both Πg{t and Grn,N ) is defined by

Og,m,d ÞÑ Og,m,d b EuCˆpft˚ ev˚Eq “ Og,m,d b e
´
ř

ką0 Y
kΨ´kpft˚ ev˚ Eq{k,

where Y P Cˆ acts by multiplication on the fibers of E. According to the quantum Adams-
Riemann-Roch theorem [?], the twisted theory is obtained from the untwisted one by the mul-
tiplication: LΠE “ l´1LGrn,N

, where

l :“e
ř

ką0 Y
kΨ´kpEqqk{kp1´ qkq

“EuCˆpEq
ÿ

d1,...,dně0

Y d1`¨¨¨`dnP d1
1 ¨ ¨ ¨P dnn

śn
i“1

śdi
m“1p1´ q

mPiq
.

This is a convenient moment to address one general technical issue. Values of big J-functions
are supposed to lie in R`-neighborhood of the dilaton shift 1´q. The terms containing Novikov’s
variables are R`-small, and remain such after multiplication by anything like l. Moreover,
for Laurent polynomials tpqq with R`-small coefficients, l t contains only finitely many non-
reduced terms, and so modulo K´ it remains a Laurent polynomial (with R`-small coefficients).
However, the product lp1´ qq ” p1´ qq`Y E_ mod K´ seems to present a problem. One way
to resolve it is to postulate that R` Q Y . Here is a better way to deal with this issue, which is
especially useful if one also needs to use Y ´1 in the same context. Consider the operator

D “ e
ř

ką0 Y
kqk

řn
i“1 P

k
i p1´ q

kQiBQi q{kp1´ qkq,

which is l times the pseudo-finite-difference operator from the group PW corresponding to the
finite-difference operator ´qY

řn
i“1 Piq

QiBQi . Therefore

l´1LΠg{t “ D´1LΠg{t,

which by Theorem ?? (or rather its generalization explained in Remark ??) turns into LΠE in
the limit Q1 “ ¨ ¨ ¨ “ Qn “ Q, Λ0 “ 1. The advantage of using D instead of l is that D does
not change terms constant in Q1, . . . , Qn: Dp1´ qq “ 1´ q.

Theorem 5. (Non-Abelian Quantum Lefschetz) Suppose
ÿ

d1,...,dně0

Id1,...,dnpP1, . . . , Pn,Λ0qQ
d1
1 ¨ ¨ ¨Q

dn
n

is a W -invariant point in LΠg{t, then

ÿ

d1,...,dně0

Id1,...,dn |Λ0“1Q
d1`¨¨¨`dn

n
ź

i“1

d
ź

m“1

p1´ qmY Piq

is a point in LΠE.
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Proof. Apply D´1 and use

e´
ř

ką0 q
kY kPk

i p1´q
QiBQi q{kp1´qkqQdii “ e´

ř

ką0 q
kY kPk

i p1´q
dikq{kp1´qkqQdii

“ e´
ř

ką0

řdi
m“1 q

mkY kPk{kQdii “ Qd
di
ź

m“1

p1´ qmY Piq. �

Corollary 4. The small J-function of ΠE equals p1´ qqI where I “

ÿ

d1,...,dně0

Q
ř

di
śn
i“1

śdi
m“1p1´ q

mY Piq
śN
j“1

śn
i“1

śdi
m“1p1´ q

mPi{Λjq

n
ź

i,j“1

śdi´dj
m“´8p1´ q

mPi{Pjq
ś0
m“´8p1´ q

mPi{Pjq
.

7 Level structures and dual grassmannians

Of course, the approach illustrated by Theorem ?? applies to any bundle E over the grassman-
nian, since E can always be written as a symmetric combination of monomials

ś

i P
li
i . We are

going to use this together with the observation (see Section 5) that det´1p´Eq “ EupEq{EupE_q
in order to describe the effect of the level structure on the genus-0 quantum K-theory of the grass-
mannian. For the sake of illustration, we take E to be the tautological bundle V “ P1`¨ ¨ ¨`Pn.
With E :“ ft˚ ev˚ V , we have level-l twisted structure sheaves

Og,m,d b det´lp´Eq “ Og,m,d b
EuplEq

EuplE_q
“ Og,m,d b e

´l
ř

k‰0 ΨkpEq{k.

