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ABSTRACT
Cooperative spectrum sensing aims to improve the reliability of
spectrum sensing by individual sensors for better utilization of the
scarce spectrum bands, which gives the feasibility for secondary
spectrum users to transmit their signals when primary users re-
main idle. However, there are various vulnerabilities experienced in
cooperative spectrum sensing, especially when machine learning
techniques are applied. The influence-limiting defense is proposed
as a method to defend the data fusion center when a small number
of spectrum sensing devices is controlled by an intelligent attacker
to send erroneous sensing results. Nonetheless, this defense suf-
fers from a computational complexity problem. In this paper, we
propose a low-cost version of the influence-limiting defense and
demonstrate that it can decrease the computation cost significantly
(the time cost is reduced to less than 20% of the original defense)
while still maintaining the same level of defense performance.
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1 INTRODUCTION
Cooperative spectrum sensing is an effective solution to improve
the reliability of spectrum sensing and consequently the spectrum
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utilization through deploying a sensing network that consists of
multiple sensing devices and a data fusion center where sensing
results are aggregated and a joint decision is made [1]. One real-
world example that can benefit from cooperative spectrum sensing
is that many of the designated TV spectrum channels are under-
utilized leading to the waste of spectrum resources [2].

In the scenario of using cooperative spectrum sensing networks
to improve the spectrum utilization. e.g., in TV bands, each of
the sensing device in the cooperative spectrum sensing network
independently senses the status of a specified (e.g., TV spectrum)
channel and sends the sensed signals to the fusion center. The fusion
center makes a channel status decision; thus, the secondary users
could reference and decide whether to transmit their own signals, or
not. The performance of the cooperative spectrum sensing network
has a direct impact on how much interference the primary users
(e.g., the TV broadcasting stations) will receive.

Cooperative spectrum sensing is susceptible to attacks, where
malicious sensors may report erroneous sensing results [3, 4]. Vari-
ous methods have been proposed to defend the fusion center against
such attacks. Statistics-based defense focuses on developing a statis-
tical measure for each sensing node [5–7]. Machine learning-based
defense applies machine learning techniques to detect potential
malicious nodes [2, 8, 9]. Another type of defense is based on the
reputation or trust value of each sensing node. This defense com-
pares the decision of each sensing node with the decision of the
fusion center and checks the consistency to defend the fusion center
against malicious sensing nodes [10–12].

One typical assumption in existing defenses is that cooperative
spectrum sensing network attackers are passive entities, for exam-
ple, it is assumed that the prior knowledge of the attacks is known
to the data fusion center and this knowledge does not change over
time [2, 5, 11]. In [13], a machine learning-empowered Learning-
Evaluation-Beating (LEB) attack was developed to compromise the
sensing network by controlling a small number of sensing nodes.
The basic idea of the LEB attack is taking advantage of the black-box
nature of the fusion center: the attacker builds its own substitute
model of the targeted decision model in the fusion center and (based
on this substitute model) crafts adversarial sensing reports sent to
the fusion center. During this procedure, the attacker has the ca-
pability of “hiding” the behaviors of malicious nodes and achieves
its attack utility when vulnerabilities of the decision model are
identified.

The LEB attack is built upon adversarial machine learning tech-
niques [14] that have been widely studied to launch attacks on
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machine learning systems in wireless communications [15–18]. In
particular, attacks driven by adversarial machine learning have been
considered for spectrum sensing by individual sensors [19–21] and
cooperative spectrum sensing [13, 22].

Given the learning-empowered LEB attack and other potential
intelligent attacks [4, 22] in cooperative spectrum sensing, [13]
provides an influence-limiting defense. By limiting the influence of
each sensing node or a subset of nodes toward the final decision,
the capabilities of malicious nodes are contained and decreased
especially when those nodes are controlled by a “smart” attacker.
The main reason that the intelligent attackers could succeed in
compromising the fusion center by controlling a small number of
malicious nodes is that the attacker could find a more efficient way
to hide the malicious behaviors while gradually gaining a high
weight in the decision process.

