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Abstract

In this article, we study p-adic torus periods for certain p-adic-valued functions on
Shimura curves of classical origin. We prove a p-adic Waldspurger formula for these
periods as a generalization of recent work of Bertolini, Darmon, and Prasanna. In
pursuing such a formula, we construct a new anti-cyclotomic p-adic L-function of
Rankin—Selberg type. At a character of positive weight, the p-adic L-function inter-
polates the central critical value of the complex Rankin—Selberg L-function. Its value
at a finite-order character, which is outside the range of interpolation, essentially
computes the corresponding p-adic torus period.
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1. Introduction

The aim of this article is to generalize a recent formula of Bertolini, Darmon, and
Prasanna in [1] which relates the p-adic logarithm of Heegner points in Abelian
varieties parameterized by the modular curve Xo(N) and certain p-adic L-values
at a point outside its range of interpolation, for a prime p split in the imaginary
quadratic field. The paper [1] works in the same setting as the Gross—Zagier formula
(see [12]) under the Heegner hypothesis. Prior to the Bertolini-Darmon—Prasanna for-
mula, Rubin [23] obtained a similar formula for elliptic curves with complex multipli-
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cation, and after the Bertolini—-Darmon—Prasanna formula, Brooks [4] also obtained a
similar formula allowing the modular curve to be a rational Shimura curve.

Our formula is for the general case concerning Heegner points on Abelian vari-
eties parameterized by Shimura curves over a totally real number field F', for a prime
p of F splitina CM field E. Even in the case in which F = Q, our result is new since
we remove all ramification restrictions from [1] and [4]. Moreover, we will place our
formula in the setting of the Waldspurger formula (see [29], [30]) which compares the
global torus periods of automorphic forms with products of global central L-values
and local torus periods. More precisely, we will define the relevant p-adic L-function,
introduce the notion of p-adic Maass functions and their torus periods, and compare
them with products of p-adic L-values and local torus periods. For practical applica-
tions of our formula, one may need a formula for local torus periods of Gross—Prasad
test vectors. Fortunately, this formula was worked out recently by Cai, Shu, and Tian
[6].

To construct the p-adic L-function and prove our p-adic Waldspurger formula,
we study the congruence relation for both global (torus) periods and local (torus)
periods appearing in the complex Waldspurger formula. A key ingredient of our con-
struction is the existence of action of the Lubin—Tate formal group on Shimura curves
at the infinite level; this allows us to use p-adic Fourier analysis from [26].

In the rest of this section, we will sketch our construction and the proof for the
formula in the case of elliptic curves over Q. To be consistent with the notation in the
main body of the article, we fix (1) an elliptic curve A over Q, (2) an indefinite quater-
nion algebra B over QQ, and (3) an imaginary quadratic field £ embedded into B.

As usual, put A =R x @ as the ring of adeles of QQ, and put Ag := A ®q E.
By the modularity theorem, the elliptic curve A determines an irreducible cuspidal
automorphic representation IT of GL,(A). We assume that this representation has
a nontrivial Jacquet-Langlands correspondence 7¢ to B, uniquely realized on a
subspace of ¢ (B*)—the space of automorphic forms on B*\ (B ®qg A)™.

1.1. Complex Waldspurger formula

First let us review the (complex) Waldspurger formula (see [29], [30]) for the cusp-
idal automorphic representation ¢ of (B ®g A)*. Let y: EXA*\A% — C* be an
automorphic character. Then we can form the (torus) period integrals

Pl ) = f FOrE 0 dr. ¢ e . (L)
EXAX\A%

Here we adopt the Haar measure such that the total volume of E*AX\AF is 2. We
consider these integrals as elements in the linear dual of representation spaces as
follows:

'7)([:(" X) € HomAE (T[C ® X?C)v ‘7)((:('7 X_l) € HomAE (T[C ® X_lv(c)'
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By a theorem of Saito and Tunnell (see [24], [28]), either both spaces have dimen-
sion 1 or they have dimension 0. Suppose that we are in the first case. Although we
do not know how to construct a canonical basis in either space, we do know how to
construct a canonical one in their tensor product. Namely, we have the element

o= 1_[ ay € Homyx (¢ ® 1, C) ®c Homyx (re® 1~ 1.C)

v<00
defined via the integration of local matrix coefficients

L(1,ny)L(1,I1,, Ad)
Cw(2)L(1/2, Iy, xv) QY\EY

where n = [],, 1y is the quadratic character corresponding to the quadratic field exten-
sion E/Q, and (-,-) =[], (-.-)v is the bilinear Petersson inner product pairing on m¢
defined by the Haar measure on (B ®g A)™ such that the total volume of B*A™\
(B ®g A)* is 2. It was proved by Waldspurger [29, Section 3] that « is in fact a finite
product for every pair of test vectors (¢1, ¢2).

ay(P1.¢2: x) == (me()p1.¢2) 2o (@) dt,  (1.2)

Thus, there is a unique constant A (7r¢, y) € C, depending only on ¢ and y, such
that

PeCp) - PeCox™) = Ale, p) a5 x).
The Waldspurger formula gives an expression for A (7¢, y) in terms of the Rankin—
Selberg central value A(1/2,I1, y).
THEOREM 1.1.1 (Waldspurger)
We have

Aq(2)

Alre 0 = S AL AD)

A(1/2,11, x).

In other words, for every pair of vectors @1, P> € mc, we have

Ag)A(1/2,Ty)
2A(1, n)A(1, I1, Ad)

Pe(pr. N Pe(p2. x™1 = a(p1, d2: x)-

Remark 1.1.2

In the above theorem, A stands for complete global L-functions, that is, those as prod-
ucts of local L-functions over all places. However, in the main body of the article, we
use global L-functions that are products of local L-functions over non-Archimedean
places, which will be denoted by L (except for {r(s) with F a number field). For
example, if yo0(2z) = (z/Z)** with k > 1, then we have
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kl(k—1)!  to(L(1/2,11, %)

A(ne, p) = (27)2k=1 " 2L(1,n)L(1,11,Ad)’

It is a simple computation using the formulas in, for instance, [21, Lemma 2.3].

Remark 1.1.3

Note that, unlike our unified choice of the Tamagawa measure on A*\A%, in [29]
and [30] the Haar measure in (1.1) has volume 1 on EXA*\A%, and the product
Haar measure in (1.2) has volume 2A(1,7) on E*A*\A%. Therefore, the constant
A (7c, ) in their formulas differs from ours by 4A (1, n).

1.2. p-Adic Maass functions

From now on, we fix a prime p and equip B with an isomorphism B ® R ~ Mat, (R).
For each (sufficiently small) open compact subgroup U of (B ®q @)X, the double
quotient

B*\(C\R) x (B ®¢Q)*/U (1.3)

is the set of complex points of a Shimura curve Xy defined over Q. The curve Xy is
smooth over Q, and it is proper if and only if B is division. We put X = 1(iLnU Xy as

a scheme over QQ with a right action of (B Qg Q)* under which Xy = X JU.

We say that a function ¢: X(C,) — C, is a p-adic Maass function on X if it
is the pullback of some locally analytic function Xy (C,) — C, on Xy. Denote by
sc, (B*) the Cp-vector space of all p-adic Maass functions on X. It is a represen-
tation of (B ®q @)X.

Denote by nc,, the subspace of ¢, (B*) spanned by functions of the form

log,,
ST log,: X(Cp) —> A(Cp) — Cp,
where f: X — A is a nonconstant map, o is a differential form on A ®¢g C,, and
log,, is the p-adic logarithm map (see, e.g., [3]). The subspace nc, C #Ac,(B*)isa
subrepresentation of (B ®q @)x. Thus, on one hand we have a complex realization
7c, and on the other hand we have a p-adic realization mc,. They are related as

follows. For every isomorphism ¢: C, — C, we have a canonical isomorphism

e, ®c,, C—= 1, (1.4)

where JT( )

C mc is the subspace of weight 2 forms. It sends f*log,, to f*iw, which
is well defined. The latter is a differential form on X ®q C and, hence, induces an

element in Ac(B>).
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1.3. p-Adic torus periods
From now on, we also fix an embedding £ C C, and an isomorphism ¢: C, 5.
Then we have an induced isomorphism £ ®g R >~ C. We assume that the isomor-
phism B ® R >~ Mat, (R) is chosen such that the induced embedding C ~ E ®gR —
B ® R >~ Mat,(R) is the standard one sending x + iy to (7 ¥).

We proceed exactly as in the complex Waldspurger formula. Let y: E X@X\
EX — (C; be a finite-order character. Then parallel to (1.1), we can define the p-adic
(torus) period integral as

Pe, @ ) = / (T 0dn, ¢pene,. (15
EXQX\EX

Here we have used the double coset presentation (1.3) of X(C) and adopt the Haar

measure on EXQ*\ E* of total volume 2. Note that the above integrals are actually

finite sums and, respectively, induce elements

P, (¢, xF") e Homp. (¢, ® x*'.Cp).

Similar to the complex case, both spaces Hom g (nc, ® ytl.C p) have the same
dimension—either 1 or 0. Suppose that they have dimension 1. Now we construct a
basis of their tensor product. For ¢1,¢> € nc,,, we define

o (pr.¢2: ) = [] ¢ awledr,ipaiin),
V<0

where o, is the same as (1.2). Here, by abuse of notation, t¢ denotes the image of ¢
under the map (1.4). Then o' is a basis of Homg, (7c, ® x.Cp) ® Homg. (nc, ®
x~',C,). The invariant pairing [ ], (-,-)» We use in the definition of o’ is the one
such that [, ., (t¢1,t¢2)y is equal to the (bilinear) Petersson product of t¢; and
e (( ! ~1 )oo)t 2.

Thus, there is a unique constant L(nc,, x) € C,, depending only on ¢, and y,
such that

Pc, . x)Pc,C.x~") =L(rc,. x) ¢, ).

Our main objective is to give a formula for L(wc,, x), which we call the p-adic
Waldspurger formula, under the only assumption that p splits in E.

Thus, from now on we assume that p splits in E. Denote by ‘P the place of E
induced by the default embedding £ C C,, and denote by ‘33 the other one above p.

1.4. p-Adic characters
Put G = EXQ*\E*, which is a profinite group. Denote by G the continuous dual
over Q. In other words, for every complete (commutative) Q,-algebra R, G(R)
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is the set of all continuous characters from G to R*. Then G is represented by a
(complete) Q,-algebra £O(G). Thus, there is a universal character §: G — D(G)™
such that composing with § induces a bijection

Hom(D(G), R) ~ G(R) (1.6)

for every complete QQ ,-algebra R, where Hom is taken in the category of topological
Qp-algebras.

The place B induces an injective homomorphism Z7 < G. We say that a char-
acter y € G(R) has weight w € Z if x|y is the wth power homomorphism for some
subgroup V C Z; of finite index. For a character y: G — (C; of weight w, there is
a standard way to attach an automorphic character y®: EXA* \A% — C* under ;
in fact, y® is the unique automorphic character satisfying (1) y©| Fxr =10 X|pxp
and (2) ch),(z) =(z/z)Pforze C~ E ®qR.

A character y € G(C,) induces a homomorphism D(G) ®q , Cp = Cp via
(1.6), and we denote its kernel by 7, which is a closed ideal of D(G) ®q, C,. Put

D(G:me,) =D(G)®q, Cp/ [ Ix-
XEE(ncy)

where E(rc,) is the set of all x such that dimHompg., , (¢, ® x,Cp) = 1. In par-
ticular, elements in O(G; nc,,) can be viewed as functions on E (¢, ) valued in C,.

1.5. p-Adic Waldspurger formula
Our first theorem is about the existence of a p-adic L-function interpolating values
A (e, y©), which appeared in Theorem 1.1.1, for y of positive weight.

THEOREM 1.5.1
There is a unique element £(rc,) € D(G; mc,) such that, for every y € E(nc,) of
weight k > 1, we have

€(1/2,9.T1, ® %)
L(1/2,T1, ® )

(e, (1) = Are, x©) - 2221

Here, ¥ : Qp, — C* is the standard additive character:

Remark 1.5.2

We have the following remarks concerning the above theorem.

(1) By the theorem of Saito and Tunnell, a character y € G((C p) of an integer
weight belongs to E(rc,,) if and only if, for every finite place v of Q other
than p, we have €(1/2, Hv,)(ff)) = 1ny(—1)e(By), where €(B,) is the Hasse
invariant.
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2) The uniqueness part is clear, since the subset of characters in E (¢, ) of pos-
itive weight is dense in E (nc,).

Using this p-adic L-function, we can answer the question at the end of Sec-
tion 1.3 about the ratio L(rc,,, ).

THEOREM 1.5.3
Let y € E(nc,) be a finite-order character, that is, x has weight 0. Then we have

L(1/2, T, ® x&)2
L(mcp,x)=ef(mcp)(x)'t_1<6(1/£ Wlf[ ;j(t) )
s ¥ V4 B

In other words, for every pair of vectors ¢1,$2 € wic,,, we have

L(1/2,T1, ® y%)?
€(1/2.9. T, ® 140

Pe, (1. 0P, (@207 = Lie,) (0 - )-o' (@125 0).

Theorems 1.5.1 and 1.5.3 follow from the more general context of Theorems
3.2.10 and 3.4.4. See Remark 3.4.5 for the reduction process.

1.6. Main ideas of the proofs

We now explain the main ideas of our proofs. The same ideas work for the general
case as well. There are three major steps in the proofs of our main theorems:

(D) construct universal torus periods;

2) construct universal matrix coefficient integrals;

3) construct the p-adic L-function.

For (1), by a universal torus period, we mean an element in (G rc,,) such that
it specializes to Waldspurger periods at characters of positive weight. A key ingredient
in our construction is a Mellin transform for forms on the Shimura curve with the
infinite Iwahori level structure at p. This seems to be new and matches the philosophy
that things look more canonical at the infinite level, which has appeared in some other
works recently. The Mellin transform of a form f has two variables: the Shimura
curve itself and the weight space. If we restrict the Shimura curve to an arbitrary
open disk which reduces to a point on the special fiber, then we recover the (local)
Mellin transform on the Lubin—-Tate group from [26]. If we restrict to a classical point
(a nonnegative integer, actually) on the weight space, then this recovers an iteration
of the Atkin—Serre operator on the Shimura curve.