The Adams-Riemann-Roch theorem from [?] yields the multiplication operator

l “ e´l
ř

k‰0 ΨkpV q{kp1´ qkq,

and the respective pseudo-finite-difference operator

D “ e´l
ř

k‰0

řn
i“1 P

k
i p1´ q

kQiBQi q{kp1´ qkq.

Applying it to Qdii , we find:

DQdii “ Qdii e
´l

ř

ką0

řdi´1
m“0pP

k
i q

mk ´ P´ki q´mkq{k

“ Qdii

di´1
ź

m“0

ˆ

1´ Piq
m

1´ P´1
i q´m

˙l

“ Qdii p´Piq
ldiqlp

di
2 q.

The above calculation is somewhat formal. The initial determinantal twisting of Og,m,d and the
finial modifying factors are well-defined, but in order to justify intermediate steps, one needs
add to R` two variables Y, Y 1, and replace E and E_ with Y E and Y 1E_. This will lead to the
product of fractions p1´Y Piq

mq{p1´Y 1P´1
i q´mq, where one can pass to the limit Y “ Y 1 “ 1,

thus obtaining the following result.

Theorem 6. (cf. [?]) Suppose
ÿ

d1,...,dně0

Id1,...,dnpP1, . . . , Pn,Λ0qQ
d1
1 ¨ ¨ ¨Q

dn
n

is a W -invariant point in LΠg{t. Then

ÿ

d1,...,dně0

Id1,...,dn |Λ0“1Q
d1`¨¨¨`dn

n
ź

i“1

ˆ

P dii q
pdi2 q
i

˙l

is a point in LpV,lqGrn,N
.
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Here LpV,lqGrn,N
is the range of the big J-function in the level-l permutation-invariant genus-0

quantum K-theory of the grassmannian Grn,N , where V is its tautological bundle, and the level-l
twisted structure sheaves are defined as in [?]: Og,m,dbdet´lpft˚ ev˚ V q. Note, that the spurious
signs p´1ql dim E “ p´1ql

ř

di`l dimV initially introduced in the determinantal twisting disappears
from our ultimate formulation. The first part of it can be absorbed by the change Q ÞÑ p´1qlQ
of the Novikov variable, which is offset by the signs of p´Piq

ldi in our computation. The second
part, p´1ql dimV , is the discrepancy in Poincaré pairings (it affects the notion of dual bases
tφαu, tφ

αu in the definition of J-functions) which correspond to the two twistings of OGrn,N
: by

EuplV q{EuplV _q “
ś

p´Piq
´l and det´lpV q “

ś

P´li .

The theorem is a non-abelian counterpart of the result of Ruan–Zhang for toric manifolds,
obtained in [?] on the basis of adelic characterization. Both can also be derived by fixed point
localization.

Corollary 5. The series p1´ qqIT
pV,lq, where IT

pV,lq “

ÿ

0ďd1,...,dn

Qd1`¨¨¨`dn
śn
i“1 P

ldi
i qlp

di
2 q

śn
i“1

śN
j“1

śdi
m“1p1´ q

mPi{Λjq

n
ź

i,j“1

śdi´dj
m“´8p1´ q

mPi{Pjq
ś0
m“´8p1´ q

mPi{Pjq

represents a point in LplqGrn,N
, and for ´n ă l ď N ´ n` 1 is the small J-function of the level-l

theory.

Proof. The formula itself is obtained, of course, from the non-abelian representation of the
small J-function p1 ´ qqJT “ p1 ´ qqIT

pV,0q by the recipe described in the theorem. For l ě 0,

terms of p1´ qqIT
pV,lq have no pole at q “ 0, and for l ď N ´ n` 1 can be shown to be reduced

rational functions of q (except the Q0-term 1´ q). Indeed, the difference between the q-degrees
of the denominator and numerator of the coefficient of IT

pV,lq indexed by pd1, . . . , dnq is

N
ÿ

i

ˆ

di ` 1

2

˙

´
ÿ

diądj

ˆ

di ´ dj ` 1

2

˙

´ l
ÿ

i

ˆ

di ` 1

2

˙

` l
ÿ

i

di.

