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ABSTRACT
We present the first set of cosmological baryonic zoom-in simulations of galaxies including dissipative self-interacting dark
matter (dSIDM). These simulations utilize the Feedback In Realistic Environments galaxy formation physics, but allow the
dark matter to have dissipative self-interactions analogous to standard model forces, parametrized by the self-interaction cross-
section per unit mass, (σ /m), and the dimensionless degree of dissipation, 0 < fdiss < 1. We survey this parameter space,
including constant and velocity-dependent cross-sections, and focus on structural and kinematic properties of dwarf galaxies
with Mhalo ∼ 1010−11 M# and M∗ ∼ 105−8 M#. Central density profiles (parametrized as ρ ∝ rα) of simulated dwarfs become
cuspy when (σ/m)eff ! 0.1 cm2 g−1 (and fdiss = 0.5 as fiducial). The power-law slopes asymptote to α ≈ −1.5 in low-mass
dwarfs independent of cross-section, which arises from a dark matter ‘cooling flow’. Through comparisons with dark matter only
simulations, we find the profile in this regime is insensitive to the inclusion of baryons. However, when (σ/m)eff ' 0.1 cm2 g−1,
baryonic effects can produce cored density profiles comparable to non-dissipative cold dark matter (CDM) runs but at smaller
radii. Simulated galaxies with (σ/m) ! 10 cm2 g−1 and the fiducial fdiss develop significant coherent rotation of dark matter,
accompanied by halo deformation, but this is unlike the well-defined thin ‘dark discs’ often attributed to baryon-like dSIDM.
The density profiles in this high cross-section model exhibit lower normalizations given the onset of halo deformation. For our
surveyed dSIDM parameters, halo masses and galaxy stellar masses do not show appreciable difference from CDM, but dark
matter kinematics and halo concentrations/shapes can differ.
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1 IN T RO D U C T I O N

Despite its veiled nature, dark matter is considered the main driver
of structure formation in the Universe. The current paradigm – the
cosmological constant plus cold dark matter ($CDM) cosmological
model – has been successful in describing the large-scale structures
in the Universe (Blumenthal et al. 1984; Davis et al. 1985). This
model assumes that dark matter is non-relativistic and is effectively
collisionless, apart from its gravitational interactions with itself
and standard model particles. However, in recent decades, evidence
from astrophysical observations and absence of signal from particle
physics experiments have motivated conjectures on alternative dark
matter models. On the astrophysics side, the $CDM model faces
significant challenges in matching observations at small scales (see
a recent review Bullock & Boylan-Kolchin 2017). For example, the
core-cusp problem states that the central profiles of dark matter
dominated systems, e.g. dwarf spheroidal galaxies and low surface
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brightness galaxies (LSBs), are cored (e.g. Flores & Primack 1994;
Moore 1994; de Blok, McGaugh & Rubin 2001; Gentile et al.
2004; Simon et al. 2005; Kuzio de Naray et al. 2006; Spano et al.
2008; Kuzio de Naray & Kaufmann 2011; Kuzio de Naray &
Spekkens 2011; Oh et al. 2011; Walker & Peñarrubia 2011; Chan
et al. 2015; Oh et al. 2015; Zhu et al. 2016), in contrast to the
universal cuspy central density profile found in dark matter only
(DMO) simulations (Navarro, Frenk & White 1996, 1997; Moore
et al. 1999; Klypin et al. 2001; Navarro et al. 2004; Diemand et al.
2005). The too-big-to-fail (TBTF) problem states that a substantial
population of massive concentrated subhaloes appears in DMO
simulations, which is incompatible with the stellar kinematics of
observed satellite galaxies around the Milky Way or M31 (Boylan-
Kolchin, Bullock & Kaplinghat 2011; Boylan-Kolchin, Bullock &
Kaplinghat 2012; Tollerud, Boylan-Kolchin & Bullock 2014). This
mismatch has been extended to field dwarf galaxies in the Local
Group (Garrison-Kimmel et al. 2014; Kirby et al. 2014) and be-
yond (Papastergis et al. 2015). Although the inclusion of bursty star
formation and feedback processes has been shown to alleviate the
tensions (e.g. Governato et al. 2010; Pontzen & Governato 2012;
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Brooks & Zolotov 2014; Madau, Shen & Governato 2014; Sawala
et al. 2016; Wetzel et al. 2016; Garrison-Kimmel et al. 2019a), a
population of compact dwarf galaxies in the local Universe are
missing in cosmological simulations of CDM (plus baryons) that
can produce dark matter cores (e.g. Santos-Santos et al. 2018; Jiang
et al. 2019; Garrison-Kimmel et al. 2019a). Relate to this, the
rotation curves of dwarf galaxies appear to be more diverse than
CDM predictions in the field (Oman et al. 2015) and Milky Way
satellites (Kaplinghat, Valli & Yu 2019). Therefore, it is important
to explore how non-standard dark matter models – in conjunction
with baryonic physics – could help solve the small-scale anomalies.
On the particle physics side, one of the most popular candidates for
CDM (the class of weakly interacting massive particles) has not been
discovered despite decades of efforts and a significant proportion of
its parameter space being ruled out (e.g. Bertone, Hooper & Silk
2005; Bertone 2010; Aprile et al. 2018). The null results in collider
production and direct/indirect detection experiments of classical
CDM candidates have motivated ideas about alternative dark matter
models (e.g. Hogan & Dalcanton 2000; Spergel & Steinhardt 2000;
Dalcanton & Hogan 2001; Buckley & Peter 2018) and explorations of
the rich phenomenology from potential non-gravitational dark matter
interactions. Many of these alternative dark matter models could
behave dramatically differently from CDM at astrophysical scales
and could potentially solve the small-scale problems mentioned
above.

Self-interacting dark matter (SIDM) is an important category of
alternative dark matter models that has been proposed and discussed
in the literature for about three decades (e.g. Carlson, Machacek &
Hall 1992; de Laix, Scherrer & Schaefer 1995; Firmani et al.
2000; Spergel & Steinhardt 2000). It is well motivated by hidden
dark sectors as extensions to the standard model (e.g. Ackerman
et al. 2009; Arkani-Hamed et al. 2009; Feng et al. 2009; Feng,
Kaplinghat & Yu 2010; Loeb & Weiner 2011; van den Aarssen,
Bringmann & Pfrommer 2012; Cyr-Racine & Sigurdson 2013;
Tulin, Yu & Zurek 2013; Cline et al. 2014). The introduction of
SIDM could potentially solve some small-scale problems (see the
review of Tulin & Yu 2018, and references therein). Dark matter
self-interactions enable effective heat conduction and could result
in an isothermal distribution of dark matter with cores at halo
centres, which alleviates the core-cusp problem. Meanwhile, it could
also make dark matter haloes (subhaloes) less dense and alleviate
the TBTF problem. Previous DMO simulations have found that a
self-interaction cross-section of ∼ 1 cm2 g−1 could solve the core-
cusp and TBTF problems in dwarf galaxies simultaneously (e.g.
Vogelsberger, Zavala & Loeb 2012; Rocha et al. 2013; Zavala,
Vogelsberger & Walker 2013; Elbert et al. 2015). In addition, SIDM
with comparable cross-sections also have the potential to explain
(e.g. Creasey et al. 2017; Kamada et al. 2017; Sameie et al. 2020) the
diversity of rotation curves of dwarf galaxies (Oman et al. 2015;
Kaplinghat et al. 2019). Following studies of galaxy clusters in
SIDM suggested a cross-section of ∼ 0.1 cm2 g−1 (e.g. Kaplinghat,
Tulin & Yu 2016; Elbert et al. 2018), which motivates the velocity-
dependence of self-interaction cross-section. These previous studies
on SIDM focused on elastic dark matter self-interactions. However,
in many particle physics realizations of SIDM, dark matter have
inelastic (or specifically dissipative) self-interactions (e.g. Arkani-
Hamed et al. 2009; Kaplan et al. 2010; Alves et al. 2010a; Loeb &
Weiner 2011; Cyr-Racine & Sigurdson 2013; Boddy et al. 2014;
Cline et al. 2014; Wise & Zhang 2014; Schutz & Slatyer 2015; Foot &
Vagnozzi 2015a; Boddy et al. 2016; Finkbeiner & Weiner 2016;
Blennow, Clementz & Herrero-Garcia 2017; Zhang 2017; Gresham,
Lou & Zurek 2018). The impact of dissipative processes of dark

matter has not yet been explored in the context of cosmological
structure formation.

In addition, the focus on purely elastic SIDM (eSIDM) in
previous studies has been motivated by solving some small-scale
problems (making galaxy centres less dense). Since dissipative dark
matter self-interactions tend to make centres of haloes denser to
first-order consideration, dissipative SIDM (dSIDM) was largely
omitted in previous studies of SIDM. However, apart from dark
matter physics, some baryonic physics processes, including bursty
star formation and stellar/supernovae feedback and tidal disruption,
have also been shown to strongly impact the structure of dark matter
haloes and help alleviate some small-scale problems. Specifically,
gas outflows driven by stellar/supernovae feedback could create
fluctuations in the central potential, which irreversibly transfer
energy to CDM particles and generate dark matter cores (Governato
et al. 2010, 2012; Pontzen & Governato 2012; Madau et al. 2014).
Some more recent CDM simulations could resolve the small-scale
problems by more realistic modelling of gas cooling, star formation
and stellar/supernovae feedback (e.g. Brooks & Zolotov 2014;
Dutton et al. 2016; Fattahi et al. 2016; Sawala et al. 2016; Wetzel
et al. 2016; Buck et al. 2019; Garrison-Kimmel et al. 2019a). The
interplay between baryons and SIDM in galaxy formation has been
more carefully considered in subsequent SIDM simulations that
include baryonic physics (e.g. Vogelsberger et al. 2014; Elbert et al.
2015; Fry et al. 2015; Robles et al. 2017; Despali et al. 2019; Fitts
et al. 2019; Robles, Bullock & Boylan-Kolchin 2019). The inclusion
of baryons substantially reduces the distinct signatures in dwarf
galaxies caused by elastic dark matter self-interactions, especially in
bright dwarfs with r1/2 ! 400 pc (Fitts et al. 2019). This could hide
dark matter physics that lead to enhanced central density originally,
other than those proposed specifically to lower the central density.
The parameter space for dSIDM, as an example of such models,
reopens due to these recent developments. The contraction of the
halo driven by dSIDM interactions could help produce the compact
dwarf galaxies found in the local Universe that are missing in CDM
simulations plus baryons (e.g. Santos-Santos et al. 2018; Garrison-
Kimmel et al. 2019a; Jiang et al. 2019) and increase the diversity of
dwarf galaxy rotation curves.

A finite self-gravitating system has negative heat capacity and
the heat conduction will eventually result in the ‘gravothermal
catastrophe’ of the system (e.g. Lynden-Bell & Wood 1968; Lynden-
Bell & Eggleton 1980). In the eSIDM case, effective heat conduction
is realized by dark matter self-interactions and the inner cores
of isolated eSIDM haloes will ultimately experience gravothermal
collapse and cuspy density profiles will reappear (e.g. Burkert 2000;
Kochanek & White 2000; Balberg, Shapiro & Inagaki 2002; Colı́n
et al. 2002; Koda & Shapiro 2011; Vogelsberger et al. 2012; Elbert
et al. 2015; Correa 2021). However, for the most favoured elastic
self-interaction cross-sections ∼ 0.1–1 cm2 g−1 (assuming velocity-
independent), the ‘gravothermal catastrophe’ would not have enough
time to happen in haloes within their typical lifetime. In the presence
of dissipative self-interactions, the gravothermal evolution of a halo
can be accelerated significantly, which affects the structure of dwarf
galaxies within a Hubble time. Essig et al. (2019) recently used a
semi-analytical fluid model to investigate the structure of isolated
spherically symmetric haloes in dSIDM and presented the first
constraint on the energy loss and cross-section of dSIDM. This work
was followed by Huo, Yu & Zhong (2019) with non-cosmological
N-body simulations of isolated dark matter haloes with the NFW
profile (Navarro et al. 1996) initially. Moreover, when dissipation
of dark matter self-interaction is strong enough, a patch of dark
matter could lose its kinetic energy faster than rebuilding hydrostatic
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equilibrium with surrounding matter. Substructures of dissipative
dark matter, e.g. dark discs and dark stars, could be generated
under this circumstance. For example, dark matter scenarios with
a highly dissipative component (sourced by an U (1) -like hidden
sector) have been studied by Fan et al. (2013a,b), Fan, Katz &
Shelton (2014), Randall & Scholtz (2015), Foot (2013), Foot &
Vagnozzi (2015a), Foot & Vagnozzi (2016), and Hyeok Chang
et al. (2019). Randall & Scholtz (2015) claimed that a dark disc
composed of highly dissipative dark matter could appear and help
explain the exotic mass-to-light ratios of some Milky Way satellites.
However, the analytical or semi-analytical studies discussed above
were limited to isolated DMO haloes with various geometrical
simplifications. The influences of baryonic physics, hierarchical halo
mergers, deviations from simple fluid approximations in dark matter
haloes were not properly captured in these previous studies. In
addition, multicomponent dark matter with inelastic interactions have
been considered in simulations in Todoroki & Medvedev (2019) and
Vogelsberger et al. (2019), but the dominant process is exothermic
in these studies.

In this paper, we perform the first study of dSIDM models using
cosmological baryonic (hydrodynamical) zoom-in simulations of
galaxies. We aim at studying the evolution tracks of dSIDM haloes
and looking for properties of dSIDM haloes that distinguish them
from their CDM counterparts. These simulations have incorporated
the FIRE-2 model (Hopkins et al. 2018) for hydrodynamics and
galaxy formation physics that could produce galaxies consistent with
various local and high-redshift observables in collisionless CDM
simulations (e.g. Garrison-Kimmel et al. 2018; Ma et al. 2018;
Garrison-Kimmel et al. 2019a; Hafen et al. 2019). The set-up also
enables predictions in the regime where hierarchical mergers and
strong non-linear gravitational effects could drive systems away from
the idealized analytical solutions. All these factors allow more robust
constraints on dSIDM models. The paper is arranged as follows:
In Section 2, we discuss the details of the simulations and briefly
introduce the dSIDM models we study. We derive relevant time-
scales for dSIDM haloes analytically in Section 3 and study the
stellar masses and host halo masses of simulated dwarf galaxies in
Section 4.2. Then, we present the mass density profiles of simulated
dwarf galaxies and quantitatively study the impact of dissipation on
galaxy structure in Section 4.3. We study the kinematic properties of
dark matter and the shapes of haloes in simulations in Sections 4.4
and 5. Subsequently, in Section 6, we use analytical methods to
explain the phenomena in dSIDM simulations and summarize the
evolution pattern of dSIDM haloes in different regimes. In Section 7,
we explore the results of simulations with other choices of fdiss as
well as the DMO simulations and compare their differences from the
fiducial simulations. The summary and conclusion of the paper are
presented in Section 8.

