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Abstract

Autonomous vehicles are becoming increasingly popular,
but their reliance on computer systems to sense and operate
in the physical world introduces new security risks. In this
paper, we show that the location privacy of an autonomous ve-
hicle may be compromised by software side-channel attacks
if localization software shares a hardware platform with an
attack program. In particular, we demonstrate that a cache
side-channel attack can be used to infer the route or the lo-
cation of a vehicle that runs the adaptive Monte-Carlo local-
ization (AMCL) algorithm. The main contributions of the
paper are as follows. First, we show that adaptive behaviors
of perception and control algorithms may introduce new side-
channel vulnerabilities that reveal the physical properties of a
vehicle or its environment. Second, we introduce statistical
learning models that infer the AMCL algorithm’s state from
cache access patterns and predict the route or the location of
a vehicle from the trace of the AMCL state. Third, we imple-
ment and demonstrate the attack on a realistic software stack
using real-world sensor data recorded on city roads. Our find-
ings suggest that autonomous driving software needs strong
timing-channel protection for location privacy.

1 Introduction

Recent years have seen significant efforts to develop au-
tonomous vehicles. Autonomous unmanned aerial vehicles
(UAVs) have already been used in some cases for commercial
parcel delivery [21]. Today’s passenger vehicles include many
advanced driver assistance features, and future vehicles are
expected to have even more autonomous driving capabilities.
For example, Tesla vehicles include the Autopilot [14] system,
which enables autonomous cruise on freeways. Uber [15] and
Waymo [18] are testing commercial taxicab services using
fully autonomous vehicles. While autonomous vehicles can
enable many exciting applications, they also introduce new
security risks by allowing a computing system to sense and
control the physical system.

In this paper, we show that the location privacy of an au-
tonomous vehicle may be compromised by software side-
channel attacks when the vehicle’s driving software and the
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attack software share a hardware platform. In particular, we
demonstrate that a cache side-channel attack can be used to
infer the route/location of a vehicle that uses the adaptive
Monte-Carlo localization (AMCL) algorithm [35] for local-
ization. Previous studies on traditional computer systems have
demonstrated many cache side-channel attacks for inferring
confidential information, so it is not surprising to find cache
side channels in the computing platforms of autonomous ve-
hicles. What is novel and interesting about our attack is that
the cache side channel can be used to infer a victim vehicle’s
physical state, exploiting the correlation between the physical
state of the vehicle and the cache access patterns of the ve-
hicle’s control software. Moreover, our experimental results
show that this information leak is sufficient to identify the
vehicle’s route from a set of routes in the known environment,
and even the location of a vehicle if an attacker knows the
vehicle’s initial location.

In autonomous vehicles, perception and control algorithms
are often adaptive in order to improve their efficiency and
accuracy. The adaptive algorithms perform more computation
when there is more uncertainty in the environment or an event
that affects the vehicle’s state, such as a new obstacle showing
up or the vehicle making a turn; conversely, they perform
less computation when there is no significant change. These
adaptive behaviors are natural and important for efficiency.
However, they also create strong correlation between the al-
gorithm’s memory access patterns and a vehicle’s physical
movement and environment. For example, we found that the
amount of data accessed by the AMCL algorithm, commonly
used for localization, reveals when the algorithm’s uncertainty
on the vehicle’s location changes. This correlation allows our
cache side-channel attack to infer when a vehicle is turning.

While the observation that the AMCL algorithm’s cache
behavior is strongly correlated to a vehicle’s physical state is
interesting by itself, we found that cache side-channel attacks
on an autonomous vehicle’s control software introduce new
challenges that do not exist in traditional cache side-channel
attacks. Unlike cryptograhic keys in memory, the physical
state of a vehicle changes continuously as the vehicle moves.
Work on inferring AES keys via cache side channels has ag-
gregated results from multiple measurements [55]. However,
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it is difficult to measure the fast-changing physical state of a
vehicle multiple times using a cache side channel. Moreover,
physical environments are inherently noisy. As a result, cache
timing measurements are affected not only by noise in the
computing system but also by physical noise.

In this paper, we address these challenges and demonstrate
an end-to-end cache side-channel attack on the location pri-
vacy of an autonomous vehicle. Specifically, we demonstrate
that an unprivileged user-space program, without access to
sensor inputs or protected state of control software, can pre-
dict the route or the location of an autonomous vehicle using
a prime-and-probe cache timing channel attack on the control
software. Our attacks differ from many previous cache side
channel attack in that we use timing measurements over a
period of time when a vehicle is moving. We introduce a
statistical learning model based on random forests to predict
the route or the location of a vehicle from cache timing mea-
surements while dealing with noise. The experimental results
based on both a simulated robot and recorded data from a
real-world vehicle show that this attack can fairly accurately
predict the vehicle’s route or location.

Our results show that the location privacy of an autonomous
vehicle can be compromised when its perception and control
software share hardware resources with less trusted software.
Without new processor designs that provide strong isolation
guarantees regarding timing channels, our findings suggest
that separate platforms should be used for autonomous driving
software and the rest of the system.

The following summarizes the main contributions of the
paper:

e We show that the adaptive behaviors of perception and
control algorithms may introduce a new security vulner-
ability that reveals the physical properties of a vehicle
or its environment through side channels.

e We introduce statistical-learning models that predict the
AMCL algorithm’s state from its cache access patterns,
and infer the route or the location of a vehicle from the
trace of the predicted AMCL state.

e We implement and demonstrate the attack on a realistic
software stack using both simulated environments and
real-world sensor data recorded from a vehicle.

The rest of paper is organized as follows. Section 2 dis-
cusses the threat model. Section 3 discusses the background
on autonomous vehicles and cache side channels. Section 4
describes the attack implementation. Section 5 describes our
testbeds and evaluates the attack’s effectiveness. Section 6
discusses the implications of the attack, and Section 7 reviews
related work. Finally, we conclude the paper in Section 8.
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Figure 1: The threat model. The attack software runs on the
same processor with the autonomous-driving software, and
learns the route of the vehicle through cache side channels.

2 Threat Model

The goal of the attacker is to infer the location information
of a vehicle based on cache side channels. In particular, the
attacker predicts the route that an autonomous vehicle takes
from a set of known routes.

Figure | illustrates the threat model discussed in this paper.
While the figure shows a passenger vehicle as an example, we
note that the proposed attack method and principle may be
applied to other autonomous vehicles such as delivery robots
or drones. We assume that the attacker is an entity that can
deploy a software module on the vehicle. We refer to the soft-
ware module as “attack software” or “attack process”. In this
paper, we use process, program, and software interchangeably.
The victim is an autonomous vehicle (the “victim vehicle™)
whose route information needs to be protected. Localiza-
tion software on the victim vehicle (the “victim software”
or “victim process”) has direct access to sensors and to its
location-related information, and is the target of our cache-
side channel attack. The attacker has no physical access to
the victim vehicle, and performs its attack only through the
attack software. We assume that the attack software cannot
circumvent the access controls of the operating system and
has no direct access to the location information.

Assumptions on the attacker. We assume that the attacker
knows details of the victim vehicle including the software and
hardware configuration of its computing platform as well as
the mechanical system. We also assume that an attacker has
detailed knowledge of the environment in which the victim
vehicle operates and knows a set of routes that the victim may
take. For example, the attacker should have the map of the
victim’s environment, and may use another vehicle to collect
detailed sensor measurements of the area in order to train its
prediction models. The aim of the attack is to infer the victim
vehicle’s route or location in a known environment, rather
than to track the victim vehicle in an unknown environment.

