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Abstract
Storage architectures ranging from minimum bandwidth regenerating encoded distributed
storage systems to declustered-parity RAIDs can employ dense partial Steiner systems to
support fast reads, writes, and recovery of failed storage units. To enhance performance,
popularities of the data items should be taken into account to make frequencies of accesses
to storage units as uniform as possible. A combinatorial model ranks items by popularity and
assigns data items to elements in a dense partial Steiner system so that the sums of ranks of the
elements in each block are as equal as possible. By developing necessary conditions in terms
of independent sets, we demonstrate that certain Steiner systems must have a much larger
difference between the largest and smallest block sums than is dictated by an elementary
lower bound. In contrast, we also show that certain dense partial S(t, t + 1, v) designs can
be labeled to realize the elementary lower bound. Furthermore, we prove that for every
admissible order v, there is a Steiner triple system (S(2, 3, v)) whose largest difference in
block sums is within an additive constant of the lower bound.

Keywords Steiner system · Steiner triple system · Independent set · Access balancing
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1 Introduction

Distributed storage systems [15,35], systems for batch coding [36], and multiserver private
information retrieval systems [18] have each employed combinatorial designs for data place-
ment, so that elements of the design are associated with data items and blocks with storage
units. In these contexts, the most common types of designs employed are t-designs and t-
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packings. A t-(v, k, λ) packing is a pair (X ,B), where X , the point set, is a v-set and and B
is a collection of k-subsets (blocks) of X such that every t-subset of X is contained in at most
λ blocks. The packing is a t-(v, k, λ) design when every t-subset of X is a subset of exactly
λ blocks. A t-(v, k, 1) design is a Steiner system, denoted by S(t, k, v). A 2-(v, 3, 1) design
is a Steiner triple system of order v, denoted by STS(v). When λ = 1, a t-(v, k, 1) packing
is also referred to as a partial S(t, k, v) or partial Steiner system.

When data items are of the same size, and data is placed on storage units using a t-design,
placement of data is uniform across the storage units. Indeed in t-(v, k, λ) design, every point

appears in exactly r = λ(v−1
t−1)

(k−1
t−1)

blocks; this is the replication number of the design. In order to

understand why Steiner systems can be employed in data placement, we outline some exam-
ples. Large-scale distributed storage systems (DSS) must address potential loss of storage
units, while not losing data. One solution is to replicate each data item and distribute these
replicas among multiple storage nodes; systems such as the Hadoop Distributed File System
and the Google File System employ this strategy [9]. One can further mitigate information
loss by sensibly organizing the data. For example, exact Minimum Bandwidth Regenerating
(MBR) codes [15] consist of two subcodes, an outerMDS code alongwith an inner fractional
repetition code (FRC) that support redundancy and repairability, respectively. To make this
precise, an (n, k, d)-DSS with k ≤ d ≤ n consists of n storage nodes in which a read can
be accomplished by access to k nodes and a failed node recovered by access to d nodes. A
fractional repetition code C [15] with repetition degree ρ for an (n, k, d)-DSS is a collection
C of n subsets V1, V2, . . . , Vn of a set V , |V | = v, and of cardinality d each, satisfying the
condition that each element of V belongs to exactly ρ different sets in the collection. The
rate of the FRC is minI⊂[n],|I |=k |∪i∈I Vi |. To optimize the rate and ensure correct repetition
and repair, we require that |Vi ∩ Vj | ≤ 1 whenever i �= j . When ρ = v−1

d−1 , such an FRC is a
Steiner 2-(v, d, 1) design with replication number ρ, where the set of (coded) file chunks V
is the set of points and the set of storage nodes {V1, . . . , Vn} is the set of blocks of the design.

Steiner systems also prove useful for applications needing both high data availability and
throughput, such as transaction processing. The storage systems underlying these applica-
tions require uninterrupted operation, satisfying user requests for data even in the event of disk
failure and repairing these failed disks, on-line, in parallel. Continuous operation alone is not
sufficient, because such systems cannot afford to suffer significant loss of performance during
disk failures. Declustered-parity RAIDS (DPRAIDs) are designed to satisfy these require-
ments [8,23]. Like standard RAIDs (short for “Redundant Arrays of Inexpensive Disks”),
DPRAIDs handle disk failure by using parity-encoded redundancy, in which subsets of the
stored data (called parity stripes) are XORed together to store a single-error-correction code.
Unlike standard RAIDs, however, all disks in the DPRAID cooperate in the reconstruction
of all the data units on a single failed disk. One can represent a DPRAID as a t-(v, k, λ)

design (X ,B), with X (|X | = v) being the set of disks in the array, and B being the set of all
parity stripes, each of size k. Then each disk occurs in the same number c of parity stripes,
guaranteeing that the reconstruction effort is distributed evenly.

Although designs arise naturally in balancing data placement, little attention has been
paid to the relative popularity of the data items. However, one can exploit popularity infor-
mation in order to improve the relative equality of access among the storage units. Dau and
Milenkovic [12] formulate a number of problems to address access balancing, by labeling
the points of the underlying design. In order to introduce their problems and results, we first
present more definitions and known results concerning designs.