When l ď N ´ n ` 1, the binomial sum is non-negative, since for each i the number of j with
dj ă di does not exceed n ´ 1. The linear term is ą 1 unless all di ‰ 1. Note that in this
case the whole expression doesn’t depend on l, and is still ě N ´ n ` 1 ą 1. Thus, even after
multiplication by 1´ q the rational function remains reduced.

For l ă 0, the terms of the series are therefore also reduced, but can have a pole at q “ 0.
However, even when this happens, the pole disappears after summing the terms with the same
degree d1 ` ¨ ¨ ¨ ` dn — at least when l ą ´n. This follows from a non-trivial combinatorial
result of H. Dong and Y. Wen [?], according to which IT

pV,lq “
rIT
pV _,´lq for ´n ă l ă N ´

n, where rIT
prV _,´lq

is the similar series corresponding to the dual grassmannian GrN,N´n :“

HompCN´n,CN_q{{GLN´npCq, and the bundle rV _ dual to the tautological one:

ÿ

0ďd1,...,dn

Qd1`¨¨¨`dN´n
śN´n
i“1

rP´ldii q´lp
di`1

2 q

śN´n
i“1

śN
j“1

śdi
m“1p1´ q

m
rPi{Λ

´1
j q

N´n
ź

i,j“1

śdi´dj
m“´8p1´ q

m
rPi{ rPjq

ś0
m“´8p1´ q

m
rPi{ rPjq

.

Here rPi are K-theoretic Chern roots of the tautological N ´ n-dimensional bundle rV . Note the
characters Λ´1

j of the torus TN action on CN_. Also note the binomial coefficient
`

di`1
2

˘

(instead

of
`

di
2

˘

): this is the effect of using rV _ rather than rV in the construction of the determinantal
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twistings. In the previous section we already had the experience of using E “ V _, from which
it is easy to infer the origin of the modifying factors:

di
ź

m“1

1´ qm rPi

1´ q´m rPi
“ p´ rP qdiqp

di`1
2 q.

The dual grassmannians are canonically identified by pV Ă CN q ÞÑ pV K Ă CN_q, and the result
of [?] identifies the two expressions as Q-series with coefficients in K0

T pGrn,N q “ K0
T pGrN,N´nq-

valued rational functions of q when ´n ă l ă N ´n. By the previous estimates of the q-degrees
(where this time the linear term l

ř

di isn’t present), p1´ qqrIT
prV _,´lq

passes the requirements to

be a small J-function when 0 ď ´l ă N ´ pN ´ nq ` 1, i.e. 0 ě l ě ´n. Therefore (though this
is not apparent) so does p1´ qqITV,l at least for 0 ą l ą ´n. �

Example. For Gr1,N “ CPN´1, we have

p1´ qqITplq “ p1´ qq
ÿ

dě0

QdP lqlp
d
2q

śN
j“1

śd
m“1p1´ q

mP {Λjq
.

Obviously the series is the small J-function only when ´1 ă l ď N , i.e. the boundaries given
by the corollary are sharp.

Proposition. LpV,lqGrn,N
“ Lp

rV _,´lq
GrN,N´n

.

Proof. From rV _ “ CN{V we find

detpft˚ ev˚ V q b detpft˚ ev˚ rV _q “ detpft˚ ev˚CN q

which over moduli spaces of rational curves equals detCN “
śN
j“1 Λj “ detV b det rV _, the

factor absorbed by the discrepancy in Poincaré pairings between the two theories. �

8 Mirrors

Consider the improper Jackson integral (or q-integral), defined as

ż 8

0
fpXq X´1dqX :“

ÿ

dPZ
fpq´dq

in the example

fpXq “ X ln Λ{ ln q
8
ź

m“1

p1´X{qmq.