The original influence-limiting defense suffers from a compu-
tational complexity problem. In this paper, we offer a solution to
decrease the computational complexity of influence-limiting de-
fense. We show that this low-cost version of influence-limiting
defense can reduce the computational significantly. On the average,
the low-cost version needs less than 20% of the time required by the
original influence-limiting defense while still maintaining roughly
the same level of defense performance as the original defense.

The rest of the paper is organized as follows. Section 2 defines
the system model and describes the LEB attack. Section 3 presents
the technical details of influence-limiting defense and its low-cost
version. Section 3 describes the experimental configuration and
provides the numerical results. Section 5 concludes the paper.

2 PRELIMINARIES
In this section, we define the systems model and describe the LEB
attack.

2.1 System Model
Cooperative spectrum sensing provides an effective mechanism
to counter the uncertainties experienced by individual spectrum
sensing devices [10]. With the availability of low-cost software-
defined radio platforms, local and low-cost white space detection
mechanisms [23] based on cooperative spectrum sensing open a
promising frontier for the easy spectrum usage, especially TV white
space, by secondary spectrum users.

The IEEE workgroups have standardized 802.11af (a wireless
LAN standard, ranges up to 1 km) [24] and 802.22 (a wireless re-
gional area network standard, ranges up to 100 km) [25] as two
white space cognitive radio standards. While dynamic spectrum
sensing property is not required in 802.11af, spectrum sensing capa-
bility is included as a mandatory feature in the 802.22 standard for
cognitive Wireless Regional Area Networks (WRANs) to identify
the presence and the type of incumbent users.

We consider a centralized cooperative spectrum sensingmodel in
this paper, which consists of several sensing nodes and a data fusion
center. The fusion center makes the channel usability decision
based on the inputs from all sensing nodes. Table 1 provides the
mathematical notations used in this paper. The sensing result vector
x received by the data fusion center is formed by 𝑥𝑖 , 0 < 𝑖 ≤ 𝑛, as

x = [𝑥1, 𝑥2, ..., 𝑥𝑛]⊤, x ∈ X,X ⊂ R𝑛×1, (1)

Table 1: Main notations used in this paper.

𝑂 Targeted decision function in data fusion center.
𝑛 Number of total sensing nodes.
𝑚 Number of manipulated sensing nodes.
𝑥𝑖 Sensed value of 𝑖th node.
x Sensed signal vector of all nodes.
x∗ Adversarial version of x.
a Sensed signal vector for manipulated nodes.
a∗ Adversarial version of a.
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Figure 1: The LEB attack framework [13].

where 𝑥𝑖 is the sensing result of the 𝑖th sensing node, 𝑛 is the total
number of sensing nodes, and X is the sensing result space. The
data fusion center in cooperative spectrum sensing makes the final
channel status decision 𝑦 based on the sensed result x. We denote
the decision mapping function used in the targeted fusion center as

O : X → Y,X ⊂ R𝑛×1,Y = {−1, 1}, (2)

where Y is the decision output space with −1 (1) denoting the
channel available (unavailable). Among𝑛 sensing nodes, we assume
that there are𝑚 nodes manipulated by an attacker. The data fusion
center in the targeted cooperative spectrum sensing framework is
treated as a black box to the attacker.

2.2 LEB attack
The LEB attack is empowered by adversarial machine learning.
There are two main points inspiring the design of the LEB attack
in [13]: (i) the fusion center receives the reports from all sensing
nodes to make a final decision and then broadcasts the result to
each node; (ii) each sensing node within the network performs the
same task independently and the fusion center aims to achieve a
better decision performance based on the decision of each node.
The basic framework of the LEB attack is shown in Figure 1. In the
LEB attack, the fusion center is treated as a black box to the attacker
and the attacker only has control of a small number (𝑚 < 𝑛

2 ) of
sensing nodes. The LEB attack is performed in three steps:

• Learning Inspired by no free lunch theorem [26] and trans-
ferability [27] of machine learning, the attacker learns a sur-
rogate machine learning model set, each of the sub-model
within the model set is a mirror model of the targeted deci-
sion model in the fusion center.
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• Evaluation The attacker evaluates the performance of the
sub-models and then chooses the optimal sub-model as the
final surrogate model of the targeted decision model. Also,
it evaluates the crafted adversarial results in the beating
process and decides on whether to launch the attack.