2 SI M U L AT I O N S

2.1 Overview of the simulation suite

We present the new FIRE-2 dSIDM simulation suite, which con-
sists of ∼ 45 cosmological hydrodynamical zoom-in simulations of
galaxies chosen at representative mass scales with CDM, eSIDM, and
dSIDM models. The simulations here are part of the Feedback In Re-
alistic Environments project (FIRE; Hopkins et al. 2014), specifically
the ‘FIRE-2’ version of the code with details described in Hopkins
et al. (2018). The simulations adopt the code GIZMO (Hopkins 2015),
with hydrodynamics solved using the mesh-free Lagrangian Go-
dunov ‘MFM’ method. The simulations include heating and cooling

from a meta-galactic radiation background and stellar sources in
the galaxies, star formation in self-gravitating molecular, Jeans-
unstable gas and stellar/supernovae/radiation feedback. The FIRE
physics, source code, and numerical parameters are identical to those
described in Hopkins et al. (2018), Garrison-Kimmel et al. (2019b).
For dwarf galaxies, the baryonic particle masses of simulations
are mb ) 250−2000 M#. For Milky Way-mass galaxies, the high-
resolution ‘latte’ runs have mb = 7000 M# while the low-resolution
runs have mb = 56 000 M#. In all simulations, the dark matter par-
ticle masses are roughly five times larger, according to the universal
baryon fraction. For dwarf galaxies, the minimum gravitational force
softening length reached by gas in the simulations is hb ) 0.5−2 pc.
For Milky Way-mass galaxies, the value is hb ) 0.3−0.5 pc (1.4 pc)
for high-resolution (low-resolution) runs. The physical dark matter
force resolution of the simulations of dwarf (Milky Way-mass)
galaxies is εdm = 40 pc (30 pc). Force softening for gas uses the fully
conservative adaptive algorithm from Price & Monaghan (2007),
meaning that the gravitational force assumes the identical mass
distribution as the hydrodynamic equations (resulting in identical
hydrodynamic and gravitational resolution). The simulations are
identified with the main ‘target’ halo around which the high-
resolution zoom-in region is centred. In post-processing, we identify
subhaloes (of the main ‘target’ halo) with the ROCKSTAR (Behroozi,
Wechsler & Wu 2013a) halo finder and create merger trees of haloes
(subhaloes) with the code CONSISTENT TREES (Behroozi et al. 2012,
2013b). As shown in Table 1, the simulation suite consists of one
ultra-faint dwarf (m09), three classical dwarf galaxies (m10q, m10b,
m10v), three bright dwarf galaxies (m11a, m11b, m11q), and four
Milky Way-mass galaxies (m11f, m12i, m12f, m12m). The analysis
in this paper will primarily focus on the classical and bright dwarf
galaxies and we defer analysis on Milky Way-mass galaxies to a
follow-up work.

2.2 Dissipative dark matter parametrization

Dark matter self-interactions are simulated in a Monte Carlo fashion
following the implementation in Rocha et al. (2013) and the scat-
tering process is assumed to be isotropic. In this paper, we study a
simplified empirical dSIDM model: two dark matter particles lose a
constant fraction, fdiss, of their kinetic energy in the centre of momen-
tum frame when they collide with each other. The extreme version of
this type of interaction is the fusion process (fdiss = 1) of dark matter
composites. Such model has been discussed in the context of self-
interacting asymmetric dark matter (e.g. Detmold, McCullough &
Pochinsky 2014; Wise & Zhang 2014, 2015; Krnjaic & Sigurdson
2015; Gresham et al. 2018). Self-interaction mediated by a scalar
mediator can give rise to strong attractive forces, and large bound
states of dark matter (‘nuggets’) can form in the absence of competing
repulsive forces (Wise & Zhang 2014; Gresham et al. 2018). These
dark nuggets are the smoking gun signature of fermionic asymmetric
dark matter (see Zurek 2014, for a review). The residual self-
interaction between nuggets is highly dissipative and mimics the
fusion process of nucleons.

Beyond this, dissipative portals present in other SIDM models
as well. For strongly-interacting dark composites in a hidden non-
Abelian sector (e.g. Alves et al. 2010a; Boddy et al. 2014; Cline et al.
2014), dark matter will consist of dark baryons/mesons and glueballs
(or glueballinos if incorporating supersymmetry). For example,
inelastic scattering to excited state(s) and glueball emission will be
possible when glueballinos have mass mχ * $ (Boddy et al. 2014).
Hyperfine-transitions of dark mesons/baryons have been suggested in
Alves et al. (2010a,b) and the late-time up-scattering to excited states
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Table 1. Simulations of the FIRE-2 dSIDM suite. The simulated galaxies are labelled and grouped by their halo masses. They are classified into
four categories: ultra-faint dwarfs; classical dwarfs, with typical halo mass" 1010 M#; bright dwarfs, with typical halo mass ∼ 1010−11 M#; Milky
Way-mass galaxies, with typical halo mass ∼ 1012 M#. These haloes are randomly picked from the standard FIRE-2 simulation suite (Hopkins
et al. 2018), sampling various star formation and merger histories. All units are physical. (1) Name of the simulation. ‘l.r.’ (‘h.r.’) indicates low
(high)-resolution version of the simulation. (2) Mcdm

halo : virial mass of the halo (definition given in Section 4.2) in the CDM simulation with baryons
at z = 0. (3) Rcdm

vir : virial radius of the halo (definition given in Section 4.2) in the CDM simulation with baryons at z = 0. (4) Mcdm
∗ : Galaxy

stellar mass (see Section 4.2) in the CDM simulation at z = 0. (5) rcdm
1/2 : Galaxy stellar half mass radius (see Section 4.2) in the CDM simulation

at z = 0. (6) rconv
dm : radius of convergence in dark matter properties at z = 0 [calculated for the CDM DMO simulations in the standard FIRE-2

series (Hopkins et al. 2018) based on the Power et al. (2003) criterion]. As shown in Hopkins et al. (2018), the convergence radii in simulations
with baryons can in fact extend to much smaller radii. In Appendix A, we show that these are rather conservative estimates of the true convergence
radii in dSIDM runs. (7–11) Parameters of the dark matter models. σ (with the number after it) indicates the self-interaction cross-section,
σ /m, in unit of cm2 g−1. σ (v) denotes the velocity-dependent cross-section, introduced in Section 2. fdiss indicates the dimensionless degree of
dissipation. (12) Notes: Additional information of each simulation.

Simulation Mcdm
halo Rcdm

vir Mcdm
∗ rcdm

1/2 rconv
dm σ1 σ10 σ1 σ0.1 σ (v) Notes

name ( M#) ( kpc) ( M#) ( kpc) ( pc) elastic fdiss0.5 fdiss0.5 fdiss0.5 fdiss0.5

Ultra-faint dwarf
m09 2.5e9 35.6 7.0e4 0.46 65 ! ! ! ! ! Other parameter choices

explored

Classical dwarfs
m10b 9.4e9 55.2 5.8e5 0.36 77 ! ! ! ! Late-forming
m10q 7.5e9 51.1 1.7e6 0.72 73 ! ! ! ! ! Isolated, early-forming
m10v 8.5e9 53.5 1.4e5 0.32 65 ! ! ! ! Isolated, late-forming

Bright dwarfs
m11a 3.6e10 86.7 3.7e7 1.2 310 ! ! ! ! ! Diffuse, cored
m11b 4.2e10 90.7 4.2e7 1.7 250 ! ! ! ! Intermediate-forming
m11q 1.5e11 138.7 2.9e8 3.1 240 ! ! ! ! Early-forming, cored

Milky Way-mass galaxies
m11f 4.5e11 200.2 1.0e10 2.9 280 ! ! Quiescent late history
m12i l.r. 1.1e12 272.3 1.1e11 2.0 290 ! ! ! Milky Way like
m12f l.r. 1.5e12 302.8 1.3e11 4.1 310 ! ! ! Milky Way like
m12m l.r. 1.5e12 299.3 1.4e11 6.1 360 ! ! ! Early-forming, boxy bulge
m12i h.r. 9.8e11 259.9 2.4e10 3.7 150 ! ! Milky Way like

can induce dissipation. Excited states and dissipative (endothermic)
processes are also ubiquitous in generic SIDM models (e.g. Arkani-
Hamed et al. 2009; Loeb & Weiner 2011), models featuring a dark
SU(2)-like sector (e.g. Chen, Cline & Frey 2009; Cirelli & Cline
2010) or a dark U(1)-like sector (e.g. Kaplan et al. 2010; Fan et al.
2013a; Foot & Vagnozzi 2015b; Schutz & Slatyer 2015). However,
the exact behaviour of dissipation is model-dependent and could be
quite different from what we are modelling here.

For each galaxy, we run simulations with a default dissipation
fraction fdiss = 0.51 and with constant self-interaction cross-sections
(σ/m) = 0.1/1/10 cm2 g−1 or a velocity-dependent cross-section
model:

σ (v)
m

= (σ/m)0

1 + (v/v0)4
, (1)

where the fiducial choice of parameters is (σ/m)0 = 10 cm2 g−1

and v0 = 10 km s−1. The velocity dependence of the self-interaction
cross-section is empirically motivated by the relatively tight con-
straints on SIDM at galaxy cluster scale (e.g. Markevitch et al.
2004; Randall et al. 2008; Kaplinghat et al. 2016) and the relatively
high cross-section needed to solve some small-scale problems (e.g.
Vogelsberger et al. 2012; Rocha et al. 2013; Zavala et al. 2013; Elbert
et al. 2015; Kaplinghat et al. 2016). Meanwhile, the velocity depen-
dence is a generic feature of many particle physics realizations of
dark matter. The asymptotic (v/v0)−4 velocity dependence we adopt

1Other choices of fdiss are explored with m09 in Section 7.1.

is motivated by particle physics models featuring dark matter self-
interactions mediated by light gauge bosons (e.g. Feng et al. 2009;
Kaplan et al. 2010; Cyr-Racine & Sigurdson 2013; Boddy et al. 2016;
Zhang 2017). The sharp decline in cross-section could also appear
in some models of strongly interacting composites. In these models,
when the de Broglie wavelength of the particle become smaller than
the characteristic length-scale of the interaction, ∼1/$dm, the self-
interaction cross-section is expected to drop significantly (e.g. Boddy
et al. 2014; Cline et al. 2014; Tulin & Yu 2018).

3 R E L E VA N T T I M E - S C A L E S

In this section, we derive analytical formulae for relevant time-
scales in dSIDM haloes, including the dynamical time-scale, the
collision time-scale and the dissipation time-scale. These analytical
formulae can be used to understand the influence of dissipation on
galaxy structures in different circumstances. We will present results
for models with constant and velocity-dependent cross-sections,
respectively.

3.1 Dynamical time-scale

The local dynamical time-scale in a system is defined as

tdyn ≡

√
1

4πGρ

= 0.0042 Gyr
( ρ

109 M# kpc−3

)−1/2
, (2)
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where G is the gravitational constant and ρ is the local matter density.
At the centres of dwarf galaxies, the mass density is dominated by
dark matter, so ρ is simply the local dark matter mass density.

3.2 Collision time-scale

The collision time-scale of dark matter self-interaction is

tcoll ≡ 1

〈ρvrel
σ

m
〉
, (3)

where ρ is local dark matter mass density, vrel is the relative
velocity between dark matter particles, and 〈...〉 denotes the average
over all possible encounters. This measures the time-scale that one
dark matter particle is expected to have one self-interaction with
any other dark matter particles. For simplicity, we assume that
the velocities of dark matter particles locally obey the Maxwell–
Boltzmann distribution. Therefore, the average can be treated as a
thermal average

〈X〉 = 1
2
√
πσ 3

1d

∫ ∞

0
dvrelv

2
rele

−v2
rel/4σ 2

1dX, (4)

where σ 1d is the local one-dimensional velocity dispersion of dark
matter. After taking the thermal average, the collision time-scale is

tcoll = 0.206 Gyr
(

ρ

109 M# kpc−3

)−1 ( (σ/m)
1 cm2 g−1

)−1 ( σ1d

10 km s−1

)−1

[constant cross-section];

tcoll = 0.661 Gyr
(

ρ

109 M# kpc−3

)−1 ( (σ/m)0

10 cm2 g−1

)−1 ( σ1d

10 km s−1

)−1

(
σ1d

v0

)4 [
− 2Ci

(
v2

0

4σ 2
1d

)
cos

(
v2

0

4σ 2
1d

)
+ sin

(
v2

0

4σ 2
1d

)(
π − 2Si

(
v2

0

4σ 2
1d

))]−1

) 0.165 Gyr
(

ρ

109 M# kpc−3

)−1 ( (σ/m)0

10 cm2 g−1

)−1 ( σ1d

10 km s−1

)−1

(
σ1d

v0

)4

ln
(

σ1d

v0

)−1

[σ1d * v0]

[velocity-dependent cross-section], (5)

where Si(x) =
∫ x

0 dt sin(t)/t and Ci(x) = −
∫ ∞

x
dt cos(t)/t are sine

and cosine integrals, (σ /m)0 and v0 are parameters of the velocity-
dependent cross-section. For our fiducial choice of v0 = 10 km s−1,
galaxies of masses ! 1011 M# (massive dwarfs/Milky Way-mass
galaxies) will have velocity dispersions in the limit σ 1d * v0.
We can see that the collision time-scale of the velocity-dependent
model is usually much larger than the constant cross-section model
after the thermal average. This is due to the velocity suppression
of collisions between particles with high relative velocities, which
contribute more to the total interaction rate. In addition, the collision
time-scale in different models scales with velocity dispersion in
opposite ways. For the models with constant cross-sections, the
collision time-scale is shorter in systems with higher densities or
higher velocity dispersions, which indicates that self-interaction has
stronger impact in more massive systems. On the other hand, for the
velocity-dependent model, the collision time-scale sharply increases
in systems with higher velocity dispersions, which indicates that
self-interaction has weaker impact in more massive systems.