Although storage systems handle “hot” (frequently accessed) and “cold” (infrequently
accessed) data categories differently, typically they do not take the long-term popularity of
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the data items within each category into account, which may result in unbalanced access
frequencies to the storage units. Access balancing can be achieved in part by selecting an
appropriate packing or design, and by appropriate association of data items with elements of
the packing or design. Dau and Milenkovic [12] propose a combinatorial model that ranks
data items by popularity, and then strives to ensure that the sums of the ranks of the data
elements in each block are not too small, not too large, or not too different from block to
block. In Sect. 2 we summarize their model, state elementary bounds on various block sums,
and provide a small but important improvement in the lower bound on the smallest possible
difference among the block sums in a Steiner triple system. In Sect. 3 we establish a close
connection between such block sums and the size of a maximum independent set of elements
in the packing or design. For certain designs, this connection can be used to show that, no
matter how data items are associated with the elements of the design, the block sums must
be far from the values dictated by the elementary bounds from Sect. 2. Indeed, in order to
approach the elementary bounds, one must select designs or packings with very specific
properties; we pursue this in Sect. 4. Our results indicate the need to find specific S(t, k, v)

designs, or at least ‘dense’ t-(v, k, 1) packings, to match the elementary boundsmore closely.
In Sect. 5, we explore a construction of t-(v, t +1, 1) packings that asymptotically match the
bounds and contain almost the same number of blocks as the full Steiner system S(t, t+1, v).
Completion of the dense t-(v, t + 1, 1) packings to a Steiner system S(t, t + 1, v) appears
problematic for general t ; doing so without dramatically changing the block sums appears
to be even more challenging. Nevertheless, in Sect. 6, we pursue this to establish, for every
admissible order v, the existence of a Steiner triple system of order v whose difference in
block sums is at most an additive constant more than the elementary lower bound.

A preliminary version of this research, without proofs, appears in [7].

2 Point labelings and block sums

Let D = (V ,B) be a t-(v, k, λ) packing. A point labeling of D is a bijection rk : V �→
{0, . . . , v − 1}; our interpretation is that rk maps an element to its rank by popularity. The
reverse rk of a point labeling rk has rk(i) = v − 1 − rk(i) for each i ∈ {0, . . . , v − 1};
the reversal of a point-labeled packing is one having the reverse of the point labeling. With
respect to a specific point labeling rk, define sum(B, rk) = ∑

x∈B rk(x) when B ∈ B. Then
define

MinSum(D, rk) = min(sum(B, rk) : B ∈ B);
MaxSum(D, rk) = max(sum(B, rk) : B ∈ B);
DiffSum(D, rk) = MaxSum(D, rk) − MinSum(D, rk);

RatioSum(D, rk) = MaxSum(D, rk)/MinSum(D, rk).

Following [12], one primary objective is to choose point labelings to maximize theMinSum
and/or to minimize one of the other three. Access balancing is concerned primarily with
minimizing the DiffSum or RatioSum; because of the similarity between these two entities
we often focus on the DiffSum. LetRD denote the set of all point labelings of D. Noting that
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MaxSum(D, rk) = k(v − 1) − MinSum(D, rk), we define

MinSum(D) = max(MinSum(D, rk) : rk ∈ RD);
MaxSum(D) = k(v − 1) − MinSum(D);
DiffSum(D) = min(DiffSum(D, rk) : rk ∈ RD);

RatioSum(D) = min(RatioSum(D, rk) : rk ∈ RD).

If the storage system dictates the data layout and data items have the same size, we are free
to permute the data items; this is captured by the selection of the point labeling rk. If we
are also free to choose the t-(v, k, 1) packing that underlies the data layout, we may select a
packing to improve the sum metrics defined. In order to capture this, let Dt,k,v,b denote the
set of all t-(v, k, 1) packings having exactly b blocks. Then define

MinSum(t, k, v, b) = max(MinSum(D) : D ∈ Dt,k,v,b);
MaxSum(t, k, v, b) = k(v − 1) − MinSum(t, k, v, b);
DiffSum(t, k, v, b) = min(DiffSum(D) : D ∈ Dt,k,v,b);

RatioSum(t, k, v, b) = min(RatioSum(D) : D ∈ Dt,k,v,b).

When b = (v
t)

(kt)
, the packing is a Steiner system S(t, k, v); in these cases we omit b from the

notation to get MinSum(t, k, v) and similarly for all other entities.

Theorem 1 [12]When D is a Steiner system S(t, k, v),

MinSum(D) ≤ MinSum(t, k, v) ≤ 1

2
(v(k − t + 1) + k(t − 2));

MaxSum(D) ≥ MaxSum(t, k, v) ≥ 1

2
(v(k + t − 1) − kt);

DiffSum(D) ≥ DiffSum(t, k, v) ≥ (v − k)(t − 1);
RatioSum(D) ≥ RatioSum(t, k, v) ≥ v(k + t − 1) − kt

v(k − t + 1) + k(t − 2)
.

When k = t+1,MinSum(D) ≤ (v−1)+(t
2

)
,MaxSum(D) ≥ t(v−1)−(t

2

)
, DiffSum(D) ≥

(t − 1)(v − t − 1), and RatioSum(D) ≥ RatioSum(t, t + 1, v) ≥ t(v−1)−(t2)
(v−1)+(t2)

.

When in addition t = 2 (D is a Steiner triple system), the stronger boundsDiffSum(D) ≥ v

and RatioSum(D) ≥ 2 hold.

Theorem 1 provides bounds on the metrics across all Steiner systems S(t, k, v) and all
point labelings of them. In previous work, the focus has been on theMinSum (or equivalently,
by reversal, the MaxSum). Dau and Milenkovic [12] use the Bose [3] and Skolem [22,37]
constructions of Steiner triple systems to establish the existence of an STS(v) D with
MinSum(D) = v, the largest possible by Theorem 1 (Brummond [4] establishes a simi-
lar result for Kirkman triple systems). They accomplish this by specifying a particular point
labeling that meets the MinSum bound, but unfortunately the labeling chosen yields a Max-
Sum near 8

3v, a DiffSum near 5
3v, and a RatioSum near 8

3 , far from the bounds of 2v, v, and
2, respectively. The reversal of this labeling yields a MinSum far from optimal, the same
DiffSum, and a larger RatioSum.

One might hope to improve the DiffSum and RatioSum by choosing a different labeling or
by choosing a different Steiner system S(t, k, v). In Sect. 3, we show that certain S(t, k, v)s
cannot meet any of the bounds in Theorem 1.
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2.1 An easy case

Before embarking on the practical cases with t ≥ 2, we provide a complete solution for
Steiner systems with t = 1, which are partitions of a set of size ks into s sets, each of size k.

