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Abstract
For a consecutive ordering of the edges of a graph G ¼ ðV ;EÞ, the point sum of a

vertex is the sum of the indices of edges incident with that vertex. Motivated by

questions of balancing accesses in data placements in the presence of popularity

rankings, an edge ordering is egalitarian when all point sums are equal, and almost

egalitarian when two point sums differ by at most 1. It is established herein that

complete graphs on n vertices admit an egalitarian edge ordering when n �
1; 2; 3ðmod 4Þ and n 62 f3; 5g, or an almost egalitarian edge ordering when n �
0ðmod 4Þ and n 6¼ 4.

Keywords Egalitarian block labelling � Supermagic labelling � Complete

graph � Difference sum

1 Introduction

As motivation, suppose that m data items are to be stored on n storage units.

Because storage units may fail, each data item is to be placed on at least two storage

units; because storage is not free, we want to place each data item on exactly two

storage units, Of course, it may happen that two or more storage units fail

simultaneously; when a data item is stored on these two storage units and no others,

that data is lost. To minimize data loss, we may then insist that no two data items are

stored on the same two storage units. Representing storage units as vertices V of a

graph, each data item selects an unordered pair on V, an edge, as the storage units on
which this data item is stored. When E is the set of edges chosen in this way, the

mapping of data items to storage units is a (simple) graph G ¼ ðV;EÞ. Naturally one

wants to store a large number of data items using few storage units, so dense graphs
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are of most interest here. Indeed the complete graph Kn with m ¼ n
2

� �
edges

yields the most data items for a given number (n) of storage units. This is admittedly

a model of data layout that is too simplified to have substantial practical relevance;

see [1, 7, 11] and references therein for more general models.

When G ¼ ðV;EÞ is used as a data layout, every data item is placed on two

storage units; the number of data items stored on that unit is the degree of the

corresponding vertex in V. In order to permit accesses to storage units to be

balanced, one might ask that G be r-regular for some r. As remarked in [7],

however, this does not take account of the differing popularities of the data items; if

one is not careful, some storage unit may hold only frequently accessed data items,

while another may hold only rarely accessed ones. Unfortunately, the popularities

(long-term access frequencies) are at best known approximately. This led Dau and

Milenkovic [7] to suggest ranking data items by popularity, and balancing the sum

of the ranks of the data items on storage units. We describe one case of their general

model, that of edge ordering of r-regular graphs. Let G ¼ ðV ;EÞ be an r-regular

graph with n vertices and m ¼ 1
2
rn edges. Let e0; . . .; em�1 be a total ordering of the

edges of E. For this edge ordering, the point sum rx of a vertex x 2 V is
P

i:x2ei i.

Forming a bijection from data items to edges so that the data item ranked i (with
0� i�m� 1) maps to ei, the point sum of x is the sum of ranks of the data items

stored on storage unit x. Our goal is then to ensure that the point sums are as equal

as possible; we minimize by choosing an appropriate edge ordering. (In fact,

because the graph does not change, we are choosing a bijection from the data items

to the edges, and the ordering is then inherited from the popularity ranks; but it is

less cumbersome to focus directly on the edge ordering.)

The difference sum of an edge ordering for G ¼ ðV;EÞ is maxx2V rx �minx2V rx.
The difference sum of G, DiffSum(G), is the smallest difference sum for any edge

ordering of G. An edge ordering is egalitarian if it has difference sum equal to 0,

and almost egalitarian if it has difference sum equal to 1.

Egalitarian edge labellings for graphs have been studied under the name

supermagic labellings [9, 10]. Stewart [10] establishes the existence of supermagic

labellings of Kn by an inductive method, settling the egalitarian cases examined in

this paper. We provide different proofs for the egalitarian case and settle the almost

egalitarian case completely. Our main motivation for developing different proofs is

to address the generalization to Steiner systems [5, 6].

Lemma 1 An n-vertex, r-regular graph is egalitarian only if r is even or
n � 2ðmod 4Þ, and is almost egalitarian only if r is odd and n � 0; 1; 3ðmod 4Þ.