To make cache side-channel attacks possible, we assume
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that attack software can run on the same processor where
victim software runs. This co-location may be achieved by
compromising less safety-critical software components that
are already on the victim or via untrusted applications that is
allowed to be installed. The attack software is also assumed to
be able to send the vehicle’s location information to a remote
attacker once it acquires the information. On the other hand,
we assume that the operating system securely prevents the
attack software from directly reading sensors or the location.

Assumptions on the victim. We consider an autonomous
vehicle that is controlled by an onboard computer. We as-
sume that the autonomous-driving software uses an adap-
tive algorithm, such as adaptive Monte-Carlo localization
(AMCL) [35] for localization or Faster R-CNN [59] for object
detection, whose compute requirements change depending
on the vehicle’s movements or environments. Our attack ex-
ploits the fact that memory access patterns of these adaptive
algorithms are affected by the victim vehicle’s movements.

Assumptions on the environment. We assume that the
environment has unique characteristics that enable identifica-
tion of the vehicle’s position and route. Analogously, humans
can localize themselves in a known city using visual details
such as buildings or signage. Our work exploits variability in
possible vehicle paths to guess the route of the vehicle from
the turns it takes.

Out-of-scope attacks. We do not consider any physical
attacks on a vehicle. As we assume that the attack software
does not have permission to access sensor data, we do not
consider any attacks that rely on direct access to the physical
measurements of an environment [48,49] (e.g., inferring loca-
tions based on local temperature, light intensity, etc.). Besides,
we do not consider traditional attacks that exploit software
vulnerabilities to compromise an operating system or the driv-
ing software itself. We assume that the driving software is
not malicious or compromised, and do not consider covert-
channel attacks where the driving software intentionally leaks
the vehicle location.

3 Background

3.1 Autonomous Vehicle Architecture

Autonomous vehicles perform tasks in the physical world
without human intervention. As shown in Figure 2, an au-
tonomous vehicle comprises three main hardware subsys-
tems: sensors/information collectors, an onboard computer,
and actuators/command executors. Sensors are used to collect
information from the physical world. The collected data are
then processed by the onboard computer, which generates ac-
tuation commands. The actuation commands are executed by
the actuators, which usually have observable and intentional
effects on the physical world, such as turning the steering
wheel of the vehicle. Both sensors and actuators are con-
nected to the onboard computer using a bus protocol such as
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Figure 2: General hardware and software architecture of an
autonomous vehicle.

USB, PCle, GPIO, or CAN bus [31].

The navigation software stack hosted on the onboard com-
puter reads preprocessed sensor data from device drivers and
writes commands to the controller driver. There are two major
tasks performed by the navigation software:

e Perception/estimation. This is the process of convert-
ing the sensor data (e.g., timestamps returned by a GPS
receiver) into the most likely physical state (e.g., loca-
tion on the earth). This is needed for two reasons. First,
sensor data contain noise from measurements. Thus, an
estimation algorithm is needed to remove the noise and
get a statistically sound state. Second, the actual phys-
ical state (e.g., location of a vehicle on a map) cannot
be directly measured from sensors (e.g., LIDAR signal,
which is a vector of distances to obstacles in its scan-
ning directions). An estimation algorithm (e.g., adaptive
Monte-Carlo localization [34]) infers the most probable
location based on the LiDAR data.

e Control/decision. This is the process of determining
a sequence of control commands that optimize a cer-
tain objective function (expected arrival time, distance
to travel, etc.) given the estimated state. For example,
given an estimation of the current location and the final
destination on a map, the controller should determine
a trajectory to the destination and issue a sequence of
acceleration, stop, and steering commands so that the
vehicle follows the planned path.

As shown in Figure 2, the state estimation module in the
navigation stack needs to read data from sensors such as GPS,
LiDAR, camera, and LTE/5G to make correct state estima-
tions. Estimated state, such as the vehicle location, is used by
the path planning module, which makes decisions on which
trajectory to take and sends commands to the controller. There
is also a collision avoidance module, which can override the
commands to the controller when there is a safety issue.
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There is also a utility software stack, which performs
vehicle-specific tasks that are not critical to safety. For ex-
ample, a passenger vehicle may have an infotainment system
providing a music streaming service, while an autonomous
video-recording drone may have software to control a high-
resolution camera. Because the utility stack is not safety-
critical, it should not have unnecessary access to sensors or
actuators. For example, a music streaming app may require
access to the LTE/5G network to download music, but should
not be able to access or record GPS data. This can be enforced
by OS-level access-control mechanisms.

3.2 Adaptive Monte-Carlo Localization

Localization is a task that determines the locations of ob-
jects on a given map based on sensor inputs. It is needed
by many advanced driving assistance systems and required
by autonomous vehicles. Adpative Monte-Carlo Localiza-
tion (AMCL) is a special case of general MCL [34], and was
used by multiple teams [26, 43, 50] in the DARPA Grand
challenge [25]. Many recent research autonomous driving
projects [27,40, 60, 64] have also used AMCL. For example,
the CaRINA intelligent robotic car [32] uses AMCL for its
LiDAR-based location [40].

Algorithm | shows the pseudocode for general Monte-
Carlo localization. Given a map My of a certain area and
a probability distribution P : My — R over the map M, at
time ¢, N particles (i.e., hypothetical locations of the vehicle)
are randomly generated based on the distribution. For each
particle L;, the sensor measurement S; is combined with the
particle to infer the position of the obstacles on the map. For
example, in a 1-D case, if the distance sensor detects an ob-
stacle 10 m from the hypothetical location of the vehicle and
the hypothetical location is 20 m from the starting location,
it is inferred that that obstacle is 30 m (10 m + 20 m) from
the starting location. Inferred obstacles are plotted on a new
empty map M;, which is then compared with the given map
M to calculate the fidelity p; of the particle L;, based on the
assumed distribution of measurement errors. For example, the
fidelity p; will be high if the inferred map M; closely matches
the given map My, and low if the two maps differ significantly.
Finally, k-means clustering [36] is used to determine the most
probable geometrical clustering center L, ; of these particles
{L;}, weighted by {p;} at time ¢. Also, the probability dis-
tribution P : My — R is updated for the next measurement
Stt1-

The number of particles N in Algorithm | is not necessarily
fixed. When the distribution P : My — R converges, a small
N is enough for accurate estimation. When the distribution
P : My — R spreads across the map My, the parameter N may
need to be increased. In AMCL, N changes with time #; we
denote it by N;. The exact value of N; at time ¢ is determined
by the Kullback-Leibler distance (KLD) [34] between the
estimated distribution P : My — R and the underlying ground-

Input: Map M, a probability distribution over the whole
map P : My — R, sensor measurement time
series S1, 952, ...5;, number of particles N, number
of clusters K, transient odometry dy,d>, ...d;.

