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Abstract

For a consecutive ordering of the edges of a graph G = (V, E), the point sum of a
vertex is the sum of the indices of edges incident with that vertex. Motivated by
questions of balancing accesses in data placements in the presence of popularity
rankings, an edge ordering is egalitarian when all point sums are equal, and almost
egalitarian when two point sums differ by at most 1. It is established herein that
complete graphs on n vertices admit an egalitarian edge ordering when n =
1,2,3(mod 4) and n & {3,5}, or an almost egalitarian edge ordering when n =
0(mod 4) and n # 4.

Keywords Egalitarian block labelling - Supermagic labelling - Complete
graph - Difference sum

1 Introduction

As motivation, suppose that m data items are to be stored on n storage units.
Because storage units may fail, each data item is to be placed on at least two storage
units; because storage is not free, we want to place each data item on exactly two
storage units, Of course, it may happen that two or more storage units fail
simultaneously; when a data item is stored on these two storage units and no others,
that data is lost. To minimize data loss, we may then insist that no two data items are
stored on the same two storage units. Representing storage units as vertices V of a
graph, each data item selects an unordered pair on V, an edge, as the storage units on
which this data item is stored. When E is the set of edges chosen in this way, the
mapping of data items to storage units is a (simple) graph G = (V, E). Naturally one
wants to store a large number of data items using few storage units, so dense graphs
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are of most interest here. Indeed the complete graph K, with m = )

yields the most data items for a given number (n) of storage units. This is admittedly
a model of data layout that is too simplified to have substantial practical relevance;
see [1, 7, 11] and references therein for more general models.

When G = (V,E) is used as a data layout, every data item is placed on two
storage units; the number of data items stored on that unit is the degree of the
corresponding vertex in V. In order to permit accesses to storage units to be
balanced, one might ask that G be r-regular for some r. As remarked in [7],
however, this does not take account of the differing popularities of the data items; if
one is not careful, some storage unit may hold only frequently accessed data items,
while another may hold only rarely accessed ones. Unfortunately, the popularities
(long-term access frequencies) are at best known approximately. This led Dau and
Milenkovic [7] to suggest ranking data items by popularity, and balancing the sum
of the ranks of the data items on storage units. We describe one case of their general
model, that of edge ordering of r-regular graphs. Let G = (V,E) be an r-regular

" ) edges

graph with n vertices and m = %m edges. Let eg, . . ., e,,—1 be a total ordering of the
edges of E. For this edge ordering, the point sum o, of a vertex x € Vis ;. , i.
Forming a bijection from data items to edges so that the data item ranked i (with
0<i<m — 1) maps to e;, the point sum of x is the sum of ranks of the data items
stored on storage unit x. Our goal is then to ensure that the point sums are as equal
as possible; we minimize by choosing an appropriate edge ordering. (In fact,
because the graph does not change, we are choosing a bijection from the data items
to the edges, and the ordering is then inherited from the popularity ranks; but it is
less cumbersome to focus directly on the edge ordering.)

The difference sum of an edge ordering for G = (V, E) is max,cy 0, — min,cy 0.
The difference sum of G, DiffSum(G), is the smallest difference sum for any edge
ordering of G. An edge ordering is egalitarian if it has difference sum equal to 0,
and almost egalitarian if it has difference sum equal to 1.

Egalitarian edge labellings for graphs have been studied under the name
supermagic labellings [9, 10]. Stewart [10] establishes the existence of supermagic
labellings of K, by an inductive method, settling the egalitarian cases examined in
this paper. We provide different proofs for the egalitarian case and settle the almost
egalitarian case completely. Our main motivation for developing different proofs is
to address the generalization to Steiner systems [5, 6].

Lemma 1 An n-vertex, r-regular graph is egalitarian only if r is even or
n = 2(mod 4), and is almost egalitarian only if r is odd and n = 0, 1,3(mod 4).