• Beating Based on the learned optimal surrogate model, the
attacker crafts adversarial sensing reports and sends it to the
fusion center if it decides to launch the attack; otherwise, it
sends the original sensing results to the fusion center.

The main reason that the learning empowered LEB attack can
reduce the performance of fusion center by controlling only a small
number of sensing nodes is that the LEB attack offers a strategy
to identify the potentially vulnerable sensing timeslot and pro-
vides an efficient method to generate malicious reports, thus hiding
malicious behaviors of the controlled nodes in a “smart” way.

3 INFLUENCE-LIMITING AS A DEFENSE
In this section, we detail the influence-limiting defense [13] and
offer our low-cost version of the defense method.

3.1 Influence-limiting defense method
For defense mechanisms against intelligent attacks such as the LEB
attacks, there are three main aspects to consider: (i) the wireless
nature of the cooperative spectrum sensing could lead to uncer-
tainty of the signals sensed at each node; (ii) the uncertainties of
the performance of controlled nodes could be mitigated based on
signals sensed by other controlled nodes and therefore a reasonable
attack budget could be maintained for each controlled node; and
(iii) the adversarial sensing reports are created carefully such that
the pattern deviation of each controlled node could be minimized.

To quantify the impact, weight, or influence of each sensing
node towards the decision output, a measure named as decision-
flipping influence was proposed in [13]. Decision-flipping influence
𝐼 of a sensing node or 𝐼 (Xsub) of a subset of sensing nodes is the
estimation of the probability that the decision of the fusion center
will change given different sensing reports of Xsub. Mathematically,
it is estimated through

𝐼 (Xsub) =̂
number of a∗

number of a
, subject to O(x∗) ≠ O(x), (3)

where a is the sensing result of manipulated sensing devices and a∗
is the manipulated result of a. (3) defines that the decision-flipping
influence 𝐼 (Xsub) is the probability of finding a a∗ based on a that
will change the decision output in the fusion center, which is a
direct numerical measure of the influence or impact the subset of
nodes Xsub has towards the decision output in the fusion center.

Given the defined decision-flipping influence 𝐼 (Xsub), the opti-
mization problem for the influence-limiting defense is formulated
in [13] as

minimize: (𝑦 − 𝑦)2,
subject to: 𝐼 (Xsub) ≤ 𝛿 ( |𝑋sub |),∀Xsub ⊂ X,

(4)

where𝑦 and𝑦 are the true channel status and the decision output of
the fusion center, respectively, 𝛿 ( |𝑋sub |) denotes the cap function,
which limits the maximum value of the decision-flipping influence
of each subset Xsub, and |𝑋sub | is the size of Xsub.

The choice of the cap function 𝛿 ( |𝑋sub |) is critical in defending
the fusion center. There are two factors to be considered when
choosing 𝛿 ( |𝑋sub |): (i) In a general scenario where no malicious
node is present, the cap function 𝛿 ( |𝑋sub |) should not have much
interference with the decision process, i.e., the performance of
the fusion center should not be reduced much. (ii) In scenarios
where malicious nodes might exist, the value of 𝛿 ( |𝑋sub |) should
be contained under a restricted threshold based on the statistical
property of the nodes to limit the attack capability.