Result: Estimated states Leg 1, Lest,2, -++5 Lesr,; ON map

foreach sensor measurement S; at time t do
Randomly generate N particles (i.e., hypothetical

locations) {L;} on the map based on distribution
P:My—R;
foreach particle L; (1 <i < N) do
Overlay measurement S; on the particles L;;
Generate the extrapolated map M; based on the
measurement S; and location L;;
Compare the extrapolated map M; and the given
map My, calculate the fidelity p;;
end
Determine the most probable cluster center
Lesty = kmeans(K;Ly,...,Ly;p1,...,PN);
Update the probability distribution P : My — R based
on particles Ly,..., Ly, corresponding fidelity
P1,--.,pn as well as transient velocity d;;

end
Algorithm 1: General Monte-Carlo localization.

truth distribution Py : My — R:

N P [ 2 ;
M= g o=t @

Here, z;_g is the upper (1 — §) quantile of standard normal
distribution, € is the upper bound of the KLD, and £ is the
number of bins occupied during sampling at time ¢ (e.g., if
the map is partitioned into 1,024 bins and only 300 bins are
occupied, in this case, k = 300). Theoretically, N, could be
any positive integer. Practically, there is a maximum limit
Npay and a minimum limit N, to ensure real-time perfor-
mance and k-means clustering accuracy, respectively. In our
experiments, we found that the AMCL implementation uses
either the maximum or the minimum number of particles in
most cases.

3.3 Cache Side Channel

In modern computing systems, off-chip memory (e.g.,
DRAM) accesses are much slower than on-chip memory ac-
cesses served by a cache. Also, a cache is usually shared
among multiple programs. For example, a last-level cache
(LLC) in a multi-core processor is used by multiple process-
ing cores concurrently. L1 and L2 caches may be dedicated
to a specific core, but are still time-shared among programs
that run on the core.

The shared cache implies that one program’s memory ac-
cesses can affect whether another program can find its data
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in the cache, or needs to access off-chip memory. As a result,
one program can infer another program’s memory accesses
by measuring its own memory access latency. When a vic-
tim program accesses its data from memory, it can evict the
cached data of other programs in order to bring its own data
into cache. An attack program can infer whether the victim
program had a cache miss or not, and which memory address
was accessed, by measuring the latency of its memory ac-
cess, which reveals whether the data was found in the cache
or not. This measured latency leaks the victim program’s
memory-access pattern to the attack program. There are
many existing cache side-channel attack techniques, including
prime+probe [45,54], evict+time [55], flush+reload [44,71],
prime+abort [28], flush+flush [37], etc. In this work, we use
the prime+probe attack, but we expect that our attack can

also be implemented using other types of cache side-channel
attacks.

4 The Proposed Attack
4.1 Vulnerability in AMCL

An autonomous vehicle running AMCL is vulnerable to a
cache side-channel attack that aims to infer its kinematics.
This is because the memory access pattern of AMCL depends
on the number of particles N; at each time #, which has strong
correlation with the real-time vehicle kinematics.

First, the number of particles N; affects the memory access
pattern of AMCL, which can be inferred through a cache
side-channel attack. The following steps summarize how the
memory accesses in AMCL for an iteration at time ¢ are deter-

mined, based on Algorithm | and a reference implementation
in ROS [1].

1. Calculate the number of particles N; using Equation (1);
2. Create N, particle objects in a fixed-size buffer';

3. For each particle, access the memory locations of the
particle object and perform necessary computation.

If N; increases, more memory locations will be accessed.
The memory accesses can be observed by another program
through a cache side channel.

Second, the number of particles N, has a strong correlation
with the vehicle kinematics at time ¢. It is obvious from Equa-
tion (1) that N; increases with k, which represents the number
of bins occupied by particles. The value of k depends on the
level of uncertainty in the estimation. As shown in a previ-
ous study [35], when the observed environment is unstable

!Original ROS AMCL implementation dynamically allocates and frees
memory space for N, particles in each iteration rather than using a fixed-size
buffer. Instead, we use a statically-allocated buffer to avoid unnecessary
overhead for dynamic memory allocation. While not included in the paper,
we also tested our attack with the dynamic memory allocation, and confirmed
that the attack works for both static and dynamic allocation.
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Figure 3: An example showing the correlation between the
number of particles in AMCL and the vehicle trajectory curva-
ture (high curvature indicates the vehicle is turning). Obtained
from a Jackal robot simulation.

(e.g., due to signal loss), N; increases to compensate for the
increased estimation uncertainty. Our observation is that Ny
increases when the vehicle is turning as shown in Figure 3.

Third, the route or the position of a vehicle can be inferred
from kinematic information. In theory, if the curvature x(¢)
of the vehicle’s trajectory as a function of time ¢ is obtained
using the side channel, we can obtain the route that a vehicle
is taking by matching the curvature of the trajectory with
the candidate routes on the map. In addition, if we know the
initial location of the vehicle, we can predict the location
of the vehicle by enumerating routes that connect the initial
location and the candidate locations on the map.

In practice, instead of using curvature, whose precise value
is hard to directly infer, we use the information on the number
of particles to predict the route of the vehicle.

4.2 Attack Overview

Based on the vulnerability described in Section 4.1, it is pos-
sible to implement a cache side-channel attack that infers
the route or the location of an autonomous vehicle running
AMCL. We implement our attack using the following steps.

1. Prime+Probe: Collect the cache probing time for each
cache set over fixed time intervals, forming a sequence of
cache-timing vectors in which each vector represents the
probing times for cache sets at a specific time interval.

2. Particle Predictor: Use a binary classification model
to predict the number of particles for each time interval
based on the cache-timing vectors for each interval.

3. Route Predictor: Use a random forest model to predict
the route or the position of a vehicle based on the trace
of the number of particles.

Figure 4 shows the overall flow of the attack. We describe
each step in more detail in the next three subsections.
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Figure 5: Cache side-channel measurements of 16 cache sets
from the L1D cache of Intel i5-3317u.

4.3 Acquiring Victim Cache Access Pattern

In this work, we use a prime+probe attack to infer the memory
accesses of victim software. First, the attack program fills the
cache with its own data by sequentially accessing a set of
memory addresses. Then, the victim accesses the cache. After
that, the attack program probes the same memory addresses
and records the latency of each access. If a specific memory
address is evicted by the victim program, the probe time will
be longer. Thus, the memory access pattern of the victim
program can be inferred.

The result of the prime+probe attack is a sequence {T,}
in which each element T; at time ¢ is a K-dimension vector
(t},72,...,7K) where K is the number of cache sets. For exam-
ple, in Figure 5, each column is a 16-D vector representing
the probing time of 16 sets in the L1 data (L1D) cache. The
result is from an Intel i5-3317u dual-core processor whose
L1D cache of one core has 64 sets total. For brevity, we show
only 16 sets out of 64.

Many cache side-channel attacks exist. For example, the
evict+time attack [55] has been used to extract cryptographic
keys on a system when many measurements can be made
using the same key. The flush+reload attack [44] has been
used when shared memory locations, such as a shared library,
can be accessed by both attacker and victim software. We
use the prime+probe attack because it can effectively infer
the victim’s memory accesses even without multiple measure-
ments and without a shared library between the attacker and
the victim.

4.4 Particle Predictor

In practice, we found that the AMCL algorithm usually uses
either the maximum or the minimum number of particles.

Given this observation, we formulate the prediction of the
number of particles as a binary classification problem.