Lemma 1 Let k be a nonnegative integer with k �= 1 and let s be a positive integer.
When k(s − 1) is even, MinSum(1, k, ks) = MaxSum(1, k, ks) = 1

2k(ks − 1); moreover,
DiffSum(1, k, ks) = 0 and RatioSum(1, k, ks) = 1. When k(s − 1) is odd,

MinSum(1, k, ks) = 1

2
(k(ks − 1) − 1);

MaxSum(1, k, ks) = 1

2
(k(ks − 1) + 1);

DiffSum(1, k, ks) = 1;
RatioSum(1, k, ks) = 1 + 2

k(ks − 1) − 1

Proof The sum of all elements is
(ks
2

)
, so the average block sum is 1

2k(ks − 1). This is an
integer whenever k is even or s is odd. Now we provide constructions. Suppose that there is
a point-labeled S(1, k, ks) with MinSum m and MaxSum M , having blocks B0, . . . , Bs−1.
Add s to the label of each element, and adjoin new elements i and (k + 2)s − 1− i to block
Bi , for 0 ≤ i ≤ s − 1. This yields a point-labeled S(1, k + 2, (k + 2)s) having MinSum
m+ks+(k+2)s−1 andMaxSum M+ks+(k+2)s−1. It follows that if the Lemma holds
for an S(1, k, ks), it also holds for an S(1, k + 2, (k + 2)s). Therefore we need only treat
cases when k ∈ {0, 3}. When k = 0, there are no elements in the system and the statements
hold trivially.

It remains to treat cases with k = 3. First we treat the case when s is even, writing
s = 2�. Form the triples {{2i, 4� − 1 − i, 5� − 1 − i} : 0 ≤ i < �}, each having sum
9�−2 = 1

2 (3(6�−1)−1). Then adjoin the triples {{2i+1, 3�−1−i, 6�−1−i} : 0 ≤ i < �},
each having sum 9�−1 = 1

2 (3(6�−1)+1). The result is a point-labeled S(1, 3, 3s)with the
required sums. Finally we treat the case when s is odd, writing s = 2� + 1. Form the triples
{{i, 3� + 1 + i, 6� + 2 − 2i} : 0 ≤ i ≤ �}, each having sum 9� + 3 = 1

23(3(2� + 1) − 1).
Adjoin the triples {{� + 1+ i, 2� + 1+ i, 6� + 1− 2i} : 0 ≤ i < �}, each again having sum
9� + 3. The result is a point-labeled S(1, 3, 3s) with the required sums. ��

2.2 Improved bounds for STSs

There is an STS(7) with MinSum = 6 and MaxSum = 13 with blocks 016, 024, 035, 123,
145, 256, and 346 (here wewrite abc for {a, b, c}). There is an STS(9)withMinSum = 9 and
MaxSum = 18 with blocks 018, 027, 036, 045, 126, 135, 147, 234, 258, 378, 468, and 567.
However, we establish that these are the only two Steiner triple systems with DiffSum = v,
and indeed the only STS(v)with RatioSum = 2 is the STS(9). We first prove a useful lemma.

Lemma 2 A 2-(x, 3, 1) packing on {0, . . . , x − 1} withMaxSum x − 1 has at most 
φ(x)/3�
triples, where

φ(x) =
⌊
x(x − 1)

4

⌋

−
⌊ x

12

⌋
−

{
0 if x ≡ 0, 1, 2, 3, 4, 6, 7, 10 (mod 12)
1 if x ≡ 5, 8, 9, 11 (mod 12)

Proof We determine an upper bound on φ(x), the number of pairs that could appear in
triples of the packing. In total there are

(x
2

)
pairs; of these, exactly 
 x

2 � have sum equal to
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x − 1. For each pair {a, b} with a + b < x − 1, the pair {x − 1 − a, x − 1 − b} has sum
2x − 2− (a+ b) > x − 1. Hence the number of pairs with sum at most x − 1 is x2

4 when x is

even, and x2−1
4 when x is odd. Not all of these can appear together in a packing, as follows.

Let a ∈ {0, . . . , 
 x−2
3 �}. Consider the pairs Pa = {{a, x − 1 − b} : a ≤ b ≤ 2a}. To place a

pair of Pa in a triple of sum at most x − 1, the third element must be from {0, . . . , a}, but it
cannot be a. By the pigeonhole principle, at least one pair of Pa cannot be in a triple of the
packing, reducing the number of pairs available by 
 x+1

3 �. Hence the number φ(x) of pairs
available is as given in the statement. ��

Theorem 2 Let D be a Steiner triple system of order v ≥ 13. Then DiffSum(D) ≥ v + 1 and
RatioSum(D) > 2.

Proof Let v = 2x + 1, and consider an STS(2x + 1) D on elements {0, . . . , 2x}, noting
that x ≥ 6. Partition {0, . . . , 2x} into three classes V0 = {0}, Vs = {1, . . . , x}, and V� =
{x + 1, . . . , 2x}. Let m = MinSum(D) and M = MaxSum(D). Suppose to the contrary that
DiffSum(D) = v. Then (m, M) ∈ {(v−3, 2v−3), (v−2, 2v−2), (v−1, 2v−1), (v, 2v)}. If
m ≤ v−2, the reversal of D hasMinSum(D) ∈ {v−1, v}, so we suppose thatm ∈ {v−1, v}.
Because m ≥ v − 1, all triples containing 0 contain one element of Vs and one of V�, as
follows. Consider the pair {0, w} with w ∈ Vs . The third element y completing its triple
satisfies y ≥ 2x − w ≥ 2x − x = x . Now y �= x because {0, x, x} cannot be a triple, so
y > x , and hence y ∈ V�. This accounts for all triples involving 0.