Based on these two factors, there is a balance between the perfor-
mance and the security. If the cap function is defined too restrictive,
there will be a higher performance cost. Thus, the cap function
given in [13] offers the user with two parameters to balance dif-
ferent security or performance requirements. The cap function is
formulated as

𝛿 ( |Xsub |) =
1

1 + 𝑒−𝑐1 ( |Xsub |−𝑛
2 )

− 𝑐2
∑

𝑖∈Xsub

𝑑𝑖ks,

0 ≤ |Xsub | ≤
𝑛

2
, 0 < 𝛿 ( |Xsub |) < 1,

(5)

where 𝑐1 and 𝑐2 are the cost control parameter and influence control
parameter, respectively, and

∑
𝑖∈Xsub 𝑑

𝑖
ks is the sum of Kolmogorov-

Smirnov statistics of sensing nodes with the fusion center. In prac-
tice, we just need to check the weight or the decision flipping
influence of Xsub. If it is below the value defined by the cap func-
tion, we can proceed without any modification; otherwise. we need
to limit and check the status of sensing nodes within Xsub.

3.2 Computational cost analysis and our
optimization

In the influence-limiting defense, the core idea is to contain or
limit the decision-flipping influence of Xsub towards the decision
process in the fusion center. However, in practice, to fully limit
the attack power of all malicious nodes, it is necessary to enforce
the influence-limiting defense at a different level in terms of the
size of Xsub. The defender does not usually know how many nodes
in its cooperative spectrum sensing network are controlled by the
attacker. Note that the total number of subsets in X with 𝑛 nodes
is
∑𝑛
𝑘=1

(𝑛
𝑘

)
, which means the computational complexity in terms

of subset will be at the level of 𝑂 (2𝑛). This might make it difficult
for the fusion center to enforce a full version of influence-limiting
defense. Therefore, another parameter 𝜂 was introduced in [13] to
control the complexity.

From a practical point of view, we do not need to evaluate all
the combinations of Xsub from X. For example, if we find that the
decision-flipping influence for a specified subset Xsub is below the
value defined by the cap function, then we actually do not need
to further examine all the subsets within Xsub, which will reduce
the computational cost of enforcing influence-limiting defense sig-
nificantly. Therefore, the problem turns out to be a challenge to
find the most suspicious subset of Xsub to enforce the full version
of influence-limiting policy within that subset. Inspired from the
“divide and conquer” scheme in traditional algorithm design, we
propose a low-cost version of influence-limiting defense.

We employ the strategy of a top-down style, in which we first
divide all the sensing nodes into two subsets randomly and then
evaluate the decision-flipping influence 𝐼 (Xsub) of each subset. In
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a normal scenario where no malicious nodes are present and each
innocuous node is also well-behaving, the decision-flipping influ-
ence for each subset should be very similar with each other and
well-balanced. However, if there exist malicious nodes in either
subset or in both subsets, the decision-flipping influence for the
subset that has the larger number of malicious nodes will have
a higher decision-flipping influence if the attacker is successful.
If our cost control parameter 𝑐1 and influence control parameter
𝑐2 are chosen appropriately, the proposed influence-limiting de-
fense should be triggered on that subset. Then, in the next round of
search, we focus on the subset that triggers the influence-limiting
defense. We perform the second round of “divide” operation on the
subset, divide it into two smaller subsets and evaluate the decision-
flipping influence of each subset again. We will continue the search
iteratively by dividing the chosen subset.

At the end of “divide and conquer” search process, we will reach
a point where both the two subsets trigger the influence-limiting
defense, or at least one subset is non-divisible if there exist malicious
nodes like LEB attackers. There is a possibility that both of the
subsets include enough malicious nodes to make their decision-
flipping influence larger than the value defined by the cap function
𝛿 ( |Xsub |). If there is no malicious node, it will be very difficult to
trigger the defense based on the definition of 𝛿 ( |Xsub |).

The key point of this “divide and conquer” strategy is that we
do not need to enforce the influence-limiting defense until we
reach the point where both the subsets trigger the defense. Before
that point, all we need to do is to evaluate the decision-flipping
influence I(Xsub), which will decrease the computational cost of
enforcing influence-limiting defense significantly. The detailed pro-
cess of our low-cost version of influence-limiting defense is shown
in Algorithm 1. The advantage of the proposed low-cost version of
influence-limiting defense is that it divides the set of the sensing
nodes evenly (or roughly evenly if the number of nodes is an odd
number) into two subsets. Thus, it will be very efficient to locate the
subset that reaches the cap function if there are malicious nodes.