The input of the model is the vectors from the prime+probe
cache attack {T,}. We take a time window of size 2T + 1 of
T, ie., (Ti—7,...,Ts,..Ti17) as the input of the model, and
the output particle-number class V; is in one of the two classes,
i.e.,, N; € {L,H}, where L and H denote “Low” and “High”,
respectively. Formally, the classification task is defined as
follows:

e Given: 1., tuples of (T.,N;) (¢t € {1,2,...,tena}),
where T, is a (2T + 1) - K-dimension vector T, =
(v g™ sty 1K ) for each ¢, and N, €

{L,H} for eacht.

e Find: a model f : R?7+DK s {1 H} such that the clas-
sification score Y, d(f(T),N;) is maximized, where
d:{L,H} x {L,H} — R is defined as follows:

1, if Ny =No.

0, otherwise.

d(N1,N2) :{ 2

‘We observe that the two classes are unbalanced, i.e., the
number of samples in the “High” class is much smaller than
the number of samples in the “Low” class. This is because
when a vehicle is moving on a map with predefined roads,
for most of the time, it is moving straight and the trajectory
curvature is small. Due to the correlation between the number
of particles and the curvature, as mentioned in Section 4.1,
more samples in the “Low” particles-number class are seen.
Traditional binary classifiers such as SVM [36] do not perform
well on such unbalanced datasets. To address the problem,
we use RUSBoost [62], a classification algorithm designed to
alleviate class imbalance in the dataset. RUSBoost combines
both random undersampling (RUS) and boosting to improve
classification accuracy.

Figure 6 shows an example of the prediction of the num-
ber of particles in AMCL (max/min number of particles
16,000/500) using RUSBoost on the cache timing channel
information collected from the L1D cache of an Intel proces-
sor. The model correctly predicted the timing of events where
there exists a spike in the number of particles. To evaluate pre-
diction quality, we use Dynamic Time Warping (DTW) [61],
a popular metric for measuring similarity of two temporal
sequences. DTW allows us to compare two sequences even
when the exact locations of spikes are slightly off. The DTW
distance between the predicted and the ground truth is 539,407
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Figure 6: Ground truth and predicted number of particles
using RUSBoost on AMCL running on Intel i5-3317u.

Method Train 2-fold 5-fold
RUSBoost || 536,013 | 514,656 | 510,006
SVM 150,890 | 543,716 | 547,580

Table 1: Comparison of the average DTW distance between
RUSBoost and SVM.

particles. Considering that one false prediction point incurs a
distance of 16,000—500=15,500, the DTW distance implies
539,407 = 15,500 ~ 35 false prediction points in a single
trace containing about 1,000 data points.

We compare SVM and RUSBoost prediction results in
Table 1. In the table, we list average DTW distance of training,
2-fold, and 5-fold validation?. We use 100 traces for each
experiment. The results show that even though SVM has low
training DTW distance, RUSBoost has lower 2-fold and 5-
fold validation distance, indicating RUSBoost model performs
better and overfits less for this modeling task.

4.5 Route Predictor

Given a sequence of the particle classes
(N1,N2,N3,...,N;,..,N,;,,,) we need a model that pre-
dicts the route or the location of the vehicle. There are two
related tasks:

1. Route prediction: Given a set of known routes, find the
route that a vehicle takes.

2. Location prediction: Given the starting location of a
vehicle and a set of possible final locations on a known
map, determine the final location of the vehicle.

The task of predicting the final location can be consid-
ered a specific form of route prediction, in which the set of
known routes contains all routes on the map that connect the
starting location and possible final locations. In that sense,

2 For evaluating a machine-learning model on a dataset, N-fold validation
divides the dataset into N sets. For each test, it uses all but one set to train
the model while holding out the one set for validation.
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Figure 7: kNN classifica-
tion results.

Figure 8: RF-50 classifi-
cation results.

both the route prediction and location prediction tasks can be
formulated in a unified way.

Different routes may not necessarily have the same length
tend, and for the same route, 7., may vary based on the speed
of the vehicle. To handle the variations in the trace length,
we pad each sequence N = (N1,N»,N3,...,N;, ..., N;,,,) into
a sequence (N1,N2,N3,...,N;,...; Ny, 5., N,, ) with length
Imax Dy assigning a new element P € {L, P, H} (for padding)
to all V; for t,,0 <t < tyuax. After that, we can formulate the
prediction as a standard classification problem:

e Given: M tuples (N;,l;) in which 1 <i< M and N; €
{L,P,H}™x is a vector of maximum length #,,, and
I; € {l1,L5,....In} is the label representing a route or a
location.

e Find: g : {L,PH}"> — {lj,],,...,1n} such that
M. c(g(Ny),;) is maximized. Here the cost function is

defined as follows:

1, iflj =h.
C(ll’lz):{o’ IV ¥ 2 (3)

otherwise.

4.5.1 Predicting Route

We can identify a route by comparing the sequence of particle-
number classes (“Low” or “High”) along the route. In this
case, the label ]; represents a distinctive route i.

We can use a classification algorithm, e.g., k-nearest neigh-
bor (kNN) or random forest (RF) [36] to classify different
routes. For example, Figure 7 and Figure 8 show an exam-
ple of classification results using kNN and RF with 50 trees
(RF-50) for five distinct routes in Maze 1 in Figure 14. This
experiment uses a Jackal robot described in Section 5.1. For
each sequence of particle-number classes, we use all other
sequences as the training set and find the route label for the
sequence. The overall accuracy is 76% and 96%, respectively.
Given its higher accuracy, we use the random forest (RF) as
the route-prediction model.

4.5.2 Predicting Location

If an attacker knows the initial location of a vehicle, our route
prediction approach can be used to predict the final location
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Figure 9: Though the destina-
tion of a run in the validation set
might not appear in the training
set, the intermediate locations
along the path are shared.

of the vehicle from a particle-number class sequence. In this
case, the label I; represents the final location. For example, we
can partition a map into Qy x Qy, grid cells and assign each
cell (¢x,qy), where 1 < ¢, < Oy and 1 < g, < Q,, a unique
integer label I; = (¢, — 1) - Ox +¢x.

Usually, if an autonomous vehicle starts from a fixed start-
ing location and takes the shortest path to each destination,
the paths will form a shortest-path tree [S3] on a given road
network graph. We also use the RF model for this modeling
task because in addition to its general pattern-matching capa-
bility, it also captures the tree structure of the shortest-path
tree.

In practice, the total number of possible destinations (Q X
Qy) can be quite large, and collecting sufficient training (and
validation) data from multiple runs to all possible destinations
can be difficult. Instead, in our experiments, we model an at-
tacker who collects data for a subset of possible destinations;
we randomly select a subset of destinations for the training
runs and the validation runs separately, and include interme-
diate locations to create a larger training and validation sets.
For each run with a randomly-chosen destination, the inter-
mediate points along the path as well as the final destination
are used as target locations for samples in the training and
validation sets. The runs in the training set and the validation
set do not necessarily share the same destination. The model
will not be able to predict the target locations in validation
samples that never appear in the training samples. However,
as Figure 9 shows, the intermediate positions along paths
with different destinations may overlap, and the model will
be able to correctly predict the samples that use these interme-
diate positions as their target locations even though the final
destinations of the runs are different. *

Figure 10 shows an example of the training and validation
accuracy of an RF-50 model, which predicts a location label

3See Appendix A for a more detailed discussion on how destinations
of simulation runs in the training and validation sets affect the prediction
accuracy.
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Figure 10: Training, validation accuracy, and validation-error distribution of location
prediction for a dataset of 3,633 samples. For this experiment, the measured (ground-truth)
sequence of the particle-number classes is used as an input.

based on a sequence of the particle-number classes. The maze
is partitioned into a 16-by-16 grid. The experiment is per-
formed using a dataset in which we collected 3,633 samples
based on 100 simulation runs in Maze 1 shown in Figure 14,
where the starting location of the vehicle is in the center of the
maze. We use the samples collected from 80 runs for training
and the remaining 20 runs for validation. For the destinations
of runs in the validation set, only 4 destinations out of the 20
destinations appear in the training set, however, after adding
multiple samples using the intermediate locations also as tar-
get locations, 131 out of the total 135 target locations in the
validation set are covered by the training samples.