The infinite product converges for |q| ą 1, and near |q| “ 1 has the asymptotical expansion

8
ź

m“1

p1´X{qmq „ e´
ř

mą0,ką0 X
kq´km{k

“ e´
ř

ką0 X
kq´k{kp1´q´kq

“ e
ř

ką0 X
k{kp1´qkq “

ÿ

dě0

Xd

p1´ qqp1´ q2q ¨ ¨ ¨ p1´ qdq
“ eX{p1´qqq .
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Since the integrand vanishes as X “ q´d with d ă 0, the q-integral can be computed as

ÿ

dě0

Λ´d
8
ź

m“d`1

p1´ q´mq “
ÿ

dě0

Λ´d
ś8
m“1p1´ q

´mq

p1´ q´1qp1´ q´2q ¨ ¨ ¨ p1´ q´dq

“

8
ź

m“1

p1´ q´mqe
ř

ką0 Λ´k{kp1´q´kq „

ś8
m“1p1´ q

´mq
ś8
m“0p1´ q

´m{Λq
.

The last expression is closely related to the q´1-gamma function (see [?] for a modern treatment
of it, including the above q-integral representation). In particular, the application of the trans-
lation operator qΛBΛ : Λ Ñ qΛ results in the multiplication of the whole expression by 1 ´ Λ´1.
This also follows from the property of the integrand

p1´ qXBX {ΛqfpXq “ XfpXq “ qΛBΛfpXq,

since the q-integral is obviously preserved by the translation qXBX of the integrand. The latter
property of q-integrals will be more useful to us than the previous explicit calculation of their
values in terms of q-gamma functions. Our goal will be to represent the small J-function JTX of
the grassmannian X “ Gn,N by suitable Jackson-like integrals in a fashion similar to representing
cohomological J-functions by complex oscillating integrals in the mirror theory of, say, toric or
flag manifolds. To maintain visual resemblance with complex oscillating integrals, we will denote
X´1dqX as d lnqX, and use the asymptotical expressions

e
ř

ką0X
k{kp1´ qkq and e´

ř

ką0 Y
kqk{kp1´ qkq

for
ś8
m“1p1 ´X{qmq and 1{

ś8
m“0p1 ´ Y {qmq respectively. The latter product (multiplied by

Y ln Λ{ ln q) can be q-integrated [?] from 0 to ´8:
ş´8

0 gpY q Y ´1dqY :“
ř

dPZ gp´q
´dq.

Let us recall from Section 4 that JTX is obtained from JTΠg{t by passing to the limit Λ0 “ 1,

Q1 “ ¨ ¨ ¨ “ Qn “ Q, and takes values in K0
T pXq consisting of symmetric functions of P1, . . . , Pn.

Before the limit, JTΠg{t is the J-function of a toric superspace. We begin with setting up the toric

mirror (cf. [?]) to this toric superspace, and studying its properties.
In the complex space with coordinates Xij , i “ 1, . . . , n, j “ 1, . . . , N , Yii1 , i, i

1 “ 1, . . . , n,
i ‰ i1, consider the n-parametric family of tori

XQ1,...,Qn :“

#

pX,Y q
ˇ

ˇ

ź

j

Xij “ Qi
ź

i1‰i

pYii1{Yi1iq, i “ 1, . . . , n

+

,

and introduce the q-integral

I :“

ż

ΓĂXQ1,...,Qn

e

ř

ką0

´

ř

i,j X
k
ij ´ q

k
ř

i‰i1 Y
k
ii1

¯

{kp1´ qkq
ˆ

ź

i‰i1

Yii1

Ź

i

´

Ź

j dq lnXij
Ź

i1‰i dq lnYii1
¯

Ź

i

´

ř

j dq lnXij ´
ř

i1‰i dq lnpYii1{Yi1iq
¯ .