Proof Let G be an n-vertex, r-regular graph. Then G has m ¼ 1
2
rn edges. The sum

of all n point sums is 2
Pm�1

i¼0 i ¼ mðm� 1Þ, so the average point sum is
1
2
r½1
2
rn� 1� ¼ 1

4
r2n� 1

2
r. For an egalitarian edge ordering of G to exist, this must be

an integer, and hence r is even or n � 2ðmod 4Þ. When the average point sum is

integral, if any point has point sum larger than the average, another must have point

sum smaller than the average, and hence the difference sum must be at least 2 and
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the labelling is not almost egalitarian. When the average point sum is not integral

(that is, when r is odd and n � 0; 1; 3ðmod 4Þ), the difference sum must be at least

1. If it is 1, then n
2
vertices must have point sum equal to 1

2
less than the average point

sum, while the remaining n
2
vertices have point sum equal to 1

2
more than the

average. h

Of course, these arguments give necessary conditions for egalitarian and almost

egalitarian edge orderings that are not sufficient for all regular graphs. For example,

the difference sum of an n-vertex 1-regular graph is n�2
2
, which can be almost

egalitarian only when n 2 f2; 4g. The average point sum of an n-vertex 2-regular

graph (which has n edges) is n� 1. Because the number of unordered pairs from

f0; . . .; n� 1g having sum n� 1 is bn
2
c, at most half the vertices can have point sum

equal to the average, so the graph cannot be egalitarian or almost egalitarian.

Fortunately, we are concerned primarily with dense graphs. For the complete

graph Kn, the average point sum is 1
4
ðn� 1Þðnþ 1Þðn� 2Þ, which is an integer if

and only if n � 1; 2; 3ðmod 4Þ.
We require some basic graph-theoretic terminology. When G ¼ ðV ;EÞ and H ¼

ðW ;FÞ are graphs for which W � V and F � E, H is a subgraph of G. When in

additionW ¼ V , the subgraph is spanning. When H is a spanning subgraph of G and

H is d-regular, H is a d-factor of G. A partition of the edges of G in which each class

forms a d-factor of G is a d-factorization of G.
Edge orderings for various purposes, and generalizations to block orderings of

designs, have been extensively studied; an excellent overview is in [8]. Indeed,

orderings to improve disk access performance have been studied in [2–4]. Those

orderings impose a ‘local’ requirement to balance accesses, but here we are

concerned with ‘global’ balance, as in [10].

2 Complete Graphs

We start by identifying exceptional cases.

Lemma 2 No egalitarian or almost egalitarian edge ordering for Kn exists when
n 2 f3; 4; 5g.

Proof

K3 Without loss of generality, the edge ordering is ðf0; 1g; f0; 2g; f1; 2gÞ, having
point sums 1, 2, and 3.

K4 Suppose to the contrary that e0; . . .; e5 is an almost egalitarian edge ordering on

vertex set f0; 1; 2; 3g. Each point sum must be 7 or 8. Without loss of gen-

erality suppose that e5 ¼ f0; 1g. No other edge can contain both 0 and 1.

Because each point sum is at least 7 and at most 8, without loss of generality

e0 ¼ f0; 2g and e3 ¼ f0; 3g, while 1 appears in e1 and e2. But then point 2 has

point sum at most 6, which is a contradiction. (In fact, setting e1 ¼ f1; 3g,
e2 ¼ f1; 2g and e4 ¼ f2; 3g, point 2 has point sum 6, and the other three points

each have point sum 8.)
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K5 Suppose to the contrary that e0; . . .; e9 is an egalitarian edge ordering on vertex

set f0; 1; 2; 3; 4g. Each point sum must be 18. Without loss of generality

suppose that e9 ¼ f0; 1g. No other edge can contain both 0 and 1, so to obtain

point sums 18 for both, without loss of generality one of the following cases

must occur:

Case 1. e0 ¼ f0; 2g, e1 ¼ f0; 3g, e8 ¼ f0; 4g, and 1 is in e2, e3, and e4. Then 2

cannot appear in e8 or e9, so to achieve point sum 18 must appear in each of

fe5; e6; e7g. But then it appears in none of fe2; e3; e4g.
Case 2. e0 ¼ f0; 2g, e2 ¼ f0; 3g, e7 ¼ f0; 4g, and 1 is in e1, e3, and e5. Then
for 2 to achieve point sum 18, it must appear in each of fe4; e6; e8g and hence

in none of fe1; e3; e5g.
Case 3. e0 ¼ f0; 2g, e4 ¼ f0; 3g, e5 ¼ f0; 4g, and 1 is in e1, e2, and e6. Then
for 2 to achieve point sum 18, it must appear in each of fe3; e7; e8g and hence

in none of fe1; e2; e6g.
In each case, a contradiction arises because the edge f1; 2g cannot appear in

the ordering.

h

The edge ordering 34,02,13,01,04,12,23,24,14,03 for K5 has point sums of 17,

18, and 19; this is the ‘closest’ to egalitarian for K5.