We calculate the distance between the predicted location
and the actual location, and show the distribution in Figure 10.
Over 75% of the predictions fall within 3 cells of the ac-
tual target location, indicating the RF model can effectively
capture the relation between locations and sequences of the
particle-number classes.

5 Evaluation

5.1 Evaluation Setup
5.1.1 Evaluation Testbed

We evaluate the attack using two different setups. First, we
use a simulated Jackal robot running in a world created by the
Gazebo simulator for a controlled evaluation environment. We
perform both route and location prediction using the simulated
environment. Second, we use the real-world data collected on
a Nissan LEAF driving around Oxford, UK to evaluate the
attack in a more realistic environment. Because the Oxford
dataset only includes a limited set of routes in the city, we
only evaluate route prediction using the data.

Gazebo: As shown in Figure 11, our testbed hardware has
two computers connected via Ethernet ports. The client has a
dual-core Intel i5-3317u processor, and the host runs a quad-
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Figure 12: 3D physics-based simulation in Gazebo.

core Intel 15-3470 processor with 8 GB of memory and Nvidia
GT710 for graphic rendering. Both of them run Ubuntu 18.04
[16] and support ROS Melodic [8] for interaction with the
physical world.

To create a simulated world, we use Gazebo [3], a ROS-
compatible physics-based simulator. Figure 12 shows exam-
ples of a simulated vehicle and a maze in Gazebo. To effi-
ciently create complex mazes for our experiments, we use an
open-source Gazebo plugin [7] that generates maze models
such as the one in Figure 12(b) based on a text description.

We run the entire software stack (including Ubuntu, ROS,

AMCL and other control software) of a Clearpath Jackal Un-
manned Ground Vehicle (UGV) [5] on the client. The Jackal
UGY, shown in Figure 12(a), is a configurable and extensi-
ble platform commonly used for autonomous vehicle studies.
In the simulations, we attach SICK [12] LMS1xx series Li-
DAR to the Jackal UGV as the sensor for 2D localization. We
use the ROS implementation of AMCL [1] for LiDAR-based
localization.
Oxford: For the real-world experiment, we use the Oxford
RobotCar dataset [46], which is collected on a Nissan LEAF
along a 10 km route around central Oxford, UK, from May
2014 to December 2015. We converted all the data to rosbag
[11] format in order to replay it in the lab environment, and
we run AMCL on a platform with an Intel Xeon E3-1270
four-core processor with 16GB memory, which is similar to
the configuration used by the Apollo autonomous driving
platform [2,9].

For each trace in the dataset, the LIDAR scan data is pro-
vided by SICK LD-MRS LiDAR attached in front of the ve-
hicle. Odometry information is recorded by a NovaTel SPAN-
CPT GNSS/INS receiver [13]. The original RobotCar dataset
uses CSV files and we preprocess them by converting the
LiDAR and odometry data as well as the corresponding times-
tamps into a single rosbag file for evaluation. To provide a
reference map for AMCL, we use the 3-D pointcloud recorded

by the SICK LMS-151 LiDAR on the vehicle. We project
all the points in the pointcloud of heights between 0.5m-2m
(that can be captured by LD-MRS LiDAR) onto a 2-D plane,
which forms the 2-D map used for AMCL.

The RobotCar dataset contains multiple traces along one
route. We divide the route into seven segments, and perform
route prediction using the seven segments as different routes.

5.1.2 Prime+Probe Attack Configurations

We describe the implementation details of the prime+probe
attack on the client computer. The cache configurations of
the processors used are listed in Table 2. We perform attacks
using the L1D cache and the LLC for both platforms. The
L1D attack explores an idealized scenario while the LLC
attack explores less restrictive and more realistic scenario. We
adopt higher sampling rate, smaller steps, and assign attack
and victim processes as real-time processes in the L1D attack.

L1D LLC
Platform CPU Sets [ Size | Sets | Size
Gazebo 15-3317u 64 32K | 4096 | 3M
Oxford E3-1270 64 32K | 8192 | 8M

Table 2: Processor cache configurations used in experiments.

L1D attack: We assign the attack and victim processes on
the same core by assigning them the same CPU affinity value.
We set both attack and victim processes as real-time processes
with the victim process at higher priority. In Linux, a real-time
process cannot be preempted by a userspace non-real-time
process. Thus, the L1D state left by the victim process will not
be destroyed before probing. In addition, the higher priority
of the victim process guarantees that the victim process will
not be preempted by the attack process unless it yields control.
For the L1D attack, we probe every set in the cache, and the
entire cache is probed every 100 ms.

LLC attack: The attack and victim processes may run on
different cores for the LLC attack. We use the MASTIK tookit
[6], which implements the algorithm in [45] that finds the
eviction sets on a physically-addressed LLC, to perform the
prime+probe attack. We probe only one cache set for each
consecutive 64 cache sets, which reduces the CPU utilization
of the attacker and the amount of data generated. The entire
cache is probed every 300 ms instead of 100 ms. Despite the
reduced cache probing rate, our results show that it is still
possible to predict the number of particles with high accuracy.

5.1.3 Training Procedure

Here, we describe the procedure that we use to train the
particle predictor and the route predictor in our evaluation.
Given the measured cache timing, the particle-number class
sequences (i.e., sequence of “High” and “Low” classes), and
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labels for the routes or the locations, there are two possi-
ble procedures for training the two models: (1) sequential
training and (2) cascaded training. As Figure 13(a) shows,
in sequential training, we train the particle predictor using
the measured cache timing and the measured particle-number
class sequences, and then train the route predictor using the
measured particle-number class sequences and the measured
route/location labels.

However, errors may accumulate in the particle predictor
and the route predictor, harming end-to-end prediction accu-
racy. We choose the cascaded training procedure as depicted
in Figure 13(b). First, the particle predictor is trained the
same way. Then, we use the predicted particle-number class
sequences, rather than the measured particle-number class
sequences, together with the measured route/location labels,
to train the route predictor. Finally, the trained particle predic-
tor and the route predictor are used for the end-to-end attack
evaluation.

5.1.4 Maps for Evaluation

Gazebo: We use two mazes shown in Figure 14 and Figure 15,
which are both partitioned into 16-by-16 grids. The topology
of a simple maze ensures that any grid is reachable and there is
only one possible path. Compared to Maze 2, Maze 1 contains
more branches and less straight lanes.

Oxford: the map used in the Oxford dataset is shown in
Figure 16. We select 7 routes labeled from “01” to “07” .

i

Figure 16: Map for the Oxford RobotCar dataset.

Model Train | 2-fold | 5-fold | 10-fold
RF-1 33.6% | 45.7% | 26.4% | 32.9%
RF-10 || 66.4% | 69.3% | 72.9% | 70.7%
RF-20 || 75.0% | 77.9% | 80.0% | 76.4%
RF-50 || 86.4% | 82.3% | 87.1% | 86.4%
RF-100 || 86.4% | 82.1% | 88.6% | 88.6%
RF-200 || 90.0% | 88.6% | 88.6% | 90.0%

Table 3: RF route-prediction accuracy with the varying num-
ber of trees, for the 7 routes in Maze 1.