Call a pairmixed if it contains an element of Vs and one from V�, pure otherwise. Similarly
a triple is pure if it lies entirely on Vs or V�, mixed when it has two from one and one from
the other. The number of mixed triples can be calculated as follows. There are x(x − 1)
mixed pairs not contained in triples containing 0, and each must be contained in a mixed
triple. Because eachmixed triple contains twomixed pairs, there are exactly 1

2 x(x−1)mixed
triples. Each mixed triple covers one pure pair. Hence the number of pure pairs to be covered
by pure triples is x(x − 1) − 1

2 x(x − 1) = 1
2 x(x − 1), and there are 1

6 x(x − 1) pure triples.
Form a collection Ds of triples on {0, . . . , x − 1} by including {a, b, c} whenever {a +

1, b + 1, c + 1} is a pure triple on Vs ; then Ds contains triples each having sum at least
m − 3. The reversal Es then has each sum at most 3x − m. Form a collection D� of triples
on {0, . . . , x − 1} by including {a, b, c} whenever {2x − a, 2x − b, 2x − c} is a pure triple
on V�, so that D� contains triples each having sum at least 6x − M . The reversal E� then has
each sum at most M − 3x − 3.

Case 1.MinSum(D) = v and henceMaxsum(D) = 2v. Then Es and E� both have maximum
sum at most x − 1. Applying Lemma 2 to Es and to E�, D can contain at most 2φ(x) pairs
in pure triples, but 2φ(x) < 1

2 x(x − 1), which yields the contradiction. (Only when v = 9
would there be no contradiction.)

Case 2.MinSum(D) = v −1 and henceMaxsum(D) = 2v −1. Then Es has maximum sum
x and E� has maximum sum x − 2. Because no pair involving element x − 1 can appear in
a triple of E�, the number of pairs covered by triples is at most φ(x − 1) by Lemma 2. By a
similar argument, the number of pairs covered by triples of Es is at most φ(x +1) by Lemma
2. Because (x−1)(x−2)

4 + x(x+1)
4 = x(x−1)

2 + 1
2 , φ(x − 1) + φ(x + 1) < 1

2 x(x − 1), which
yields the contradiction. (Only when v = 7 would there be no contradiction.) ��
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3 Independent Sets

Let D = (V ,B) be a t-(v, k, λ) packing. An independent set in D is a subset X ⊆ V such that
there is no B ∈ B with B ⊆ X . An independent set X is maximal if there is no independent
set Y with X ⊂ Y , and maximum if there is no independent set Y such that |Y | > |X |. The
independence number of D, denoted α(D), is the size of a maximum independent set. There
is a close connection between the independence number of a packing and the quality of any
of its labelings.

Lemma 3 A t-(v, k, λ) packing D has MinSum at most kα(D) − (k
2

)
, MaxSum at least

k(v − 1 − α(D)) + (k
2

)
, and DiffSum at least k(v + k − 2 − 2α(D)).

Proof It suffices to prove the statement for MinSum. No matter how D is given a point
labeling, on elements with ranks in {0, . . . , α(D)}, there is a block. The sum of this block is
at most

∑k
i=1(α(D) − (i − 1)). ��

Corollary 1 Meeting the bound onMinSum in Theorem 1 for a t-(v, k, 1) packing D requires
that

α(D) ≥ v(k − t + 1)

2k
+ k + t − 3

2
.

For example, Corollary 1 states that a necessary condition for a partial Steiner triple system
D to have MinSum equal to v is that α(D) ≥ v

3 + 1.
We refine this bound by using a second disjoint independent set. Suppose that a t-(v, k, λ)

packing D contains two disjoint independent sets of sizes γD and δD , respectively, with
γD ≥ δD ; two disjoint independent sets form an independent pair. Set

γ ′
D = min

(

γD,
v(k − t + 1)

2k
+ k + t − 3

2

)

,

δ′
D = min

(

δD,
v(k − t + 1)

2k
+ k + t − 3

2

)

.

Two independent sets form amaximum independent pairwhen γ ′
D+δ′

D is as large as possible.

Lemma 4 An. S(t, k, v), D, with a maximum independent pair of sizes (γD, δD) has DiffSum
at least k(v + k − 2 − δ′

D − γ ′
D).

Proof Suppose to the contrary that some point labeling of D has DiffSum less than k(v +
k − 2 − δ′

D − γ ′
D). Without loss of generality, choose such a labeling in which the smallest

x for which a block appears on {0, . . . , x − 1} also has a block on {v − x, . . . , v − 1};
reverse the labeling if necessary to do this. Let c be the smallest value for which a block
appears on {0, . . . , c}, so that {0, . . . , c − 1} forms an independent set. Proceed similarly
to select d so that {v − d, . . . , v − 1} is an independent set. If c ≥ v(k−t+1)

2k + k+t−3
2 , set

c′ = v(k−t+1)
2k + k+t−3

2 and otherwise set c′ = c. Then for the chosen labeling of D, we find

MinSum at most kc′ − (k
2

)
, based on Theorem 1 and the argument in the proof of Lemma 3.

In the same manner, if d ≥ v(k−t+1)
2k + k+t−3

2 , set d ′ = v(k−t+1)
2k + k+t−3

2 and otherwise set

d ′ = d . The chosen labeling has MaxSum at least k(v − 1 − d ′) + (k
2

)
. Hence the DiffSum

for this labeling is at least k(v + k − 2 − c′ − d ′), so c + d ≥ c′ + d ′ > γ ′
D + δ′

D . This
contradicts the requirement that the maximum independent pair have sizes (γD, δD). ��
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Corollary 2 Meeting the bound on DiffSum in Theorem 1 for an S(t, k, v) D requires that D
have a independent pair of sizes (� v(k−t+1)

2k + k+t−3
2 �, � v(k−t+1)

2k + k+t−3
2 �).