3.3 Dissipation time-scale

The dissipation time-scale here is defined as the time-scale for
an order unity fraction of local dark matter kinetic energy to be
dissipated away through dark matter self-interactions

tdiss ≡ 3
2
ρσ 2

1d/C, (6)

where σ 1d is the one-dimensional velocity dispersion and C is the
effective cooling rate defined as

C ≡
〈
n(ρvrel

σ

m
)Eloss

〉
=

〈
ρ2 σ

m
vrel

Eloss

m

〉
, (7)

where n is the local number density of dark matter particles, Eloss

is the kinetic energy loss per collision in the centre of momentum
frame, and 〈...〉 again denotes the thermal average. For the fractional
dissipation model, we study in this paper, Eloss/m = (1/4)fdissv

2
rel.

The dissipation time-scale measures how fast the kinetic energy is
dissipated away from the system and, after order one dissipation time-
scale, the local dark matter structure is expected to be dramatically
affected.

After taking the thermal average, the dissipation time-scale is

tdiss = 3
4fdiss

tcoll

= 0.310 Gyr
(

fdiss

0.5

)−1 (
ρ

109 M# kpc−3

)−1 ( (σ/m)
1 cm2 g−1

)−1

( σ1d

10 km s−1

)−1

[constant cross-section];

tdiss = 7.926 Gyr
(

fdiss

0.5

)−1 (
ρ

109 M# kpc−3

)−1 ( (σ/m)0

10 cm2 g−1

)−1

( σ1d

10 km s−1

)−1
(

σ1d

v0

)6 [
8
(

σ1d

v0

)2

− 2Ci
(

v2
0

4σ 2
1d

)
sin

(
v2

0

4σ 2
1d

)

− cos
(

v2
0

4σ 2
1d

)(
π − 2Si

(
v2

0

4σ 2
1d

))]−1

) 0.991 Gyr
(

fdiss

0.5

)−1 (
ρ

109 M# kpc−3

)−1 ( (σ/m)0

10 cm2 g−1

)−1

( σ1d

10 km s−1

)−1
(

σ1d

v0

)4

, [σ1d * v0]

[velocity dependent model]. (8)

In the model with a constant cross-section, the dissipation time-
scale has the same scaling behaviour as the collision time-scale
defined in equation (5) and differs only by a factor of 0.75/fdiss. In the
velocity-dependent model, the scaling behaviours of the dissipation
and collision time-scales are also quite similar when σ 1d * v0. The
dissipation time-scale of the velocity-dependent model is usually
much larger than the constant cross-section model after thermal
average. This again can be attributed to the velocity suppression of
collisions between particles with high relative velocities, which not
only contribute more to the total collision rate but also induce higher
energy loss per collision. Similar to what has been found for the
collision time-scale, dissipation is more significant in more massive
systems in the models with constant cross-sections. Dissipation,
however, is less significant in more massive systems in the velocity-
dependent model.

In Fig. 1, we show the relevant time-scales discussed above as a
function of the one-dimensional velocity dispersion of the system;
in particular, we show the collision and dissipation time-scales of
the dSIDM models studied in this paper as well as the dynamical
time-scale, assuming that the local dark matter mass density is
ρ = 2 × 108 M# kpc−3, which is a typical value at dwarf galaxy
centres. The time-scales are all normalized by the Hubble time-
scale at z = 0, roughly representing the lifetime of the system. In
the top panel, the dissipation time-scales are calculated assuming
fdiss = 0.5 while, in the bottom panel, the shaded regions indicate
the variation of tdiss with fdiss = 0.1–0.9. With the vertical shaded
regions in both panels, we show the typical ranges of one-dimensional
velocity dispersions of the classical (e.g. Milky Way satellites) and
bright dwarf galaxies (e.g. LSB galaxies). For the dSIDM models
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4426 X. Shen et al.

Figure 1. Top: Relevant time-scales of the physical processes involved in
dSIDM haloes versus one-dimensional velocity dispersion of the system. We
have assumed that the local dark matter density is ρdm = 2 × 108 M# kpc−3,
a typical value at dwarf galaxy centres. We show the collision time-scale
(tcoll) and dissipation time-scales (tdiss) of all the dSIDM models studied in
this paper as well as the dynamical time-scale (tdyn). All the time-scales are
normalized by the Hubble time-scale at z = 0 (tH ≡ 1/H0). The dissipation
time-scales are calculated assuming fdiss = 0.5. The shaded regions show the
typical one-dimensional velocity dispersions in the classical (e.g. Milky Way
satellites) and bright dwarf galaxies (e.g. LSB galaxies). In dwarf galaxies,
dissipation and collision time-scales are much larger than the dynamical time-
scale, but can become considerably shorter than the Hubble time-scale. The
velocity-dependent model becomes less dissipative (tdiss/tH becomes larger)
in more massive galaxies (with larger velocity dispersion) while models with
constant cross-sections become more dissipative. Bottom: Dissipation time-
scales versus one-dimensional velocity dispersion of the system with fdiss
varying from 0.1 to 0.9. The symbols are the same as the top panel. For
each model, the upper boundary of the shaded region corresponds to the case
fdiss = 0.1 and the lower boundary corresponds to the case fdiss = 0.9.

with constant cross-sections, the collision time-scales are always
proportional to the dissipation time-scales and, they are order of
magnitude comparable to each other. Both of them are shorter than
the Hubble time-scale but larger than the dynamical time-scale in
dwarf galaxies. The dissipation time-scale decreases in systems with
higher velocity dispersions, so we expect these constant cross-section
models to become more dissipative in more massive dwarfs. For the
velocity-dependent dSIDM model, the collision and dissipation time-
scales are no longer proportional to each other, and they both increase
as the velocity dispersion increases, opposite to the behaviour of
models with constant cross-sections. The dissipation time-scale of
the velocity-dependent model is comparable to the Hubble time-scale

in the classical dwarfs but becomes at least an order of magnitude
larger than the Hubble time-scale in the bright dwarfs, suggesting
negligible effects of dissipation in this case.

3.4 Comparison to the cooling of baryons

The cooling induced by dissipative dark matter self-interactions can
be compared to the cooling of baryons, which is usually described by
the cooling function $. For dSIDM, the effective cooling function
is

$eff ∼ T

ntdiss
∼ (σ/m) fdiss σ 3

1d

∼
{

σ 3
1d ∼ T 3/2 [constant cross-section]

σ−1
1d ∼ T −1/2 [velocity dependent model]

(9)

where T is mσ 2
1d/kB for weakly collisional dark matter. The cooling

function in the constant cross-section model is similar to the cooling
curve of gas below ∼ 104 K while the cooling function in the velocity-
dependent model is similar to the 104–107 K gas cooling curve. Other
behaviours are possible if a velocity dependence of fdiss is introduced,
e.g. $eff would be a constant if fdiss ∼ T1/2 with the same velocity-
dependent cross-section. However, the most important qualitative
difference between the dSIDM studied here and baryons is not the
behaviour of the cooling curve but the fact that baryons (gas) are
effectively in the fdiss → 0 and (σ /m) → ∞ regime. The effective
interaction cross-section of gas is enormous compared to favoured
SIDM interaction cross-sections and the energy loss per ‘collision’
is small. Gas cooling is the result of a large amount of particle
interactions in a locally thermalized region. On contrary, dSIDM
with tcoll order of magnitude comparable to tdiss cannot achieve local
thermalization effectively when cools down.

3.5 Effective cross-section

It is useful to define an ‘effective cross-section’ for the velocity-
dependent dSIDM model
( σ

m

)

eff
=

〈 σ

m
vrel

〉
/〈vrel〉, (10)

where vrel is the relative velocity between encountering particles and
〈...〉 is a thermal average as discussed in Section 3.2. This definition
ensures that a dSIDM model with a constant cross-section taking the
value of this ‘effective cross-section’ will result in the identical rate of
dark matter self-interaction, assuming that dark matter particles are
in thermal equilibrium. This definition allows a proper comparison
between velocity-dependent and independent SIDM models. Using
equation (4), we find

( σ

m

)

eff
= (σ/m)0

32

(
v0

σ1d

)4 [
− 2Ci

(
v2

0

4σ 2
1d

)
cos

(
v2

0

4σ 2
1d

)

+ sin
(

v2
0

4σ 2
1d

)(
π − 2Si

(
v2

0

4σ 2
1d

))]
, (11)

where the notation is the same as equation (5). The asymptotic
behaviour of (σ /m)eff is dominated by the σ−4

1d term, which is similar
to the velocity-dependent cross-section defined in equation (1). The
factor 32 in the denominator comes from the thermal average and
indicates that dSIDM models with velocity-dependent cross-section
are not as efficient as those with constant cross-sections, owing again
to the velocity suppression.
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Dissipative dark matter on FIRE 4427

Figure 2. Visualizations of four dark matter haloes in simulations with CDM versus dSIDM. The images are dark matter surface density maps, projected along
the z-direction of simulation coordinates, at z = 0 with a logarithmic stretch. The dynamical ranges are adjusted based on the maximum/median intensities of
the pixels (but remain the same for the same halo). The side lengths of the images are all chosen to be 0.8 × Rvir of the CDM run. In the first row, we show
the haloes in the CDM. In the second row, we show the haloes in the velocity-dependent dSIDM model. In the third row, we show haloes in the dSIDM model
with constant cross-section 1 cm2 g−1. The haloes are ordered from left to right by their virial masses. In each image, the outer dotted circle indicates the radius
R500 (the density enclosed is 500 times the critical density at z = 0) which represents the overall size of the halo. The inner dashed circle indicates the radius
Rcore ≡ 10 × R0.1 per cent (the mass enclosed in a sphere of radius R0.1 per cent is 0.1 per cent the virial mass of the halo) which represents the core size of the
halo. Comparing the core sizes, the haloes in the dSIDM model are visibly more concentrated than their CDM counterparts. For the velocity-dependent dSIDM
model, since the self-interaction cross-section decreases in more massive haloes, the increased concentration of halo is less apparent in more massive haloes.
For the dSIDM with constant cross-section, haloes of all masses are consistently more concentrated than their CDM counterparts.

4 SI M U L AT I O N R E S U LT S

In this section, we present the structural and kinematic properties of
simulated dwarf galaxies in different dark matter models and study
the impact of dissipation on galaxy structures.

4.1 Overview

In Fig. 2, we show images of four dark matter haloes in our simulation
suite at z = 0. Each image is a two-dimensional surface density
map of dark matter, projected along the z-direction of simulation
coordinates, with a logarithmic stretch. The dynamical ranges are
adjusted based on the maximum and median intensities of pixels.
The haloes are ordered from left to right by their halo masses
(see Section 4.2 for the definition). We show the images in CDM,
the dSIDM with constant cross-section (σ/m) = 1 cm2 g−1 and the

velocity-dependent dSIDM model for comparison. The haloes in
dSIDM models are visibly more concentrated than their CDM coun-
terparts when comparing their core sizes (dashed circles). For the
velocity-dependent dSIDM model, since the self-interaction cross-
section decreases in more massive haloes that typically have higher
velocity dispersions, the increased concentration of the halo becomes
less apparent. On contrary, in dSIDM models with constant cross-
sections, haloes of all masses are consistently more concentrated
than their CDM counterparts. Meanwhile, the substructures also
appear to be more abundant and concentrated in dSIDM models.
For example, in m10q, the number of subhaloes (within the virial
radius) with M > 106 M# increases by about 20 per cent, and the
median concentration increases by about 25 per cent in the dSIDM
model with (σ/m) = 1 cm2 g−1. But we will focus on the main halo in
this paper and defer the analysis on substructures to follow-up work.
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In Fig. 3, we present a gallery view of the total mass density, cir-
cular velocity, three-dimensional velocity dispersion of dark matter,
velocity anisotropy of dark matter, rotation velocity versus velocity
dispersion of dark matter, averaged in spherical shells as a function
galactocentric distance for three simulated galaxies. Details of the
measurements of the kinematic properties and relevant definitions are
introduced in Section 4.4. Under the influence of baryonic feedback,
the density profiles in CDM are generally shallower than the cuspy
NFW profiles at galaxy centres, which is expected for these galaxies
for their M∗/Mhalo values (e.g. Di Cintio et al. 2014; Chan et al. 2015;
Oñorbe et al. 2015; Tollet et al. 2016; Lazar et al. 2020). In the eSIDM
model, due to effective heat conduction, the profiles are even flatter
at galaxy centres compared to the CDM case, but the difference
becomes less apparent in the bright dwarf (m11q) where thermal
conduction through self-interactions is subdominant compared to
baryonic feedback. In dSIDM models, when the effective self-
interaction cross-section is large (and equivalently dissipation is
efficient assuming a fixed fdiss), the central density profiles are cuspy
and power-law like. For the velocity-dependent dSIDM model, in
the classical dwarf galaxies like m10q, the velocity-dependent cross-
section is high and a cuspy central profile emerges. In more massive
galaxies like m11a and m11q, the velocity-dependent cross-section
there becomes much smaller, accompanied by stronger baryonic
feedback. As a consequence, the profiles in these systems become
cored again though the central mass density is still higher than the
CDM case. An interesting outlier here is the dSIDM model with
constant (σ/m) = 10 cm2 g−1, exhibiting cuspy central density pro-
file but with lower normalization, which is likely due to the deformed
shape of the halo (see Section 5). A more detailed discussion on the
mass density profiles will be presented in Section 4.3.

In addition to the density profile, the kinematic properties of haloes
are also quite different in different dark matter models. Despite
some variations, there are some important features shared by the
simulations of different haloes. When the cross-section is high, the
rotation curves of dwarf galaxies in dSIDM models are significantly
higher at small radii compared to their CDM counterparts. The
differences are consistent with the findings in density profiles. Again,
an outlier is the dSIDM model with (σ/m) = 10 cm2 g−1, with
the normalization of rotation velocities lower than other models.
For the velocity dispersion profile, the ones in eSIDM are flat at
halo centres indicating an isothermal distribution of dark matter
particles. The velocity dispersions in dSIDM models in general
decreases towards halo centres. Particularly, the dSIDM model with
(σ/m) = 10 cm2 g−1 shows dramatic decrease in velocity dispersion
at r " 10 kpc. This indicates more coherent motion of dark matter
particles and a decreasing support from random velocity disper-
sion. For the velocity anisotropy profile, the dSIDM models with
(σ/m) ≥ 1 cm2 g−1 have lower velocity anisotropies than their CDM
counterparts at halo centres, indicating that the velocity dispersions
are more dominated by the tangential component. At the same
time, the coherent rotation is also stronger in these dSIDM models.
An extreme case is the dSIDM model with (σ/m) = 10 cm2 g−1

where the sub-kpc structure is clearly in transition from dispersion
supported to coherent rotation supported. The ratio between coherent
circular velocity and velocity dispersion is significantly higher than
others. In Section 4.4, the kinematic properties of simulated galaxies
will be investigated in detail.