Model Train | 2-fold | 5-fold | 10-fold

RF-1 T22% | 76.2% | 70.6% | 68.3%
RF-10 || 74.6% | 73.0% | 73.8% | 76.2%
RF-20 || 75.4% | 75.4% | 77.0% | 77.8%
RF-50 || 75.4% | 74.6% | 78.6% | 79.4%
RF-100 || 75.4% | 75.4% | 77.0% | 79.4%
RF-200 || 77.0% | 73.0% | 77.8% | 80.2%

Table 4: RF route-prediction accuracy with the varying num-
ber of trees, for the 7 routes in Oxford.

5.2 Impact of Random Forest Size

We examine the impact of the size of the random forest model
on the route and location prediction accuracy. We use the
ground-truth particle-number classes rather than predicted
particle-number classes in this study, in order to exclude the
effects of particle predictor.

5.2.1 REF Size for Route Prediction

We compare the route prediction accuracy of the RFs with a
different number of trees. Table 3 and Table 4 show the result
for Maze 1 and Oxford, respectively. The general trend is that
the accuracy increases with the number of trees but the added
benefit decreases with the number of trees.
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Model Train | 2-fold | 5-fold

RF-1 82.1% | 53.3% | 62.1%
RF-10 || 86.6% | 69.6% | 72.8%
RF-20 || 87.5% | 64.6% | 73.4%
RF-50 || 88.9% | 65.7% | 74.0%
RF-100 || 88.1% | 66.9% | 74.9%
RF-200 || 87.5% | 67.2% | 74.7%

Table 5: The percentage of predictions that are within 3 grids
from the true target location.

Predicted
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GroundTruth

Figure 17: L1D route prediction results for Gazebo.

Predicted

01 02 03 04 05 06 07
GroundTruth

Figure 18: LLC route prediction results for Gazebo.

5.2.2 REF Size for Location Prediction

We compare the prediction accuracy of the random forest
(RF) with a different number of trees for the training, 2-fold

validation, and 5-fold validation. Table 5 shows the result.

Silimar to the route prediction, the accuracy increases with
the RF size but the added benefit decreases.

5.3 End-to-end Evaluation Results
5.3.1 Route Prediction

We use the RF-100 model for the route prediction task and we

use 10-fold validation for evaluating the prediction accuracy.

Gazebo: We randomly generate seven routes on Maze 1, as

shown in Figure 14, and collect 20 instances for each route.

Figure 17 and Figure 18 show the classification results. The
overall route prediction accuracy is 81.4% and 75% for the
L1D and LLC attacks, respectively.
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Figure 19: L1D route prediction results for the Oxford dataset.
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Figure 20: LLC route prediction results for the Oxford dataset.

Oxford: We use 126 sequences collected on the seven routes
in the Oxford dataset for the route prediction. Figure 19 and
Figure 20 show the confusion matrices of the prediction based
on the L1D side channel and the LLC side channel, respec-
tively. The route prediction accuracy is 74.6% and 73.0% for
the L1D and LLC attacks, respectively.

5.3.2 Location Prediction with Gazebo

We use the RF-50 model for the location prediction task. We
evaluate location prediction using the method described in
Section 4.5.2. For each maze, we randomly select 100 grid
centers as destinations. For a simulation run for each desti-
nation, we record the source-to-grid trajectory and the corre-
sponding cache timing measurements and generate multiple
training or validation samples by using the final destination
as well as intermediate grid points on the trajectory as target
locations. We then put all these generated trajectories and
corresponding cache timing vectors in the dataset. Samples
generated from the first 80 runs are used for training and the
rest are used for validation. For Maze 1 and Maze 2, there are
3,633 and 2,048 samples in the dataset, respectively.

Figure 21 shows the training and validation accuracy of
the models trained using the L1D and LLC attacks on Maze
1. For the location prediction, a wrong prediction label does
not necessarily mean the prediction is far from the actual
location. Thus, we also calculate the Euclidean distance as a
validation error. For the L1D attack, the average validation
error is 2.87 grid cells and 74.6% of the predictions fall within
3 cells. For the LLC attack, the average validation error is

USENIX Association

29th USENIX Security Symposium 869



Training Set

Validation Set
oo

Validation error distribution
6 0.6

250 L 250 .
<81 ‘ [, [ Model Prediction Error
8 v 05 [ 1Random Prediction Error 05

200 200
3 ' 3
© © 0.4 0.4
- -
5 150 5 150
5] 8 0.3 0.3
o o
- —
3 100 2 100
3 3 0.2 0.2
=] © o
4 o
& 50 & 50 8 04 0.1

%
650 ()} 0 0
50 100 150 200 250 50 150 200 250 0 5 10 15 20

Ground Truth Location Label

Ground Truth Location Label

Prediction error (grids)

(a) Location prediction using L1D.

Training Set

Validation Set

Validation error distribution
6 0.6

_ | Model Prediction Error
[1Random Prediction Error

0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2

0.1 0.1
[oX6]
0]
] 0 0

5 250 ® O O
200
B B
Qo Qo
© [
- )
s S 180
© ®
[$] o
o o
- -
kel - 100
[ Q
S S
o e
jd <
i T 50
D
50 100 150 200 250 50

Ground Truth Location Label

150 200 250 0 5 10 15 20
Ground Truth Location Label

Prediction error (grids)

(b) Location prediction using LLC.

Figure 21: Training, validation accuracy, and validation error distributions of end-to-end location prediction with Maze 1.

3.17 cells and 70.1% of the predictions fall within 3 cells. For
random guesses, the average error is 6.01 cells and 20.2% of
the predictions fall within 3 cells.

For Maze 2, the average validation error is 2.58 grid cells
and 75.2% of the predictions fall within 3 cells for the L1D
attack, and the average validation error is 3.61 cells and 68.7%
of the predictions fall within 3 cells for the LLC attack. The
average error is 7.67 cells and 13.2% of the prediction fall
within 3 cells for random guesses.

5.3.3 L1D Cache vs. LLC Attacks

We summarize the prediction accuracy of the L1D cache
and LLC side-channel attacks for both mazes and RobotCar
experiments in Table 6. As mentioned in Section 5.1.2, the
sampling periods are 100 ms and 300 ms, respectively. The
table also shows the results of L1D attacks with a sampling
period of 300 ms, matching that of the LLC attack.

The results show that both L1D and LLC attacks can predict
a route or a location. For the L1D attacks, the prediction
accuracy is similar for both sampling periods. The accuracy

is slightly higher for the L1D attack than for the LLC attack.

However, the L1D attack is more difficult to perform as it
requires the attack and victim processes to both run on the
same core.

[ Task-Period | Route [ Location |
Map Maze 1 [ Oxford Maze 1 Maze 2
Metric Accuracy error 3-grid error 3-grid

L1D-100ms 81.4% 74.6% 2.87 74.6% 2.58 75.2%
L1D-300ms 80.0% 73.0% 3.03 73.5% 2.47 78.8%
LLC-300ms 75.0% 73.0% 3.17 70.1% 3.61 68.7%
Random-N.A. 14.3% 14.3% 6.01 20.2% 7.67 13.2%

Table 6: Comparison of prediction accuracy of the L1D attack
with different sampling periods, the LLC attack, and random
guess.