For (2), by a universal matrix coefficient integral, we mean again an element in
D(G;nc,) such that it specializes to classical matrix coefficient integrals at charac-
ters of integral weight. In our construction, we need to choose suitable test vectors in
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the representation ¢, and show that the classical matrix coefficient integrals form a
rigid analytic family. Our key idea is to use the Kirillov model to deal with arbitrary
ramification at p of ¢, and characters in E(rc,, ) for the matrix coefficient integrals.

For (3), by the p-adic L-function, we mean an element in D(G; ¢ ) such that
it specializes to complex special L-values appearing in the complex Waldspurger for-
mula at characters y of positive weight. The p-adic L-function is defined essentially
as the ratio of a universal torus period to a universal matrix coefficient integral. The
complex Waldspurger formula will imply that this ratio is independent of the choice
of the test vectors. In order to show that we have enough universal matrix coefficient
integrals whose nonvanishing loci cover the entire space, we use a classical result of
Saito and Tunnel on the dichotomy of matrix coefficient integrals and some argument
in rigid analytic geometry. In particular, we need our constructions in (1) and (2) to
be applicable to sufficiently many test vectors.

Finally, to obtain the p-adic Waldspurger formula, that is, the special value for-
mula for finite-order characters in terms of the p-adic logarithm of Heegner cycles,
we use the multiplicity one property, a property from the global Mellin transform, and
slight generalization of Coleman’s work from Appendix A.

1.7. A glance at the general case

In the main body of the article, we will put ourselves in a more general context. Since
itis a p-adic theory, we fix a CM number field E inside C,, with the maximal totally
real subfield F. Let p be the distinguished place of F induced by the inclusion F C
C,. Recall that an Abelian variety A over F is of GL(2)-type if M4 :=End(4) ® Q
is a field of the same degree as the dimension of A.

Given a modular Abelian variety A over F of GL(2)-type up to isogeny equipped
with an embedding M := M4 — C,, we will construct a p-adic L-function £(A)
and prove a p-adic Waldspurger formula or, rather, a family of p-adic Waldspurger
formulas for all relevant realizations of A via p-adic Maass functions. Note that A
has a central character w4 : FX\I?>< — M.

The space of all locally F,-analytic and smooth-away-from-p characters y: E*\
E* — K* witha complete field extension K /M F, such that w4 - X|FX\f>< =1 can
be organized into an ind-rigid analytic variety & over M F,. It has a disjoint union
decomposition & = &4 | | 6_ defined by a certain Rankin-Selberg e-factor of 4. We
denote by D(A, K) the coordinate algebra of &_® F, K for every complete field
extension K/MF,. In Theorem 3.2.10, we construct our p-adic L-function for A4 as
an element

£(A) € (LieAQ®pwm LieAY) @ psr D(A, MF}),

where M Fg‘ is the complete subfield of C, generated by M, the maximal unramified
extension of Fy, and the Lubin—Tate period (see Section 1.8); and F M.—F ®o M,
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which maps to M F;‘ naturally. Our p-adic L-function £(A) interpolates classical
Rankin—Selberg central critical values for algebraic characters y of positive weight
with respect to an arbitrary comparison isomorphism ¢: C,, = C. In other words, we
will not choose an Archimedean place of F as the theory should be entirely p-adic.
In Theorem 3.4.4, we prove a p-adic Waldspurger formula computing p-adic torus
periods of p-adic Maass functions coming from A in terms of special values of £(A)
at finite-order characters.

1.8. Notation and conventions

The article is self-contained from now on in the sense that if readers would like to
study the general case directly, they can start from here, and no other preliminar-
ies will be used. Throughout the article, we fix a prime p and a CM number field
E C C, with F the maximal totally real subfield contained in E. Thus, we obtain a
distinguished place p (resp., °B) of F (resp., E) above p. We introduce the following
key (and only) assumption of the article.

Assumption 1.8.1
We assume that p splits in E; in other words, F, = Eq.

We introduce the following notation and conventions.

. Let g be the degree of F'.

. Let ¢ € Gal(E/ F) be the (nontrivial) Galois involution.

. Denote by A (resp., A®) the ring of adeles (resp., finite adeles) of F. Put
A =AQr Eand AR =A® Q¢ E.

. Letn =[]nv: F*\AX — {£1} be the quadratic character associated to E/ F .
In particular, we have the L-function L(s, 1) = [ [, <o L(S.70)-

. Let dg € Z~ be the absolute value of the discriminant of E.

. We denote by O, the ring of integers of F;,. We denote by F;" (resp., F;‘b) the
completion of the maximal unramified (resp., Abelian) extension of F, in C,
and by O (resp., 0;") its ring of integers. Denote by « the residue field of
0,", which is an algebraic closure of I .

. Denote by F* (resp., £*) the closure of F'* (resp., E*) in A (resp., AF™).
Put O;‘“‘i = OEP /O,

. We write elements t € E, = E ®r F, in the form (e, %), where t, € F,
(resp., t, € Fy) is the component of ¢ at P (resp., ). We fix the following
embedding £, — Mat, (F,) of F,-algebras:

le
m( to). (1.7)
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We adopt N = {m € Z | m > 0} and write elements in A®™ in columns for an
object A (with a well-defined underlying set) in an Abelian category.
Denote by J the two-by-two matrix (%, }).

For m € Z, define the p-Iwahori subgroup of level m of GL,(Oy) to be

1 % m .
= >
4 (0 1) mod p } ifm >0,

(1 0 —m .
g:(* 1) mod p } if m <0.

We adopt the convention that the local or global Artin reciprocity maps send
uniformizers to geometric Frobenii.

If G is a reductive group over F, we always take the Tamagawa measure
when we integrate on the adelic group G(A). In particular, the total volume of
E*A™\A% is 2.

For a relative (formal) scheme X /S, we will simply write Q}( instead of Q; /s
for the sheaf of relative differentials if the base is clear from the context. The
tensor product of quasicoherent sheaves on X will simply be denoted as ®,
instead of ®,,, where Oy is the structure sheaf of X.

Denote by ém (resp., Ga) the multiplicative (resp., additive) formal group.
They have the coordinate 7. We denote by ém [p®°] the induced (formal) p-
divisible group of ém.

Denote by £7 the Lubin-Tate Oy-formal group over O,', which is unique
up to isomorphism. We denote by £7 [p>°] the induced (formal) O,-divisible
group of £J (see Section B.1 if not familiar with the terminology).

Denote by th C C, the complete field extension of F." generated by the
“period” of the Lubin-Tate group £7 (see [26, p. 460]). Its valuation is dis-
crete only when F, = Q, by [26, Lemma 3.9], in which case F;t = Q‘;,r.

Upm = {g € GL(0y)

In this article, we will only use basic knowledge about rigid analytic varieties
over complete p-adic fields in the sense of Tate. Readers may use the book
[2] for a reference. If X is an L-rigid analytic variety for some complete non-
Archimedean field L, we denote by O (X, K) the complete K-algebra of K-
valued rigid analytic functions on X for every complete field extension K /L.

Definition 1.8.2 (Abelian Haar measure)
We fix the Haar measure df, on F,\ E for every place v of F determined by the
following conditions:

When v is Archimedean, the total volume of F,\ E* >~ R*\C* is 1.
When v is split, the volume of the maximal compact subgroup of F,\ E)¢ ~
F)is 1.
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. When v is nonsplit and unramified, the total volume is 1.

i ‘When v is ramified, the total volume is 2.

Then the product measure [[, dt, equals the product of 27¢ dgl/ 2L(1, n) and the
Tamagawa measure (cf. [30, Section 1.6]).

Notation 1.8.3
In the main part of the article, we will fix the choices of an additive character v :
Fy, — C}, of level 0 and a generator v: £T — Gy in the free Op-module Hom(£LT,

(A}m) of rank 1. Then there are unique isomorphisms
vi: Fy/Op = £T [p®](C)p) (1.8)
such that the induced composite maps
V(Cp)ova: Fy/Op — Gu[p™®](Cp) C C

coincide with ¥, respectively, where ¥+ = ¢ and ¢~ = ¥~ 1.

Definition 1.8.4
Recall from [30, Section 1.2.1] that a coherent/incoherent totally definite quaternion
algebra over A is a quaternion algebra B over A such that the ramification set of B,
which is a finite set, contains all Archimedean places and has even/odd cardinality.
For such B, put B® =B ®4 A*.

An E-embedding of a totally definite quaternion algebra B over A is an embed-
ding

/ /
e:l_[vev: AC;;:]‘[MOE ®F F, <> B® (1.9)

of A®-algebras. We say that B is E-embeddable if there exists an E-embedding of B.

2. Arithmetic of quaternionic Shimura curves

In this section, we study some p-adic arithmetic properties of quaternionic Shimura
curves over a totally real field. In Section 2.1, we start from the local theory of some
p-adic Fourier analysis on Lubin-Tate groups, following the work of [26]. In Sec-
tion 2.2, we study the Gauss—Manin connection and the Kodaira—Spencer isomor-
phism for quaternionic Shimura curves. This is followed by a discussion of universal
convergent modular forms in Section 2.3. In particular, we prove Theorem 2.3.17,
which is one of the most crucial technical results of the article. In Section 2.4, we
prove some results involving comparisons with transcendental constructions under
a given complex uniformization. Finally, Section 2.5 contains the proofs of the six
claims in the previous sections, which require the auxiliary use of unitary Shimura
curves.
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2.1. Fourier theory on Lubin—Tate groups

We use [25] for some terminologies from non-Archimedean functional analysis. Let
G be a topologically finitely generated Abelian locally Fy,-analytic group—for exam-
ple, G = Oy, which will be studied later. For a complete field K containing Fj,
denote by C(G, K) the locally convex K-vector space of locally (F,-)analytic K-
valued functions on G, and denote by D(G, K) its strong dual (see Remark 2.1.1),
which is a topological K-algebra with the multiplication given by convolution (see
[26, Section 1]). We have a natural continuous injective homomorphism

§: G — D(G,K)*

sending g € G to the Dirac distribution §;. Moreover, we have D(G, K)®@k K’ ~
D(G, K') for a complete field extension K’/ K.

Remark 2.1.1

We briefly recall the notion of strong dual from [25]. Let V' be a locally convex K-
vector space, like C(G, K) above. Denote by £(V, K) the K-vector space of continu-
ous K-linear maps from V to K. For every bound subset B of V' (i.e., for every open
neighborhood U C V of 0, there exists a € K such that B C aU) and an ideal I of
Ok, the subset £(B,1):={f € L(V,K) | f(B) C I} is alattice in £(V, K). Then
the strong dual of V is the (topological) K-vector space £(V, K) equipped with the
topology defined by the family of lattices £ (B, I') for all bounded subsets B of V' and
ideals I of Og. When G is compact, there is a more explicit description of D(G, K)
on [26, p. 451].

Notation 2.1.2
Let B be the generic fiber of (the underlying formal scheme of) £7, which is iso-
morphic to the open unit disk over F;*. We have a map

o i))XSPngrﬁﬁi))

induced by the formal group law, and we have a map O, x 8 — B denoted by
(a,z) = a - z coming from the Oy-action on £J . Denote by O (B, K) the set of
all K-valued rigid analytic functions on 8, which is a topological K -algebra.

Definition 2.1.3 (Stable function)
A function ¢ € O (8B, K) is stable if

> #laz.)) =0,

z€eKer[p]
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where Ker[p] C B(K*) is the subset of z such that @ - z = 0 for one and hence all
uniformizers @ of O,. We denoted by O (8, K )© the subspace of O(B, K) of stable
functions.

From now on, we will assume that K contains F;‘ (see Section 1.8). By [26,
Theorems 2.3 and 3.6] (together with the remark after [26, Corollary 3.7]), we have a
Fourier transform

F: D(0,,K) = O(B.K),

which is an isomorphism of topological K-algebras, with respect to the homomor-
phism v: £T — G;, (Notation 1.8.3).

Remark 2.1.4

In fact, the pairing (a,z) — v(a - z) on O, x B identifies B as the rigid analytic
space parameterizing locally analytic characters of O); and the Fourier transform %
is the unique isomorphism satisfying ¥ (6,)(z) = v(a - z) for z € 8. In particular,
the topological K -vector space O (B, K) is topologically generated by rigid analytic
functions v* on B defined by v¢(z) =v(a-z), fora € O,. See [26] for more details.

Remark 2.1.5

We have an action of O, on B coming from the Lubin-Tate group and, hence, an
action of Oy, on D(Oy, K) via ¥ . More precisely, the action of € O, on D(O,, K)
is given by the multiplication of the Dirac distribution &;.

We identify D(O.°, K) with the closed subspace of D(O,, K) consisting of dis-
tributions supported on O,".

LEMMA 2.1.6

We have the following.

(1) The isomorphism ¥ restricts to an isomorphism ¥ : D(0), K) 50 (8, K)Y
of topological K -vector spaces.

2) The image of a* |9 (g, K)o is contained in O(B, K)°®k0O (8B, K)°.

Proof

By [26, Section 3], for z € B(K), we have a locally analytic character «, of O, such
that k;(a) = v(a - z) for every a € Oy, and A(k;) = F(A)(z) for A € D(O,, K).
Moreover, the set of « is dense in C(O,, K). Let e (resp., eg) be the characteristic
function of OpX (resp., OP\OPX), viewed as elements in C(O,, K).
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For (1), we have the identity

> kef =0 /p)eof.

z€eKer[p]

Thus, if f is supported on O,\ O, then f =eo f = (#0,/p)~! ZZGKCIM k; f.By
[26, Lemma 4.6.5], for ¢ € O (B, K)O, we have

0.1y ={o. 0,/ Y ot f= 0w Y #lan). S =0,

z€Ker[p] z€Ker[p]

where {¢, f} = F~1(¢)(f) and the same for the others. This means that ¥ ~1 (8B,
K)© c D(0X, K). On the other hand, if ¢ € F D(0X, K), then for an arbitrary f €
C(0y, K), we have

0/ Y dlaz). S = {60/ Y keS| =1g.e0 s} =0,

zeKer[p] z€Ker[p]

This means that ¥ D(0X, K) C O(8, K)°.
For (2), we consider the map o', defined as the following composite map:
7 * ~
D(0p. K) = O(B.K) > O(B x5y py B. K) = O(8. K)®xO(B. K)
FlegF—! ~ \
—— D(0,, K)®k D(0;, K) — (C(OP,K) ®k C(0y, K)) .