In order to meet the bound in Corollary 2, the independent pair must be maximum.
However, this does not require that either of the independent sets of the pair be maximum.
Nor is it required that the sum of their sizes be as large as possible (see [28] for Steiner triple
systems). For a Steiner triple system, for example, Corollary 2 asks only for two disjoint
independent sets, each of size at least v

3 + 1, for a combined size of 2v
3 + 2. Applying the

2v + 1 construction [10] twice to an STS(v), we form an STS(4v + 3) having a maximum
independent pair of sizes (2v + 2, v + 1); despite the fact that the combined size is over
3
4 of the size of the STS, such a pair could not lead to a DiffSum that meets the bound of
Theorem 1, because the second largest of the pair is too small.

Corollary 2 gives a necessary condition, not a sufficient one. Nevertheless, some bounds
on the metrics can be stated.

Lemma 5 When a t-(v, k, 1) packing D has two disjoint independent sets of sizes α and
β, there is a point labeling with MinSum(D) ≥ α + (k−1

2

)
and (for the same labeling)

MaxSum(D) ≤ k(v − 1) − β − (k−1
2

)
, so DiffSum(D) ≤ k(v − k) − β − α.

Proof Any point labeling assigning labels {0, . . . , α −1} to the points of the independent set
of size α, labels {v − β, . . . , v − 1} to the points of the independent set of size β, and labels
{α, . . . , v − β − 1} to the remaining points, meets the stated bounds. ��

A Steiner system S(t, k, v) is 2-chromatic if its elements can be partitioned into two
classes, both being independent sets. When a 2-chromatic S(3, 4, v) D exists (see, for exam-
ple, [13,24,30]), Lemma 5 establishes that DiffSum(D) ≤ 3v − 17.

Recall that Dau and Milenkovic [12] use the Bose and Skolem constructions of Steiner
triple systems. In retrospect, this choice is well-justified because the Bose construction leads
to maximum independent pairs of sizes ( v

3 +1, v
3 +1) when v ≡ 3 (mod 6) and the Skolem

construction leads to maximum independent pairs of sizes ( v+2
3 + 1, v+2

3 + 1) when v ≡ 1
(mod 6).

Labeling for access balancing must focus on Steiner triple systems, and on t-(v, k, 1)
packings in general, having large sizes in maximum independent pairs. This choice is impor-
tant, because not all such systems have even a single large independent set, as we explain
next.

4 Small maximum independent sets

Can one choose an arbitrary t-(v, k, 1) packing, and by cleverly choosing a point labeling
optimize one or more of the sum metrics? If not, how far from the bound of Theorem 1 can
the best point labeling be? In order to discuss these questions, define

αmin(t, k, v) = min{α(D) : D is a t-(v, k, 1) packing}, and
α

min(t, k, v) = min{α(D) : D is an S(t, k, v)}.

When an S(t, k, v) exists, αmin(t, k, v) ≤ α

min(t, k, v).

Erdős and Hajnal [16] establish that αmin(2, 3, v) ≥ 
√2v�; indeed a simple greedy
algorithm produces an independent set of this size.
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A t-(v, k, 1) packing has each element in at most
(
v−1
t−1

)
/
(k−1
t−1

) = ∏t−1
i=1

v−i
k−i blocks.

Spencer [38] generalized Turán’s theorem for graphs to obtain

αmin(t, k, v) ≥ ck
v

(∏t−1
i=1

v−i
k−i

) 1
k−1

for ck a constant independent of v. For partial Steiner triple systems, this asserts that
αmin(2, 3, v) ≥ c · v√

2/
√

v − 1, a small improvement on the Erdős-Hajnal result. State-of-
the-art lower bounds [17,25,26,39] all differ only by constant factors, and all rely heavily on
a theorem about “uncrowded” hypergraphs.

Theorem 3 [1] Let κ ≥ 2 be a fixed integer. Let G be a (κ + 1)-uniform hypergraph on n
vertices. Then there are constants t0(κ) and n0(κ, τ ) so that whenever

1. G is uncrowded (i.e., has no 2-, 3-, or 4- cycles);
2. the maximum degree 
(G) satisfies 
(G) ≤ τκ where τ ≥ t0(κ); and
3. n ≥ n0(κ, τ ),

one has that

α(G) ≥ .98

e
· 10−5/κ · n

τ
· (ln τ)1/κ .

The lower bound for all t-(v, k, 1) packings in Theorem 4 is obtained by selecting a large
uncrowded set of the blocks and applying Theorem 3, while the upper bound is established
using the Lovász Local Lemma.

Theorem 4 [14,32] For fixed k and t, there are absolute constants c and d for which

cv
k−t
k−1 (log v)

1
k−1 ≤ αmin(t, k, v) ≤ dv

k−t
k−1 (log v)

1
k−1 .

It is possible in principle that restricting to Steiner systems, rather than packings, one
might observe different behaviour in the minima. However, Phelps and Rödl [29] establish
that the bounds of Theorem 4 apply to Steiner triple systems, not just to partial ones; that is,

c
√

v ln v ≤ α

min(2, 3, v) ≤ d

√
v ln v

for absolute constants c and d . Grable, Phelps and Rödl [20] establish similar statements
when t ∈ {2, 3} for all k > t .

For the applications intended, it is of interest to find independent sets of (at least) the size
guaranteed efficiently. For research in this vein, see [2,19]. Of course, one wants to find a
pair of disjoint maximum independent sets whose total size is as large as possible, but this is
NP-complete even for 3-uniform hypergraphs [27]. Remarkably, there is a polynomial time
algorithm to determine whether an S(3, 4, v) contains two independent sets, each of size v/2
[11], but the ideas used do not appear to generalize.