6 Discussion

6.1 Processor Architecture

We study and demonstrate the proposed side-channel attack
on autonomous vehicles using an x86 platform. The x86 ar-
chitecture is widely used in autonomous vehicle development
including multiple teams during the DARPA Grand Chal-
lenge [22,23,25,51,52,67] as well as more recent commercial
developments by Baidu [2], Waymo [19, 20], and Uber [4].
While we did not investigate the proposed attacks on other
architectures such as ARM, we believe that the attack can
be generalized to other architectures given that cache timing-
channel attacks have been demonstrated in many different
platforms.
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6.2 Generality of the Vulnerability

We rely on the adaptive behavior of AMCL to perform our at-
tack. In general, we believe that the high-level observation that
an adaptive algorithm can leak information about a vehicle’s
physical state can be generalized to other cyber-physical sys-
tem (CPS) software whose memory access pattern depends on
private physical state. Obviously, not all control/localization
algorithms have such a vulnerability. For example, the data
access pattern of a Kalman filter or a PID control algorithm is
largely independent of input values, and does not leak phys-
ical state. However, we believe that the adaptive behaviors
will become increasingly common in autonomous system
software for two reasons:

1. To ensure safety and improve estimation accuracy, most
autonomous vehicles have two or more sources of sen-
sor inputs that are fused for better estimation. A simple
Kalman filter-based estimation method does not work
well in this scenario. Adaptive particle filter-based es-
timation is more suitable for the state estimation of a
non-Gaussian distribution in a high-dimensional space.

2. In addition to estimation, many perception algorithms,
such as object detection [59] and recognition [58], are
also adaptive and have input-dependent memory access
patterns. The proposed cache side-channel attack may be
extended to exploit such perception algorithms to infer
private physical information.

We note that if multiple software components with adaptive
memory access patterns run on the same machine simultane-
ously, their memory accesses may interfere with each other,
exhibiting more complex patterns. In that case, the machine
learning model for prediction will need to either deal with
interference as noise or be trained with the combined memory
access patterns.

6.3 Limitations of the Attack Model

We provide a proof-of-concept end-to-end attack on inferring
the route/location of an autonomous vehicle. To be successful,
the proposed attack needs a victim autonomous vehicle to
satisfy a few key assumptions:

e The autonomous vehicle uses a control software module
with adaptive computing behavior (e.g., AMCL) where
memory access patterns depend on the vehicle’s physical
state;

e The attacker can control a software module on the vehi-
cle (e.g., via installing a third-party software module or
compromising an existing module);

e The software module controlled by the attacker shares a
cache with the victim control software module.

Given these assumptions, an attacker can deploy an attack
program on the victim’s computer system and spy on the con-
trol software module through a cache side channel. We believe
that these assumptions are reasonable for future autonomous
vehicles.

First, as mentioned in Section 6.2, software modules with
adaptive computing behavior (including AMCL) have been
widely used in research/industry prototypes. For efficiency,
it makes an intuitive sense to dynamically adjust the amount
of computation based on uncertainty or environments at run-
time.

Second, connected vehicles with an Internet connection and
an integrated infotainment system demand an open software
architecture that exposes a wider attack surface to remote
attackers. For example, it is likely that an infotainment system
will allow third-party applications to be downloaded on the
vehicle’s computer system. Studies on connected vehicles also
show that a vehicle’s onboard computers contain software
vulnerabilities similar to traditional computers and may be
compromised by remote exploits.

Third, most vehicles are cost-sensitive, and there will be
pressure to lower hardware costs by having multiple soft-
ware components share hardware resources. According to
an industry report [10], the automobile electronic cost will
increase from 35% to 50% of the total car cost from 2020 to
2030. In fact, some companies are already adopting shared
hardware in their products. For example, Visteon’s Smart-
Core [17] runs both non-safety-critical infotainment system
and safety-critical advanced driving-assistance systems on the
same processor.

On the other hand, the proposed attack can be prevented
by breaking one of the three key assumptions. For example,
for safety, future autonomous vehicle platforms may use two
different hardware platforms for safety-critical control tasks
and network-connected infotainment functions.

6.4 Difficult-to-Predict Routes

We rely on the number of particles in AMCL for route/location
prediction. Several real-world scenarios may exhibit less dis-
tinguishable characteristics in the traces of the number of
particles, reducing the prediction accuracy.

o Identifying different routes on long highways: highways
are designed for smooth traffic and generally the number
of particles remain at minimum between entry and exit.

o Identifying different routes in a grid road network (e.g.,
downtown area): since our model does not explicitly
distinguish left and right turns, the prediction might be
pointing to a mirrored route/location.

However, in many scenarios, a vehicle will go through
suburban, downtown roads and highways, and a route through
a combinations of these roads exhibits a distinctive trace that
can be distinguished from other routes.
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7 Related Work

Side-Channel Attacks for Physical Properties In this pa-
per, we use the cache side-channel attack to infer physical
properties such as a vehicle’s route or location. In addi-
tion to the cache side channel, there are other side channels
that can be used to learn physical properties. For example,
Michalevsky et al. observe that cellular signal strength, which
is directly viewable in the smartphone software without privi-
lege, is location-dependent [49]. By recording the time series
of the signal strength, they are able to track the location of
the smartphone. Similarly, Han et al. use the accelerometers
on smartphones as a data source for location inference [39].

In addition to inferring physical location information, side
channels can also be used to identify vehicle drivers. For
example, Enev et al. [30] show that the driver of an automobile
can be inferred by looking at the brake pedal and other types
of information on the CAN bus while the vehicle is moving.

These attacks assume that an attacker has direct access
to information on the physical world or behaviors such as
the signal strength/accelerometer. To prevent such attacks,
the accesses can be blocked by the OS. On the other hand,
the attack on this paper exploits microarchitecture-level side
channels and show that a program’s memory access patterns
can also leak information on the physical world.

Non-Crypto Cache Side Channel Our side channel attack
is a non-cryptographic attack. Previous studies have also used
the cache side channel for other types of non-cryptographic
attacks. For example, Yan et al. use the cache side-channel
attack to extract the hyperparameters of a neural network [70].
Shusterman et al. propose the cache occupancy channel,
which records the number of evictions for each memory ad-
dress during a fixed time period, to identify the website on a
browser [63]. These attacks target relatively static information
that does not change during the attack. There are also attacks
on more dynamic assets. For example, Gruss et al. show that
keystrokes can be inferred in real time using a cache side-
channel attack [38]. Brasser et al. use cache access patterns
to reveal a DNA sequence streamed into an SGX enclave for
analysis at run time [24]. In this attack, the information can
be inferred from a transient cache profile without considering
the history. In this paper, we expand the scope of the non-
crypto cache side-channel attacks by showing that a vehicle’s
route/location can also be learned from memory access pat-
terns. In order to infer the route/location from memory access
patterns that change quickly, our attack considers a history of
cache profiles using machine-learning models.

Side-Channel Attack Protection We leverage cache side
channels to extract the physical information of the vehicle.
There are many proposals for defending against cache side-
channel attacks. They can be classified into two categories,

namely isolation and randomization. We discuss some of the
representative papers here.