Proof Let G be an n-vertex, r-regular graph. Then G has m = %rn edges. The sum
of all n point sums is 2 Z;”:_O] i=m(m—1), so the average point sum is
2rfyrn — 1] = 2r*n — L r. For an egalitarian edge ordering of G to exist, this must be
an integer, and hence r is even or n = 2(mod 4). When the average point sum is
integral, if any point has point sum larger than the average, another must have point
sum smaller than the average, and hence the difference sum must be at least 2 and
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the labelling is not almost egalitarian. When the average point sum is not integral
(that is, when r is odd and n = 0, 1,3(mod 4)), the difference sum must be at least
L. If it is 1, then 7 vertices must have point sum equal to % less than the average point
sum, while the remaining 7 vertices have point sum equal to % more than the
average. U

Of course, these arguments give necessary conditions for egalitarian and almost
egalitarian edge orderings that are not sufficient for all regular graphs. For example,
the difference sum of an n-vertex l-regular graph is %, which can be almost
egalitarian only when n € {2,4}. The average point sum of an n-vertex 2-regular
graph (which has n edges) is n — 1. Because the number of unordered pairs from
{0,...,n — 1} having sum n — 1 is |5], at most half the vertices can have point sum
equal to the average, so the graph cannot be egalitarian or almost egalitarian.

Fortunately, we are concerned primarily with dense graphs. For the complete
graph K,, the average point sum is }(n — 1)(n + 1)(n — 2), which is an integer if
and only if n = 1,2,3(mod 4).

We require some basic graph-theoretic terminology. When G = (V,E) and H =
(W, F) are graphs for which W C V and F C E, H is a subgraph of G. When in
addition W = V, the subgraph is spanning. When H is a spanning subgraph of G and
H is d-regular, H is a d-factor of G. A partition of the edges of G in which each class
forms a d-factor of G is a d-factorization of G.

Edge orderings for various purposes, and generalizations to block orderings of
designs, have been extensively studied; an excellent overview is in [8]. Indeed,
orderings to improve disk access performance have been studied in [2—4]. Those
orderings impose a ‘local’ requirement to balance accesses, but here we are

concerned with ‘global’ balance, as in [10].

2 Complete Graphs

We start by identifying exceptional cases.

Lemma 2 No egalitarian or almost egalitarian edge ordering for K, exists when

n € {3,4,5}.
Proof

K3 Without loss of generality, the edge ordering is ({0, 1}, {0,2}, {1,2}), having
point sums 1, 2, and 3.

K4 Suppose to the contrary that ey, . . ., s is an almost egalitarian edge ordering on
vertex set {0,1,2,3}. Each point sum must be 7 or 8. Without loss of gen-
erality suppose that es = {0,1}. No other edge can contain both 0 and 1.
Because each point sum is at least 7 and at most 8, without loss of generality
eo = {0,2} and e3 = {0, 3}, while 1 appears in ¢; and ¢,. But then point 2 has
point sum at most 6, which is a contradiction. (In fact, setting ¢; = {1, 3},
e; = {1,2} and e, = {2, 3}, point 2 has point sum 6, and the other three points
each have point sum 8.)
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K5 Suppose to the contrary that ey, . . ., e9 is an egalitarian edge ordering on vertex
set {0,1,2,3,4}. Each point sum must be 18. Without loss of generality
suppose that eg = {0, 1}. No other edge can contain both 0 and 1, so to obtain
point sums 18 for both, without loss of generality one of the following cases
must occur:

Case 1. ¢g = {0,2}, ey = {0,3}, es = {0,4}, and 1 is in e,, e3, and e4. Then 2
cannot appear in eg or eg, so to achieve point sum 18 must appear in each of
{es, es, e7}. But then it appears in none of {e,e3,e4}.

Case 2. ¢) = {0,2}, e; = {0,3}, ¢ = {0,4}, and 1 is in e, e3, and es. Then
for 2 to achieve point sum 18, it must appear in each of {e4, s, €5} and hence
in none of {e,e3,es}.

Case 3. ¢g = {0,2}, es = {0,3}, es = {0,4}, and 1 is in ey, 3, and e. Then
for 2 to achieve point sum 18, it must appear in each of {e3,e7,es} and hence
in none of {ey, e, e6}.

In each case, a contradiction arises because the edge {1,2} cannot appear in
the ordering.

O

The edge ordering 34,02,13,01,04,12,23,24,14,03 for K5 has point sums of 17,
18, and 19; this is the ‘closest’ to egalitarian for K.

Lemma 3 There is an egalitarian edge ordering of K,, whenever n = 2(mod 4).