Nevertheless, the bounds on sizes of smallest maximum independent sets provide bounds
on the best sum metrics one can hope to achieve. Combining Lemma 3 and the results in
[20,29], someSteiner triple systems only have point labelings far from the bounds of Theorem
1:

Theorem 5 For infinitely many orders v, there is an absolute constant c so that there exists
an STS(v) D with MinSum(D) ≤ 3c

√
v ln v − 3 and MaxSum(D) ≥ 3v − 3c

√
v ln v, and

hence DiffSum(D) ≥ 3v − 6c
√

v ln v + 3.

We must focus on specific Steiner systems or packings, if we are to obtain sum metrics at
or near the basic bounds.
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5 Dense t-(v, t + 1, 1) packings

We establish next that one can obtainmetrics close to the optimal when k = t+1 for packings
that contain all but a vanishingly small fraction of the blocks of an S(t, t + 1, v) as v → ∞.
The independent set requirements indicate that we must have a maximum independent pair
having large sizes. To accomplish this, we partition all (t + 1)-subsets of Zv according to
their sum modulo v, and choose one class of the partition to form the blocks of the packing.
The basic strategy dates back at least a century to Bussey [6], and perhaps earlier.

This is not a mere theoretical curiosity; as Chen et al. observe in [8], declustered-parity
RAIDs do not in practice need to have their loads perfectly balanced, so one may omit some
blocks from the design.

Theorem 6 Let t and v be integers with v >
(t+2

2

) + (t+1
2

)
so that v and t + 1 are relatively

prime. For each of the following statements, there exists a t-(v, t + 1, 1) packing D on

elements Zv , with point labeling rk being the identity function, having
( v
t+1)
v

= v−t
v

(v
t)

(t+1
t )

blocks.

(1) MinSum(D, rk) = v + σ and MaxSum(D, rk) = tv + σ whenever −(t+2
2

) + 1 ≤ σ <
(t+1

2

)
.

(2) MinSum(D, rk) = v + (t+1
2

) − 1.

(3) MaxSum(D, rk) = tv − (t+2
2

) + 1.
(4) DiffSum(D, rk) = (t − 1)v.

(5) RatioSum(D, rk) = tv+(t+1
2 )−1

v+(t+1
2 )−1

.

Proof It suffices to prove statement (1); the other results follow directly from it.
Partition all (t + 1)-subsets of Zv into v classes {Bσ : 0 ≤ σ < v} by placing set

S = {x1, . . . , xt+1} in class Bσ if and only if σ ≡ �t+1
i=1xi (mod v). Because for any

t-subset T of Zv and each σ with 0 ≤ σ < v there is a unique element s for which
σ ≡ s + �x∈T x (mod v), each Bσ is a t − (v, t + 1, 1) packing.

Without restrictions on v, these v packings need not have the same number of blocks. We
now use the restriction that (v, t + 1) = 1. Consider the orbits of (t + 1)-subsets of Zv under
the cyclic action of Zv . When S is a (t + 1)-subset of Zv with sum σ , let S + α be the subset
of Zv obtained by adding α (modulo v) to each element in S. Then the orbit containing S is
{S + α : 0 ≤ α < v}. For 0 ≤ α < v, the sum of S + α is σ + (t + 1)α (mod v). Now if
S + α and S + β have the same sum modulo v, (t + 1)α ≡ (t + 1)β (mod v), which can
happen only when α ≡ β (mod v). Hence every orbit contains exactly v blocks, one in each

of the v classes, and therefore each Bσ contains
( v
t+1)
v

blocks.
Now we prove statement (1). First we treat the cases when σ ≥ 0. Choose σ so that

0 ≤ σ <
(t+1

2

)
and consider the packing D = (Zv,Bσ ). Suppose to the contrary that S is a

(t + 1)-subset of Zv with smallest sum τ < v + σ . When τ ≡ σ (mod v) and τ < v + σ ,
it must happen that σ = τ = �x∈Sx . But �x∈Sx ≥ �t

i=0i = (t+1
2

)
> σ , which is a

contradiction. HenceMinSum(D, rk) ≥ v + σ . Because σ ≥ 0, tv + σ is the largest integer
less than (t + 1)v that is congruent to σ modulo v, and hence MaxSum(D, rk) ≤ tv + σ .

Next we address the cases when −(t+2
2

) + 1 ≤ σ < 0. Let ω = v + σ , and consider
the packing D = (Zv,Bω). Then MinSum(D, rk) ≥ ω = v + σ < v, because of the
congruence requirement. For MaxSum(D, rk), suppose to the contrary that S is a (t + 1)-
subset of Zv with largest sum τ > tv + σ = (t − 1)v + ω. Then τ = tv + ω. Now
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�t+1
i=1(v − i) = (t + 1)v − (t+2

2

) ≥ �x∈Sx . Hence ω ≤ v − (t+2
2

)
so σ ≤ −(t+2

2

)
, which is a

contradiction.
Statements (2), (4), and (5) follow by taking σ = (t+1

2

) − 1. Statement (3) follows by

taking σ = −(t+2
2

) + 1. ��
Not surprisingly, the packings so produced contain large independent sets. For example,

when σ = 0, the elements {0, . . . , 
 v
t+1�} form an independent set.

Theorem 6 yields packings that are dense in the following sense. When an S(t, t + 1, v)

exists, it has (v
t)

(t+1
t )

blocks; the packings considered have a v−t
v

fraction of this number. Hence

for fixed t the fraction of t-sets left uncovered by the packing approaches 0 as v → ∞.
Moreover, the bounds established for dense t-(v, t+1, 1) packings onMinSum andMaxSum
match the values from Theorem 1 (which are best for Steiner systems). On the other hand,
as v → ∞ and t is fixed, the ratio of DiffSum of the packing to the bound approaches 1, and
the RatioSum approaches its bound of t − 1. By generalizing to partial systems, Theorem 6
applies to all parameters that are large enough, whether or not an S(t, t + 1, v) exists.