4.2 Halo mass and galaxy stellar mass

We measure the bulk properties of the dark matter haloes and galaxies
in simulations following what has been done for the standard FIRE-

2 simulations as described in Hopkins et al. (2018). We define the
halo mass Mhalo and the halo virial radius Rvir using the overdensity
criterion introduced in Bryan & Norman (1998). We define the stellar
mass M∗ as the total mass of all the stellar particles within an aperture
of 0.1 Rvir and correspondingly define the stellar half-mass radius
r1/2 as the radius that encloses half of the total stellar mass. For
the isolated dwarf galaxies in simulations, these definitions on the
stellar mass and the stellar half-mass radius give similar results to
what derived using the iterative approach described in Hopkins et al.
(2018).

In Fig. 4, we compare the stellar mass versus halo mass of
simulated dwarf galaxies with the scaling relations derived based on
observations (Brooks & Zolotov 2014; Moster et al. 2014; Garrison-
Kimmel et al. 2017). The black dashed lines show 95 per cent
inclusion contour assuming the scatter estimated in Garrison-Kimmel
et al. (2017). The simulated dwarfs are consistent with observations
in the stellar mass versus halo mass relation and the galaxies
we sampled in the simulation suite well represent the ‘median’
galaxies in the real Universe. With mild dark matter self-interaction
[(σ/m) " 1 cm2 g−1], the halo and stellar masses of galaxies are
not significantly affected compared to their CDM counterparts, in
agreement with previous studies of eSIDM (e.g. Vogelsberger et al.
2014; Robles et al. 2017; Fitts et al. 2019). However, in the dSIDM
model with (σ/m) = 10 cm2 g−1, both the halo masses and the stellar
masses decrease for about 0.1–0.2 dex (compared to CDM) in dwarf
galaxies with Mhalo " 1011 M#. Although this level of differences
is still minor compared to the scatter of the relation, it is worth to
note that the model with (σ/m) = 10 cm2 g−1 behaves qualitatively
different from other models explored. This aspect will be discussed
in Sections 4.3 and 4.4 in the following.

4.3 Total mass density profiles

In this section, we present the total mass density profiles (including
the contribution from dark matter, stars and gas) of simulated dwarf
galaxies in dSIDM models with different parameters and compare
them with the CDM predictions. We note that, for the dwarf galaxies
in simulations, the mass density profiles are dominated by dark
matter. We divide the simulated dwarf galaxies into two categories: (i)
classical dwarfs, e.g. the m10’s, with typical halo mass of " 1010 M#
and sub-kpc stellar half-mass radius; (ii) bright dwarfs, e.g. the m11’s,
with typical halo mass of ! 1010 M# and stellar half-mass radius of
several kpc. We will investigate the extent at which the dissipative
dark matter self-interactions affect the structure of these dwarfs.

In the left-hand panel of Fig. 5, we show the total mass density
profiles of the classical dwarf galaxies in simulations with CDM,
eSIDM and dSIDM models at z = 0.2 The effective cross-section
(σ /m)eff of the velocity-dependent dSIDM model in these classical
dwarfs is ∼ 0.3 cm2 g−1 calculated using equation (11), plugging in
the density and one-dimensional velocity dispersion of dark matter
particles enclosed in a sphere of radius 1/3 rcdm

1/2 , where rcdm
1/2 is the

stellar half-mass radius in the CDM model. We fit the density profiles
at large radii of the haloes (0.5 rcdm

1/2 < r < 20 rcdm
1/2 ) with the NFW

profile. In the lower subpanel, we show the ratios between the density
profiles in different models and the NFW fits. In the right-hand panel
of Fig. 5, we show the local power-law slopes of the density profiles.

2The bursty star formation history in dwarf galaxies could create fluctuations
in density profiles, which leads to uncertainties in the profile measured at the
z = 0 snapshot. But, we have explicitly checked that the difference between
the density profiles at z = 0 and other four latest snapshots are minimal.
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Dissipative dark matter on FIRE 4429

Figure 3. A gallery view of the structural and kinematic properties of dwarf galaxies in simulations. From top to bottom, in each row, we show the
three-dimensional total mass density (ρtot = ρdm + ρstar + ρgas), circular velocity (Vcirc≡

√
GM tot

enc(r)/r), three-dimensional velocity dispersion of dark matter
(σ3d≡

√
σ 2

r +σ 2
θ +σ 2

φ ), velocity anisotropy of dark matter [β≡1−(σ 2
θ +σ 2

φ )/2σ 2
r ], and rotation velocity versus velocity dispersion of dark matter (Vrot/σ 3d) averaged

in spherical shells as a function of galactocentric distance for three simulated galaxies. We compare three categories of dark matter models: CDM; eSIDM
(elastic SIDM model with a constant cross-section 1 cm2 g−1); dSIDM (dissipative SIDM models with various cross-sections, as defined in Table 1). The grey
shaded regions in the first row of plots indicate 0.2–0.8 per cent Rcdm

vir , which is the aperture we will later use to measure the slopes of the density profiles (see
Section 4.3 and Figs 5–7). The grey dashed horizontal line in the fourth row is a reference line, indicating isotropic velocity dispersion (β = 0). In general,
dSIDM models produce cuspy central density profiles in the simulated dwarf galaxies, opposed to the cored central density profile in CDM and eSIDM models.
As a consequence, the circular velocities at the centre of the galaxies increase. In dSIDM models with (σ/m) ≥ 1 cm2 g−1, coherent rotation of dark matter
becomes prominent and random velocity dispersion is suppressed.
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Figure 4. Stellar mass versus halo mass relation of galaxies in simulations.
The stellar masses and halo masses of simulated dwarf galaxies are presented
with open markers (as labelled). We compare them with the observational re-
sults derived through abundance matching from Moster, Macciò & Somerville
(2014), Brook et al. (2014), and Garrison-Kimmel et al. (2017). The black
dashed lines show ∼ 95 per cent inclusion contour assuming the scatter of the
relation estimated in Garrison-Kimmel et al. (2017). Regardless of the dark
matter model, the simulated galaxies are consistent with the observational
relation.

In the lower subpanel, we show the differences in the slopes versus
the NFW fits. In the classical dwarfs, the central density profiles
are cored in the CDM case due to baryonic feedback. The eSIDM
model produces profiles with much larger cores and shallower slopes
than CDM. However, the dSIDM models all predict cuspy and
power-law like central density profiles at sub-kpc scale, except for
the one with low self-interaction cross-section 0.1 cm2 g−1. These
profiles are even steeper than the NFW profiles, with power-law
slopes ∼−1.5 compared to the −1 asymptotic power-law slope of
the NFW profile at sub-kpc scale. The dSIDM model with low cross-
section of 0.1 cm2 g−1 still produces cored central profiles in two
galaxies, but the central densities are higher, and the core sizes are
smaller than their CDM counterparts. The profiles in the velocity-
dependent dSIDM model lie between the profiles in the dSIDM
models with (σ /m) = 0.1 and 1 cm2 g−1, which is consistent with
the estimate of (σ /m)eff in these systems. Surprisingly, increasing the
self-interaction cross-section to 10 cm2 g−1 does not lead to further
contraction of the haloes. Instead, the density profiles in the model
have lower normalization out to ∼ 10 kpc, although the profiles still
have cuspy shapes at galaxy centres. The classical dwarf galaxy that
exhibits the strongest decrease in density profile normalization in
this model is m10q. This decreased normalization of density profiles
measured spherical shells is likely related to the deformation of
haloes (e.g. with the same energy budget, a disc-like structure will
have lower spherically averaged density than a spherical structure).
Assuming that the radial contraction is adiabatic which preserves
specific angular momentum, the radial contraction of dSIDM haloes
will eventually be halted by the growing centrifugal force from
coherent dark matter rotation. This will also make dSIDM haloes
deform from spherical to oblate in shape and the density profiles will
appear with lower normalization. In subsequent sections, we will see
more evidence for this phenomenon from the analysis of kinematic
properties (Section 4.4) and shapes (Section 5) of dark matter haloes.

In the left-hand panel of Fig. 6, we show the total mass density
profiles of the bright dwarf galaxies in simulations with CDM,
eSIDM and dSIDM models. The (σ /m)eff of the velocity-dependent

dSIDM model in these bright dwarfs is ∼ 0.01 cm2 g−1. In the right-
hand panel of Fig. 6, we show the local power-law slopes of the
density profiles of the bright dwarfs. The phenomena in the bright
dwarfs are qualitatively consistent with those in the classical dwarfs
shown above. In the bright dwarfs, the central density profiles are
cored in the CDM case. The decrease of the central density compared
to the NFW profile is stronger than that in the classical dwarfs,
due to stronger baryonic feedback in the bright dwarfs. The eSIDM
model again produces larger cores and shallower slopes in these
galaxies compared to the CDM case. In dSIDM models, the shapes
of the density profiles vary with the self-interaction cross-section (or
equivalently the efficiency of dissipation, assuming fixed fdiss). The
velocity-dependent dSIDM model has relatively low effective cross-
section in the bright dwarfs and thus the central density profiles are
still cored, similar to the CDM case. However, in the dSIDM model
with (σ/m) = 0.1 cm2 g−1, cuspy and power-law like central profiles
show up in two out of the three bright dwarfs and the only cored one
shows enhanced central densities at r " kpc. In the dSIDM model
with (σ/m) = 1 cm2 g−1, the central profiles of all three bright dwarfs
are cuspy with power-law slopes centring around −1.5 at sub-kpc
scale. In the dSIDM model with (σ/m) = 10 cm2 g−1, the density
profiles have lower normalization although they are still cuspy,
similar to the phenomenon we found in the classical dwarfs. Here,
the bright dwarf galaxy that exhibits the strongest decrease in density
profile normalization in this model is m11b.

Comparing the density profiles of the classical dwarfs and bright
dwarfs, we find that the dSIDM model with the same constant
cross-section can behave qualitatively differently in galaxies of
different masses. For example, the model with (σ/m) = 0.1 cm2 g−1

produces cored central profiles in two of the classical dwarfs but
produces cuspy central profiles in two of the bright dwarfs. As
discussed in Section 3, the dissipation time-scale of models with
constant cross-section inversely depends on density and velocity
dispersion of the system. The bright dwarfs typically have much
higher velocity dispersion at their centres than the classical dwarfs
while the central densities are comparable to the classical dwarfs.
As expected, dissipation has stronger impact in the bright dwarfs.
On the other hand, the velocity-dependent dSIDM model produces
cuspy central profiles in the classical dwarfs but produces cored
central profiles in the bright dwarfs. The dissipation time-scale of the
velocity-dependent model inversely depends on density but exhibits
a v3 asymptotic dependence on velocity dispersion. The opposite
dependence on velocity dispersion makes the impact of dissipation
stronger in the classical dwarfs.

To quantify the impact of dissipation on galaxy structures, we mea-
sure the slopes of the total mass density profiles at galaxy centres. The
aperture we choose for this measurement is 0.2–0.8 per cent Rcdm

vir (as
indicated by the grey bands in Figs 5 and 6), where Rcdm

vir is the virial
radius of the halo in the CDM model.3 This has been chosen since
it is an appropriate aperture to illustrate the impact of dissipation
at small radii while remaining larger than the convergence radii of
dark matter profiles in these runs (rather conservative estimates,
see Table 1). In Fig. 7, we show the power-law slopes of the
density profiles (measured at 0.2–0.8 per centRcdm

vir ) of simulated
dwarf galaxies versus their stellar-to-halo mass ratios (M∗/Mhalo).
The slopes of the density profiles in different models show four
different ‘tracks’:

3The virial radius does not vary much in simulations with different dark
matter models. Using the virial radius in the CDM run is simply to ensure
that the aperture is identical for different dark matter models.
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Dissipative dark matter on FIRE 4431

Figure 5. Left: Total mass density profiles of the classical dwarf galaxies in simulations. The three classical dwarfs presented here are m10q, m10b, and m10v.
The total mass density profiles in different dark matter models are shown (as labelled). They can be compared to the NFW profiles derived by fitting the
density profiles at large radii of the haloes (0.5 rcdm

1/2 < r < 20 rcdm
1/2 ), and the ratios of the density profiles to the NFW fits are shown in the lower subpanel. The

grey shaded region denotes the range of radii where we measure the slopes of the density profiles below. The purple dotted vertical line indicates the average
convergence radius (∼ 70 pc) of the classical dwarfs (see Table 1). Right: Local power-law slopes of density profiles of the classical dwarf galaxies. The slopes
are derived via fitting the nearby density profile with power law. In these classical dwarfs, the CDM model predicts cored central density profiles due to baryonic
feedback. The eSIDM model produces cores of slightly bigger sizes and shallower slopes. The dSIDM model with (σ/m) = 0.1 cm2 g−1 still produces cored
profiles but with higher central densities and steeper slopes than their CDM counterparts. The dSIDM models with effective cross-section > 0.1 cm2 g−1 all
produce cuspy central density profiles with power-law slopes centring around −1.5. These profiles are even steeper than the NFW profiles.

(i) The NFW profile has an asymptotic −1 4 power-law slope at
galaxy centres.

(ii) In CDM, baryonic feedback drives gas outflow and creates
fluctuations in the central gravitational potential that significantly
affects the distribution of dark matter. Dwarf galaxies have shallower
density profiles than the NFW profile. The difference in slope peaks
in most massive bright dwarfs where baryonic feedback is most
efficient in perturbing galaxy structures, as has been found in previous
studies (e.g. Di Cintio et al. 2014; Chan et al. 2015; Oñorbe et al.
2015; Tollet et al. 2016; Lazar et al. 2020).

(iii) In eSIDM, elastic dark matter self-interaction drives the halo
to thermal equilibrium and produces an isothermal density profile
with a core at the centre. The power-law slopes of the central profiles
are close to zero in most of the simulated dwarf galaxies, regardless
of their mass.

(iv) In dSIDM, dissipative dark matter self-interaction is a com-
peting factor against baryonic feedback in shaping the central den-
sity profile. When (σ/m)eff > 0.1 cm2 g−1, dark matter dissipation
becomes dominant and the central density profiles in dwarf galaxies
are steeper than the ones in the CDM model. 5 In the classical dwarfs,
the power-law slopes are steeper than the −1 of NFW profiles and

4The slope of the NFW profile varies with radius. At the radii we measure
the slopes, the NFW profile has a slope of ∼−1.1.
5We verify that the impact of baryonic feedback becomes negligible in this
regime through the comparison with DMO simulations in Section 7.2.

asymptote to ∼−1.5. In the bright dwarfs, the power-law slopes have
larger scatter, ranging from −2 to −1. When the (σ /m)eff is relatively
low (e.g. the model with (σ/m) = 0.1 cm2 g−1 in the classical dwarfs
and the velocity-dependent model in the bright dwarfs), the central
density profiles are affected by a mixture of dark matter dissipation
and baryonic feedback, which compete with each other. In some
dwarfs with relatively strong feedback effects, the slopes become
shallower than the ∼−1.5 value at the radius of measurement. They
could even develop a core (α ! −0.5) at smaller radii as shown in
the right-hand panels of Figs 5 and 6.