To clarify the wedge-product expression: if the subscript in all dq is removed, the expression
becomes the standard translation-invariant holomorphic volume on the complex torus XQ1,...,Qn

(and coincides with the one found in Introduction).
By the “cycle” Γ we understand a “multiplicative” q-lattice in XQ1,...,Qn (i.e. a ln q-lattice

on the universal covering of the torus) of rank nN ` n2 ´ 2n, suitable for multi-dimensional q-
integration; we’ll meet some examples later.This is the K-theoretic mirror (cf. [?]) to what we de-
noted in Section 4 by Πg{t: the toric super-bundle over pCPN´1qn “ CNn{{Tn with the fiber g{t
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associated with the adjoint action of the maximal torus Tn in GLN pCq on LieGLN pCq{LieTn.
Namely, in the torus-non-equivariant limit JΠg{t, the “small J-function” JTΠg{t introduced in

Section 4 satisfies (as it is not hard to check) the system of finite difference equations
ź

i1‰i

p1´ qPi1{Piq
Qi1BQi1

´QiBQi qp1´ Piq
QiBQi qNJΠg{t

“ Qi
ź

i1‰i

p1´ qPi{Pi1q
QiBQi

´Qi1BQi1 qJΠg{t, i “ 1, . . . , n.

So, the claim is that our mirror q-integral satisfies the same system (for scalar-valued rather
than K0pXq-valued functions):

ź

i1‰i

p1´ q q
Qi1BQi1

´QiBQi qp1´ qQiBQi qNI

“ Qi
ź

i1‰i

p1´ q q
QiBQi

´Qi1BQi1 qI, i “ 1, . . . , n.

To check this, we note that translations operators q
XijBXij and q

Yii1BYii1 project to the Q-space

into respectively qQiBQi and q
Qi1BQi1

´QiBQi . Applying q
XijBXij to the factor 4ij :“ e

ř

ką0 X
k
ij{kp1´q

kq

in the integrand of I containing Xij , we obtain

e
ř

ką0 q
kXk

ij{kp1´q
kq
“ e

ř

ką0 X
k
ij{kp1´q

kqe´
ř

ką0 X
k
ij{k “ p1´Xijq4ij .

Therefore, applying
ś

jp1 ´ q
XijBXij q, we find the integrand multiplied by

ś

j Xij . Similarly,

applying q
´Yii1BYii1 to

∇ii1 :“ e´q
k
ř

ką0 Y
k
ii1
{kp1´qkqYii1 “ e

ř

ką0 Y
k
ii1
{kp1´q´kqYii1 ,

we obtain p1´ Yii1qq
´1∇ii1 , and hence applying 1´ q q

´Yii1BYii1 we find the integrand multiplied
by p1´qp1´Yii1qq

´1q “ Yii1 . Since
ś

i1‰i Yi1i
ś

j Xij “ Qi
ś

i1‰i Yii1 for i “ 1, . . . , n, the promised
finite difference equations follow.

The torus-equivariant counterpart IT of I is obtained by inserting into the integrand the
factor

ź

i,j

X
ln Λj{ ln q
ij

ź

i‰i1

Y
ln Λ0{ ln q
ii1 .

By repeating the above computations, we find that IT satisfies finite difference equations
ź

i1‰i

p1´ qΛ0q
Qi1BQi1

´QiBQi q
ź

j

p1´ qQiBQi {Λjq IT

“ Qi
ź

i1‰i

p1´ qΛ0q
QiBQi

´Qi1BQi1 q IT , i “ 1, . . . , n.

Replacing the natural action of finite difference operators on scalar-valued functions with the
representation on K0

T pXq-valued functions by qQiBQi ÞÑ Piq
QiBQi , we obtain the equations satis-

fied by the series JTΠg{t from Section 4.