In view of (1), it suffices to show that, forevery A € D(O,, K) and fi, f> € C(0O,, K),
we have the formula

d'A(f1 ® f2) = Af1 /o). (2.1)

For this, we may assume that f; =k, for some z; € B(K) (i = 1,2) as the image
of D(0y, K )@) kD(0,, K) consists of continuous linear forms. Then we have, for
A e D(0,,K),

@'Aiz, ®kz) =((F' @ F H(*FQ)))(kz, ®kz,) = (" F(1))(z1.22)
by [26, Lemma 4.6.3]. But
(@*F M) (z1.22) = F (M) (ee(z1.22)) = AKa(z,,20)) = MKz, Kz,)

as Kz, Kz, = Ka(z;,25)- Thus, (2.1) holds, and (2) follows. O

Remark 2.1.7
Lemma 2.1.6 implies that the function v in Remark 2.1.4 is stable if and only if a
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belongs to 0;. Moreover, the topological K -vector space @ (8B, K)? is topologically
generated by v? for a € 0;‘. The notion of stable functions is a local avatar of the
notation of stabilization in the theory of p-adic modular/automorphic forms.

In a later argument, we will work on the compact Abelian locally Fj-analytic
group 0;““. Note that we have identified O;‘mi with O, viat >t /1°. Thus, we have
the following definition.

Definition 2.1.8 (Local Mellin transform)
We call the following composite map

Mioe: O(8B,K)° = 0(8,K)°®x0 (B, K)®

. A."F_l R .
L, 0(8,K)°®F, DO, Fy),

fulfilled by Lemma 2.1.6, the local Mellin transform.

Remark 2.1.9
In fact, the composite map
, ~ d®F ! ~

M': O(B,K)—> O(B,K)®xkO(B,K) —> O(B, K)®F, D(Oy, Fy)
is more like an analogue of the classical Mellin transform, as we may regard M’ as a
map sending a function on B valued in K to a function on B valued in (K-valued)
distributions on the Lie group Oy. Recall that the classical Mellin transform M sends
a function ¢ on R to a function M(¢) on C. In fact, we may regard M as a map
sending a function ¢ on R’} valued in C to a function x = M( f(x x-)) on R valued
in (C-valued) distributions on the Lie group G4(C). We have analogies between R’}
and 8—both are “spaces with Abelian group structure”—and between G, (C) and
Op—both are commutative Lie groups. Moreover, the properties in [26, Lemma 4.6]
are the analogues of those for the classical Mellin transform.

The continuous map M’ is uniquely determined by the formula M’ (v4) = v¢ ® §,
for a € Oy, where v is the function in Remark 2.1.4.

Notation 2.1.10
For every integer k, we have the character (k) : Ogmi ~ O;‘ N 0;( € K sending 1 to
(¢/t°)*. Tt is an element in C(Ogmi, K).

LEMMA 2.1.11
For every integer N, the topological K-vector space C (Ogmi, K) is topologically
generated by (k) forall k > N.



758 LIU, ZHANG, and ZHANG

Proof

We may assume that N = 0, since for every k € Z, the function (k) is the limit of
functions (k') for k' > 0. By [26, Theorem 4.7], every function in C(O,, K) and,
hence, C (O;‘mi, K) is the limit of finite linear combinations of polynomials on Oj.
Thus, the lemma holds for N = 0 and then every N. ([

Definition 2.1.12 (Lubin—Tate differential operator)
We define the Lubin—Tate differential operator ® on O (8B, K) by the formula
d¢

O = 7
T

where we recall that v is as in Notation 1.8.3 and T is the standard coordinate of Gm

Example 2.1.13
For a € O,, we have ®v? = qv?, where v* € O(8, K) is the function in Remark
2.1.4.

The following lemma reveals the relation between the local Mellin transform and
the Lubin-Tate differential operator.

LEMMA 2.1.14

Let ¢ € O(B,K)° be a stable function. Then Mioc(¢) is the unique element in
O(B.K)°®F, D(O™, F,) satisfying

(1) Miee($)((k)) = O for every k = 0; and

(2) OMioc(¢)((—1)) = ¢.

Here (k) is introduced in Notation 2.1.10.

Proof
This follows from [26, Lemma 4.6.8] and Lemma 2.1.11. O

Definition 2.1.15 (Admissible function)
We say that a stable function ¢ € O(B, K)® is n-admissible for some n € N if

¢(a(.2)) =v(2)¢

for every z € Ker[p"] C B(K*).

LEMMA 2.1.16
Let ¢ € O(B, K)° be an n-admissible stable function for some n > 1. Then ¥~ (¢)
is supported on 1 + p". In particular, we have
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M. (¢) ((k)) = M, (¢) (X(k))

or every k € Z and every (locally constant) character y: O™ — K* that is trivial
onl+p"

Proof
This again follows from [26, Lemma 4.6.5]. In fact, by a similar strategy to the proof
of Lemma 2.1.6(1), it suffices to show that

Z kz(@)v(z) ' =0

z€eKer[p”]

fora € O;‘\(l + p™), where Ker[p"] C B(K*) is the subset of z such that w” -z =0
for one uniformizer and, hence, all uniformizers w of O,. This holds as k. (a) =
via-z). O

Remark 2.1.17

Let n > 1 be an integer. Lemma 2.1.16 implies that the function v* in Remark 2.1.4
is n-admissible stable if and only if a belongs to 1 + p”. Moreover, the topological
K -vector space of n-admissible stable functions is topologically generated by v¢ for
ael+p".

2.2. Shimura curves and Kodaira—Spencer isomorphism

Let B be a totally definite incoherent quaternion algebra over A equipped with an iso-
morphism B, >~ Mat,(F,). Then we have the system of (noncompactified) Shimura
curves {X(B)y }u indexed by (sufficiently small) open compact subgroups U of B
associated to B over Spec F (see, e.g., [30, Section 1.2.1]). More precisely, X(B)y is
the scheme over Spec F', unique up to isomorphism, such that, for every embedding
t: F—=C, X(B)y ®F t(F) is the canonical model of the complex Shimura curve

B()*\JH x B> /U

over the reflex field ¢« (F) C C, where B() is a nearby quaternion algebra over F with
respect to ¢ (see Definition 2.4.10 for more details).

As projective limits with affine transition morphisms exist in the category of
schemes, we may put X(B) = Liﬂly X(B)y. We will simply write Xy and X if B
is clear.

Notation 2.2.1
For an element g € B>, we denote by T, : X — X the morphism induced by the
right translation of g, known as the Hecke morphism.
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Denote by 4l the set of all open compact subgroups of B®P* = (B ® 4 AP)>,
which is a filtered partially ordered set under inclusion. For UP € il and m € Z, put

X(m,U") = XUPUp,m RF F;lr,

where we recall that Uy, is the p-Iwahori subgroup of level m as introduced in
Section 1.8. Put

X(£o00,UP):= lim X(£m,UP).
mfoo

For m € N U {oo}, if we take the inverse limit over the partially ordered set il, then
we obtain F)"-schemes

X(£m) = lim X(£m, UP).
Uresl

We have successive surjective morphisms
X(+o0) > -+ — X(£1) > X(0),

which are equivariant under the Hecke actions of B°°?*. By the work of Carayol [7,
Section 6], the F*-scheme X (0) admits a canonical smooth model (see [19, Defini-
tion 2.2] for its meaning) X over Spec O".

Remark 2.2.2

Strictly speaking, Carayol assumed that F # Q. But when F' = Q, one may take X
to be the model defined by modular interpretation using elliptic curves (resp., Abelian
surfaces with quaternionic actions) when B is (resp., is not) the matrix algebra—this
is well known.

We recall the construction in [7, Section 1.4] of an O,-divisible group § on X.
We first introduce some notation.

Notation 2.2.3
For an integer m > 1, we write
(1) U,f,rm :={g€Uyo|g=1 modyp™} for the principal congruence subgroup

of level p™;

(2) X(m)P" — X(0) for the corresponding covering with respect to the subgroup
U,f,rm; and

3) O};p,m = ng N Up, where E, is an Fj,-subalgebra of B, ~ Mat, (F}) via

(1.7).
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Consider the right action of Uy g/ Uy on (p~™/0,)®? such that v.g = g7'v
for g € Uy,0/ U =~ GL2(0,/p™) and v € (p™™/ 0,)®2. Then the quotient scheme

(X ()P x (p7™/ 0,)®2)/ (Up,o/ Uy'm)

defines a finite flat group scheme G,, over X(0), with the obvious Op-action. The
inductive system {G, }m>1 defines an Oy-divisible group G over X(0) (which is,
however, denoted by Es in [7, Section 5]). In particular, over X(+o00) (resp.,
X (—00)), we have an exact sequence

0 —> F/0p —= G —— F,/0, —= 0 (2.2)

such that the second arrow is the inclusion into the first (resp., second) factor and the
third arrow is the projection onto the second (resp., first) factor. By [7, Section 6.4],
the O,-divisible group G extends uniquely to an Oj-divisible group § of dimension
1 and height 2 over X, together with an action by B>P* that is compatible with the
Hecke action on the base.

Put h = [F, : Q,]. For m > 1, put X = X ®o, Op/p™ and ™ =G| yim.
We have the exact sequence

0 —> Q;(m) . i(pm) . (Q;(m))v — =0, (23)
where
. £ is the Dieudonné crystal of € evaluated at X, which is a locally
free sheaf of rank 2/4;
. Q;,(m) is the sheaf of invariant differentials of €™ /X (™ which is a locally
free sheaf of rank 1; and
. 3™ is the sheaf of invariant differentials of (§)Y/X  which is a

locally free sheaf of rank 24 — 1.
They are equipped with actions of O, under which (2.3) is equivariant. The projective
system of (2.3) for all m > 1 induces the following Oy -equivariant exact sequence

0 3, £, @5)" — 0 2.4)

of locally free sheaves over X , the formal completion of X along its special fiber. Let
&L (resp., @°") be the maximal subsheaf of &£, (resp., (Q;)V) where Oy, acts via the
structure map. Then we have the B°°P*-equivariant exact sequence

0 w® £ w°Y 0, 2.5)

where w® = Q;,. We call (2.5) the formal Hodge exact sequence.
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We have the Gauss—Manin connection
. 1
Vp.ip—>:£p®§2£, (2.6)

for the Dieudonné crystal, which is equivariant under the Hecke action of B> and
the action of Oy. Thus, it induces the Gauss—Manin connection

v::ﬁ—>:e®52;2, 2.7)

which is equivariant under the Hecke action of B*°P>.
We have the following Lemma 2.2.4 and Proposition 2.2.6 whose proof will be
given in Section 2.5.

LEMMA 2.2.4
The formal Hodge exact sequence (2.5) is algebraizable, that is, it is the formal com-
pletion of an exact sequence of locally free sheaves

0 w® £ w® 0 2.8)

on X.. Here, by abuse of notation we adopt the same symbols for these quasicoherent
sheaves. Moreover, the Gauss—Manin connection (2.7) is algebraizable.

We simply call (2.8) the Hodge exact sequence.

Remark 2.2.5

For m > 1, one may consider the right action of Up,o/Upy, on (Oy/p™)®? such
that v.g = g~ 'v for g € Up o/ Upsm =~ GL2(O,/p™) and v € (O, /p™)®2. Then the
quotient scheme

(X(m)P" x (0p/9™)®%)/(Up,0/ Ugim)

defines an O, /p™-local system L,, on X(0) of rank 2. Denote by L the O,-local
system over X(0) defined by (L)m>1. Then Ox( ) ®o, L is canonically isomor-
phic to the restriction of £ on the generic fiber X (0). Moreover, the induced connec-
tion on Ox (o) ®o, L coincides with the restriction of V on X(0), by the proof of
Lemma 2.2.4.

PROPOSITION 2.2.6
The composite map

\%
0> L > LR -0 @ QY (2.9)

is an isomorphism of locally free sheaves on X;, where w° is the dual sheaf of w°" .
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Definition 2.2.7 (Kodaira—Spencer isomorphism)
We call the (B°°P*-equivariant) isomorphism

KS: 0® ® 0° — QL. (2.10)

induced by the isomorphism (2.9), the Kodaira—Spencer isomorphism.

For w € N, put £¥] = Sym¥ ¥ ® Sym® £V. The Gauss—Manin connection V"
on the dual sheaf £ and the original one V induce a connection

viel: gl gl @ Q1.
Define ©] to be the composite map
Lyew K7 . o wl Y™ vl g ot
Q)8 — (@7)%" ® (@°)® — £ — M g @, @2.11)

where KS is the isomorphism (2.10).

Notation 2.2.8

Let X (0) be the (dense) open subscheme of X by removing all points on the spe-
cial fiber where § is supersingular. For every integer m > 1, denote by X (m) the
functor classifying O, /p"™-equivariant frames over X (0), that is, homomorphisms
LT [p™"] — §[p™] and §[p"] — p~™ /O, such that the sequence

0 —— LTp"] —— §p™"] ——= p™™/0py —= 0
is exact.

Remark 2.2.9

The scheme X (m) is usually denoted by X (m)° in the rest of the literature. But
since we will only work with the ordinary locus, to reduce the burden of notation, we
will omit the superscript.

For m € N, the functor X (m) is representable by a scheme that is finite étale
over X (0), which we again denote by X (m). Note that the generic fiber of X (m)
is canonically isomorphic to X(m). Again as projective limits with affine transition
morphisms exist in the category of schemes, we may put

X (00) := l(ln X(m).

m—0o0

We define ¢, VI¥1, KS, ®™] and the sequence (2.8) for X (m) (m € NU {oo}) via
restriction and denote them by the same notation. Over X (c0), we have the universal
frame
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univ univ

0 — = £T[p®] —> § —= F/0p — 0 . (2.12)

By definition, there is an action of OEp on the morphism X (c0) — X(0) such that
the pullback of (2.12) along the action of (t., ) € ng is the frame

te 1 oganiv aniv oty 1

0 — > T[p>] g F,/O, —= 0 . (2.13)

This action is B°°P*-equivariant. In what follows, we denote by
Iy X(00) = X (00) (2.14)

the morphism induced by the action of ¢ € ng .

Definition 2.2.10
We define the transition isomorphisms to be

Ti: X(F00) @ prr F* = X (00) ®on Fi°

such that the pullbacks of (2.12) under Y4 coincide with (2.2) in terms of the isomor-
phisms (1.8), respectively.