To demonstrate the net impact of dissipation, in the top panel
of Fig. 8, we show the slope change ,α versus the effective self-
interaction cross-section (σ /m)eff. ,α is defined as the difference
in slopes measured at 0.2–0.8 per centRcdm

vir between galaxies in
dSIDM and CDM, ,α = αdsidm − αcdm. More negative ,α indicates
stronger impact of dissipation on the steepness of the density
profile. The effective self-interaction cross-section is calculated
using equation (11), plugging in the density and one-dimensional
velocity dispersion of dark matter particles enclosed in a sphere of
radius 1/3 rcdm

1/2 . The red dashed line shows the qualitative trend (not
rigorous fitting) of ,α versus (σ /m)eff. When (σ/m)eff " 1 cm2 g−1,
the steepening of the central density profiles induced by dissipation
becomes progressively stronger in systems with higher effective
cross-sections. The change of the power-law slope scales roughly
linearly as the logarithm of the effective cross-section. When (σ /m)eff

is larger than 1 cm2 g−1, the steepening of the central density profiles
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4432 X. Shen et al.

Figure 6. Left: Total mass density profiles of the bright dwarf galaxies in simulations. The three bright dwarfs presented here are m11a, m11b and m11q. The
notation is the same as Fig. 5. The purple dotted vertical line here indicates the average convergence radius (∼ 200 pc) of the bright dwarfs (see Table 1). Right:
Local power-law slopes of the density profiles of the bright dwarf galaxies. In these bright dwarfs, the CDM model again predicts cored central density profiles
with even larger cores (∼ kpc) than the classical dwarfs due to stronger baryonic feedback. The eSIDM model produces cores of similar sizes and slopes. The
velocity-dependent dSIDM model has relatively low effective cross-sections (∼ 0.01 cm2 g−1) in these dwarfs. This model still produce cores but with slightly
higher central densities than their CDM counterparts. The dSIDM models with relatively high effective cross-sections (* 0.01 cm2 g−1) still produce cuspy and
power-law like central density profiles. The power-law slopes centre around −1.5 with scatter from −2 to −1.

saturates. The ,α when (σ/m)eff ) 10 cm2 g−1 is comparable to the
(σ/m)eff ) 0.1 cm2 g−1 case. In the bottom panel of Fig. 8, we show
the slope change ,α versus the dissipation time-scale at halo centre
tc
diss, calculated using equation (8). The steepening of the central den-

sity profiles occurs when tc
diss becomes comparable to tH. The slope

difference becomes larger as tc
diss decreases when tc

diss ! 0.1 tH. When
tc
diss " 0.1 tH, the steepening of the central profile saturates, similar

to the trend in the top panel. This is likely related to the increasing
rotation support of dark matter when (σ/m)eff ! 1 cm2 g−1, which
will be shown in the following section.

4.4 Kinematic properties

In this section, we will explore the kinematic properties of dark
matter particles in the simulated dwarf galaxies. These proper-
ties include velocity dispersion, coherent rotation velocity, ve-
locity anisotropy, and the velocity distribution function of dark
matter.

To evaluate these properties, we first divide a simulated halo into
spherical shells with respect to the halo centre. In each shell, we
measure the total angular momentum of dark matter particles and
align the z-axis of the coordinate system with the direction of the
angular momentum. This helps us define the azimuthal and zenith
directions (note that different shells could have different directions of
angular momentum and thus different definitions of the z-axis). The
velocities of dark matter particles are decomposed to the radial, zenith
and azimuthal components (vr, vθ , and vφ) in spherical galactocentric
coordinates. The coherent rotation velocity Vrot of particles in the

shell is calculated as

Vrot = Jdm

Ishell
Rshell,

Ishell = 2
5
Mdm

r5
o − r5

i

r3
o − r3

i
, Rshell = ro + ri

2
, (12)

where Jdm is the total angular momentum of dark matter particles
in the shell, Mdm is the total mass of dark matter in the shell, Ishell

is the moment of inertia of the shell, ro and ri are the outer and
inner radii of the shell, and Rshell is the median radius of the shell.
Here, we have assumed that the mass is uniformly distributed in
the shell in the calculation of moment of inertia. We also measure
the mean inflow/outflow velocity (vr) of dark matter particles in the
shell. We subtract both the coherent rotation velocity and the mean
inflow/outflow velocity before measuring the velocity dispersion σ r,
σ θ , and σφ corresponding to the radial direction, and the azimuthal
and zenith angles, respectively. Finally, the three-dimensional veloc-
ity dispersion is calculated as: σ3d=

√
σ 2

r +σ 2
θ +σ 2

φ . The one-dimensional
velocity dispersion is estimated as: σ1d=

√
(σ 2

r +σ 2
θ +σ 2

φ )/3. The degree of
velocity anisotropy is calculated as

β = 1 −
σ 2

φ + σ 2
θ

2σ 2
r

. (13)

Under this definition, β = 0 corresponds to an isotropic velocity
dispersion, β = 1 to a velocity dispersion purely dominated by the
radial component, and negative β to a velocity dispersion dominated
by the tangential component.
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Dissipative dark matter on FIRE 4433

Figure 7. Slopes of the central density profiles of dwarf galaxies in the simulation suite. The slopes are measured at 0.2–0.8 per cent Rcdm
vir . The slopes measured

in simulations with different dark matter models are shown in open markers (as labelled). Galaxies are ordered from left to right based on their stellar-to-halo
mass ratios (M∗/Mhalo), and are classified as classical dwarfs and bright dwarfs. (The ultra-faint dwarf m09 in the suite also has its M∗/Mhalo value lying in the
classical dwarf regime.) The asymptotic behaviours of the slopes at the low-mass end are clearly different between different dark matter models. In low-mass
dwarf galaxies, the density profiles in dSIDM models with (σ/m) ≥ 1 cm2 g−1 and the velocity-dependent model converge to a slope of ∼−1.5 (indicated by
the thick red horizontal line). The slope is steeper than the asymptotic slope −1 of the NFW profile (∼−1.1 at the radii we measure the slope, indicated by
the thick black horizontal line). In contrast, the dSIDM model with (σ/m) = 0.1 cm2 g−1 can still produce small cores in some dwarf galaxies with relatively
strong baryonic feedback, with α ∼ −1 at the radius of measurement and becoming even shallower at smaller radii as shown in the right-hand panels of Figs 5
and 6. In the bright dwarfs, the velocity-dependent dSIDM model produces cored profiles with α ∼ −0.5. The dSIDM models with constant cross-sections still
produce cuspy density profiles with slopes centring around −1.5 but scattering from −2 to −1. Unlike dSIDM models, density profiles in CDM are shallower
than the NFW profile and are shallower in more massive dwarf galaxies, due to stronger baryonic feedback there (indicated by the thick cyan line). The eSIDM
model consistently produces cored density profiles with slope ∼−0.2 in most of the dwarf galaxies (indicated by the thick grey horizontal line). We note that
all the thick reference lines are meant to label different ‘tracks’ and are rigorous fits to the simulation results.

4.4.1 Coherent rotation

A natural consequence of dissipative interactions is that particles tend
to move in a more coherent fashion, rather than in random dispersion.
If the energy dissipation is faster than the relaxation processes (either
through dark matter self-interactions or gravitational interactions),
the coherent rotation would gradually become prominent in the sys-
tem if angular momentum is conserved. In Fig. 9, we show the ratio
between coherent rotation velocity and three-dimensional velocity
dispersion of dark matter measured in spherical shells in CDM and
dSIDM with (σ /m) = 1 and 10 cm2 g−1. For each model, each line
corresponds to one of the simulated dwarf galaxies: m10q, m10b,
m10v, m11a, and m11b. Qualitatively, the coherent rotation velocity
at small galactocenric radii becomes progressively more prominent
as self-interaction cross-section becomes higher (and dissipation
becomes more efficient). At large radii, the systematic difference
becomes negligible. Quantitatively, there are apparent galaxy-to-
galaxy variations. The ratio can reach ∼0.5 inside ∼ 1 per cent Rvir

(roughly sub-kpc scale in dwarfs) in m10q and m11b in dSIDM with

(σ/m) = 10 cm2 g−1, while in m11a and m10b, the ratio remains
!0.1 inside ∼ 1 per cent Rvir in any models. These evidences suggest
that, at the centres of galaxies, some dSIDM realizations are in
a transition from a pure dispersion supported system to a system
supported by a mixture of random velocity dispersion and coherent
rotation. The radial scale for this transition to take place is a
few per cent of the virial radius. Such scale is quite consistent with the
centrifugal barrier ∼sRvir (s is the halo spin parameter with typical
value ∼ 0.01–0.1) found for dissipative gas in CDM haloes (e.g. Mo,
Mao & White 1998).

4.4.3 Velocity anisotropy

In Fig. 10, we show the velocity anisotropy of dark matter mea-
sured in spherical shells in CDM and dSIDM with (σ /m) = 1
and 10 cm2 g−1. The velocity anisotropies are calculated using
equation (13). The measured anisotropy is not sensitive to the
bulk motion of dark matter in the shell since we have subtracted

MNRAS 506, 4421–4445 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/506/3/4421/6324018 by U
nitversity of Texas Libraries user on 05 August 2021



4434 X. Shen et al.

Figure 8. Top: Slope change versus effective self-interaction cross-section
of dwarf galaxies in simulations. ,α is defined as the difference in slopes
measured at 0.2–0.8 per centRcdm

vir between galaxies in dSIDM and CDM.
The red dashed line labels the qualitative trend (not rigorous fitting). In
the regime where (σ/m)eff < 1 cm2 g−1, the steepening of central profiles
induced by dissipative dark matter self-interactions becomes progressively
stronger in systems with higher effective cross-sections. In the regime
where (σ/m)eff > 1 cm2 g−1, the steepening of central profiles saturates.
Bottom: Slope change versus dissipation time-scale at halo centre. When
log (tc

diss/tH) > −1, the density profiles become steeper as tc
diss decreases

while the steepening saturates when log (tc
diss/tH) < −1.

the mean rotation/inflow/outflow velocities. For each model, we
show the results of the same five galaxies as in Fig. 9. CDM
haloes are almost isotropic at the centres with mild radial velocity
dispersion anisotropy at the outskirt, which is consistent with
previous studies (e.g. Lemze et al. 2012; Sparre & Hansen 2012;
Wojtak, Gottlöber & Klypin 2013). In dSIDM models, it is similar
to the CDM case that the velocity anisotropy increases towards
larger galactocentric radii. However, as dissipation becomes more
efficient, the normalization of the velocity anisotropy decreases and
eventually becomes negative at small radii. In the dSIDM model with
(σ/m) = 10 cm2 g−1, the velocity anisotropy drops to ∼−0.2 at r ∼
1 per cent Rvir, suggesting that the tangential component of the veloc-
ity dispersion is relatively stronger there. This phenomenon is inline
with the more prominent coherent rotation developed in dSIDM
haloes.

4.4.4 Phase-space distribution

In Fig. 11, we present the density distribution function of dark matter
in the vφ−vr phase space, dρdm/dvrdvφ , of m10q and m10v. We

Figure 9. Coherent rotation velocity relative to velocity dispersion of dark
matter in simulations. The coherent rotation velocities and the velocity
dispersions are measured in spherical shells as discussed in the main text.
We present the results in CDM and dSIDM with (σ /m) = 1 and 10 cm2 g−1.
For each model, we show the results of five dwarf galaxies: m10q, m10b,
m10v, m11a, and m11b. The coherent rotation becomes more prominent
inside ∼ 1 per cent Rvir as the self-interaction cross-section increases, but not
in every galaxy. The two galaxies that have rotation velocities comparable to
velocity dispersions are m10q and m11b.

Figure 10. Velocity anisotropy profiles of dark matter in simulated dwarf
galaxies. The velocity anisotropies are calculated using equation (13). We
present the results in CDM and dSIDM with (σ /m) = 1 and 10 cm2 g−1. For
each model, we show the results of the same five galaxies as in Fig. 9. The
velocity anisotropy decreases as the self-interaction cross-section increases
and eventually becomes negative, suggesting that the velocity dispersion is
more dominated by the tangential component. This is consistent with more
coherent rotation found in Fig. 9.

compare the results in CDM and dSIDM with (σ/m) = 10 cm2 g−1

to better illustrate the contrast. The phase-space distributions are
measured in three radial bins: central, r<rcdm

1/2 /3 (∼ 100–200 pc); inter-
mediate, rcdm

1/2 /3<r<3rcdm
1/2 (∼ kpc); and ‘outskirt’, 3rcdm

1/2 <r<0.5Rcdm
vir (!10 kpc).

The azimuthal and zenith directions are defined based on the direction
of the total angular momentum of dark matter in each radial bin,
respectively. From inside out, each contour is determined such that it
encloses a certain percentile (as labelled on the contour line) of dark
matter particles in the bin. We note that, different from the measure-
ment of velocity dispersions, the coherent rotation or inflow/outflow
velocity has not been subtracted when determining vr and vφ . Dark
matter at small and intermediate radii in the dSIDM model with
(σ/m) = 10 cm2 g−1 exhibits a median vφ ) 5–10 km s−1 contrary
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Dissipative dark matter on FIRE 4435

Figure 11. Phase-space distribution function of dark matter in simulated classical dwarfs. We present the two-dimensional density distribution of dark matter in
the vφ−vr phase space, dρdm/dvrdvφ . In the three columns, we show the distribution in three radial bins: central, r < rcdm

1/2 /3, intermediate, rcdm
1/2 /3 < r < 3rcdm

1/2 ,
and ‘outskirt’, 3rcdm

1/2 < r < 0.5Rcdm
vir , respectively. From inside out, each contour is determined such that it encloses a certain percentile of dark matter particles

in the bin. The percentiles range from 10 per cent to 90 per cent with 20 per cent as interval, as labelled on the contours. The dots represent the locations where
the velocity distribution function peaks. Dark matter in dSIDM models exhibit positive median vφ while the phase-space distribution is almost isotropic in
CDM. The differences consistently show up in the three radial bins and suggest a coherent rotation built up in dSIDM haloes. The phase-space distribution in
the dSIDM model is also more peaky than the CDM case, at least for the central and intermediate radial bins.

to the almost zero median vφ in the CDM case. The distribution
in the dSIDM model is also more peaky than the CDM case. The
differences here is consistent with the coherent rotation of dark matter
in dSIDM found above. At the outskirt of the galaxy, the increase in
the median of vφ is still visible but the scatter in the phase space also
becomes larger.