Proof Write n=4s+2. We build the ordering of Ky, on vertex set
Z45+1 U {oo}. First we determine the initial sequence of 2s + 1 edges, by setting

{i+1,4s—i} if 0<i<s
e = {0, 0} if i=s
{i,ds+1—i} if s<i<2s

We develop the initial run under addition to form the entire edge ordering as
follows. For j € Z4;. let x @ j denote (x +j) mod 4s + 1 when x € Zy;, 1, and oo
when x = co. For e = {x,y} C Zy51 U {0}, let e®j denote {x®j,y ®j}. To
extend the ordering, let sty = € DJ for 0<i<2sand 1 <j<4s. Define F; =
{ejasr1)+i 1 0<i<2s} for 0 <j<4s. Then for each 0 <j <4s, F; is a 1-factor, and
{Fy,...,Fa} is a 1-factorization.

Now we calculate point sums. For x € Z4,1 U {oc}, denote the point sum of x by
oy. To compute o, observe that oo appears exactly in the edges
{ej(zﬁ_l)_H :0 S] S 4S} So

O = i[j(Zs—i— )+s]=s(ds+ 1)+ (2s+1)
j=0
4s
D j=s(ds+ 1)+ (25 + 1)(2s)(4s+ 1)
J=0

Thus 0 = s(4s + 1)(4s + 3). When x € Z4,1, x appears in exactly one edge of F;

@ Springer



Graphs and Combinatorics

for each 0 <j<4s, so denote by £, ; the value for which x € €j5511)¢,,- It follows
that o, = 3" [j(2s + 1) + L] = (25 + 1)(4s + 1)(25) + 3% L. The additive
development ensures that the multiset {, j:10<< 45} contains entry i twice for
each 0<i<2s when i#s, and it contains s once. Hence

S0l =2 S i—s=(25+1)(25) —s = (4s + 1)s. Consequently g, = (25 +

1) (4s+ 1)(2s) + (4s + 1)s, and so g, = s(4s + 1)(4s + 3). Because all point sums

are equal, the ordering is egalitarian. O
The case when n = 3 is the only exception when n = 3(mod 4):

Lemma 4 There is an egalitarian edge ordering of K, whenever n = 3(mod 4) and
n>"7.

Proof Suppose that n >7 and write n = 4s + 3. We build the ordering of Ky,,3 on
vertex set (Zp51 x {0, 1}) U {oo}. First we determine an initial sequence of 4s + 3
edges. When n = 3(mod 8), write n = 8m + 3 and form the sequence
e;={(i+1,0),dm—i0)}  if 0<i<m
emei = {(i+1,1),@dm—i, 1)} if 0<i<m—1
exn—1 = {(1,0), (4m, 1)}
em ={(m,1),Bm+1,1)}
e = LG+ 1,0),(dm —i,1)} if  1<i<2m
esm = {00,(0,1)}
eam1 = {(0,0),(0,1)}
eamiz = {00,(0,0)}
esmio—i = {(i+1,1),(4m —i,0)} if 2m<i<4m
egmiz—i ={(i+1,0),dm—i,1)} if m<i<2m
eomiz—i = {(i+1,0),(dm —i,0)} if m<i<2m

When n = 7(mod 8), write n = 8m + 7 and form the sequence
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e =1{(i+1,0),@dm+2—i0} if 0<i<m
empi = i+ 1,1),@@m+2—i, 1)} if 0<i<m
eomyi ={(i+1,0),dm+2—i 1)} if 0<i<2m+1

eansr = {00, (0,0}
e ={C2m+1,1),2m+2,1)}
eamss = {(0,0),(0,1)}
eqmia = {(2m+1,0), 2m+2,0)}
amss = {00, (0, 1)}
esmiei = {i+1,1),(4m+2— 0,00} if 2m+1<i<dm+2
esmio—i = {(i+1,0),(dm+2—1i,1)} if m<i<2m
eomre—i = {(i+1,0),(dm+2—1i,0)} if m<i<2m

We develop this initial run under addition to form the entire edge ordering as
follows. For j € Zysy let x@®j denote ((y+j)mod2s+ 1,i) when x = (y,i)
€ Zre1 x {0,1}, and oo when x = oo. For e = {x,y} C (Za541 x {0,1}) U {00},
let e ®j denote {x D j,y®j}. To extend the ordering, let ejiyi3)4¢ = e Bj for
0</<4s+2and 1 <j<2s. Define Fj = {€j4543)4i : 0 <i<ds+ 2} for 0<j<2s.
Then for each 0 <j<2s, F; is a 2-factor, and {Fy, ..., Fa} is a 2-factorization.