LEMMA 2.2.11
The Hecke morphism Ty (Notation 2.2.1) descends to an (iso)morphism Ty :
X(+00) = X(—00), and the following diagram

Ty

X(+00) @ pye Fb X(~00) @y F2
X T/

X (00) R o F;b

commutes. Here, we regard J = ( % 1) as an element in B, via the fixed isomorphism
]Bp >~ Matz(Fp).

Moreover, the isomorphism Y1 (resp., Y_) is B®P*-equivariant and O;fp -
equivariant (resp., OEP -conjugate-equivariant).

Proof
It is clear that the Hecke morphism T; descends as the conjugation of J turns Uy, to
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Up,—m. The commutativity of the diagram follows from the fact that T} G |x(—oc) is
isomorphic to G| x(+o0)-

The B°°P*-equivariant property follows from the construction. By definition, Y
is ng -equivariant. The conjugate-equivariant property for Y_ follows from the iden-

tity
)
to le

for every t = (to,1,) € OEP. O

2.3. Universal convergent modular forms
For m € N U {oc}, denote by X(m) the formal completion of X (m) along its special
fiber. It is an affine formal scheme over O, equipped with an Oy-divisible group &
induced from . In particular, X(o0) is indeed the projective limit Lian_)oo X(m) in
the category of formal schemes over Oy

The action of ng (2.13) makes itself the Galois group of the B®°P*-equivariant
pro-étale Galois cover X(oco0) — X(0), in which O Ep’m (Notation 2.2.3) is the sub-
group of O Ep that fixes the subcover X(m) — X(0) for m € N. By abuse of notation,
the formal completion of those quasicoherent sheaves on X (/) and their maps will
be denoted by the same symbols.

The following lemma will be proved in Section 2.5.

LEMMA 2.3.1
There is a unique morphism ®: X(0) — X(0) lifting the Frobenius morphism on the
special fiber of degree #0y/p such that ®*& ~ &/&°[p], where & is the formal
part of &. In particular, ® induces an endomorphism ®* on £.

Moreover, we have a unique ®*-stable splitting

L=w"®L° (2.15)

with £° an invertible quasicoherent formal sheaf on X(0). In addition, £° is hori-
zontal with respect to the Gauss—Manin connection, that is, V£° C £° ® Q;e(o)'

Remark 2.3.2

The splitting (2.15) is called unit-root splitting. It induces an isomorphism £° =
®°V. Dually, it induces a splitting £V = w° @ £° possessing similar properties as in
Lemma 2.3.1, with an isomorphism £° = w*V.

If we restrict the unit-root splitting in both Lemma 2.3.1 and Remark 2.3.2 to
X(m) for m € N U {oo}, then we obtain a map
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G[w]: i[w] N (Q.)®w ® (Q0)®w K—S) (Qlf(m))®w

ord
for all w € N, where KS is the (formal completion of the restriction of the) map (2.10).

Definition 2.3.3 (Atkin—Serre operator)
For m e NU {oo} and w € N, define the Atkin—Serre operator to be

Ol xm) Oond”

@[w] (le(m))®w i[w] ® le(m) _‘“d_> (Qlf(m))®w+l’

ord *

where O] is defined in (2.11). For k € N, define the Atkin—Serre operator of degree
k to be

& k-1 .
@([)1:;] ]:@([)1:21+ ]O""’@c[::fi]- (Qée(m))®w—>(9§(m))®w+k-

In what follows, w will always be clear from the text; hence, we will suppress w from
notation. In other words, we simply write @oq (resp., ®F ) instead of @Eﬁl] (resp.,
Ok for all w € N.

By using Serre-Tate coordinates (Theorem B.1.1), the formal deformation space
of the O, -divisible group £T [p*°] B F,/ O, (over k) is canonically isomorphic to &£7.
Thus, we have the classifying morphism

c: X(o0) > LT
of Oy'-formal schemes. It induces a morphism
c/x: X(00))x = T (2.16)

for every closed point x € X(00)(k), where X(00),, denotes the formal completion
of X(o0) at x. The following Lemma 2.3.4 and Proposition 2.3.5 will be proved in
Section 2.5.

LEMMA 2.3.4
The morphism c;, is an isomorphism for every x.

By the above lemma, we have, for every closed point x € X(o0)(x), a restriction
map

resy : MO(00, K) = O(B,K) (2.17)

induced from ¢, (see (2.16)).
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PROPOSITION 2.3.5
There is a morphism f: LT Xgpr ow X(00) — X(00) such that
(1)  forevery x € X(00)(k), B preserves X(00),x, and the induced morphism

,B/x s LT XSpf O :{(OO)/x - x(oo)/x

is simply the formal group law after identifying X(00),x with £T via c¢;x;

(2)  if we equip LT with the action of ng x BP* via the inflation ng —
O;‘ by t — t/t¢ and trivially on the second factor, then B is OEP x BooP*.
equivariant;

(3)  forevery x € F,,/ Oy, the following diagrams

ﬂvi (x)
X(00)® o Fib X(00)® o Fib

g E

X(£00) @Fp Fi° X(£00) @Fp Fi°

Tni(x)

commute, where

o=y 1) =} ).

respectively; and B, is the restriction of B to a point z of B.
In particular, £T acts trivially on the special fiber of X(00), and this B is unique.

Definition 2.3.6
We call
dT
Wy =c*vF —
T

the global Lubin—Tate differential, where v is the homomorphism in Notation 1.8.3.
It is a nowhere-vanishing global differential form on %(oo)@ogr Oc,, and in fact, it
belongs to H%(X(00), Q;(w))@)ogr F,' by the definition of F.

Remark 2.3.7
The pullbacks Y} @, depend only on y (or rather ¥¥), not on the choice of v.

In the following definition, we generalize the notion of convergent modular forms
first introduced by Katz [15] to Shimura curves.
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Definition 2.3.8

Suppose that we have m € N U {oo}, w € Z, and a complete field extension K/ Fr.

(1) Define the space of (K-valued) convergent modular forms of weight w and
p-Iwahori level m to be

MY (m, K) =H(X(m), (L) ®*)Bon K.

which is naturally a complete K-vector space.
(2) A convergent modular form of weight 0 is simply called a convergent modular

function.
3)  Put MP(m.K)=Uypey MY (m. K)V" C M¥(m, K).

Remark 2.3.9
For m € N U {oo} and w € Z, the space M¥ (m, K) has a natural action by OEP X

B°°P* under which M}’ (m, K) is stable. Moreover, MO(m, K) is the complete ten-
sor product of the coordinate ring of X(m) and the field K, and thus, M" (m, K) is
naturally a topological M°(m, K)-module.

In particular for w € N, we have the Atkin—Serre operator
Oora: MY (m, K) — MP T (m, K) (2.18)

induced from the corresponding operator of sheaves (Definition 2.3.3). The operator
is ng x BoP>*-equivariant.

From now on, we suppose that K is a complete field extension of F;‘b. Then for
every w € Z, the multiplication by @’ (Definition 2.3.6) induces a canonical B*P*-
equivariant isomorphism M° (00, K) 5 oMv (00, K).

Definition 2.3.10 (Stable convergent modular forms)
A convergent modular function f € M° (00, K) is stable if

>, Bif=0,
zeKer[p]CB(K=)
where B3: M%(co, K) — M°(00, K) is the map induced by B from Proposition
2.3.5. Denote by M (00, K)® the subspace of M° (0o, K) of stable convergent mod-
ular functions.
Form € NU {oo} and w € Z, put

MY (m, K)° = M¥ (m, K) N M°(c0, K) - 0¥ C MY (m, K).
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Remark 2.3.11
By Proposition 2.3.5, a convergent modular function f is stable if and only if resy f
from (2.17) is stable (Definition 2.1.3) for every x € X(c0)(k).

Remark 2.3.12
The space M}’ (m, K )@ does not depend on the choices of ¥ or v.

Definition 2.3.13 (Admissible convergent modular forms)

Let n > 0 be an integer. We say that a stable convergent modular function f €
MO (o0, K)© is n-admissible if BX f =v(z) f holds for all z € Ker[p"] C B(K*).
We say that f € M’ (m, K) is an n-admissible stable convergent modular form if
Sow, ¥ is an n-admissible stable convergent modular function.

Remark 2.3.14

By Proposition 2.3.5(1), a stable convergent modular function f is n-admissible if
and only if resy f from (2.17) is n-admissible (in the sense of Definition 2.1.15) for
every x € X(o00)(k).

The following lemma is a comparison between the Atkin—Serre operator G
from (2.18) and the Lubin-Tate differential operator ® (Definition 2.1.12).

LEMMA 2.3.15
For an element f € M’ (m, K) for some w,m € N, we have

TeSx ((®ordf)wv_w_l) = @(resx (fwv_w))

for every x € X(00)(x).

Proof
It follows from Lemma 2.3.4, Theorem B.2.3, and the definition of ©. O

Definition 2.3.16 (Universal convergent modular form)
A universal convergent modular form of depth m € N and tame level UP € il is an
element

M e M°(c0, K)®F, D(OS™, Fy)
such that M is UP-invariant and

'M=§"-M (2.19)
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fort € O Ep - Here, I't 1 X(00) — X(o0) is the formal completion of the morphism
(2.14); and we regard §; as the Dirac distribution of the image of ¢ under the quotient
homomorphism 01’15p — 0;““.

The next theorem produces universal convergent modular forms from a stable
convergent modular form (of a fixed weight). In this way, the universal convergent
modular forms can be regarded as p-adic families interpolating iterations of the Atkin—
Serre operator.

THEOREM 2.3.17
Let f € M{(m,K )© be a stable convergent modular form for some w,m € N. Then
there is a unique element

M(f) € M°(c0, K)®F, D(O™. Fy)
such that, for every k € N,
M(f)((w + k) = Ok oy 7, (2.20)

where ©®yq is the map (2.18). Moreover, we have the following.

(1)  If f is fixed by UP € 4, then so is M(f).

(2) M( f) is a universal convergent modular form of depth m (Definition 2.3.16).
3) If w > 1, then we have

Oora (M(f) ((w = 1)y ™") = f.
4) Suppose that f is n-admissible (Definition 2.3.13). Then we have
M(f)((k)) =M(f)(x(k))
Jor every k € 7 and every (locally constant) character y: O;‘mi — K> that is

trivial on (1 + p™)*.

Proof
The uniqueness follows from Lemma 2.1.11. The morphism S in Proposition 2.3.5
induces a map

B*: M°(c0, K) = M°(c0, K)RK O (B, K).

By Lemma 2.1.6(2) and Remark 2.3.11, it sends M°(c0, K)© into M°(c0, K)°®k
O(8,K)®. Thus, we may regard B*(fw,™) as an element in eMO(oo,K)O&f)Fp
D(O;mi, F,) via the Fourier transform ¥, since K contains F;‘. Define a (contin-
uous F-linear) translation map
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w: D(OF™. Fy) > D(O™. Fy)
such that (1, ¢)(g) = ¢ (g - (—w)) forevery g € C(Ogmi, F,). We take

M(f) =1 (B*(fo,™)).

For the formula (2.20), it suffices to check it after applying res, for every x €
X(00)(k). In fact, we have

resyM(/)((w +k)) =resx (B (fo, ™)) (k) = Mioc (resx (o, ™)) ((k))  (2.21)

by Definition 2.1.8 and the definition of 8. By Lemma 2.1.14, we have that (2.21) is
equal to @ (resy (fw;™)). Finally by Lemma 2.3.15, we have @ (res, (fw; ™)) =
resy (0 )y %)

Property (1) follows from Proposition 2.3.5(2). Properties (3) and (4) follow from
Lemmas 2.1.14 and 2.1.16, respectively. For property (2), we only need to show that
(2.19) holds for M = M(f) and ¢ € OEp,m. In fact, since f is fixed by ng’m,
we have M(f) = M(I'; /), which equals é; - I';'M( f') by Proposition 2.3.5(2) and
Remark 2.1.5. L]

The following definition is suggested by the formula (2.21) in the proof of the
above theorem.

Definition 2.3.18
We call M( f) in Theorem 2.3.17 the global Mellin transform of f.

2.4. Comparison with Archimedean differential operators
Now suppose that B is equipped with an E-embedding as in Definition 1.8.4 such
that e, coincides with (1.7) under the fixed isomorphism B, >~ Mat, (F}).

Definition 2.4.1 (CM-subscheme)

We define the CM-subscheme Y to be X E X, the subscheme of X fixed by the action
of e(EX) for e as in Definition 1.8.4. Define Y * to be the subschemes of ¥ such
that E* acts on the tangent space of points in Y * via the characters ¢ — (¢/¢°)*!,
respectively. See also [30, Section 3.1.2].

In what follows, we will regard Y+ as their base change to F."; in particular,
they are closed subschemes of X ®F, F,".

LEMMA 2.4.2
We have Y =Y T [ [ Y ~. Moreover, we have the following.
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(1)  Both Y*(C,) and Y~ (C,) are equipped with the natural profinite topology,
isomorphic to EX\A*, and admit a transitive action of AF™ via Hecke
morphisms (see Section 1.8 for the notation EX).

2) The projection maps X ®r, Fy" — X (d00) restrict to isomorphisms from
Y * 1o their images, respectively. In particular, we may regard Y * as closed
subschemes of X(+00).

3) The closed subschemes Y *(00) := Y+ YT of X (00) Qo F;‘b descend to
closed subschemes of X (00) @ ow F,", where Y4 are the transition isomor-
phisms in Definition 2.2.10.

Proof
The decomposition follows directly from the definition. For the rest, we consider
Y T(C,) without loss of generality.

Part (1) can be seen from the complex uniformization by choosing an arbitrary
isomorphism C, >~ C. Part (2) follows from the fact that AZ> does not contain any
nontrivial unipotent element. Part (3) follows from the fact that Gal(F;lb /F,") acts
via local class field theory as the right multiplication of OPX on the double coset pre-
sentation X (00)(C) and, hence, preserves the subset ¥ +(Cp). O

Notation 2.4.3

For m € N N {oo}, denote by

(1) Y*(m) the image of Y *(c0) in X (m) ® o F3",
2) Y+ (m) the Zariski closure of ¥ *(m) in X (m), and

3) 2)*% (m) the formal completion of ¥*(m) along the special fiber.