Although Theorem 6 establishes a DiffSum of (t − 1)v for certain dense t-(v, t + 1, 1)
packings, this may not be the best possible, as Theorem 1 ensures only that (v − k)(t − 1)
is a lower bound on the DiffSum. Theorem 7 gives evidence that the bound may not be the
best possible, by producing a packing that achieves a smaller DiffSum than that of Theorem
6 when t = 3, but is nearly as dense.

Theorem 7 When v > 18 is even, there is a 3-(v, 4, 1) packing D with v−4
v−1

(v
3)

(43)
blocks, having

MinSum(D) ≥ v + 2, MaxSum(D) ≤ 3v − 6, and hence DiffSum(D) ≤ 2v − 8.

Proof Write v = 2s. We form D on elements {0, . . . , 2s − 1}, with blocks

1. {{a, b, c, s + d} : 0 ≤ a < b < c < s, 0 ≤ d < s, a + b + c + d ≡ 2 (mod s)}, and
2. {{s + a, s + b, s + c, d} : 0 ≤ a < b < c < s, 0 ≤ d < s, a + b + c + d ≡ s − 6

(mod s)}.
This forms a 3-(v, 4, 1) packing with the specified number of blocks. Because a+b+c+d ∈
{s+2, 2s+2, 3s+2}, blocks of the first class have sum in {2s+2, 3s+2, 4s+2}. Similarly,
because a + b + c + d ∈ {s − 6, 2s − 6, 3s − 6}, blocks of the second class have sum in
{4s−6, 5s−6, 6s−6}. HenceMinSum(D) ≥ 2s+2 = v+2 andMaxSum(D) ≤ 6s−6 =
3v − 6. ��

6 Sums and Steiner triple systems

For the intended applications in storage systems, it remains desirable to employ a Steiner
system, rather than a dense packing, when possible. In what follows, we extend Theorem 6
to produce Steiner triple systems in which the sum metrics are close to optimal.

Building on the construction in Theorem 6, Schreiber [33] and Wilson [40] demonstrate
that for certain values of v, the packing can be completed to an STS(v) (see also [21,31]).
Their interest was to construct so-called ‘large sets’ of Steiner triple systems, so they imposed
a stronger condition that we need. We consider the cyclic group Zn for odd n. When x and
n are relatively prime, the elements of Zn are partitioned into classes under multiplication
by x : a and b are in the same class if and only if a ≡ x�b (mod n) for some nonnegative
integer �. These classes are the cycles of Zn for x .
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When n ≡ 1, 5 (mod 6), no cycle has size two because for every nonzero x ∈ Zn ,
x ≡ (−2)2x (mod n) requires that 1 ≡ 4 (mod p) for some prime divisor p of n. To treat
the labeling and block sums, we employ a technical lemma:

Lemma 6 Let n ≡ 1, 5 (mod 6). Every pair in {{a, b} : a, b ∈ Zn \ {0}, b ≡ −2a (mod n)}
has (n + 1)/2 ≤ a + b ≤ (n − 1)/2 + n.

Proof Consider such a pair a, b ∈ Zn with b ≡ −2a (mod n). We examine two cases:
Case 1: 1 ≤ a ≤ (n − 1)/2. Then b = n − 2a and hence (n + 1)/2 ≤ a + b ≤ n − 1.
Case 2: (n+1)/2 ≤ a ≤ n−1: Then b = 2n−2a and hence n+1 ≤ a+b ≤ n+(n−1)/2. ��

Now we re-prove the Schreiber-Wilson result, in order to focus on the block sums. (In
[33,40], the ST S(v) is constructed, but the point labelling is not.)

Theorem 8 Let v ≡ 1, 3 (mod 6). Suppose that for every nonzero x ∈ Zv−2, the cycle for
−2 containing x has even size. Then there is an STS(v), D, with MinSum(D) ≥ v − 2,
MaxSum(D) ≤ 2v + 2, and hence DiffSum(D) ≤ v + 4 and RatioSum(D) ≤ 2v+2

v−2 .

Proof Let n = v − 2. Using the proof of Theorem 6, construct a 2-(v, 3, 1) packing B0 on
Zv−2 (points v−2 and v−1 appear in no triples). Each triple in B0 has sum v−2 or 2v−4 at
present. The pairs left uncovered onZv−2 by any triple are E0 = {{x,−2x} : x ∈ Zv−2 \{0}},
each having sum between (v − 1)/2 and (v − 3)/2 + v − 2 by Lemma 6.

Because the cycle for −2 containing x has even size for every nonzero x ∈ Zn , the pairs
in E0 can be partitioned into two 1-factors, F1 and F2, on Zn \ {0}.

To form an STS(v) on Zv with block set C, employ the mapping φ : Zv−2 �→ Zv \ {(v −
1)/2, (v + 1)/2} defined by φ(x) = x when 0 ≤ x ≤ (v − 3)/2 and φ(x) = x + 2 when
(v − 1)/2 ≤ x < v − 2. Then C is formed as follows.

(1) When {x, y, z} ∈ B0, place {φ(x), φ(y), φ(z)} in C;
(2) For i = 1, 2, when {x, y} ∈ Fi , place {(v − 3 + 2i)/2, φ(x), φ(y)} in C;
(3) Place {0, (v − 1)/2, (v + 1)/2} in C.
Triples of B0 have sum v − 2 or 2v − 4, so triples of type (1) in C have sum between v − 2
and v + 2, or between 2v − 2 and 2v + 2. A pair {x, y} ∈ E0 has (v − 1)/2 ≤ x + y ≤
(v − 1)/2+ (v − 3). Applying φ, we have (v − 1)/2 ≤ φ(x)+φ(y) ≤ (v − 1)/2+ (v + 1).
Hence, each triple of type (2) in C has sum at least v − 1 and at most 2v + 1. Finally, the
single type (3) block has sum v. ��

Unlike the point labelings in [12], the labeling for the Schreiber-Wilson construction in
Theorem 8 need not achieve the largest MinSum or smallest MaxSum. Nevertheless it yields
a substantial improvement on earlier constructions with respect to the DiffSum and Ratio-
Sum, within an additive constant of the best bound possible for the DiffSum. Unfortunately,
Theorem 8 requires that the order of −2 mod p be even, and so applies to an infinite set of
orders (see [34]) but not all admissible ones. (For example, it does not apply when v − 2 is a
multiple of 11, 59, 83, 107, 131, 179, 227, 251, 281, or 347, as in these cases the order of −2
is odd.) We remedy this next, using a result from [5], but obtaining slightly weaker bounds.