Now we compute the point sums. The additive development ensures that all
points in {(x,i) € Zp;11 x {0}} have the same point sum, and that all points in
{(x,i) € Z3541 x {1}} have the same point sum. Each can be calculated using only
the initial 2-factor. For (x,i) € Za541 % {0, 1}, the point sum is

4542 2s
[Z é|€[ﬂZzs+1 X {Z}H —|—22](4S‘+3)
(=0 j=0

Simplify using 2 Z_?ioj(4s +3) =2(4s+3)(2s + 1)s. For each i € {0, 1}, there
are in total 4s + 2 occurrences of elements of Zy;;; x {i} in the edges of F,. We
show that [ P2 ey N Zagiy x {i}]] = (45 +2)(25 + 1). To do this, first pair

edges e; and eg;. ¢ if and only if |e; N Zo5y1 X {i}| = |essia—¢ N Zas41 % {i}| and
¢ #2s+ 1. When ey and e4s o ¢ are so paired, together they contribute (4s+
2)|e¢ N Zyg11 x {i}] to the sum; in these edges, each occurrence of an element of
Za5+1 % {i} contributes, on average, 2s + 1 to the sum. We need only establish that
the same average holds in edges that are not paired.

When n = 8m + 3, edges not paired are

{62,,,71, €2my €4my €4m+1, €4m+2,5 €6m+2 5 e6m+3}>

which in total contain 4 elements from Z,;, X {0} and 8 from Z;,| x {1}. Those
in  Zyy x {0} contribute (2m— 1)+ (dm+ 1)+ (dm+2)+ (6m+2) =
4(2s + 1), while those in Zy,;1 x {1} contribute (2m — 1) + 2(2m) + 4m + (4m +
1)+ (6m+2)+2(6m+3)=8(2s+ 1) to the sum. Hence on average each
occurrence in an unpaired edge contributes 2s + 1, as required.
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When n=8m+7, edges not paired are {esmi1,€am+2;€ams3, Camtas €am+s}s
which in total contain 4 elements from Z;.; X {0} and 4 from Z5,4; x {1}. Those
in Zy1 x {0} contribute (4m+ 1)+ (4m+3) +2(4m+4) = 4(2s+ 1), while
those in Zysy x {1} contribute (4m+5) 4+ (4m+3) +2(4m+2) =4(2s+ 1) to
the sum. Hence on average each occurrence in an unpaired edge contributes 2s + 1,
as required.

It follows that every point in Zp.; x {0,1} has the same point sum,
(4s+2)2s+ 1)+ (4s+3)(4s+2)s=(4s+2)(4s+ 1)(s+1). Because the
average point sum over all n=4s+3 points is also
(mn=1)n+1)(n—2)/4=(4s+2)(4s+ 1)(s + 1), point oo must also have the
average point sum, and the edge ordering is egalitarian. (I

Lemma 5 There exist egalitarian edge orderings for Ko and Ki3.
Proof For Ky, use the edge ordering

13 14 27 08 06 35 16 28 47 38 67 58 57 24 45 34 01 02
23 05 68 56 07 78 26 04 36 15 12 46 17 25 18 37 03 48

For K3, use the edge ordering

2a 35 4a 06 9b 1c 38 16 8b 27 3c 68 12 6¢ 45 29 56 4c Oa 57 2b
Tb 07 24 bc 13 49 9¢c 8a 05 79 15 3b 58 47 69 18 9a Ob 04 1a 19
08 02 78 3a 4b 7a 37 03 Oc 7c 59 ba 6b 28 36 6a 01 ac 34 89 46
39 17 5b 2c 23 8c 14 48 09 5c 67 1b 26 ab 25

O

Lemma 6 There is an egalitarian edge ordering of K, whenever n = 1(mod 4) and
n>17.

Proof Suppose that n > 17 and write n = 4s 4+ 1. We choose a set X of size 2s and
build the ordering of K1 on vertex set (X x {0,1}) U {oo}. Form a K. on
X U {oo} and let G be an arbitrary s-regular spanning subgraph of it. This Ky, has
an egalitarian edge ordering fo, . .., fy2541)-1, as follows. When 25 + 1 = 3(mod 4)
apply Lemma 4; when 2s+ 1 € {9,13}, apply Lemma 35; otherwise proceed
inductively. For i € {0,1}, let ¢, : X U {oo}—(X x {i}) U {oc} so that ¢;(x) =
(x,1) for xeX and ¢i(00) = o0, For {x,y} € XU {o0o},
o;({x,y}) = {d:(x), ¢;(y)}. Now we determine a consecutive interval in the
ordering for Ky, 1. For 0 <i<s(2s + 1), if f; is an edge of G, set 5.2 ,5; = ¢y (f;) and
exey2ip1 = ¢y (fi); otherwise set ey 9 = ¢ (fi) and exe 011 = Po(fi). Within the
consecutive run {e,g,...¢s2.10,_1} one finds all edges of Ku.; containing oo;
because oo has point sum s(s+ 1)(2s—1) in the egalitarian ordering