Lemma 3 There is an egalitarian edge ordering of Kn whenever n � 2ðmod 4Þ.

Proof Write n ¼ 4sþ 2. We build the ordering of K4sþ2 on vertex set

Z4sþ1 [ f1g. First we determine the initial sequence of 2sþ 1 edges, by setting

ei ¼
fiþ 1; 4s� ig if 0� i\s

f1; 0g if i ¼ s

fi; 4sþ 1� ig if s\i� 2s

8><
>:

We develop the initial run under addition to form the entire edge ordering as

follows. For j 2 Z4sþ1 let x� j denote ðxþ jÞmod 4sþ 1 when x 2 Z4sþ1, and 1
when x ¼ 1. For e ¼ fx; yg 	 Z4sþ1 [ f1g, let e� j denote fx� j; y� jg. To
extend the ordering, let ejð2sþ1Þþi ¼ ei � j for 0� i� 2s and 1� j� 4s. Define Fj ¼
fejð2sþ1Þþi : 0� i� 2sg for 0� j� 4s. Then for each 0� j� 4s, Fj is a 1-factor, and

fF0; . . .;F4sg is a 1-factorization.

Now we calculate point sums. For x 2 Z4sþ1 [ f1g, denote the point sum of x by
rx. To compute r1, observe that 1 appears exactly in the edges

fejð2sþ1Þþs : 0� j� 4sg. So

r1 ¼
X4s
j¼0

½jð2sþ 1Þ þ s� ¼ sð4sþ 1Þ þ ð2sþ 1Þ

X4s
j¼0

j ¼ sð4sþ 1Þ þ ð2sþ 1Þð2sÞð4sþ 1Þ

Thus r1 ¼ sð4sþ 1Þð4sþ 3Þ. When x 2 Z4sþ1, x appears in exactly one edge of Fj
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for each 0� j� 4s, so denote by ‘x;j the value for which x 2 ejð2sþ1Þþ‘x;j . It follows

that rx ¼
P4s

j¼0½jð2sþ 1Þ þ ‘x;j� ¼ ð2sþ 1Þð4sþ 1Þð2sÞ þ
P4s

j¼0 ‘x;j. The additive

development ensures that the multiset f‘x;j : 0� j� 4sg contains entry i twice for

each 0� i� 2s when i 6¼ s, and it contains s once. HenceP4s
j¼0 ‘x;j ¼ 2

P2s
i¼0 i� s ¼ ð2sþ 1Þð2sÞ � s ¼ ð4sþ 1Þs. Consequently rx ¼ ð2sþ

1Þ ð4sþ 1Þð2sÞ þ ð4sþ 1Þs, and so rx ¼ sð4sþ 1Þð4sþ 3Þ. Because all point sums

are equal, the ordering is egalitarian. h

The case when n ¼ 3 is the only exception when n � 3ðmod 4Þ:

Lemma 4 There is an egalitarian edge ordering of Kn whenever n � 3ðmod 4Þ and
n
 7.

Proof Suppose that n
 7 and write n ¼ 4sþ 3. We build the ordering of K4sþ3 on

vertex set ðZ2sþ1 � f0; 1gÞ [ f1g. First we determine an initial sequence of 4sþ 3