Theorem 9 Whenever v ≡ 1, 3 (mod 6), there is an STS(v), D, with MinSum(D) ≥ v − 5,
MaxSum(D) ≤ 2v + 2, and hence DiffSum(D) ≤ v + 7 and RatioSum(D) ≤ 2v+2

v−5 .

Proof Form B0 over Zv−2 as in the proof of Theorem 8. Remove element 0 as well as all
triples {{0, x, v − 2 − x} : 1 ≤ x ≤ (v − 3)/2} to form D0. Let E0 be the set of pairs
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on Zv−2 \ {0} not covered by a triple of D0. The pairs in E0 form a 3-regular graph G on
Zv−2 \ {0}. By [5, Lemma 9], G can be partitioned into three 1-factors, F1, F2, and F3.

To form the STS(v) on Zv with block set C, we employ the mapping ψ : Zv−2 \ {0} �→
Zv \ {(v − 3)/2, (v − 1)/2, (v + 1)/2} defined by ψ(x) = x − 1 when 1 ≤ x ≤ (v − 3)/2
and ψ(x) = x + 2 when (v − 1)/2 ≤ x < v − 2. Then C is formed as follows.

(1) When {x, y, z} ∈ D0, place {ψ(x), ψ(y), ψ(z)} in C;
(2) For i = 1, 2, 3, when {x, y} ∈ Fi , place {(v − 5 + 2i)/2, ψ(x), ψ(y)} in C;
(3) Place {(v − 3)/2, (v − 1)/2, (v + 1)/2} in C.
Triples of B0 have sum v−2 or 2v−4, so triples of type (1) in C have sum between v−5 and
v−2, or between 2v−1 and 2v+2. By Lemma 6, a pair {x, y} ∈ E0 has (v−1)/2 ≤ x+ y ≤
(v−1)/2+(v−3). Applyingψ , we have (v−1)/2−2 ≤ ψ(x)+ψ(y) ≤ (v−1)/2+(v+1).
Hence each triple of type (2) in C has sum at least v − 4 and at most 2v + 1. The block of
type (3) in C has sum 3v−3

2 . ��
Although the bounds are slightly weaker, Theorem 9 applies to all admissible orders for

Steiner triple systems. In conjunction with Theorem 2, for all v ≡ 1, 3 (mod 6) with v ≥ 13
one has v + 1 ≤ DiffSum(2, 3, v) ≤ v + 7 and 2 + 1

v
≤ RatioSum(2, 3, v) ≤ 2 + 12

v−5 .
For relatively small orders, one can search for point labelings with specified MinSum m

and MaxSum M by starting with an empty packing. Repeatedly choose a pair that is in the
fewest triples within the sum range that can still be added to the packing (placing no pair in
two or more triples), and extend the packing to form packings by adding each of the possible
triples containing the pair in turn. In our experience, often one is forced to add a specific
triple for the chosen pair, and occasionally there are a few candidate triples, each resulting
in a larger packing. Despite the limited number of candidates encountered, this yields an
exhaustive search when run to completion. Using this approach, we constructed S(2, 3, v)s
with specified MinSum and MaxSum, as shown next:

Order v MinSum MaxSum DiffSum RatioSum

7 v − 1 2v − 1 v 2 + 1
v−1

9 v 2v v 2

13,15,19,21,25,27 v − 1 2v v + 1 2 + 2
v−1

7,15,19,21,27 v 2v + 1 v + 1 2 + 1
v

13,25 v 2v + 2 v + 2 2 + 2
v

It appears plausible that DiffSum(2, 3, v) = v + 1 when v ≥ 13. It also appears plausible
that RatioSum(2, 3, v) ∈ {2 + 1

v
, 2 + 2

v
} for every v �= 9, but there is insufficient data to

speculate on when it takes the larger value and when the smaller.

7 Concluding remarks

Because Theorem 6 achieves a DiffSum of (t − 1)v for dense t-(v, t + 1, 1) packings, one
might hope that this difference can be realized for S(t, t + 1, v) Steiner systems. However,
Theorem 2 establishes that this does not happen when t = 2 unless v ∈ {7, 9}, although

123



2374 Y. M. Chee et al.

Theorem 9 is within an additive constant. The situation when t = 3 appears to be quite
different. There is an S(3, 4, 8) with blocks

{0127, 0136, 0145, 0235, 0246, 0347, 0567,
1234, 1256, 1357, 1467, 2367, 2457, 3456},

having MinSum 10 and MaxSum 18. Adapting the construction in [13,30], one can produce
an S(3, 4, v) with MinSum v + 2, MaxSum 3v − 6, and hence DiffSum 2v − 8 whenever
v is a power of 2. In these cases, the upper bound on the MinSum and the lower bound
on the MaxSum from Theorem 1 are met simultaneously. We do not expect this to happen
for all orders, because the smallest DiffSum for an S(3, 4, v) when v ∈ {10, 14} appears to
arise from systems with MinSum v + 1 and MaxSum 3v − 5. It may happen that for every
admissible v, an S(3, 4, v) with DiffSum strictly smaller than 2v exists. If so, completing the
packing from Theorem 6 could not yield the smallest DiffSum. Nevertheless, the structure
of independent sets must underlie appropriate constructions.
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