In Fig. 12, we show the velocity (|v|) distribution functions of dark
matter in the classical dwarfs in CDM and dSIDM with (σ /m) =
1 and 10 cm2 g−1. We present the results at small (r < rcdm

1/2 /3) and
intermediate galactocentric radii (rcdm

1/2 /3 < r < 3rcdm
1/2 ), respectively.

We also show the distribution function in log–log scale to emphasize
the low-velocity tail. Compared to the CDM case, the velocity
distributions in dSIDM models show apparent suppression at the
high-velocity tail and bumps at lower velocities, due to relatively
high interaction rates of particles with high absolute velocities. The
low-velocity tail is less affected by dissipation due to relatively low
interaction rates there. The peak velocity decreases as self-interaction
cross-section becomes larger. The phenomenon is actually opposite
to the prediction of the ‘gravothermal collapse’ in SIDM haloes (e.g.
Balberg et al. 2002; Essig et al. 2019). The difference reflects the
deviation of dSIDM haloes from both dynamical and thermal equi-
librium in the phase of radial contraction, as well as the fact that one
cannot assume velocity distributions as purely isotropic in relaxed
dSIDM haloes. Compared with the Maxwell-Boltzmann distribution,
the velocity distributions in CDM have extended tails at both the
low- and high-velocity tail, since CDM particles are collisionless
and are not locally thermalized. The distributions in the dSIDM
models are suppressed the high-velocity tail. At small galactocentric
radii, the asymptotic behaviour of the velocity distribution function in
CDM and dSIDM are quite different from the Maxwell–Boltzmann
distribution, decreasing slower towards lower velocities. However,

at intermediate radii, both CDM and dSIDM have distributions that
resemble the Maxwell–Boltzmann distribution at the low-velocity
tail.

5 H A LO SH A PE

The change in halo shape is another important signature for alter-
native dark matter physics. This aspect has been explored in detail
for the eSIDM case (e.g. Zemp et al. 2011; Peter et al. 2013; Robles
et al. 2017; Brinckmann et al. 2018; Sameie et al. 2018). In dSIDM
haloes, morphological changes in response to the energy dissipation
are also expected, inline with the steepening of the density profile
and the increased rotation support found in previous sections.

To measure the shape of dark matter haloes, we determine the
orientation and magnitude of the principal axes of dark matter
distribution by computing the eigenvectors and eigenvalues of the
shape tensor of dark matter mass distribution, defined as

S =
∫

V
ρ(r) r rT dV∫
V

ρ(r) dV
, (14)

where ρ(r) is the dark matter mass density at position r with respect
to halo centre. In terms of discrete dark matter particles, each element
of the tensor is calculated as

Sij =
∑

k mk (rk)i (rk)j∑
k mk

. (15)

where mk is the mass of the k-th dark matter particle and (rk)i is the
spatial coordinate of the k-th particle. The three eigenvectors of the
shape tensor give the three axes of the mass distribution. Specifically,
the major, intermediate, and minor axes will be denoted as a, b, and c,
respectively. The ratios between the eigenvalues of the shape tensor
give the axial ratios of the mass distribution.
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4436 X. Shen et al.

Figure 12. Velocity distribution functions of dark matter in the classical dwarfs. Top left: Velocity distribution function at small galactocentric radii (r < rcdm
1/2 /3).

We show the velocity distributions in CDM and dSIDM with (σ /m) = 1 and 10 cm2 g−1 (as labelled). As a reference, a Maxwell–Boltzmann distribution is
shown with the thick grey line. Compared to CDM, the velocity distribution functions in dSIDM models are more suppressed at the high velocity tail as the
cross-section increases and the peaks of the distributions also decrease systematically. Top right: Same velocity distribution functions as the top left panel but in
log–log scale to highlight the asymptotic behaviour at the low velocity tail. Both CDM and dSIDM models have velocity distribution functions that decreases
slower than the Maxwell–Boltzmann distribution at the low velocity tail. Dissipation has limited impact at low velocities due to small interaction rates there.
Bottom left: Velocity distribution function at intermediate galactocentric radii (rcdm

1/2 /3 < r < 3rcdm
1/2 ). Similar differences in the velocity distribution of CDM

and dSIDM are found compared to the one at small radii. Bottom right: The same velocity distribution function as the bottom left panel but in log–log scale.
Both CDM and dSIDM models have velocity distributions that overall resemble the Maxwell–Boltzmann distribution at the low-velocity tail.

For the simulated dark matter haloes, we perform this measure-
ment in a fixed volume of V = 4πr3

lim/3, where rlim is chosen to be
1 kpc. The volume is an ellipsoid with its major, intermediate, and
minor axes (a, b, and c are set to rlim initially) updated iteratively
until convergence is reached. This gives an estimation of the shape of
the dark matter halo at kpc scale. In the top panel of Fig. 13, we show
the minor/intermediate axial ratio (c/b) versus the intermediate/major
axial ratio (b/a) of dark matter mass distribution at z = 0 in simula-
tions. Most of the CDM haloes are triaxial, with a clear hierarchy of
minor, intermediate, and major axes, and lean towards prolate shapes
likely driven by mild radial velocity dispersion anisotropy (e.g.
Warren et al. 1992; Bett et al. 2007; Hayashi, Navarro & Springel
2007). The eSIDM haloes overall become more spherical than CDM
haloes. Despite some galaxy-to-galaxy variations, it is clear that
haloes in the dSIDM models behave as oblate or spherical spheroids,
with the intermediate axes always comparable to the major axes. In
the model with (σ/m) = 1 cm2 g−1, haloes are quite spherical with
b/a ! 0.9 and c/b ! 0.8. The radial contraction washes the initial
triaxiality of the haloes and the increased central force makes haloes
more spherical. However, in the model with (σ/m) = 10 cm2 g−1,

two of the haloes become oblate in shape, with c/b drops to
around 0.5 and 0.7, while the other three are still quite spherical in
the end.

In the bottom panel of Fig. 13, we show the evolution of the axial
ratios of m10q from z ) 2.2 to z = 0 as an example. The halo
shape is again measured at central kpc scale, invariant of redshift.
We choose m10q as an example, since it has dramatic changes in its
shape in dSIDM models. The markers with darker colours represent
measurements at lower redshifts. The CDM halo stays triaxial since
z ) 2.2 with little change in its shape subsequently. The eSIDM halo
are initially triaxial but becomes progressively more spherical at late
times due to elastic scattering of dark matter. The halo in dSIDM
with (σ/m) = 1 cm2 g−1 is already more spherical than CDM and
eSIDM counterparts at z ) 2.2 and it becomes extremely spherical
(c/b, b/a > 0.95) at z = 0. However, the halo in dSIDM with
(σ/m) = 10 cm2 g−1 initially follows the track of becoming more
spherical but then turns oblate in shape. We note that, though not
shown explicitly here, the other halo (m11b) which ends up oblate
(c/b ∼ 0.5 at z = 0) in the model with (σ/m) = 10 cm2 g−1 has
similar evolutionary track in the axial ratio plane. However, the three
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Dissipative dark matter on FIRE 4437

Figure 13. Top: Axial ratios of dark matter haloes at central kpc in
simulations at z = 0. We show the minor/intermediate axial ratio (c/b)
versus the intermediate/major axial ratio (c/a) of dark matter mass distribution
in different simulations. The axes are measured iteratively while fixing the
volume of an ellipsoid as 4π/3 r3

lim, where rlim is chosen to be 1 kpc. When
c/b (b/a) is close to unity, the system is a prolate (oblate) spheroid. When both
c/b and b/a are close to unity, the system is spherically symmetric. In CDM,
dark matter haloes are triaxial ellipsoids with a clear hierarchy of minor,
intermediate and major axes. The CDM haloes lean towards prolate shapes,
driven by mild radial dispersion anisotropy. In the dSIDM model with (σ /m) =
1 and 10 cm2 g−1, dark matter haloes behave as oblate spheroids, driven by the
coherent rotation of dark matter. In the extreme cases [e.g. m10q in dSIDM
with (σ/m) = 10 cm2 g−1], c/b drops to as low as ∼0.5 while b/a stays
around unity. At larger radii (r * kpc), the qualitative trends are similar but
the differences between dark matter models become rapidly smaller. Bottom:
Evolution of the axial ratios of m10q at central kpc from z ) 2.2 to z = 0.
The markers with darker colours represent measurements at lower redshifts.
The CDM halo stays triaxial since z ) 2.2 while the eSIDM halo becomes
more spherical at late times. The halo in dSIDM with (σ/m) = 1 cm2 g−1 is
already more spherical than CDM and eSIDM counterparts at z ) 2.2 and
it becomes extremely spherical at z = 0. However, the halo in dSIDM with
(σ/m) = 10 cm2 g−1 initially follows the track of becoming more spherical
but then turns oblate in shape.

haloes (m10b, m10v, m11a) that end up spherical (c/b, b/a ! 0.9
at z = 0) are still in the phase of turning spherical.

The morphological differences found here are consistent with our
findings in the previous sections that coherent rotation develops in
dSIDM haloes with (σ/m) = 10 cm2 g−1 and could also result in the
lower normalization of the density profiles (measured in spherical
shells) found in Section 4.3. In the model with (σ/m) = 10 cm2 g−1,
the two haloes that become oblate in shape at z = 0 (m10q and

m11b) are the haloes with the most significant coherent rotation (as
presented in Section 4.4) and also with the most significant decrease
in density profile normalization (as presented in Section 4.4).
When the coherent rotation velocity becomes comparable to the
velocity dispersion, a self-gravitating spheroidal system consisting
of collisionless particles flattens. This is a well-known behaviour
in the stellar distribution of elliptical galaxies (e.g. Davies et al.
1983; Cappellari et al. 2007) and models of isotropic oblate rotating
spheroids (Binney 1978; Binney & Tremaine 1987, 2008). Similar to
these previous studies, the response of the ellipticity of the spheroid to
Vrot/σ 3d is weak. In the simulated dwarfs m10q and m11b, significant
coherent rotation of Vrot/σ 3d ∼ 0.5 results in only modest ellipticity
of the halo (c/b, c/a ∼ 0.5–0.7 at r " kpc). However, the coherent
rotation and halo deformation are weaker in other simulated dwarfs
and this is likely related to the differences in the mass assembly
history of the dwarfs.

We note that, for the oblate spheroids we found here, the minor
and major axes are still comparable to each other. The shape is
qualitatively different from the thin ‘dark disc’ discussed in the
literature (albeit for Milky Way-sized galaxies) regarding dissipative
dark matter (Fan et al. 2013a,b, 2014; Foot 2013; Foot & Vagnozzi
2015a, 2016; Randall & Scholtz 2015). The dissipation time-scale
in the model studied here is still orders of magnitude longer than
the dynamical time-scale of the system, which prevents fragmen-
tation of the dark matter into e.g. ‘dark stars’ and other compact
structures (e.g. Hoyle 1953; Rees 1976; Gammie 2001). This
is qualitatively different from baryon-like dissipative dark matter
models. In addition, unlike those models that assume dissipative dark
matter is a subcomponent of all the dark matter, the model studied
here assumes that all the dark matter are dissipative. In our case,
there would be no external gravitational force that can suppress the
growth of secular gravitational instabilities (e.g. Ostriker & Peebles
1973; Christodoulou, Shlosman & Tohline 1995), which prevents
the formation of a cold and thin ‘dark disc’ completely supported by
rotation.

6 D ISCUSSION

In previous sections, we have presented several signatures of dSIDM
models in dwarf galaxies that differ from their CDM counterparts. In
this section, we discuss these phenomena in more detail and provide
some physical explanations to the behaviours using simple analytical
arguments.

6.1 Slope of the density profile

When σ /m becomes large enough such that the dissipation time-
scale is comparable or lower than the Hubble time-scale (1/H0), all
the dSIDM haloes in simulations first undergo radial contraction,
accompanied by the steepening of the central density profiles. It is
surprising that, during this phase, the asymptotic power-law slopes
of the central density profiles of dwarf galaxies converge to ∼−1.5
(though with significant scatter ∼0.5 in the bright dwarfs), insensitive
to the detailed value of effective cross-section.

The cooling and contraction of dSIDM haloes here share some
similarities with the cooling and collapse of gas clouds in the baryonic
sector, which have been well studied in the context of star formation.
However, compared to dSIDM haloes studied here, there are notable
differences in the hierarchy of relevant time-scales, which result in
different evolution patterns. Gas clouds exhibit much higher particle
scattering rates and less energy dissipation per scattering, so the
collisional relaxation time-scale is orders of magnitude shorter than
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the cooling time-scale, which means that global thermal equilibrium
is easier to be established in gas clouds. During the early contraction
of gas clouds, it is often assumed that the compressional heating will
offset the radiative loss of thermal energy and keep the cloud nearly
isothermal (e.g. Gaustad 1963; Shu 1977). However, in dSIDM
haloes, since the dissipation time-scale is comparable to the collision
time-scale (see Section 3), the dSIDM fluid cannot adjust itself to
global thermal equilibrium during the contraction of the system,
which is qualitatively different from the isothermal contraction of
gas clouds. This is supported by the fact that the velocity dispersion
profiles (shown in Fig. 3) at the centres of simulated dwarfs in are
never flat in dSIDM models, contrary to the isothermal profiles in
eSIDM cases.

For gas clouds, the isothermal contraction will gradually increase
the imbalance of gravitational forces over thermal pressure forces,
which eventually results in the free-fall collapse of the central part of
the cloud (e.g. Bodenheimer & Sweigart 1968; Larson 1969; Penston
1969a,b; Hunter 1977; Shu 1977; Foster & Chevalier 1993). In terms
of time-scales, the free-fall collapse will happen when the cooling
time-scale becomes shorter than the dynamical time-scale of the
cloud. However, in dSIDM haloes, this is also prohibited, since the
dissipation time-scale (in the surveyed parameter space) is orders of
magnitude larger than the dynamical time-scale of the system. As
the dissipation of thermal/kinetic energy drives the contraction of
the halo on the dynamical time-scale, dark matter particles could be
gravitationally accelerated again, which would effectively increase
the thermal pressure and slow down the collapse. Moreover, on the
dynamical time-scale, dark matter particles from different radii can
‘mix’ because they are only weakly collisional as oppose to gas. As
a consequence, even though the global thermal equilibrium of the
system is broken, the contraction would still be much slower than
the free-fall collapse of gas clouds (as found in Fig. 11).