LEMMA 2.4.4

For m € NU {oc0}, we have ?/i(m)(Cp) = ?/i(m)(F;“) = iyi(m)(Ogr). Here, for
an Oy -algebra R, Y+ (m)(R) are the sets of morphisms from Spec R to Y+ (m) over
Spec O}, respectively.

Proof

Without loss of generality, we only prove the case for ¥ (m). We first consider the
case where m = 0. The first identity ¥=(0)(C,) = ¥+ (0)(Fy") is well known from
the class field theory. Take an element x € Y+ (0)(Fy"). It induces a unique morphism
y: Spec Opf — X. Since y is fixed by E™, there are strict actions of £ N ng and,
hence, Og,, on the O,-divisible group §),. Therefore, the reduction of §) is ordinary.
In other words, y factors through X (0). As ¥ (0) is defined as the Zariski closure
of Y1(0) in X (0), we obtain an element x’ € ¥+ (0)(Oy") uniquely determined by x.
Thus, we have ¥*(0)(F") = ¥£(0)(Op).
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The case for general m follows from the case for m = 0 and the following two
facts: (1) ¥ (m) is a closed subscheme of ¥ (0) x x(g) X (m); (2) X (m) — X(0) is
a finite étale morphism (resp., a projective limit of finite étale morphisms) for m € N
(resp., m = o0). O

Notation 2.4.5
Let S be a scheme that is locally of finite type over Spec C. We denote by S the under-
lying real analytic space with the complex conjugation automorphism c¢g: § — S

In what follows, we will sometimes deal with a complex scheme S that is of
the form Lln S;, where [ is a filtered partially ordered set and each S; is a smooth
complex scheme, with a sheaf ¥ that is the restriction of a quasicoherent sheaf ¥y on
some So. Then we will write S = {S‘,-}ie 7 for the projective system of the underly-
ing real analytic spaces together with the complex conjugation c¢g, and we will write
¥ = {35,-}1-20 for the projective system of real analytification of the restricted sheaf
F; for i > 0. Moreover, we denote

0,8 ¢\ ._1: 0,3, q-
i>0
For an isomorphism ¢: C,, 5, put X, = X ®F, C and denote by
o X, — X, (2.22)

the complex conjugation. Denote by (£,, V,) the restriction of the pair (£, V) ® g, C
along 7,0 X, — X ®oy, C, where (£, V) appears in Lemma 2.2.4. Applying the
same procedure to the sequence (2.8), we obtain the sequence

£, Y 0

=t

0 ;

of locally free sheaves on X,. Similarly, we have the Kodaira—Spencer isomorphism
KS.: 0} ® 0} — Q, (2.23)
induced by (2.10).

LEMMA 2.4.6
The natural map &; ® &, — :C is an isomorphism of sheaves on the real analytic
space X . Moreover, we have V, (cfd)) C () ® Ql

Proof
It follows from Lemma 2.4.12 later in this section. O
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We have a remark similar to Remark 2.3.2, which together with Lemma 2.4.6
induces a map

Ks.(2.23)
_

QL[IU]: :EL[IU] N (Q:)@w ® (@?)@lv (fz;(l)®w (224)

for all w € N.

Definition 2.4.7
Similar to Definition 2.3.3, define the Shimura—Maass operator to be

@.11)

§ y L eMI(2.04
@L[w]: (Q}(L)®w ;C[w] ® Q‘le ( )

(Q}( )®w+1 )
For k € N, define the Shimura—Maass operator of degree k to be
@[[w,k] — @L[w-i-k—l] 0---0 @L[w] . ({2}( )®w = (Q}X’ )®w+k'
As for ®gq, we will suppress w from the notation and write ®, (resp., @f‘ ) for @L[w]
[w,k] :

(resp., ®; ). In particular, we have the map

O, H'(X,. (2%)®") - HO(X.. (2%)®" ™). (2.25)
Notation 2.4.8
Put

X(m), = X(m) ®py, C, meZU{£oo},
Y*(m), =Y*(m)®Fx,C. meNU{oo}.

Let F;b C K C C,, be a complete intermediate field. Take an element
fe H° (X(m), (Q}((m))(gw) ®F K

with m € Z U {+o0} and w € N. Then by the transition isomorphism and by the
restriction to an ordinary locus, we have an element

Yo xfeMP(m, K form >0,
ford:={ ef € M m. K) (2.26)

Y_ufeM(=m,K) form <0.
By base change, f induces another element
fo e H(X(m).. (Qy () 2")-

The following lemma shows that the Atkin—Serre operator (2.18) and the
Shimura—Maass operator (2.25) coincide on CM points. Note that the operator ®,
descends along the projection map X, — X (m),.
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LEMMA 2.4.9
Let the notation be as above. We have, for k € N,

0 ((®§rdford)|g)i(m)) = (G{cftﬂyi(m)[

as functions on Y *(m),, regarded as closed subschemes of X (£m), via the transition
isomorphisms Y4 in Definition 2.2.10, respectively.

Proof
Generally, once we restrict to stalks, we cannot apply differential operators anymore.
Therefore, we need alternative descriptions of @Er%’k] and @L[w’k]. (Here, we retrieve
the original notation for clarity.)

We denote by 9% the composite map

(@M% ® () — £ L gl ® Q)

e[w]
ord (w )®w ® (_ )®w ® Qx(n) S_> (a) )®w+l (Qo)®w+l’

and by 6% the composite map

gl T gl g QLo K7 ¢ @ (0 @ 0°) — £,

Since we have VE£° C £°® Q%e by Lemma 2.3.1(2) and its dual version from Remark
2.3.2, the composition 9 +k~1 o... 0 9% coincides with the map

[w+k]

gwtk—lg..08w f[w +k] Bord

@)% ® @)®" — £ HEHE® ()P,

(@

[w,k]

ord

Therefore, the map ® coincides with the composite map

(@) S5 0% @ °)°" > £

swtk—1lg..o8w w KSo 9[w+k]
+k] K50 -tk
T ek T (L) BT

The advantage of the above description is that 8,4 appears only at the end of the
sequence of maps. Since we have V,(¢f@;) C (¢f@;) ® Ql _ by Lemma 2.4.6, there

®L[w k]

is a similar description of as above. Therefore, to prove the lemma, we only

need to show that the splitting in Lemma 2.4.6 coincides with the restriction of the
splitting

L &0y, C=(0*®0p,C) ®(£° ®oy, C)

onY and Y.
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Pick up an arbitrary point y € ¥ *(m),(C) U Y ~(m),(C). We have an action of
E> on both the splitting &; |, ®¢;@; |y and (@® ®ow, Cly) & (£° @0y, Cly). By
definition, @; |, and ®* ® oy, C|, coincide, which is one of the two complex eigen-
lines with respect to the E*-action. It follows that ¢/ @; |, and £° ® o, C|, have to
coincide as well, which contributes to the other complex eigenline. O

We now study the behavior of the Shimura—Maass operator under complex uni-
formization.

Definition 2.4.10 (1-nearby data)
Let:: C, — C be an isomorphism. An (-nearby data for B consists of

. a quaternion algebra B(t) over F such that B(t), is definite for Archimedean
places v other than (|,

. an isomorphism B(t), >~ B, for every finite place v other than p,

. an isomorphism B(t), := B(t) ® r,, R >~ Mat,(R), and

. an embedding e(t): E < B(t) of F-algebras such that e(t), coincides with

€, under the isomorphism B(t), >~ B, for every finite place v other than p,
and HE™ = {+i).

We now choose an (-nearby data for B. It induces a complex uniformization
X,(C) =~ B()*\H# x B®*/FX,

where # = C \ R denotes the union of Poincaré upper and lower half-planes. Let z
be the standard coordinate on # .

LEMMA 2.4.11
Denote by L, the C-local system on X, defined by the quotient map

B(1)*\C®? x # x B> /FX — B(1)*\H x B>®*/FX ~ X,(C),
where the action of y € B(1)* is given by the formula

vl a2)',2,g] = [((@1.a2)e () ™) 1) (2), v¥g].

Then we have a canonical isomorphism £, >~ Ox, ®c L, under which V, coincides
with the induced connection on Ox, @c L,.

Proof
It follows from the fact that L, is canonically isomorphic to the restriction of L® ¢, .« C

along the natural morphism 7,, where L is the Oy-local system on X defined in
Remark 2.2.5. O
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The following lemma will be proved in Section 2.5.

LEMMA 2.4.12
Under the isomorphism £, ~ Ox, @c L, in Lemma 2.4.11, the subsheaf w; is gener-
ated by the section w? whose value at z is (z,1)".

The following lemma shows that our definition of Shimura—Maass operators
coincides with the classical one.

LEMMA 2.4.13
For every f € HY(X,, (Q}([)‘X’“’) with some w € N, we have

0 2
Of ® 427 = (4o

)f ®dz8v.

Proof

We may pass to the universal cover # x B®*/F* and suppress the part B>/ FX
in what follows. Over J#, the sheaf £, is trivialized as C®2, and the subsheaf ®? is
generated by the section w;” whose value at z is (z, 1)’ by Lemma 2.4.12. Dually, the
sheaf ilv is trivialized as 2-dimensional complex row vectors, and the subsheaf w;
is generated by the section @, whose value at z is (1, —z). Then we have KS(o; ®
w))=dz.

It is easy to see that
L[] o 2w L] o
@D ® (@)™) = (@)™ ® (@)) @ dz.

since ¢fw (resp., ¢ @) is generated by the section (Z, 1)’ (resp., (1, —Z)). The lemma
follows. O

We now introduce the notion of automorphic forms.

Notation 2.4.14

For every w € Z, denote by A% (B(1)X) (resp., Agﬁsuf))(B(L)X)) the space of real
analytic (resp., cuspidal) automorphic forms on B(t)*(A) of weight 2w at (|r and
invariant under the action of B(t);; at Archimedean places v other than ¢|r.

The spaces 4% (B(1)*) and Aﬁﬁ;‘;)(B(L)X) are representations of B(1)*(A) by
the right translation R.

LEMMA 2.4.15
There is a natural B -equivariant map
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o HO (X, () ®Y) — AP (B())
such that, for g, € B(1)* = GLy(R),
()8 11)j(g. D) = f(g.()) @ dz®7,

where j(g,,i) = (detg,)™' - (ci + d)? is the square of the usual j -factor.

Proof
This is the well-known dictionary between modular forms and automorphic forms.
O

We denote by H° ()?l,(ﬁ}(l)@”) C HO()?l,(fZ}(l)@”) the inverse image of

cusp

Aﬁﬁs“;) (B(1)*) under ¢,.

Definition 2.4.16
Define A to be the matrices

11 i
4i \ i -1
in gl, ¢ = Mat,(C), respectively. For an isomorphism ¢: C,, 5 C, define A4, tobe

the matrices A+ when regarded as elements in Liec(B(1) ®, C) = gl, ¢, respec-
tively. Finally, define A’i, ,=Ax 0---0A4 tobe the k-fold composition.

LEMMA 2.4.17
For every f € H? ()?L, (Q}()@w) and k € N, we have

cusp
$(OF £) = AK ou(f).

where ¢, is defined in Lemma 2.4.15.

Proof
This follows from Lemma 2.4.13, together with [5, p. 130, p. 143, and Proposi-
tion 2.2.5 on p. 155]. O

2.5. Proofs of claims via unitary Shimura curves

In this section, we prove the six claims (Lemma 2.2.4, Proposition 2.2.6, Lemma
2.3.1, Lemma 2.3.4, Proposition 2.3.5, and Lemma 2.4.12) left from previous sec-
tions. Suppose that we are in the case of modular curves, that is, F = Q and B is
unramified at every prime; then these statements except for Proposition 2.3.5 are clear.
In fact, in this case,
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. Lemma 2.2.4 follows from the fact that (2.5) is the formal completion of the
Hodge sequence coming from the universal elliptic curve;

. Proposition 2.2.6 is well known;

. Lemma 2.3.1 is proved by Katz as [16, Theorem 1.11.27];

. Lemma 2.3.4 follows from Serre-Tate coordinates in [17];

. Proposition 2.3.5 again can be proved via Serre-Tate coordinates (one can

adjust our proof below to the case of modular curves); and
. Lemma 2.4.12 is again well known.
The main idea is to use the existence of a universal family of elliptic curves with
deformation theory. However, in the general case, X is not a moduli space; therefore,
we have to use some auxiliary moduli space to deduce these statements. The reader
may skip the rest of this section for the first reading.

Our strategy is to use the unitary Shimura curves considered by Carayol [7]. Thus,
we will fix an isomorphism ¢: C,, 5C.In particular, F;" is a subfield of C. We also
fix an (-nearby data for B (Definition 2.4.10) and put B = B(¢) for short.

Note that when F = Q there is no need to change the Shimura data as X is
already a moduli space. In order to unify the argument, we will choose to do so in
this case as well. We will also assume that we are not in the case of classical modular
curves (i.e., F = Q and B is unramified at every prime) where all these statements
are known, as explained above.

Fix an element A € C such that ImA > 0, —A2 € N, p splits in Q(1) C C, and
Q(A) is not contained in E. We have subfields F(1) and E (1) of C, and we identify
their completion inside C ~ C, with Fy. In [7, Section 2] (see also [13, Section 2]),
a reductive group G’ over Q is defined as a subgroup of Resg/q(B* xpx F(4)*)
(which itself is a subgroup of Resg(1)/q(B ®F F(1))*) with “rational norms.” In
particular, we have

G'(Qp) = Q) x GLa(Fy) x (B, x -+ x By ),

where 7, ..., pn, are primes of F' over p other than p. Put
6% =G'(([1%) ®Q) x By, x -+ xBy,).
a#p

and let 4’ be the set of all (sufficiently small) open compact subgroups U’ of G'P.
Then for each U’ € 4, there is a unitary Shimura curve Xj,,,, smooth and pro-
jective over Spec FY, of the level structure Z7 x GL2(0y) x U’ It has a canonical
smooth model X7;,, over Spec O," defined via a moduli problem (see [7, Section 6]).
In particular, there is a universal Abelian variety 7 : sAy» — Xy, with a specific
p-divisible subgroup &, := (Ay-» [pc"’])%’1 C Ay [p™] (it is denoted as E_ in
[7, Section 6]), which is an Oy-divisible group of dimension 1 and height 2. Here,
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for an object M with Of ) ® Zp-action, we denote by M 2.1 the direct summand
corresponding to the p-adic place F(A) A F(X) C Cp. Then (Agyn[p™=])*!
admits an action by Op ® 0, Op >~ Maty(0y). Pute; = (} 3) and (Ay» [p""])%’1 =
e1(Ay» [p™])*!. See [7, Section 2.6] for more details.