for--fsase1—1, it has  point  sum  2s%(4s) +4s(s+ 1)(2s — 1) + 25 =
s(4s+2)(4s — 1), which is the desired average point sum. All points of (X X
{0,1}) have the same point sum in the consecutive run, because (1) fo, . . ., fy25+1)-1

is egalitarian, and (2) for each x € X, exactly half of the edges containing x are
placed with (x, 0) before placement with (x, 1), and the remaining half are placed in
the opposite order.
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It remains to specify the ordering for the remaining 4s®> edges, those in
{{(x,0), (y,1)} : x,y € X}. These form a complete bipartite graph K»; »,. Let Ly and
L, be two orthogonal latin squares of side 2s, each with symbols indexed by X and
with rows and columns indexed by {0, ...,2s — 1}. (These exist because 2s > 8.)
Then  set  exiyj = {(Lo(i,/),0), (L1(i,), 1)} and  eseio0i001 = {(Lo(i +
5,7),0), (L1 (i +5,j),1)} for 0<i<s and 0 <j<2s. Within these 4s*> edges, each
point of (X x {0,1}) has the same point sum. Hence ey,...,eg2 ;| is an
egalitarian edge ordering. O

The following treats the remaining case, paralleling Lemma 3 closely.

Lemma 7 There is an almost egalitarian edge ordering of K, whenever n =
0(mod 4) and n> 8.

Proof Write n=4s+4. We build the ordering of Ky4 on vertex set
Z45+3 U {oo}. First we determine an initial sequence of 2s + 2 edges. Begin by
assigning edges {{i +1,4s4+2 —i}:0<i<2s,i+# 2s— 1} distinct labels from
{eo, .-, es—1} U{ess2,..., €251} (an arbitrary bijection is fixed throughout). Then
set e; = {25,254+ 3} and e5; = {00, 0}.

For j € Z4.3 let x @ j denote (x + j) mod 4s + 3 when x € Z4,.3, and co when
x =o00.Fore = {x,y} C Zy5.3U {0}, lete @®jdenote {x & j,y P j}. To extend the
ordering, let ejo.40)4i =e;®j for 0<i<2s+1 with i¢{s,s+1} and
1<j<4s+2. When 1 <j<4s+ 2, set ejos2)+5s = €5 Dj and €512y 4541 = €51 D
J when j is even, and set ej(o12)1s = esy1 B j and ej2512)1511 = €5 O j when j is odd.
Define Fj = {ejos42)4i : 0<i<2s+1} for 0<j<4s+2. Then for each
0<j<4s+2, F;is a 1-factor, and {Fy, ..., Fasio} is a 1-factorization.

Each element of {0,...,4s + 2} appears exactly twice in the edges {eji,42)+i
0<j<4s+2} whenever 0<i<2s+1and i ¢ {s,s + 1}, and exactly three times
in the edges {ejos42)4s: €j(25+2)4s+1 : 0<j<4s+2}. Indeed, among the edges
{€j(2542)4s : 0<j<4s+ 2}, each of the low points {2j +1:0<j<2s,j# s}, 2s,
and 2s + 2, appear exactly twice while each of the remaining points (other than co)
appears exactly once. Routine calculation then establishes that each of the 2s + 2
low points has point sum 1[(4s+ 3)(4s+5)(2s+ 1) — 1], while each of the
remaining 2s -+ 2 points has point sum } [(4s + 3)(4s + 5)(2s + 1) + 1]. Hence the
edge ordering is almost egalitarian. U

Combining these results, we have established:

Theorem 1 An egalitarian edge ordering of K, exists if and only if n=
1,2,3(mod 4) and n & {3,5}. An almost egalitarian edge ordering of K, exists if
and only if n = 0(mod 4) and n # 4.

Generalizations to Steiner triple systems [5] and to Steiner systems in general [6]
have also been considered.
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