We find the behaviour of our systems can be reasonably described
by the solution for a ‘slow’ quasi-equilibrium cooling flow (with
negligible thermal conduction) rather than isothermal or rapid free-
fall ‘collapse’. Following Stern et al. (2019), the continuity equation
of a steady slow-cooling halo, that is spherically symmetric, isotropic
and pressure supported, can be written as

d ln ρ

d ln r
+ d ln vr

d ln r
= −2, (16)

where ρ is the density of the fluid and vr is the radial inflow velocity.
The momentum equation and the entropy equation of the system can
be reduced to (Stern et al. 2019)

d ln vr

d ln r

(v2
r

c2
s

− 1
)

= 2 − v2
c

c2
s

− r/vr

γ tcool
, (17)

where vc is the circular velocity, cs is the adiabatic sound speed, γ

is the adiabatic index, and tcool is the cooling time-scale of the fluid.
Applying the solution to the cooling flow of dark matter, we replace
the sound speed cs with the one-dimensional velocity dispersion of
dark matter σ 1d and the cooling time-scale tcool with the dissipation
time-scale tdiss of dark matter self-interactions. In the ‘subsonic’ limit
(vr ' σ 1d), the second equation becomes

− d ln vr

d ln r
= 2 − v2

c

σ 2
1d

− r/vr

γ tdiss
. (18)

A simple self-similar solution exists by requiring that all the logarith-
mic derivatives of dark matter properties are constants. Then v2

c /σ
2
1d

and (r/vr)/tdiss also need to be constants. If we assume ρ ∼ rα , we
obtain the scaling of the one-dimensional velocity dispersion as

σ1d ∼ vc ∼
√

GMenc(r)/r ∼ r1+α/2. (19)

In the meantime, equation (16) implies that vr ∼ r−α − 2. According
to equation (8), the dissipation time-scale tdiss scales with density and
velocity dispersion as ρ−1σ−1

1d ∼ r−(1+3α/2). If we plug in the scaling
of vr and tdiss to the term (r/vr)/tdiss, we obtain

r/vr

tdiss
∼ r rα+2

r−(1+3α/2)
∼ r4+5α/2. (20)

So the power-law solution (which requires the term to be a constant
at all radii) has α = −8/5. Quantitatively, the slope of the density
profile given by this ‘dark cooling flow’ solution is consistent with
the finding in dSIDM simulations that the asymptotic slopes of the
density profiles converge to around −1.5. It also predicts σ 1d ∼ r0.2,
which is consistent with the central velocity dispersions of simulated
dwarfs that mildly increase with radii.

A similar solution for self-gravitating gaseous spheres with a
polytropic equation of state has been presented in Suto & Silk
(1988), as a generic study of the solution proposed in Shu (1977).
They considered spherical gaseous systems with the same equations
for mass and momentum conservation. Purely aiming at finding
self-similar solutions and without involving a detailed description
of cooling/heating, they derived an asymptotic self-similar density
profile ρ ∼ r−1.5 that is independent of the assumed polytropic index
of gas. The solution is not restricted to a steady state, subsonic inflow
of gas and still holds even when there is no cooling term.

6.2 Dark matter energy transfer in dSIDM

In general, ‘thermal conduction’ and dissipation are the two main
mechanisms in SIDM haloes to transfer kinetic energy of dark matter.
‘Thermal conduction’ is dark matter collisional energy transfer. The
detailed form of the heat conductivity depends on the nature of the
heat conduction. In the theory of thermal conductivity of an ideal
fluid, the heat flux is the averaged one-way flux of particles across an
imaginary surface multiplied by the difference in energy per particle
between the starting and ending points. Up to order unity corrections,
this gives

κ ) 3
2

kB

m
ρ

l2

τ
, (21)

where kB is the Boltzmann constant, l is the characteristic distance
between the starting and ending points, and τ is the time between
collisions. In SIDM haloes, the collision (or close encounters)
between particles is governed by dark matter self-interactions since
the collision time-scale of dark matter self-interaction is significantly
lower than the two-body gravitational relaxation time-scale. Thus, we
have τ = tcoll. If the mean free path between collisions is significantly
shorter than the physical size of the system [referred to as the short
mean free path (SMFP) regime], dark matter will behave like a fluid
and the heat conductivity is fully regulated by the mean free path of
dark matter particles [l = λ = 1/(ρσ /m)]. Therefore, in this regime,
the thermal conductivity is

κ = 3
2

kB

m
C1ρ

λ2

tcoll
, (22)

where C1 is an order unity constant and has been found to be
(25

√
π/32)/(4/

√
π) in the Chapman–Enskog theory (e.g. Chap-

man & Cowling 1970; Lifshitz & Pitaevskii 1981) and 0.25/(4/
√
π)

in numerical simulations (Koda & Shapiro 2011).
On the other hand, this picture is not valid when the mean free path

between collisions is much larger than the gravitational scale height
H of the system [referred to as the long mean free path (LMFP)
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regime], defined as

H =

√
σ 2

1d

4πGρ
. (23)

In this regime, particles can travel several orbits before experiencing
a collision. Lynden-Bell & Eggleton (1980) found that the character-
istic distance between encounters in this limit (for weakly collisional
fluid) can be roughly described by the gravitational scale height (l =
H). In this case, the thermal conductivity is

κ = 3
2

kB

m
C2ρ

H 2

tcoll
, (24)

where C2 is an order unity constant and has been found to be 0.75 in
numerical simulations (Koda & Shapiro 2011). For the fiducial model
studied in the paper, the mean free path of dark matter self-interaction
is always orders of magnitudes larger than the gravitational scale
height of the systems (or translated to time-scale, the collision time-
scale of dark matter self-interaction is orders of magnitudes larger
than the dynamical time-scale of the system). So, these haloes all
stay in the LMFP regime.

The flux of thermal energy transferred outward through a sphere
of radius r can be calculated as

jcoll(r) = −κ
∂T (r)

∂r
= −κ

m

kB

∂σ 2
1d(r)
∂r

, (25)

where κ takes the conductivity in the LMFP regime defined in
equation (24). The net collisional energy gain per unit volume in
a spherical shell can be calculated as

Ėcoll(r) = − 1
4πr2

∂(4πr2jcoll(r))
∂r

. (26)

The second mechanism of energy transfer is energy dissipation due
to dark matter self-interactions. Different from ‘thermal conduction’,
the dissipation we modelled here is not regulated by any characteristic
length-scale, since the dissipated energy will not be reabsorbed and
effectively has an infinite mean free path. The dissipation energy loss
per unit volume in a spherical shell is the volumetric cooling rate:

Ėdiss(r) = C(r) = 3
2
ρ(r)σ 2

1d(r)/tdiss(r). (27)

The relative importance of collisional energy transfer and dissipation
is determined by the comparison between tcoll and tdiss. For the
dSIDM model studied in this paper, tcoll and tdiss always have similar
dependence on density and velocity dispersion. Thus, their ratio is
almost a constant over the evolution of the halo and only depends
on fdiss. For the fiducial model with fdiss = 0.5, tdiss is of the same
order of magnitude as tcoll (e.g. tdiss = 0.75 tcoll/fdiss for the models
with constant cross-sections). In this regime, dissipation is always
the dominant mechanism for energy transfer and is responsible for
triggering the contraction of the halo. Collisional energy transfer
is negligible. Therefore, the evolution pattern of dSIDM haloes
in this regime will be qualitatively different from the canonical
gravothermal collapse of eSIDM haloes.

In Fig. 14, we demonstrate the dominance of dissipation over
collisional energy transfer in simulations. We show the collisional
energy transfer rate, Ėcoll, relative to the energy loss rate due to
dissipation, Ėdiss, of spherical shells as a function of galactocentric
radii. In the classical and bright dwarfs, assuming the fiducial choice
of fdiss, the rate of energy transfer via collisions is always roughly an
order of magnitude lower than the energy dissipation rate.

Figure 14. Dark matter energy transfer rates via ‘thermal conduction’
(dark matter collisional energy transfer) versus dissipation energy loss rates,
measured in spherical shells, as a function of galactocentric radii. We show
the heat gain or loss of dark matter via collisions (Ėcoll, equation 26) versus
the energy dissipation rate (Ėdiss, equation 27) in circles (red for Ėcoll > 0,
blue for Ėcoll < 0). We present the results in one of the classical dwarfs m10q
and in one of the bright dwarfs m11a. In both galaxies, with fdiss = 0.5, the
collisional energy transfer rate is always roughly an order of magnitude lower
than the energy dissipation rate.

6.3 Evolution of a dSIDM halo

When dissipation dominates over collisional energy transfer of dark
matter, the evolution track of an isolated dSIDM halo can be divided
into four regimes, depending on the dissipation time-scale tdiss:

(i) Regime A (tdiss * tH): The halo evolves in the same way as
analogous CDM halo since both tdiss and tcoll are significantly longer
than the lifetime of the system.

(ii) Regime B (tH ! tdiss ! 0.1 tH): The halo undergoes radial
contraction. The density profile within the radius where tH ! tdiss

steepens and becomes cuspy with power-law slopes asymptoting to
∼−1.5. The shape of the halo becomes more spherical in this phase.

(iii) Regime C (0.1 tH ! tdiss * tdyn at the halo centre): At a certain
stage of the radial contraction, prominent coherent rotation of dark
matter will develop in the system. The system is in a transition
from purely dispersion supported to being supported by a mixture
of random velocity dispersion and coherent rotation. During this
transition, the radial contraction of the halo and the steepening of the
density profile are stopped by centrifugal forces. The halo becomes
oblate in shape during this phase and the normalization of the density
profile measured in spherical shells decreases.
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(iv) Regime D (tdyn ! tdiss): Local instability starts to build up
and results in fragmentation of the halo. Numbers of dark ‘clumps’
would start to form within the local free-fall time-scale. None of our
simulations has reached this regime and it would require order-of-
magnitude larger self-interaction cross-sections to test.

7 C O M PA R I S O N W I T H OTH E R SI M U L AT I O N
PHYSICS

7.1 Varying the energy dissipation fraction

We note that the specific simulations studied in this paper have
assumed that the dimensionless degree of dissipation is fdiss = 0.5.
However, the results can be extrapolated to other slices of the dSIDM
parameter space based a simple time-scale argument. In Section 3,
we show that the energy dissipation time-scale only depends on the
product of fdiss and σ /m. Therefore, when dissipation is the dominant
mechanism for energy transfer, different combinations of fdiss and
σ /m should give rise to similar predictions as long as the dissipation
time-scale is the same. In this section, we vary the dissipation fraction
fdiss and test how the results are affected in explicit simulations.

We use the ultra-faint dwarf m09 as the test halo. The halo is
ideal for the test since the density profile is dark matter domi-
nated and baryonic feedback is weak considering its M∗/Mhalo !
3 × 10−5. We choose three combinations of fdiss and σ /m that
give the same dissipation time-scale: fdiss = 0.5, σ/m = 1 cm2 g−1;
fdiss = 0.1, σ/m = 5 cm2 g−1; fdiss = 0.9, σ/m = 0.56 cm2 g−1. In
Fig. 15, we show the total mass density profile of m09 in these
three models compared with the CDM counterpart and the NFW
profile. The models with fdiss = 0.5 and fdiss = 0.9 produce exactly the
same density profile, which justifies that, when dissipation dominates
energy transfer, the evolution of the halo is determined by the
dissipation time-scale and is independent of the detailed combination
of parameters. However, we find the model with fdiss = 0.1 (and a
large cross-section of σ/m = 5 cm2 g−1) produces a qualitatively
different profile from the other two models. The density follows the
NFW profile at ! 100 pc while gets enhanced by about two orders of
magnitude at the scale " 100 pc compared to the extrapolation of the
NFW profile, and is even denser than the cuspy profile in the other
two models. It is counterintuitive that the model with a lower degree
of dissipation gives rise to higher central densities. The phenomenon
can be explained by the increased importance of collisional energy
transfer in this model. When fdiss = 0.1, the collision time-scale
becomes an order of magnitude lower than the dissipation time-
scale and the halo is no longer purely dominated by dissipation.
Under the influence of collisional energy transfer, the evolution
track of the halo resembles the ‘gravothermal catastrophe’ of eSIDM
haloes, where ‘thermal conduction’ is responsible for energy transfer.
The analytical model of the ‘gravothermal catastrophe’ of SIDM
haloes (e.g. Balberg et al. 2002) predicts that a halo initially in
the LMFP regime will contract while maintaining a cored, self-
similar density profile until the central part of the halo reaches the
SMFP regime. Subsequently, a dense, optical thick core (in the SMFP
regime) will form while the outskirt of the halo stays in the LMFP
regime. In the simulation with fdiss = 0.1, at the centre of m09, the
density reaches 1011 M#/ kpc3 and the collision time-scale there is
comparable to the dynamical time-scale (assuming a typical one-
dimensional velocity dispersion ∼ 10 km s−1) which indicates that
the centre of the halo is indeed in the SMFP regime. It is striking
that the enhanced central density due to the gravothermal evolution
is even higher than that produced by models with higher degree of
dissipation.

We verify that the phenomenon discussed above is indeed caused
by increased importance of ‘thermal conduction’ by showing the
collisional energy transfer rates versus dissipation rates in simula-
tions in Fig. 15. In the model with fdiss = 0.9, σ/m = 0.56 cm2 g−1

or fdiss = 0.5, σ/m = 1 cm2 g−1, the collisional energy transfer rate
is always subdominant compared to dissipation. However, in the
model with fdiss = 0.1, σ/m = 5 cm2 g−1, the collisional energy
transfer rate overtakes dissipation at small radii (" 0.2 kpc). This is
in very good agreement with the radii where we find the differences
in density profiles between the two models. In summary, when
|Ėcoll| * |Ėdiss| at halo centres, which occurs for fdiss ! 0.1, the
halo behaves more like an eSIDM halo and the higher central density
is primarily due to the gravothermal evolution driven by collisional
energy transfer (but potentially accelerated by dissipation).