edges. When n � 3ðmod 8Þ, write n ¼ 8mþ 3 and form the sequence

ei ¼ fðiþ 1; 0Þ; ð4m� i; 0Þg if 0� i\m

emþi ¼ fðiþ 1; 1Þ; ð4m� i; 1Þg if 0� i\m� 1

e2m�1 ¼ fð1; 0Þ; ð4m; 1Þg
e2m ¼ fðm; 1Þ; ð3mþ 1; 1Þg

e2mþi ¼ fðiþ 1; 0Þ; ð4m� i; 1Þg if 1� i\2m

e4m ¼ f1; ð0; 1Þg
e4mþ1 ¼ fð0; 0Þ; ð0; 1Þg
e4mþ2 ¼ f1; ð0; 0Þg

e8mþ2�i ¼ fðiþ 1; 1Þ; ð4m� i; 0Þg if 2m� i\4m

e8mþ2�i ¼ fðiþ 1; 0Þ; ð4m� i; 1Þg if m� i\2m

e9mþ2�i ¼ fðiþ 1; 0Þ; ð4m� i; 0Þg if m� i\2m

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

When n � 7ðmod 8Þ, write n ¼ 8mþ 7 and form the sequence
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ei ¼ fðiþ 1; 0Þ; ð4mþ 2� i; 0Þg if 0� i\m

emþi ¼ fðiþ 1; 1Þ; ð4mþ 2� i; 1Þg if 0� i\m

e2mþi ¼ fðiþ 1; 0Þ; ð4mþ 2� i; 1Þg if 0� i\2mþ 1

e4mþ1 ¼ f1; ð0; 0Þg
e4mþ2 ¼ fð2mþ 1; 1Þ; ð2mþ 2; 1Þg

e4mþ3 ¼ fð0; 0Þ; ð0; 1Þg
e4mþ4 ¼ fð2mþ 1; 0Þ; ð2mþ 2; 0Þg

e4mþ5 ¼ f1; ð0; 1Þg
e8mþ6�i ¼ fðiþ 1; 1Þ; ð4mþ 2� i; 0Þg if 2mþ 1� i\4mþ 2

e8mþ6�i ¼ fðiþ 1; 0Þ; ð4mþ 2� i; 1Þg if m� i\2m

e9mþ6�i ¼ fðiþ 1; 0Þ; ð4mþ 2� i; 0Þg if m� i\2m

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

We develop this initial run under addition to form the entire edge ordering as

follows. For j 2 Z2sþ1 let x� j denote ððyþ jÞmod 2sþ 1; iÞ when x ¼ ðy; iÞ
2 Z2sþ1 � f0; 1g, and 1 when x ¼ 1. For e ¼ fx; yg 	 ðZ2sþ1 � f0; 1gÞ [ f1g,
let e� j denote fx� j; y� jg. To extend the ordering, let ejð4sþ3Þþ‘ ¼ e‘ � j for

0� ‘� 4sþ 2 and 1� j� 2s. Define Fj ¼ fejð4sþ3Þþi : 0� i� 4sþ 2g for 0� j� 2s.

Then for each 0� j� 2s, Fj is a 2-factor, and fF0; . . .;F2sg is a 2-factorization.

Now we compute the point sums. The additive development ensures that all

points in fðx; iÞ 2 Z2sþ1 � f0gg have the same point sum, and that all points in

fðx; iÞ 2 Z2sþ1 � f1gg have the same point sum. Each can be calculated using only

the initial 2-factor. For ðx; iÞ 2 Z2sþ1 � f0; 1g, the point sum is

X4sþ2

‘¼0

‘je‘ \ Z2sþ1 � figj� þ 2
X2s
j¼0

jð4sþ 3Þ
"

Simplify using 2
P2s

j¼0 jð4sþ 3Þ ¼ 2ð4sþ 3Þð2sþ 1Þs. For each i 2 f0; 1g, there
are in total 4sþ 2 occurrences of elements of Z2sþ1 � fig in the edges of F0. We

show that
P4sþ2

‘¼0 ‘ e‘ \ Z2sþ1 � figj� ¼ ð4sþ 2Þð2sþ 1Þj
h

. To do this, first pair

edges e‘ and e4sþ2�‘ if and only if je‘ \ Z2sþ1 � figj ¼ je4sþ2�‘ \ Z2sþ1 � figj and
‘ 6¼ 2sþ 1. When e‘ and e4sþ2�‘ are so paired, together they contribute ð4sþ
2Þje‘ \ Z2sþ1 � figj to the sum; in these edges, each occurrence of an element of

Z2sþ1 � fig contributes, on average, 2sþ 1 to the sum. We need only establish that

the same average holds in edges that are not paired.