We let X' (0)y» be the (dense) open subscheme of X, by removing all points
on the special fiber where ¢’ is supersingular. For n € N, define X'(n)y» to be the
functor classifying Op-equivariant extensions

0 — L7p"] — 9'p"] —= p™"/0p —= 0

of g’ over X'(0)y». The obvious map X' (n)y» — X'(0)y-» is étale. Finally, put
X' (c0)yre = 1<il_nn X' (m)yre.

The construction of Carayol amounts to saying that, for every sufficiently small
U? € il and a connected component X (TJ » of Xyo», there exists a member U’? € 4’
such that

. X (n);rj b =X z,p X%,p X(n)ye is isomorphic to the neutral connected com-
ponent of X’ (n)y» forn € NU {oo}; and

. under the above isomorphism, Gy » | X! is isomorphic to the restriction of
Up

§{,:, to (the neutral connected component of) X'(n)y» .

In what follows we may and will fix a sufficiently small subgroup U® € I, a
connected component X;r/p of Xy», and a corresponding subgroup U’ € . To
simplify notation, we will suppress UP and U’" and will regard X* as a connected
component of X’ as well.

Consider the Hodge exact sequence

0 —— ”*Q;&/X’ —— H(A/X) —— Rlm, 04 — 0.
It has a direct summand
0 — (MRl )7 — HRA/ X — R'mO.)] — 0,
2.27)

which is Op-equivariant, where (-)%’1 is defined similarly as above. Here in (2.27),
the three sheaves are locally constant of rank 1, 24, and 2k — 1, respectively, where

h=[F,: Qpl.

We introduce the following notation.

Notation 2.5.1
If M is a locally free sheaf on a scheme over Spec O, equipped with an Oj-action
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O, — End M, then we denote by M 9% the maximal subsheaf on which O, acts via
the structure homomorphism.

In what follows, we denote the sequence (2.27) after applying (-)» by

0 W' £/ W'Y 0. (2.28)

Proof of Lemma 2.2.4

It suffices to consider the problem after the restriction to an arbitrarily chosen con-
nected component X/ Tof X. By the definition of €’ in [7, Section 5.4], we know that
(2.27) is the Hodge exact sequence for §’. Since § is isomorphic to §’ on xt, .27
is also the Hodge exact sequence for §. Therefore, if we restrict (2.27) to X and
take formal completion, we recover the exact sequence (2.4) (restricted to D/C\T ); and if
we further apply the functor (-)9», then we recover the exact sequence (2.5). In other
words, the formal completion of (2.28) coincides with (2.5), both restricted to D/C\T .
This shows that (2.5) is algebraizable.

For the next assertion, we have the Gauss—Manin connection

Vi Hi(A)X') — H (A X) ®@ Qs
and the induced connection
Vi Hgp(A/ XN = F (A/XNTT @ Q. (2.29)

Since applying (-)f’1 commutes with the formation of the Gauss—Manin connection,
we know that the formal completion of (2.29) coincides with V, from (2.6) when

restricted to X T. Now applying the functor (-) ¢, we know that the formal completion
of the induced connection

Vit — £ ®Q (2.30)

coincides with V from (2.7) when restricted to 9?T . In other words, V from (2.7) is
algebraizable. Lemma 2.2.4 is proved. U

Proof of Proposition 2.2.6
Denote by

KS': 0 ® 0° — Q¥ (2.31)

the Kodaira-Spencer map induced from V' from (2.30), where w’® is the dual sheaf
of @*¥. We know from the proof of Lemma 2.2.4 that, when restricted to X T,(2.28)
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coincides with (2.8) under which V’ from (2.30) coincides with V from (2.7). There-
fore, under the previous identification, KS’ coincides with KS from (2.10). Then
Proposition 2.2.6 follows from the following analogous statement for X': (2.31) is
an isomorphism.

The proof is similar to [9, Lemma 7], which essentially follows from the
Grothendieck—Messing theory. Denote by A" the dual Abelian variety of +. Then
'V is canonically isomorphic to (Lie(AY /X’ )f’l)op. We only need to show that,
for every closed point 7: Speck(t) — X, the induced map

0" ® k(1) — (Lie(AY /X)) @ Q) @ k(1) (2.32)

is surjective, where Lie denotes the sheaf of tangent vectors.

Let A/ Speck(t) be the Abelian variety classified by ¢. Put T = Speck(¢)[¢]/
(€2). The lifts Ay of A (with other PEL structures) to 7" correspond to homomor-
phisms

¢ 1% — (Lie(AY/X) > @ k(1).

Since both sides are k(¢)-vector spaces of dimension 1, we may choose a homomor-
phism ¢ that is surjective. Let z5: 7 — X’ be the morphism that classifies Ag/T.
Compose the isomorphism 7 0 ® k(t) — t*w’® and the surjective map ¢. By the
isomorphism

(Lie(AY /X2 %" @ k(1) = 1 (Lie(A"/X)2") %" ® QL 1y @ k().
we obtain a surjective map
150" @ k(t) >t} (Lie(4"/X)>1) % & Q) ® k().

which is the pullback of (2.32) under f4. Therefore, (2.32) is surjective. O

For n € N U {00}, denote by X’(n) the formal completion of X’(n) along its
special fiber, which is equipped with an O,-divisible group &’ induced from §’.

Proof of Lemma 2.3.1
By the proof of Lemma 2.2.4, it suffices to prove the same statement for X’(0). The
desired morphism ®’: X’(0) — X’(0) is constructed through the moduli interpreta-
tion of X’(0) by “dividing &"°[p],” which lifts the Frobenius on the special fiber of
degree #0, /p. The uniqueness of such @’ is ensured by (the proof of) Lemma 2.3.4
and Theorem B.1.1.

The proof of the remaining part is similar to [16, Theorem 1.11.27]. The only
modification we need is to show that the subsheaf £° of £’ glues to a formal quasi-
coherent sheaf. For this, we adopt the proof of [14, Theorem 4.1] in the case where
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Zp is replaced by O, and p is replaced by a uniformizer @ of F. The assumptions
are satisfied because the Newton polygon of the underlying p-divisible group of &’|
for every x € X’(0)(«) is the one starting with (0, 0), ending with (2%, 1), and having
the unique breaking point at (%, 0). O

Remark 2.5.2
In fact, the induced map of @’ constructed in the above proof on the coordinate ring
is simply the operator Frob defined in [13, Definition 11.1].

Proof of Lemma 2.3.4

We only need to prove a similar statement for X’(c0). By the moduli interpretation of
X'(00) and the Serre—Tate theorem on deformation of Abelian varieties, we have an
isomorphism X'(00)/x >~ M., where M, is the formal scheme representing defor-
mations of §’|x. By Theorem B.1.1, we know that 91, is canonically isomorphic to
&7, and the induced isomorphism X'(00)/x =~ £7 is just ¢/, by definition. O

Proof of Proposition 2.3.5
Recall that we have a similarly defined formal scheme ¥'(co) over Spf 0,". The
uniqueness of B is clear. Thus, by comparison, it suffices to construct the morphism
B T Xspf O X’ (00) — X'(00) with similar properties to those in Proposition 2.3.5,
since the action of &£J is supposed to preserve the special fiber.

We use the moduli interpretation of X' (00). For a scheme S over Spec O, where
p is locally nilpotent, X’'(c0)(S) is the set of isomorphism classes of quintuples
(A,1,0,kP, k), where (A4,t,0,kP) is the same data in [7, Section 5.2] but kP is an
isomorphism instead of a class, and «, is an exact sequence

0 —— LT[p™] —= (4p=)}' —— F,/0, — 0.

On the other hand, £7(S) is the set of isomorphism classes of (G, kg) where kg is
an exact sequence

0 — LThp*] — G — F,/0, — 0.

Using the group structure on £7, we may add the above two exact sequences to a
new one, denoted by (x(/{p, kG), which can be written as

0 —— £T[p™] — a((Ap=)7",G) —— F,/0, — 0.

By the Serre—Tate theorem on deformation of Abelian varieties and the fact that étale
level structures are determined on the special fiber, we canonically associate a quintu-
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ple (A,/,0",k", k) with k, = at(kp, k). This defines the morphism B’. The prop-
erties of Proposition 2.3.5 for 8 follow directly from the construction. O

Proof of Lemma 2.4.12
We define X, similarly as the projective limit over all level structures over C. Then
we have the complex uniformization

X/(©) =~ G'(Q\J x G'(A™),

where G’(Q) acts on J via the (-component of G'(R). We similarly define a C-local
system L] on X/ via the quotient map

G'(Q\C®% x H x G'(A®) — G'(Q)\H x G'(A™),
where the action of y € G’(Q) is given by the formula

y[(ar,a2)' 2z, g] = [((a1,a2)e(») ™) e () (2), v°g].

where we regard ¢(y) as an element in GL,(C) in the formula (a;,a)t(y)~!. By the
same reasoning as in Lemma 2.4.11, we have a canonical isomorphism £; ~ O x; ®c
L;. Here, we regard &£; as the restriction of £’ from (2.28) to X|. By the comparison
between (2.28) and (2.8) established in the proof of Lemma 2.2 4, it suffices to show
that the subsheaf @/* is generated by the section w,* whose value at z is (z, 1)’.
However, the coherent sheaf delR (+4/X) is obtained from the local system

G’ (Q)\C®%8 x # x G'(A®) — G'(Q)\H# x G'(A™),

where G’(Q) acts on C®28 = C®2 ... @ C®? diagonally via all Archimedean places
of F. From the Hodge homomorphism in the Shimura data of G’, we see that the
restriction of @'* ~ (7. QY y x/)f’l to X/ is generated by the section w;* whose value
at z is (z, 1)*. This follows from the same computation for the case of modular curves.
Therefore, Lemma 2.4.12 is proved. ([

3. Statements of main theorems

In this section, we state our main theorems about p-adic L-functions and the p-adic
Waldspurger formula for the general case. We start by recalling some background
about representations of incoherent algebras and Abelian varieties of GL(2)-type in
Section 3.1. In Section 3.2, we state the main theorem about p-adic L-functions in
terms of Heegner cycles on Abelian varieties. In Section 3.3, we state the main the-
orem about the p-adic Waldspurger formula in terms of Heegner cycles on Abelian
varieties. In Section 3.4, we provide an alternative formulation of our main theorems
in terms of periods of p-adic Maass functions, in the same spirit as in Section 1, and
deduce them from the previous formulation via Heegner cycles on Abelian varieties.
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3.1. Representations for incoherent quaternion algebras

We recall some materials from [30, Section 3.2]. Let t1,...,tg be all Archimedean
places of F. Let B be a totally definite incoherent quaternion algebra over A. As
in Section 2.2, there is an associated projective system of Shimura curves {Xy =
XB)y}y over F, and X = l(iLnU Xv. We recall the following definition from [30,
Section 3.2.2].

Notation 3.1.1

Let L be a field embeddable into C. Denote by 4 (B>, L) the set of isomorphism
classes of irreducible (admissible) representations IT of B over L such that, for
some and hence all embeddings L — C, the Jacquet-Langlands transfer of [T ®
C to GL2(A®) is a finite direct sum of (finite components of) irreducible cuspidal
automorphic representations of GL, (A) of parallel weight 2.

Let A be an Abelian variety over F.

Notation 3.1.2
Recall from [30, Section 3.2.3] the following notation

H(B)A = li_I)nHOInSU (Xi;, A),

U
where
. the colimit is taken over all open compact subgroups U of B>,
. X, is the smooth compactification of Xy (which is simply Xy unless in the
case of classical modular curves);
. £y is the normalized Hodge class on X; (see [30, Section 3.1.3]); and
. Homg,, (X{;, A) denotes the Q-vector space of modular parameterizations,

that is, the Abelian group of morphisms from X}, to A that send £y to a
torsion point, tensoring with Q.
We simply write 14 for I1(B) 4 if B is clear from the context.

If we denote by Jy the Jacobian of X7}, then £y induces a morphism X}, —
Ju . Thus, Homg,, (X{;, A) is canonically identified with Hom®(Jy, A) := Hom(Jy,
A)RQ.

Put M4 := End’(4) := End(4) ® Q. It is clear that both TI(B) 4 and M 4 depend
only on A up to isogeny.

Definition 3.1.3
We say that A can be parameterized by B if there is a nonconstant morphism from
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X = X(B) to A. Denote by AV?(B) the set of simple Abelian varieties over F that
can be parameterized by B up to isogeny.

The set AV®(B) is stable under duality. Take an element A € AV®(B). Then
IT4 is a nonzero rational irreducible representation of B>, which is an element
in A(B>,Q) (Notation 3.1.1). The assignment A > IT,4 induces a bijection between
AVO(B) and A (B>, Q). Moreover, M4 is a field of degree equal to the dimension
of A, and it acts on the representation IT 4. Denote by AV the dual Abelian variety
(up to isogeny) of A, and we have I14v similarly. There is a canonical isomorphism
M4v >~ M4 as in [30, Section 3.2.4].

Definition 3.1.4 (Canonical pairing, [30, Section 3.2.4])
We have a canonical pairing

()4 g xTTgv — My
induced by maps
(-,)v: Hom®(Jy, A) x Hom®(Jy, AY) — My
defined by the assignment (fy, f-) — vol(Xy) ™' o fy o f¥ € End®(A4) = M4 for

all open compact subgroups U of B>®*,

Recall that an Abelian variety A (up to isogeny) over F is of GL(2)-type if M4
is a field of degree equal to the dimension of A. Let A be such an Abelian variety (up
to isogeny), and denote by

wa: FX\A®* - M}

the central character associated to A. For a finite place v of F', choose a rational prime
£ that does not divide v. We have a Galois representation p4,, of D, the decomposi-
tion group at v, on the £-adic Tate module V;(A) of A, which is a free module over
My := M4 ®q Qg of rank 2. It is well known that the characteristic polynomial

Py(T) =detyy, , (1 — Frob, | V¢(4)")

belongs to M 4[T'] and is independent of £, where I, C Dy, is the inertia subgroup and
Frob, € D, /I, is the geometric Frobenius.