To better illustrate the parameter space of dSIDM (including the
space that have not been explored in this paper), we create a cartoon
image (Fig. 16) which qualitatively divides the dSIDM parameter
space into several regions. The dSIDM models are parametrized
with σ /m and fdiss. Both eSIDM and dSIDM models become CDM-
like when σ /m is small enough such that the collision time-scale
becomes much longer than the lifetime of the Universe. dSIDM
becomes essentially eSIDM-like when fdiss becomes small enough,
since collisional energy transfer dominates over dissipation in this
regime. When the product of σ /m and fdiss becomes large enough,
the dissipation time-scale could drop below the local dynamical
time-scale of the system and results in fragmentation of dSIDM
into compact dark objects. For higher value of fdiss and σ /m, the
scenario that all dark is dissipative would be ruled out by observations
(e.g. constraints from merger clusters (Markevitch et al. 2004;
Randall et al. 2008); lensing constraints on compact dark matter
substructures). If we put baryons (and baryon-copy dSIDM models)
in this space effectively, they will be located at the low fdiss, high σ /m
corner of the plot. Thus the interesting dSIDM parameter space that
gives unique phenomena but is not immediately ruled out is roughly
around fdiss ) 0.1−1, (σ/m) ) 0.01–100 cm2 g−1.

7.2 Dark matter only versus full physics simulations

The analysis and discussion in the main paper revolve around the
impact of dissipative dark matter interactions on galaxy structures.
However, baryonic physics could also impact galaxy structures in var-
ious ways. For instance, the gas outflow driven by stellar/supernovae
feedback could irreversibly transfer energy to dark matter and induce
cores at galaxy centres (e.g. Governato et al. 2010; Pontzen &
Governato 2012; Madau et al. 2014); the gravitational influence
of baryons condensed at galaxy centres could induce adiabatic
contraction of dark matter haloes (e.g. Blumenthal et al. 1986; Gnedin
et al. 2004). The contamination of baryonic physics processes is
an important factor when studying the influence of alternative dark
matter physics.

We explore this aspect by performing dark matter only (DMO)
simulations of the same haloes in the simulation suite and comparing
the results. In Fig. 17, we compare the total mass density profiles of
dwarf galaxies m10q and m11q in DMO simulations and full physics
simulations. It is not surprising that, in the CDM case, the density
profiles produced by DMO simulations are cuspy and NFW-like
before reaching the convergence radii. In full physics simulations,
m11q exhibits a kpc size core while m10q still exhibits a cuspy profile
like its DMO counterpart. The difference results from the different
level of baryonic feedback in the two galaxies. However, in the
dSIDM model with (σ/m) = 1 cm2 g−1, the DMO and full physics
simulations produce almost the same density profiles, indicating
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Dissipative dark matter on FIRE 4441

Figure 15. Top left: Total mass density profiles of m09 in dSIDM models with other combinations of fdiss and σ /m. We choose three combinations of fdiss and
σ /m that give the same dissipation time-scale: fdiss = 0.5, σ/m = 1 cm2 g−1; fdiss = 0.1, σ/m = 5 cm2 g−1; fdiss = 0.9, σ/m = 0.56 cm2 g−1. Other panels:
Collisional energy transfer rates versus energy dissipation rate of dark matter (as Fig. 14). The energy transfer rate via collisions is subdominant compare to
dissipation in the model with fdiss = 0.5 or 0.9. In the model with fdiss = 0.1, collisional heating overtakes dissipation at the centre of the galaxy. This model
actually produces denser and cuspier central density profile, as the halo experiences the gravothermal collapse and a dense core in the SMFP regime emerges
at the centre. In all models, at large radii (∼ 10 kpc), collisional energy transfer rates become comparable to the dissipation rate, but the absolute value of both
terms at these radii are too small to make a difference.

that baryonic physics no longer affect the density profiles of dwarf
galaxies once dissipation is strong enough. This check also validates
the results presented in this paper against uncertainties in modelling
the baryonic physics processes in simulations.

8 SU M M A RY A N D C O N C L U S I O N

In this paper, we present the first suite of cosmological baryonic
(hydrodynamical) zoom-in simulations of galaxies in dSIDM. We
adopt a dSIDM model where a constant fraction fdiss of the kinetic
energy is lost during dark matter self-interaction. We sample models
with different constant self-interaction cross-sections as well as a
model with velocity-dependent cross-section. The dSIDM mod-
els explored here are weakly collisional (σ/m " 10 cm2 g−1) but
strongly dissipative (fdiss ! 0.1) and are qualitatively different from
some previously proposed baryon-like dSIDM models (e.g. Fan et al.
2013a; Foot 2013; Randall & Scholtz 2015), which are limited to
explain a subset of all dark matter in the Universe. The simulations
utilize the FIRE-2 model for hydrodynamics and galaxy formation
physics, which allows for realistic predictions on the structural
and kinematic properties of galaxies. This simulation suite consists
of various galaxies, from ultra-faint dwarfs to Milky Way-mass
galaxies. In this paper, we primarily focus on the analysis of dwarf

galaxies in dSIDM and explore galaxy/halo’s response to dissipative
self-interactions of dark matter. The following signatures of dSIDM
models in dwarf galaxies are identified and explored:

(i) The dark matter halo masses and galaxy stellar masses are
not significantly affected in dSIDM models with (σ/m) " 1 cm2 g−1

compared to the CDM case (see Fig. 4). The dwarf galaxies in
the dSIDM model with (σ/m) = 10 cm2 g−1 have slightly lower
(0.1–0.2 dex) halo/galaxy stellar masses. But the results of this model
are still within the scatter of the relation constrained in observations
as well as the stochastic run-to-run scatter of simulations of different
dwarf galaxies.

(ii) Energy dissipation due to dark matter self-interactions induces
radial contraction of dark matter halo. This mechanism competes
with baryonic feedback in shaping the central profiles of dwarf
galaxies (see Figs 5 and 6). When the effective self-interaction
cross-section is low, the central profiles are still cored despite higher
densities and smaller core sizes. When the effective self-interaction
cross-section is larger than ∼ 0.1 cm2 g−1, assuming fdiss = 0.5, the
central density profiles of dwarf galaxies become cuspy and power-
law like. The resulting asymptotic power-law profile is steeper than
the NFW profile. The power-law slopes asymptote to ∼−1.5 in
the classical dwarfs and range from −2 to −1 in the bright dwarfs
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Figure 16. A cartoon of the dSIDM parameter space. The dSIDM model
is parametrized with σ /m and fdiss. When σ /m is small enough, both elastic
and dissipative SIDM models become analogous to CDM in the lifetime of
the Universe. When fdiss becomes small enough, dSIDM becomes essentially
eSIDM-like since collisional energy transfer dominates over dissipation in
this regime. When the product of σ /m and fdiss becomes large enough, the
dissipation time-scale could drop below the local dynamical time-scale of
the system and results in fragmentation of dSIDM into compact dark objects.
Effectively, baryon-like models are located at the low fdiss, high σ /m corner
of the plot. The dSIDM models studied in this paper live in the parameter
space, which is not immediately ruled out but can still give rise to unique
phenomena different from CDM or eSIDM models.

(see Fig. 7). The slope of the profile can be well explained by the
stead-state solution of a ‘dark cooling flow’ (see Section 6.1), which
predicts a density profile with power-law slope −1.6.

(iii) Interestingly, further increasing the effective cross-section
to 10 cm2 g−1 does not lead to further contraction of the halo or
steepening of the density profile. Instead, the normalization of the
density profiles drops. A likely explanation is that the centrifugal
force increases faster than the gravitational attraction as the halo
contracts with specific angular momentum conserved. This eventu-
ally halts the contraction, increases the rotation support of the halo
and drives the halo deformation (to oblate), which makes the density
measured in spherical shell decreased.

(iv) Through time-scale analysis (Section 3), we show that the
dSIDM models with constant cross-sections will have stronger
impact in more massive galaxies while the velocity-dependent model
has the opposite dependence. This is demonstrated by the simulations
of classical dwarfs and bright dwarfs with the same dark matter model
(see Figs 5 and 6). The dSIDM model with (σ/m) = 0.1 cm2 g−1

produces small cores in two of the classical dwarfs but produces
cuspy profiles in two of the bright dwarfs. The velocity-dependent
dSIDM model produces cuspy profiles in all the classical dwarfs
while producing cored profiles in the bright dwarfs that are almost
identical to the CDM case.

(v) The kinematic properties of the dark matter change in parallel
to the contraction of dark matter halo (see Section 4.4). As the self-
interaction cross-section of dSIDM increases, the coherent rotation
becomes more prominent compared to random velocity dispersion.
In the meantime, the velocity dispersions are more dominated by
the tangential component than the radial component, reflected by
the negative velocity anisotropies in dSIDM haloes. The central
parts of the galaxies are in transition from dispersion supported to
rotation supported. Meanwhile, the velocity distribution function is
suppressed at high velocities while it increases at low velocities in

Figure 17. Total mass density profiles of galaxies in DMO simulations
and full physics simulations. We present the density profiles of m10q and
m11q in CDM and dSIDM with (σ/m) = 1 cm2 g−1. The results of full
physics simulations are shown in solid lines while the results of DMO
simulations are shown in dashed lines. The purple dotted vertical line
indicates the convergence radius in DMO runs (see Table 1). In CDM, the
central density profiles in DMO simulations are similar to the NFW profile
before reaching the convergence radii. The full physics simulation of m11q
produces a kpc size core at the centre due to strong baryonic feedback
there. However, in the dSIDM model with (σ/m) = 1 cm2 g−1, the DMO
and full physics simulations produce almost identical results, indicating that
dissipative interactions of dark matter completely determine the evolution of
the dark matter halo and the impact of baryonic feedback becomes negligible.
This is generally true when the dissipation time-scale becomes significantly
shorter than the Hubble time-scale.

dSIDM models. As the cross-section increases, the median velocity
is also shifted lower.

(vi) The shape of the halo is affected by dissipation (see Fig. 13). In
the dSIDM model with (σ/m) = 1 cm2 g−1, the halo becomes more
spherical towards lower redshifts, contrary to the triaxial shape of
CDM haloes. The spherical ‘dark cooling flow’ washes out the initial
triaxiality of the halo and makes the halo compact and spherical in the
end. However, in the dSIDM model with (σ/m) = 10 cm2 g−1, the
halo shape shows a response to the more prominent coherent rotation
of dark matter. Haloes are initially on the track of becoming more
spherical, but later turn oblate in shape due to the halt of spherical
contraction and increased rotation support.

(vii) As shown in Section 6.2, the energy transfer in dSIDM haloes
(with the degree of dissipation fdiss = 0.5) is dominated by dissipation
rather than ‘thermal conduction’ (collisional energy transfer). When
we vary fdiss to ! 0.1, collisional energy transfer becomes important
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and the density at small radii (r " 100 pc) is significantly enhanced
(see Fig. 15), which resembles the gravothermal collapse of eSIDM
haloes. This gives the counterintuitive prediction that a model with
a lower degree of dissipation (but higher cross-section to make the
dissipation time-scale invariant) can produce even denser haloes than
models with higher degrees of dissipation.

(viii) The density profiles in full physics simulations of CDM
are more cored than the ones in DMO simulations, caused by
the inclusion of baryonic physics. However, the DMO simulations
of dSIDM models show little difference from the full physics
simulations (see Fig. 17), likely due to the dominance of dark matter
energy dissipation over perturbations from baryonic feedback. This
shows that the structural properties of dSIDM haloes is insensitive
to baryonic physics in this regime and demonstrates the robustness
of our results against various uncertainties in the baryonic sector in
simulations.

In this paper, we present the first study of dwarf galaxies in dSIDM
models using cosmological hydrodynamical simulations. We find
several observable signatures of dSIDM models in dwarf galaxies and
systematically study the evolution patterns of dSIDM haloes, which
differs from canonical astrophysical systems. Analytical explana-
tions are provided to explain the phenomena found in simulations.
The findings in this paper could serve as effective channels to
constrain dSIDM models when compared to observations. This
aspect will be considered in follow-up work in this series.
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Quataert E., 2016, ApJ, 827, L23
Wise M. B., Zhang Y., 2014, Phys. Rev. D, 90, 055030
Wise M. B., Zhang Y., 2015, J. High Energy Phys., 2015, 23
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APPENDIX A: CONVERGENCE TESTS

In the main text, we have used the convergence radii found for CDM
DMO runs, quoted for the standard FIRE-2 simulations Hopkins
et al. (2018). However, it is possible that weakly collisional dSIDM
has different convergence properties from collisionless particles. In
additional, in full physics simulations, the convergence properties
could be set by the resolution of baryonic processes rather than
collisionless particles. For CDM, the simulations with baryons usu-
ally give better convergence than their DMO counterparts (Hopkins
et al. 2018), but this aspect has never been studied in the dSIDM
case.

In this section, we perform convergence tests for dSIDM simu-
lations. For the first test, we run a low-resolution version of m10q
[with baryons; with 8 (2) times poorer mass (spatial) resolution] in
CDM and dSIDM with (σ/m) = 1 cm2 g−1, respectively. The total
mass density profiles are compared to the default runs in the top
panel of Fig. A1. In the CDM case, the convergence radius derived
based on the Power et al. (2003) criterion roughly describes where
low-resolution run deviates from high-resolution one. In the dSIDM
case, the convergence of the density profile extends to much smaller

radii. For the second test, we run a high-resolution version of m11q

Figure A1. Test of convergence for the mass density profiles in CDM and
dSIDM. Top panel: Density profiles at z = 0 of the default and low-resolution
m10q runs with baryon. Results in different dark matter models are shown
as labelled. The light (dark) vertical line indicates the convergence radius of
the low-resolution (default) runs. The convergence radius is derived based
on DMO runs using the Power et al. (2003) criterion (Hopkins et al. 2018).
Bottom panel: Density profiles of the default and high-resolution m11q DMO
runs. The high-resolution run stops at z = 0.4 due to high computational cost,
so we compare the profiles at that redshift. The labelling is the same as the
top panel. The light (dark) vertical line indicates the convergence radius of
the default (high-resolution) runs. The comparisons here demonstrate that
dSIDM models have better convergence properties than CDM, whether we
include baryons or not. The convergence radii quoted in the main text are
conservative estimates of the true convergence radii of dSIDM runs.

[with 8 (2) times better mass (spatial) resolution, but DMO this time]
in CDM and dSIDM with (σ/m) = 0.1 cm2 g−1, respectively. We
stop the simulation at z = 0.4 to save computational cost, but we
verify in the default resolution simulation that the density profile at
z = 0.4 does not differ much from the z = 0 one. Again in DMO
runs of m11q, the dSIDM model shows much better convergence
properties than CDM. In summary, the tests here demonstrate that
dSIDM models in general give smaller convergence radii than CDM,
and this property is not affected by whether we include baryons or
not. Therefore, the convergence radii quoted in the main text are
rather conservative estimates of the true convergence radii of dSIDM
runs.
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