4 EXPERIMENTAL PERFORMANCE
COMPARISON AND ANALYSIS

In this section, we comprehensively evaluate the performance of
the proposed defense and compare it with the original influence-
limiting defense from [13].

4.1 Experimental configuration
To fully compare the performance of the original influence-limiting
defense and our low-cost version of influence-limiting defense, we
employ the same experimental configuration in [13], in which we
have 20 sensing nodes in the cooperative spectrum sensing network,
and vary the number of malicious nodes to fully demonstrate the
defense performance under attacks of different powers. We also
focus on defending against the LEB attack using the same dataset
as collected in [13]. In the configuration of the fusion center, we
consider eight existing representative intrusion detection defenses
and using Support Vector Machine (SVM) algorithm as the fusion
rule. The configuration for the LEB attacker is also the same as that
in [13]. The performance metric that we use in our comparison is
the overall disruption ratio, which is defined as the ratio of successful

Algorithm 1: Low-cost influence-limiting defense
Input :Historical sensing results and the corresponding

decision outputs in Y; parameters 𝑐1, 𝑐2.

1 Divide X evenly into two subsets X1
sub,X

2
sub;

2 do :
3 If any of the two subsets is an empty set:
4 Compute 𝐼 (Xsub) of the non-empty subet and
5 enforce influence if it is larger than 𝛿 (Xsub);
6 otherwise terminate the defense process.
7 else:
8 Compute 𝐼 (X1

sub), 𝐼 (X
2
sub);

9 If 𝐼 (X1
sub) < 𝛿 ( |X1

sub |) and 𝐼 (X
2
sub) < 𝛿 ( |X2

sub |):
10 terminate, no malicious subset is detected;
11 If 𝐼 (X1

sub) ≥ 𝛿 ( |X1
sub |) and 𝐼 (X

2
sub) < 𝛿 ( |X2

sub |):
12 Update the two subsets X1

sub,X
2
sub with two new

13 evenly divided subsets from 𝐼 (X1
sub);

14 If 𝐼 (X1
sub) < 𝛿 ( |X1

sub |) and 𝐼 (X
2
sub) ≥ 𝛿 ( |X2

sub |):
15 Update the two subsets X1

sub,X
2
sub with two new

16 evenly divided subsets from 𝐼 (X2
sub);

17 If 𝐼 (X1
sub) ≥ 𝛿 ( |X1

sub |) and 𝐼 (X
2
sub) ≥ 𝛿 ( |X2

sub |):
18 Enforce influence through limiting the weight
19 𝑤 (X1

sub),𝑤 (X2
sub);

20 until X1
sub,X

2
sub are both are empty sets:

attacks over the total elapsed timeslots (in each timeslot, a sensing
node will report a sensing result to the fusion center):

Overall disruption ratio =
number of successful attacks
number of elapsed timeslots

. (6)

4.2 Results and analysis
In our experiments, we first provide the results of our low-cost
influence-limiting defense against the LEB attack with different
number of nodes controlled. We adopt the same parameter configu-
ration as that in [13], in which the cost control parameter 𝑐1 is set
as 0.05 and the influence control parameter 𝑐2 is set as 0.5. We mea-
sure the performance of our low-cost influence-limiting defense
and compare it to the original version under different number of
malicious nodes. The results are shown in Table 2, from which we
observe that when there is no LEB attack, the performance cost of
our low-cost version is slightly better than the original version of
influence-limiting defense. However, as the number of malicious
nodes increases, our proposed defense version performs slightly
worse than the original version. It is reasonable since when there
are malicious nodes in different subsets, there is a small chance of
not limiting the attack power of those malicious nodes that exist
in the subset where they do not reach the threshold defined by the
cap function 𝛿 .