When n ¼ 8mþ 3, edges not paired are

fe2m�1; e2m; e4m; e4mþ1; e4mþ2; e6mþ2; e6mþ3g;

which in total contain 4 elements from Z2sþ1 � f0g and 8 from Z2sþ1 � f1g. Those
in Z2sþ1 � f0g contribute ð2m� 1Þ þ ð4mþ 1Þ þ ð4mþ 2Þ þ ð6mþ 2Þ ¼
4ð2sþ 1Þ, while those in Z2sþ1 � f1g contribute ð2m� 1Þ þ 2ð2mÞ þ 4mþ ð4mþ
1Þ þ ð6mþ 2Þ þ 2ð6mþ 3Þ ¼ 8ð2sþ 1Þ to the sum. Hence on average each

occurrence in an unpaired edge contributes 2sþ 1, as required.
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When n ¼ 8mþ 7, edges not paired are fe4mþ1; e4mþ2; e4mþ3; e4mþ4; e4mþ5g,
which in total contain 4 elements from Z2sþ1 � f0g and 4 from Z2sþ1 � f1g. Those
in Z2sþ1 � f0g contribute ð4mþ 1Þ þ ð4mþ 3Þ þ 2ð4mþ 4Þ ¼ 4ð2sþ 1Þ, while

those in Z2sþ1 � f1g contribute ð4mþ 5Þ þ ð4mþ 3Þ þ 2ð4mþ 2Þ ¼ 4ð2sþ 1Þ to

the sum. Hence on average each occurrence in an unpaired edge contributes 2sþ 1,

as required.

It follows that every point in Z2sþ1 � f0; 1g has the same point sum,

ð4sþ 2Þð2sþ 1Þ þ ð4sþ 3Þð4sþ 2Þs ¼ ð4sþ 2Þð4sþ 1Þðsþ 1Þ. Because the

average point sum over all n ¼ 4sþ 3 points is also

ðn� 1Þðnþ 1Þðn� 2Þ=4 ¼ ð4sþ 2Þð4sþ 1Þðsþ 1Þ, point 1 must also have the

average point sum, and the edge ordering is egalitarian. h

Lemma 5 There exist egalitarian edge orderings for K9 and K13.

Proof For K9, use the edge ordering

For K13, use the edge ordering

h

Lemma 6 There is an egalitarian edge ordering of Kn whenever n � 1ðmod 4Þ and
n
 17.

Proof Suppose that n
 17 and write n ¼ 4sþ 1. We choose a set X of size 2s and
build the ordering of K4sþ1 on vertex set ðX � f0; 1gÞ [ f1g. Form a K2sþ1 on

X [ f1g and let G be an arbitrary s-regular spanning subgraph of it. This K2sþ1 has

an egalitarian edge ordering f0; . . .; fsð2sþ1Þ�1, as follows. When 2sþ 1 � 3ðmod 4Þ
apply Lemma 4; when 2sþ 1 2 f9; 13g, apply Lemma 5; otherwise proceed

inductively. For i 2 f0; 1g, let /i : X [ f1g7!ðX � figÞ [ f1g so that /iðxÞ ¼
ðx; iÞ for x 2 X and /ið1Þ ¼ 1, For fx; yg 	 X [ f1g,
/iðfx; ygÞ ¼ f/iðxÞ;/iðyÞg. Now we determine a consecutive interval in the

ordering for K4sþ1. For 0� i\sð2sþ 1Þ, if fi is an edge of G, set e2s2þ2i ¼ /0ðfiÞ and
e2s2þ2iþ1 ¼ /1ðfiÞ; otherwise set e2s2þ2i ¼ /1ðfiÞ and e2s2þ2iþ1 ¼ /0ðfiÞ. Within the

consecutive run fe2s2 ; . . .e6s2þ2s�1g one finds all edges of K4sþ1 containing 1;

because 1 has point sum sðsþ 1Þð2s� 1Þ in the egalitarian ordering

f0; . . .; fsð2sþ1Þ�1, it has point sum 2s2ð4sÞ þ 4sðsþ 1Þð2s� 1Þ þ 2s ¼
sð4sþ 2Þð4s� 1Þ, which is the desired average point sum. All points of ðX �
f0; 1gÞ have the same point sum in the consecutive run, because (1) f0; . . .; fsð2sþ1Þ�1

is egalitarian, and (2) for each x 2 X, exactly half of the edges containing x are

placed with (x, 0) before placement with (x, 1), and the remaining half are placed in

the opposite order.
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It remains to specify the ordering for the remaining 4s2 edges, those in

ffðx; 0Þ; ðy; 1Þg : x; y 2 Xg. These form a complete bipartite graph K2s;2s. Let L0 and
L1 be two orthogonal latin squares of side 2s, each with symbols indexed by X and

with rows and columns indexed by f0; . . .; 2s� 1g. (These exist because 2s
 8.)