Remark 3.1.5
We use w to denote both differential forms and central characters, since both ways
are standard. We hope this does not cause any confusion for readers.
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Definition 3.1.6 ( L-functions and e-factors)

Let K be a field containing M 4.

(1)  Define the local L-function of A as L(s.pay) := Po(Ny V)1 €
M4 ®qg C. In a similar manner, we define the local adjoint L-function of A4,
which we denote as L(s, p4,,, Ad); in particular, L(1, pg,, Ad) € M4.

2) For a locally constant character y,: F,* — K, we have the twisted local L-
function L(s, p4,» ® xv) € K ®q C. If ¢ : F;, - K> is a nontrivial additive
character, then we have the e-factor €(1/2, Y, pa,» ® xv)-

(3)  For alocally constant character y,: E," — K™ such that wg,y - xv|px =1,
we have the local Rankin-Selberg L-function L(s,p4,v, xv) € K ®¢ C and
the e-factor €(1/2, p4,v, xv)- See Remark 3.1.7 for more details.

(4)  Let:: K — C be an embedding, which induces a homomorphism ¢: K ®q
C — C by abuse of notation. We define the global L-function of A (with
respect to ¢) to be

L(s.p) == [ tL(s.pan).

V<0

Similarly, we have the global version L (s, pﬁ), Ad) and L (s, pg) , x®) of other
L-functions as well.

(5)  We say that A is automorphic if L(s, pf;)), for some and hence all ¢, is (the
finite component of) the L-function of an irreducible cuspidal automorphic
representation of GL;(A).

Remark 3.1.7

If v splits into two places vy and v, of E, then L(s, p4,y, Xv) i8 defined to be the
product L(s, p4,v, ® xv,)L(S,pa,v, ® xv,). If v induces a single place w of E, then
we define L(s, p4,v, xv) := L(s,(p4,v|D,) ® xv)- By choosing a nontrivial additive
character ¢ : F,, — C*, we have the local Rankin—Selberg e-factor €(s, ¥, p4,v, Xv)-
It is well known that €(1/2, vy, p4,u, Xv) belongs to {£1} and does not depend on
the choice of . We denote its value by €(1/2,p4,v, xv). The global L-functions
L(s,pg)), L(s,,og),Ad), and L(s,pf;), x@) are always absolutely convergent for
Res > 1.

Remark 3.1.8

It is conjectured that every Abelian variety of GL(2)-type is automorphic. In particu-
lar, when F' = Q, every Abelian variety of GL(2)-type is parameterized by modular
curves. This follows from Serre’s modularity conjecture (for Q) [22, Theorem 4.4],
where the latter has been proved by Khare and Wintenberger [18].
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3.2. p-Adic Rankin—Selberg L-functions for Abelian varieties of GL(2)-type

From now on, we fix an Abelian variety A of GL(2)-type over F up to isogeny that
is automorphic (Definition 3.1.6(5)) and equipped with an embedding M 4 C C,. For
simplicity, in what follows, we put M := M4 = M 4v regarded as a subfield of C,,
and we put FM = F ®q M, which is naturally equipped with a homomorphism to
C,.

Notation 3.2.1

Denote by B(A) the (finite) set of isomorphism classes of totally definite incoherent
quaternion algebras B over A that is E-embeddable (Definition 1.8.4) and such that
A can be parameterized by B (Definition 3.1.3).

For each (representative) B € 8(A4), we fix an isomorphism B, >~ Mat, (F,,) and
an E-embedding (Definition 1.8.4) under which e, coincides with (1.7). Then we
have the F-scheme X = X(B) and its closed subscheme ¥ = Y+ ][ Y~ (Defini-
tion 2.4.1). We also fix an A%*-equivariant isomorphism

c: YT (Cp) =Y (Cy). (3.1)

which we call an abstract conjugation for B.

Definition 3.2.2

Denote by U the set of open compact subgroups of A%OPX, which is a filtered partially
ordered set under inclusion. Let K be a complete field extension of Fj.

(D) A (K-valued) character

1 EX\AY™ — K~

is a character of weight w € Z if the following hold.
. X is invariant under some V¥ € 0.
. There is an open compact subgroup V;, of E such that x(¢) = (f5/
tpe)® fort € V.
We call V* the tame level of y.
2) For a character y of weight w as above, we define two characters ys and yope
of F,* by the formulas Yo (r) = 17" yq(#) and fpe(t) =% yoqpe (7).
3) Suppose that K is contained in C,,. Let y be a K -valued character of weight w.

Given an isomorphism ¢: C,, 5 €, we define the following local characters:

. )(I(f)zlifv|oobutisnotequalto¢|p;

UE

© 1Y@ =(2/2)" forv=1|p, where z € E ®p, R —> C;
. XSJL)ZLXU fOI'U<OObutv7ép;
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. A (1) = L(Fop (t0) iope (8)) for t € EX.
The product y© := ®, )(ff): A% — C* is called the t-avatar of .
4) Suppose that K contains M. Denote by E(A4, K),, the set of all K-valued
characters of weight w such that
(a) Ll)A'Xleox :1,
(b)  #v<oo,vF#p|el/2,p40, xv) =—1}=g—1 mod2.
Put E(4.K) =, E(A. K)y.

Remark 3.2.3
The character x® is automorphic, that is, it factors through E “\A%L.

LEMMA 3.2.4
For a character y € E(A, K), there is a unique element B, € B(A) such that €(1/2,
PAws Xv) = Xo(=Dnu(=1)eByv) for every finite place v # p of F.

Proof
The existence of such B, follows from Definition 3.2.2(4.b). The uniqueness is clear,
since B, is unramified at p and the €(B,,)’s are prescribed at all other places v. [

The following definition generalizes the discussion in [26, Section 1].

Definition 3.2.5 (Distribution algebra)

Let K/ F, be a complete field extension that contains M .

(1)  For alocally constant character w: F*\A®* — M*, denote by €(w, K) the
locally convex K-vector space of K-valued locally analytic functions f on
the locally F,-analytic group E*\A%™ satisfying that
. f is invariant under translation by some VP € J;

. fxt)y =w(t)"" f(x) forall x € EX\A®* and 1 € F*\A®*,
Let D(w, K) be the strong dual of €(w, K) as a topological K-algebra (see
Remarks 2.1.1 and 3.2.6).

(2)  Define D(A, K) to be the quotient K-algebra of D(wy4, K) divided by the
closed ideal generated by elements that vanish on E (A4, K) C €(wy4, K).

(3) ForB e 8B(A), define D(A,B, K) to be the quotient K -algebra of D (w4, K)
divided by the closed ideal generated by elements that vanish on y € E(A4, K)
with B, ~ IB for B, as in Lemma 3.2.4.

(4)  Define

§: EX\AY* = D(w4, K)< — D(A, K)* — D(A, B, K)*

to be various continuous homomorphisms given by Dirac distributions.
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Remark 3.2.6

The topological K-vector space D(w, K) is a commutative topological K-algebra
with the multiplication given by convolution (see [26, Section 1]). For a complete field
extension K’/ K, we have D(w, K)®g K’ ~ D(w, K’). Moreover, if K is discretely
valued, then D (w, K) may be written as a projective limit, indexed by tame levels
V¥ € 3, of nuclear Fréchet-Stein K -algebras with finite étale transition homomor-
phisms (see Remark 4.4.5) and, thus, complete. We have similar remarks for D (A4, K)
and D(A,B, K).

Remark 3.2.7

Suppose that F = M = Q and that @ = 1 is the trivial character. Fix a (sufficiently
small) tame level V# € . Define €(1,Q,, V?) similarly to Definition 3.2.5 by
requiring that f be invariant under translation by A®* V7, and define D(1,Q,, V?)
as the strong dual of €(1,Q,, V'?) as a topological Q,-algebra. Then for every com-
plete field extension K /Q,, there is a natural bijection between continuous characters
D(1,Qp, VP) — K> and continuous characters EXA°\AY*/V? — K> In par-
ticular, O (1,Q,, V?) is isomorphic to the coordinate ring of a finite disjoint union
of open unit disks over Q, (compare with Section 2.1). See Remark 4.4.5 for an
interpretation in the more general case.

For a representative B € B(A4), put Qy y+ = QY|ly+. Fort e W\A%"X, there
are canonical isomorphisms T} Q2 yy+ = Qyyps. Put

Wyt = (Tiwv”Y:‘:@F;rF“;ng’ (3.2)

where Y4 are in Definition 2.2.10 and w,, is the global Lubin—Tate differential in Def-
inition 2.3.6. Then wy + are sections of 2 x.y+ ®F, thF;‘b, respectively, depending
only on the additive character ¥ (Remark 2.3.7).

Let M F;‘F;‘b C K C C,, be a complete intermediate field. Take a character y €

E(A, K) with k > 0, and take B = B, . Define O';(t to be the K-subspaces of HO(Yi,

Q@-k
X, y®

2.4.2(1), both 0; and oy have dimension 1. The abstract conjugation ¢ from (3.1)

induces an A% -invariant bilinear pairing

) ® r K consisting of ¢ such that T} ¢ = y(¢ 1y respectively. By Lemma
gotg tP =X % p y. by

)y (f;r xo, > K
by the formula (¢4.¢-), = (p+ ® w{ZJr) - ® a)f/‘,_), where the right-hand side
is a K-valued constant function on Yt and, hence, can be regarded as an element
in K.
Put At = A, A~ = AV, and 11T = IT,+ € ABY,Q). We have the canonical
pairing (-,)4: IIT x I~ — M C C,, (Definition 3.1.4).
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LEMMA 3.2.8
Assume that k > 1. For every 1: C, — C, we have a unique B®* x AP -invariant
bilinear pairing

(Y (T ®pu 0)) x (17 ®par o) — (Lie AT ® par Lie A™) @ par, C
such that, for every fi € I, Yt € (T):(t, and w4+ € HO(Ai, Qii), we have

(a)—‘,- ® w—, (f+ ® (p+7 f— ® (p_)f‘;),)()

OF ! fror ® 0K fra

= (L4 ® ¢Frp- @ pk) - dx,  (3.3)
X.(©) 128

where

. (.-} is the canonical pairing between H®(A™, Q}H) ®pm H (A7, QL) and
Lie AT ® pm Lie A~

. W is an arbitrary Hecke invariant hyperbolic metric on X,(C);

. ¢, is the complex conjugation on X, (2.22);

. o+ Q@ cfLo— ® uk is a constant function on Y T(C) and, hence, is viewed as
a complex number;

. ®, is the Shimura—Maass operator (Definition 2.4.7); and

. dx is the Tamagawa measure on X,(C).

Moreover, there is a unique (nonzero) element P,(A,y) € (LieA" ®pm
Lie A7) ® pam , C such that

(% =P ) 1) 4 ®L()y.

Proof
For given w1 € HO (AT, 52114 ), the formula (3.3) defines a bilinear pairing

(M* ®pm o)) x (™ ®pm o) > C,

which is B** x AP*-invariant. By duality, all these pairings for different w give
rise to a nonzero pairing

(Y (T ®pum 0)) x (17 ®pum o) — (Lie AT ®g Lie A™) ®F, C.
and it is easy to see that (-, ')g),x takes values in (Lie AT ® pa Lie A7) ®pm , C.The

existence of P (A, y) follows from the uniqueness of the Petersson inner product and
the fact that (Lie AT ® pur Lie A7) ® par , C is a C-vector space of dimension 1. [

Remark 3.2.9
The element P, (A4, y) can be viewed as a function on the set | J k>1 2 (A, K)g valued
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in the 1-dimensional C-vector space (Lie AT ® par Lie A7) @ m , C. It depends on
the choices of ¢ and .

THEOREM 3.2.10
There is a unique element

£(A) € (LieA” @ pum Lie A™) @ pmr D(A, MF))
such that, for every character y € E(A, K)x withk > 1 and MF)F* CK CCj a
complete intermediate field and for every 1: C, 5 C, we have

26714} %¢r ()P4, )
L(1,m>L(1,pY, Ad)

LE(A) () = L(1/2,pY, Y.

.L(E(l/zﬂﬂvPA,p ®)?mc))
L(1/2.pap ® fope)?

as an equality in (Lie AT ® pm Lie A7) @ pm, C.

(3.4)

Remark 3.2.11

The element £(A) depends only on the choices of (1) an additive character v of

F, of level 0 and (2) the abstract conjugation ¢ from (3.1) for each (representative)

B € B8(A), in an elementary way. More precisely,

(1)  if we change ¥ to v, for some a € O;‘, where ¥, (x) = ¥ (ax) for x € Fy,
then £(A) is multiplied by wy, (@) -82, where a is regarded at the place B¢ in
the Dirac distribution J,;

(2)  if wewrite £(A4) = {£(A4,B)}pe8(4) under the canonical isomorphism D (A4,
K) ~ HB€£(A) D(A,B, K) (Remark 4.4.4) and change ¢ (for B) to ¢/ = T; o¢
for some t € A%, then the component &£(A,B) is multiplied by §; (Defini-
tion 3.2.5(4)).

3.3. p-Adic Waldspurger formula

Let K be a complete field extension of M. Consider an element y € E(A, K)q. We
take B =B, € B(A). Choose a CM point Pt € Y T(E®) =Y (C,), and put P~ =
cPt.

Definition 3.3.1
For every fi € I1%, we define the Heegner cycles P;: (f+) on A* to be

PR = [ Py s e ar

EX\A
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a finite sum in fact. Here, we recall that T; is the Hecke morphism (Notation 2.2.1),
and we adopt the Haar measure dt of total volume 2.

Suppose now that K contains M F;‘b. We have K-linear maps
log+: AT(K)®y K — Lie A @pm K

given by p-adic logarithms on AT (see, e.g., [3]). As a functional on TTT x I1™,
the product log 4+ P;r (f+) -log4— P, (f-) defines an element in the 1-dimensional
K -vector space

Homygox (M ® . K)®k Homygox (M @ " K)®pm (LieAT @ pm Lie A7).
It depends on the choice of ¢ but not on the choice of P+.

THEOREM 3.3.2 (p-adic Waldspurger formula)

There exists a unique element

ay(-,+) € Homyeox (MF ® y, K) ® x Homyeex (M~ ® 37", K)

such that, for every 1: C,, 5S¢,
oy (fo fo) = @ (fo foi 1)

for every fi € 1%, where the right-hand side is the (normalized) matrix coefficient
integral appearing in the complex Waldspurger formula (which will be recalled in
Definition 4.1.4). Moreover, for a character y € E(A, K)o, we have

L(1/2,pap ® xope)?
6(1/2’ wv pA,p ® ch)

log 4+ P, (f+) -logs- Py (f-) = Z(A)(x)- oy (f+. f-)

for every fy e ITT.