In the second group of experiments, we evaluate the overall
disruption ratio of the low-cost influence-limiting defense together
with different existing defense mechanisms in the fusion center. The
number of malicious nodes is set as𝑚 = 8 for the LEB attack. The
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Table 2: Performance comparison regarding overall disrup-
tion ratios of two versions of influence-limiting defense
with different number of malicious nodes𝑚.

𝑚

0 2 4 6 8
Originial version[13] 0.008 0.013 0.050 0.082 0.095

Proposed low-cost version 0.007 0.014 0.043 0.085 0.105
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Figure 2: The overall disruption ratio comparison of two ver-
sions of influence-limiting policy on different defenses.

Table 3: The normalized average decision time cost compari-
son of two versions of influence-limiting defense under dif-
ferent number of malicious nodes𝑚.

𝑚 Original version [13] Proposed low-cost version
0 1.00 0.10
2 1.06 0.11
4 1.08 0.15
6 1.09 0.16
8 1.11 0.18
10 1.12 0.19

results are shown in Figure 2, from which we observe that the low-
cost version performs slightly worse than the original version of the
influence-limiting defense. The reason is similar to that observed
in the first group of experiments. As we set𝑚 = 8, some malicious
nodes do not get their weights limited by the defense.

In the third group of experiments, we compare the complexity
cost of the low-cost version of the influence-limiting defense with
the original version. In Table 3, we compare the averaged deci-
sion time needed when deploying the two versions of influence-
limiting defenses.We use a normalized time cost to compare the two
methods and set the time cost for the original version of influence-
limiting defense as 1 when the number of malicious nodes is 0. The
results show that the time cost for our proposed low-cost version
of influence-limiting defense is less than 20% of the time cost when
running the original version of the defense, which demonstrates the
great advantage regarding low complexity of the proposed low-cost
version of influence-limiting defense.

In the fourth group of experiments, we examine the normalized
time cost regarding different numbers of malicious nodes. We set
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Figure 3: The normalized time cost with regard to differ-
ent number of malicious nodes when running the low-cost
influence-limiting defense.

the time cost when there exists only one single malicious node as
1. The results are shown in Figure 3, from which we can observe
that when malicious nodes cover the half of all the sensing nodes,
the time cost is only around 20% compared to the scenario when
the number of malicious nodes is 1. The reason is that in the low-
cost influence-limiting defense, when the number of malicious
nodes increases, their attack capabilities accumulate more quickly
under the same configuration. Thus, it becomes easier to reach the
threshold defined by the cap function 𝛿 ( |𝑋sub |). Further, it becomes
easier to trigger the influence-limiting defense, enforcing theweight
limitation of Xsub. When the number of malicious nodes is small,
it is necessary to examine more rounds of “divide” and evaluate
the decision-flipping influence of the corresponding subsets, which
requires more time.

The proposed low-cost influence-limiting defense has compa-
rable performance and has much lower complexity. It only incurs
a very modest defense performance loss while achieving much
better run time efficiency. However, there is still a room to improve.
For example, is there any better solution to do the “divide”? Can
we achieve even better defense performance while decreasing the
run time cost significantly? These aspects are identified as future
research direction.

5 CONCLUSION
Cooperative spectrum sensing offers a promising solution to im-
prove the spectrum utilization, especially for TV bands. The security
of the cooperative spectrum sensing is quintessential to both pri-
mary and secondary users. Influence-limiting defense is a straight-
forward method to secure the decision process of the fusion center.
However, this method suffers a computational cost problem for the
real-world applications. In this paper, we presented a low-cost ver-
sion of the influence-limiting defense by employing the “divide and
conquer” strategy as it is much easier to locate the subset that has
the largest number of malicious nodes to enforce influence-limiting
policy. Our results showed that the low-cost version decreases the
run time cost of the defense significantly (to less than 20% of the
time required by the original version) with only a slight perfor-
mance loss.
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