Then set e2siþj ¼ fðL0ði; jÞ; 0Þ; ðL1ði; jÞ; 1Þg and e6s2þ2sþ2siþj ¼ fðL0ðiþ
s; jÞ; 0Þ; ðL1ðiþ s; jÞ; 1Þg for 0� i\s and 0� j\2s. Within these 4s2 edges, each

point of ðX � f0; 1gÞ has the same point sum. Hence e0; . . .; e8s2þ2s�1 is an

egalitarian edge ordering. h

The following treats the remaining case, paralleling Lemma 3 closely.

Lemma 7 There is an almost egalitarian edge ordering of Kn whenever n �
0ðmod 4Þ and n
 8.

Proof Write n ¼ 4sþ 4. We build the ordering of K4sþ4 on vertex set

Z4sþ3 [ f1g. First we determine an initial sequence of 2sþ 2 edges. Begin by

assigning edges ffiþ 1; 4sþ 2� ig : 0� i� 2s; i 6¼ 2s� 1g distinct labels from

fe0; . . .; es�1g [ fesþ2; . . .; e2sþ1g (an arbitrary bijection is fixed throughout). Then

set es ¼ f2s; 2sþ 3g and esþ1 ¼ f1; 0g.
For j 2 Z4sþ3 let x� j denote ðxþ jÞmod 4sþ 3 when x 2 Z4sþ3, and 1 when

x ¼ 1. For e ¼ fx; yg 	 Z4sþ3 [ f1g, let e� j denote fx� j; y� jg. To extend the
ordering, let ejð2sþ2Þþi ¼ ei � j for 0� i� 2sþ 1 with i 62 fs; sþ 1g and

1� j� 4sþ 2. When 1� j� 4sþ 2, set ejð2sþ2Þþs ¼ es � j and ejð2sþ2Þþsþ1 ¼ esþ1 �
j when j is even, and set ejð2sþ2Þþs ¼ esþ1 � j and ejð2sþ2Þþsþ1 ¼ es � j when j is odd.

Define Fj ¼ fejð2sþ2Þþi : 0� i� 2sþ 1g for 0� j� 4sþ 2. Then for each

0� j� 4sþ 2, Fj is a 1-factor, and fF0; . . .;F4sþ2g is a 1-factorization.

Each element of f0; . . .; 4sþ 2g appears exactly twice in the edges fejð2sþ2Þþi :

0� j� 4sþ 2g whenever 0� i� 2sþ 1 and i 62 fs; sþ 1g, and exactly three times

in the edges fejð2sþ2Þþs; ejð2sþ2Þþsþ1 : 0� j� 4sþ 2g. Indeed, among the edges

fejð2sþ2Þþs : 0� j� 4sþ 2g, each of the low points f2jþ 1 : 0� j� 2s; j 6¼ sg, 2s,
and 2sþ 2, appear exactly twice while each of the remaining points (other than 1)

appears exactly once. Routine calculation then establishes that each of the 2sþ 2

low points has point sum 1
2
½ð4sþ 3Þð4sþ 5Þð2sþ 1Þ � 1�, while each of the

remaining 2sþ 2 points has point sum 1
2
½ð4sþ 3Þð4sþ 5Þð2sþ 1Þ þ 1�. Hence the

edge ordering is almost egalitarian. h

Combining these results, we have established:

Theorem 1 An egalitarian edge ordering of Kn exists if and only if n �
1; 2; 3ðmod 4Þ and n 62 f3; 5g. An almost egalitarian edge ordering of Kn exists if
and only if n � 0ðmod 4Þ and n 6¼ 4.

Generalizations to Steiner triple systems [5] and to Steiner systems in general [6]

have also been considered.
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