Isolation includes spatial isolation (partition) or temporal
isolation (scheduling). For partition, DAWG [42] adopts way-
partitioning to prevent side channel leakage. NoMo [29] pro-
vides dynamic cache reservation to active threads to prevent
cache side-channel attacks. STEALTHMEM [41] partitions
the LLC into a non-secure region and a secure region using
page coloring. Temporal isolation leverages the observation
that the cache side-channel attacks need coordinated timing
between attack and victim programs in order to observe the
cache state. The scheduler can enforce a certain scheduling
policy to prevent side channel leakage [33,65,68].

For randomization, Wang et al. proposed the random per-
mutation cache (RPcache) to prevent cache side-channel leak-
age [69]. More recently, Qureshi et al. proposed encrypted-
address and remapping to prevent cache attack [56,57]. These
approaches randomize the memory address. Additionally, we
can also randomize the clock that an attacker needs to use to
obtain cache timing measurements. A randomized clock can
prevent an attack program from getting precise timing and
inferring correct state of the cache [47,66].

Many protection mechanisms have been developed, but mi-
croarchitectural side-channel protection is not widely adopted
in today’s computing systems. For strong protection, many of
these techniques also require hardware changes, preventing
adoption by existing systems. Our study shows a new threat
for autonomous vehicles, motivating stronger side-channel
protection in future processor designs.

8 Conclusion

In this paper, we show that the cache side-channel attack can
be used to stealthily infer routes and locations of autonomous
vehicles. Our results show that the location privacy of an
autonomous vehicle can be compromised when its percep-
tion and control software share hardware resources with less
trusted software. Without a new processor design whose iso-
lation guarantee includes time channels, our findings suggest
that separate hardware should be used for trusted autonomous
driving software and the rest of the system.
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A Impact of Destination Selection on Loca-
tion Prediction

The proposed classification algorithm cannot predict a loca-
tion that is not in the training set. Our location prediction
experiments are performed using randomly-selected desti-
nations where the training set and the validation set contain
different sets of destinations. Thus, we generate multiple train-
ing/validation samples using the intermediate locations along
each path. The intermediate locations help creating more sam-
ples in both sets that share the same location label even when
the destinations of the entire paths are different. For exam-
ple, a simulation run with a length L to one destination has
L — 1 intermediate locations, and generates L samples with L
different target locations to predict. Intuitively, if the simula-
tion destinations in the training set and the validation set are
spatially close, there will be more intermediate locations that
are common between the two sets, which will lead to more
validation samples whose target locations exist in the training
set.
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Figure 22: Both Figure 23: Train- Figure 24: Train-
the training and ing set destina- ing set destina-
validation sets tions (black) and tions (black) and
contain the iden- validation set des- validation set des-
tical set of the tinations (white) tinations (white)
destinations on are interleaved. are separated.
the map (grey).

A.1 Destination Selection Strategy

Here, we study different strategies for selecting destinations
of simulation runs for the training set and the validation set
and their impacts on prediction accuracy.

Identical Destinations In this strategy, the training set and
the validation set have an identical set of simulation desti-
nations (Figure 22). We select all 256 locations in Maze 1.
For each destination, we use two simulation runs, one for the
training set and one for the validation set, for the total 512
runs.

Interleaved Destinations In this strategy, the training set
and the validation set have interleaved destinations, forming a
chessboard pattern (Figure 23). There is no overlap between
the training and validation sets. We select the “black” destina-
tions for training and the “white” destinations for validation.
For each destination, we have two runs for the total 512 runs.
The interleaved strategy leads to mutually exclusive desti-
nations in the training and the validation sets, but for each
destination in the validation sets, there is a destination in the
training set is just one grid away.

Separated Destinations In this strategy, the training set
and the validation set are spatially separated. (Figure 24). We
use the bottom part of Maze 1 for the training set and the top
part of Maze 1 for the validation set. For each destination, we
have two runs for the total 512 runs. In this strategy, the desti-
nations in the training set and the validation set are not only
mutually exclusive, but also spatially far part in the opposite
directions.

In Table 7, we compare the number of overlapped target
locations between the training set and the validation set for
different destination-selection strategies. The table shows the
results for the three strategies discussed above as well as the
random-selection scheme described in Section 4.5.2. Note
that the target locations in the table include the intermediate

[ Strategy “ Identical [ Interleaved [ Separated [ Random ]

Target ToFal. 256 224 178 135

locations In training 256 199 84 131
Percentage 100 % 88.8 % 47.2 % 97.0 %

Total 8,627 8,650 10,954 726

Samples In training 8,627 8,601 9,408 720
Percentage 100 % 99.4 % 85.9 % 99.2 %

Table 7: The number and the percentages of the target loca-
tions and samples in the validation set under different destina-
tion selection strategies.

[ Strategy “ Identical [ Interleaved [ Separated [ Random ]
3-grid accuracy 75.9% 77.3% 50.7% 74.6 %
Mean error 2.49 2.40 5.44 2.87

Table 8: Prediction results using different strategies for choos-
ing destinations in the training and the validation sets.

locations in each simulation run. The table shows the total
number of unique target locations in the validation set as

well as the number of target locations that also appear in at
least one sample in the training set. The samples indicate the
individual samples in the validation set that are used to obtain
the prediction accuracy; multiple samples may have the same
target location. For the identical-destination strategy, 100%
of the target locations in the validation sets are covered by the
training set. For the interleaved strategy, 88.8% of the target
locations and 99.4% of the validation samples are covered
by the training set. However, in the separated strategy, only
47.2% of the target locations are covered by the training set.
The uncovered target locations have location labels not found
in the training set, thus, they will lead to the same number of
prediction errors. As a consequence, the prediction accuracy
for the separated destination will be lower.

A.2 Prediction Results

We compare the prediction results of the three strategies and
the random destination strategy in Table 8. The prediction ac-
curacy for the interleaved, identical, and random destinations
are similar, while the accuracy for separated destinations is
significantly lower. This is consistent with the low percent-
age of the target locations that are covered by the training
set under the separated-destination strategy. The result shows
that the spatial proximity of destinations in the training and
validation sets, rather than the exact overlap of the destina-
tions in the training and the validation set, is important for the
prediction accuracy. The random destination strategy, which
we used in Section 4 and Section 5, preserves the spatial prox-
imity of the destinations between the training and validation
sets. Thus, the prediction accuracy is similar to that of using
identical and interleaved destinations strategies.

876 29th USENIX Security Symposium

USENIX Association



	Introduction
	Threat Model
	Background
	Autonomous Vehicle Architecture
	Adaptive Monte-Carlo Localization
	Cache Side Channel

	The Proposed Attack
	Vulnerability in AMCL
	Attack Overview
	Acquiring Victim Cache Access Pattern
	Particle Predictor
	Route Predictor
	Predicting Route
	Predicting Location


	Evaluation
	Evaluation Setup
	Evaluation Testbed
	Prime+Probe Attack Configurations
	Training Procedure
	Maps for Evaluation

	Impact of Random Forest Size
	RF Size for Route Prediction
	RF Size for Location Prediction

	End-to-end Evaluation Results
	Route Prediction
	Location Prediction with Gazebo
	L1D Cache vs. LLC Attacks


	Discussion
	Processor Architecture
	Generality of the Vulnerability
	Limitations of the Attack Model
	Difficult-to-Predict Routes

	Related Work
	Conclusion
	Impact of Destination Selection on Location Prediction
	Destination Selection Strategy
	Prediction Results