Let us now examine IT for a cycle Γ fitting coordinate charts on XQ1,...,Qn . Picking a function
J : t1, . . . , nu Ñ t1, . . . , Nu, we express XiJpiq, i “ 1, . . . , n, in terms of Qi and the remaining

variables using the equations of XQ1,...,Qn , and rewrite the integral IT in this chart. For instance,
take Jpiq “ i to find Xii “ Qi

ś

j‰iX
´1
ij

ś

i1‰ipYii1{Yi1iq, and respectively

ITp1,...,nq “
ÿ

0ďd1,...,dn

ź

i

Q
di`ln Λi{ ln q
i

p1´ qqp1´ q2q ¨ ¨ ¨ p1´ qdiq
Ipd1,...,dnq
p1,...,nq ,
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where

Ipd1,...,dnq
p1,...,nq “ ˘

ż

e

ř

ką0

´

ř

j‰iX
k
ij ´ q

k
ř

i‰i1 Y
k
ii1

¯

{kp1´ qkq
ˆ

ź

i‰j

X
´di`lnpΛj{Λiq{ ln q
ij

ź

i‰i1

Y
di´d

1
i`1`lnpΛ0Λi{Λi1 q{ ln q

ii1

ľ

i‰j

dq lnXij

ľ

i‰i1

dq lnYii1 ,

and the sign is determined by the order of the q-differentials.
This is the product of model 1-dimensional q-integrals

I
pdq
˘ :“

ż ˘8

0
e
ř

ką0X
k{kp1´ q˘kqX´d`lnpΛ1{Λq{ ln qdq lnX

considered at the beginning of this section, and can be expressed via I
p0q
˘ by the recursive

property of the q-gamma-like function. Explicitly, applying to the integrand of I
pdq
` the operator

1 ´ qdqXBXΛ{Λ1, we find (after a short computation) that p1 ´ qdΛ{Λ1qI
pdq
` “ I

pd´1q
` . Applying

this inductively we conclude that I
pdq
` “ I

p0q
` {

śd
m“1p1 ´ qmΛ{Λ1q. Using this and a similar

recursion for I
pdq
´ , we can relate Ipd1,...,dnq

p1,...,nq to Ip0,...,0q
p1,...,nq:

Ipd1,...,dnq
p1,...,nq “

Ip0,...,0q
p1,...,nq

ś

i‰j

śdi
m“1p1´ q

mΛi{Λjq

ź

i‰i1

śdi´d
1
i

m“´8p1´ q
mΛ0Λi{Λi1q

ś0
m“´8p1´ q

mΛ0Λi{Λi1q
.

Comparing this to the terms of the series JTΠg{t from Section 4 localized at the fixed point

pP1, . . . , Pnq “ pΛ1, . . . ,Λnq, we arrive at

ITp1,...,nq “ pJ
T
Πg{tqp1,...,nq

ź

i

Q
ln Λi{ ln q
i Ip0,...,0q

p1,...,nq.

Note that Ip0,...,0q
p1,...,nq doesn’t depend on Q, while the role of the factor Q

ln Λi{ ln q
i is to conjugate

qQiBQi into Piq
QiBQi |Pi“Λi .

The above result shows that all relevant components of the vector-function JTΠg{t can be
represented by our q-integrals using “cycles” fitting appropriate charts. Setting in the q-integral
Q1 “ ¨ ¨ ¨ “ Qn “ Q and Λ0 “ 1, we obtain a torus-equivariant K-theoretic mirror of the
grassmannian.

Theorem 7. The multi-dimensional q-integral

ITX :“

ż

ΓĂXQ

e

ř

ką0

´

ř

i,j X
k
ij ´ q

k
ř

i‰i1 Y
k
ii1

¯

{kp1´ qkq
ˆ

ź

i,j

X
ln Λj{ ln q
ij

ź

i‰i1

Yii1

Ź

i

´

Ź

j dq lnXij
Ź

i1‰i dq lnYii1
¯

Ź

i

´

ř

j dq lnXij ´
ř

i1‰i dq lnpYii1{Yi1iq
¯ ,

with suitable choices of q-lattices Γ in

XQ :“

#

pX,Y q
ˇ

ˇ

ź

j

Xij “ Q
ź

i1‰i

pYii1{Yi1iq, i “ 1, . . . , n

+

invariant under the action of the Weyl group Sn (permuting the indices i and i1), represents
components of the K0

T pXq-valued small J-function JTX of the grassmannian X “ Grn,N . Like-
wise, the components of the non-equivariant version of the small J-function JX are represented
by the respective q-integrals with all Λj set to 1.
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