3.4. p-Adic Maass functions and alternative formulation

Let B be an arbitrary totally definite incoherent quaternion algebra over A. As in
Section 2.2, we have X(B) = 1(iLnU X(B)y as the projective limit of Shimura curves
associated to B over Spec F'. The following definition generalizes the one in Sec-
tion 1.2.

Definition 3.4.1 ( p-adic Maass function)

We say that a function ¢: X(B)(C,) — C,, is a p-adic Maass function on X (B)
if it is the pullback of some locally analytic function X(B)y(C,) — C,. Denote
by Ac,(B*) the C,-vector space of all p-adic Maass functions on X(B). It is a
representation of B>,
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We go back to the setting in Section 3.2, where we have fixed an Abelian variety
A of GL(2)-type over F up to isogeny that is automorphic and equipped with an
embedding M = M4 C C,. Denote by 7 (B)"§' the subspace of Ac,(B*) spanned
by functions of the form

F*log,: X(B)(C,) > AC,) 2 C,,

where f: X(B) — A is a nonconstant map, o is a differential form on 4 ®g C,, and
log,, = (log 4. ). The subspace 7 (B)"}' is a subrepresentation of B>, which also
receives an action of M by acting on A. Denote by 7(B) 4 the subspace of 7 (IB)'§' on
which M acts via the default embedding M C C,,, which is again a subrepresentation
of B>*.

LEMMA 3.4.2
Suppose that B belongs to B(A) (Notation 3.2.1). For every nonzero differential form
w € HY(A,QY), the map

So: H(B)g —> 7(B)4

sending f to f*log, |x®)c,) is B**-equivariant and M -linear, and the induced
map II(B) 4 @um C, — 7(B) 4 is an isomorphism.

Proof

It follows directly from the definition that ¢, is B®*-equivariant and M -linear. To
show the isomorphism, it suffices to show that 7 (B) 4 is a nonzero irreducible repre-
sentation of B>°*. Since B belongs to B(A), the space 7 (B)"}' is nonzero and, hence,
sois m(B)4.

For the irreducibility, we choose an isomorphism ¢: C,, 5 C. Consider the map
7(B)4 ®c,, C— Aap(B(1)*) sending f*log, to 1f *w regarded as a weight 2
holomorphic cusp form on B(t)*(A). The map is well defined, injective, and B>*-
equivariant. Its image coincides with the weight 2 subspace of the cuspidal automor-
phic representation of B(t)*(A) determined by A and the embedding ¢: M C C (see
[30, Theorem 3.3.2]). It follows that the image is irreducible as a representation of
B°°*. Therefore, 7 (B) 4 itself is an irreducible representation of B>, O

From now on, we fix a representative B in B(A4), and we will prove a p-adic
Waldspurger formula for p-adic Maass functions on X := X (B) contained in 7(B) 4.
Take two nonzero differential forms w4 € HO(A*, QL ). By Lemma 3.4.2, we have
isomorphisms

Soy: I(B) 4+ ®m Cp ;”(B)Ai'
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Let y € E(A4,Cp)o be a character such that B, ~ B. For ¢+ € w(B) ,+, we put
ay T (B 0-) = ay (s, $40S0  9-) €Cp,

where o, (:,-) is the pairing in Theorem 3.3.2. Then a;”r’w_ (+,+) is a basis of the
1-dimensional space

Homjsox (T(B) 4+ ® x.Cp) ®c, Homjcox (7(B)a- ® )(_I,CP). (3.5)

Globally, we have the following definition. Choose a CM point P+ € Y +(E®) =
Y*(C,), and put P~ =c¢P ™ as in Section 3.3.

Definition 3.4.3
For ¢+ € m(B) 4+ and y € E(A,C,)o, we define the p-adic torus period to be

Pe,@uri= [ gumpH @ .
EX\APX
where the Haar measure dt has total volume 2 as in Definition 3.3.1.

The above integrals are, in fact, finite sums valued in C,. The product £c , (-, x) -
Pc » G-, )(_1) defines another element in (3.5), which depends on the choice of ¢ but
not on the choice of P . In particular, it is proportional to a?”w_ (-,).

The following theorem is the p-adic Waldspurger formula for p-adic Maass func-
tions. Recall that we have the p-adic L-function £(A) from Theorem 3.2.10. Put
7 = m(B)4 as an irreducible subrepresentation of ¢, (B*).

THEOREM 3.4.4 (p-adic Waldspurger formula for p-adic Maass functions)
Put

iw.;,_,a)_ ()= (w+ R w_, .:C(A)),
regarded as an element in D (A, Cp). Then for a character y € E(A,Cp)o, we have

L(1/2,7p @ yoqpe)?
e(1/2, ¢,y ® yope)

Pe,(@+. 0P, (- k") = Loy o () - ay T (P o)

for every ¢1 € m(B) 4x.

Proof
It follows from Theorem 3.3.2, after pairing with w4 ® w—_. U
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Remark 3.4.5
In this remark, we explain how to deduce Theorems 1.5.1 and 1.5.3. We take A to be
an elliptic curve over Q. In particular, we have that F = M = Q, AT = A~ = A and
that w4 = 1 is the trivial character. We also fix an isomorphism ¢: C,, = C. We have
the indefinite quaternion algebra B over Q. Take B € 8(A4) such that B™® ~ B ®q
A®°. So we may identify B with B(¢) in the (-nearby data for B (Definition 2.4.10).
Moreover, we take y: Q, — C7 to be the additive character such that ¢ o yr is the
standard one. We choose the abstract conjugation ¢ from (3.1) such that ¢ ®c,, C
coincides with the restriction of the complex conjugation on X,. We also note that
D(G) is simply D(1,Cp); and D(G; nc),) is simply D(A,B, Cj) (Definition 3.2.5).
(1) We first deduce Theorem 1.5.1. Take the p-adic L-function £(A) as in The-
orem 3.2.10, regarded as an element in (Lie 4)®? ®q D (A, C,). Take a basis w of
H®(A, Q). Then there is a unique element P, € Cy such that (P, ' (f1, f2)4) is
equal to the (bilinear) Petersson inner product of ¢, (f;*w) and R((! _;)oo)P.(f>' @)
for every f1, f2 € T14. Now we define £(7rc,,) to be the image of

P, (A5 2L, ) - (0 ® @, £(A))

under the canonical projection D(4,C,) — D(A,B,C,) = D(G;nc,). Itis clear
that £(mc,) does not depend on the choice of @ and, hence, is well defined. Then
Theorem 1.5.1 follows from Theorem 3.2.10, Remark 1.1.2, and Lemma 3.4.6 below
(with r = 2).

(2) Now we deduce Theorem 1.5.3. In Definition 3.4.3, we choose PT such
that (P = [+i,1], and thus, (P~ = [—i, 1]. Then Pc,, (-, y*!) in Definition 3.4.3
coincide with those in (1.5). Therefore, Theorem 1.5.3 follows from Theorem 3.4.4.

LEMMA 3.4.6

Let 7t be the discrete series representation of weight r > 2 of GL, (R) with trivial cen-
tral character. Fix a nonzero GL;(R)-equivariant bilinear pairing (-,-): &7 x w — C.
Let f+ € i be a generator of weight r, that is, the Archimedean component of holo-
morphic modular forms of weight r. Put f— = m((! _,)) f+, which is a generator of
weight —r. Then we have

(A% fr AR ) kik 41— 1)
(fef2)  4ke—D!

where Ay are as in Definition 2.4.16.

Proof
It is well known that ( fi, f=) # 0. Put

11 +i 1
Xi=-2 =2iA H=—i .
= 2(:|:i —1) P ’(—1 )
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Recall from [5, p. 157, (2.39)] the Casimir element

1
A= —Z(2X+X_ +2X_X, + H?).

It acts on 7 by the scalar

We say that a vector g € 7 has weight u if Hg = pug. For such g, we have

H? +2H
4

1> +2u

X-Xeg=—( y

+A)g=—< —}—/\r)g.
Now for each k > 0, the vector X _’ﬁ [+ is of weight r 4+ 2k. Therefore, we have for

k > 1 the formula

(r + 2k —2)(r + 2Kk)
4

X-x fi = XX (x5 £y = —( +2,) Xk

We prove the identity

XEfe XEf) ki +r = 1)
(f+. /2 =1

by induction on k > 0. The case k = 0 is trivial. Suppose that we know this for k — 1.
Then we have

X5 fe XEf) = (XX £ X )

_ ((r + 2k —42)(r + 2k) +/\r)-(X_]f__1f+,X]_€_1f_)

=k(k+r—1)- (XK1 x5t 7).

The lemma follows as X4+ = 2i A4. O

4. Proofs of main theorems

This section is dedicated to the proofs of Theorems 3.2.10 and 3.3.2. In Section 4.1,
we construct the distribution interpolating matrix coefficient integrals appearing in
the complex Waldspurger formula. We construct the universal torus period in Sec-
tion 4.2, which is a crucial construction toward the p-adic L-function. In Section 4.3,
we study the relation between universal torus periods and classical torus periods,
based on which we complete the proofs of our main theorems in Section 4.4.
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4.1. Distribution of matrix coefficient integrals

Recall that we have fixed an Abelian variety A of GL(2)-type over F up to isogeny
that is automorphic, equipped with an embedding M = M4 C C, as in Section 3.2.
Let K/MF, be a complete field extension. Take a representative B in B(A4). As
in Section 3.2, we fix an isomorphism B, >~ Mat,(F}) and an E-embedding under
which e, coincides with (1.7). Recall that we put I+ =11 4+ = I[I(B) 4+ (Nota-
tion 3.1.2).

Definition 4.1.1 (Stable/admissible vector)

We say that elements f1 in TI* ®j7 K or H;t ®um K are stable vectors if, respec-
tively,

(1) fu are fixed by N¥(0,);

(2) fx satisfy the relation

> ¥ (g) fi =0.

geNE(p~1)/NE(0,)

We denote by (Hi)z the subsets of TT* ®j7 K consisting of stable vectors, respec-
tively. We denote by (Hg:)g the subsets of Hgt ®pm K consisting of stable vectors,
respectively.

For n € N, we say that stable vectors fi in (Hi)2 or (H;t)g are n-admissible
if, respectively,

I (0™ (x)) fx = ¥ (x) f

for every x € p~" /0, where n*(x) are the same as in Proposition 2.3.5.

Remark 4.1.2

If we realize H;‘E in their Kirillov models with respect to the pair (N*, y*), then Sf+p
belong to (Hf)z if and only if fy (resp., [T, (J) f=p) is supported on O, and they
are n-admissible if and only if fi, (resp., [T, (J) f=p) is supported on (1 + p”)*.

Definition 4.1.3

Let w € Z, let n € N be integers, and let w: F>*\A** — M* be a locally constant
character. We say that a K-valued character y: E*\AP* — K™ of weight w is of
central type w and depth n if

. ® - Y|acox = 1; and

. Jope(t) =1t~% forall t € (14 p")*.

We denote by E(w, K)7, the set of all K-valued characters of weight w, central type
w, and depth n. Moreover, put E (., K)" =, E(w. K)%,.
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We recall the definition of the classical (normalized) matrix coefficient integral.
Suppose that K is contained in C,. We take a character y € (w4, K). Lett: C, —
C be an isomorphism. Morally speaking, the integral should be defined as

o (fy foi V) o= / (@) fr, ) 4 2@ dr.
ASX\ 450X

However, it is not absolutely convergent, so we need regularization recalled as fol-

lows.

Definition 4.1.4 (Regularized matrix coefficient integral)

Take an arbitrary decomposition ¢(-,-) 4 = [ <o+ )i,vs Where (-, ), 0 TIF X T —
C is a B} -invariant bilinear pairing. For fi = &), o, f+v such that (fiy, f-p)i0 =
1 for all but finitely many v’s, we put

O[(f—{-vyf—v;)(g)):LX\EX(Hu(Z)f+vvf—v)t’vxl(;l)(t)dl;

v

2)L(1/2,pY  yW
oM firv, fvi xP) = (gF”( VL2, 04 207)

—1
D) ) O{(f-i-vv f_U;XSJL))'
L(lv nv)L(LIOA,U’Ad)

Here, dt is the measure on F,\ E* given in Section 1.8, and pf;)v is the correspond-

ing admissible complex representation of B via ¢. Then by [29, Section 3] we have
o (fro, fov: Xff)) = 1 for all but finitely many v’s, and the product

o (fo S g )= T @ (fron fovia®)

V<0

is well defined. We extend the functional a®(-,-; y®) to all £, f_ by linearity.

Remark 4.1.5
The functional (-, -; y®) does not depend on the choice of the decomposition of

[’('v ')A'

The following proposition is our main result, whose proof will be given at the end
of this section. Note that, since E(w, K)" is a subset of €(w, K), we have a natural
pairing D(w, K) x E(w, K)" — K.

PROPOSITION 4.1.6
Let MF, C K C C, be a complete intermediate field. Let fi € (Hi)g be two n-
admissible stable vectors for some (common) n € N. Then there is a unique element
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Q(f+, f2) € D(wa, K) such that, for all K-valued characters y € E(wa, K)* of
central type w4 and depth n and for .: C, — C, we have

L(1/2,p4p ® Jpe)?
€(1/2,9.p4,p ® Xpe)

@(fr )00 = )@ £ 1),
Definition 4.1.7
The element Q( f4, f_) is called the (K -valued) local period distribution.

Before giving the proof, we make a convenient choice of a decomposition of
(,) 4. Realize the representations Hpi in their Kirillov models as in Remark 4.1.2.
We may assume that 1 = ) fu,, with fi, € HvjE ®um K, are decomposable and are
fixed by some (common) sufficiently small open compact subgroup V¥ € . Choose
a decomposition (+,-) 4 = [ [, <50 (-, *)v such that
(1) (f+v, f—v)v = 1 for all but finitely many v’s;

2 (fly flyv €K forall £ € NE @u K;
3) for f. :I/:p € Hgt ®um K that are compactly supported on F.*,

(Fhy P = [ Fi@f (@ da.

where da is the Haar measure on pr such that the volume of O;‘ is 1.
We need two lemmas for the proof of Proposition 4.1.6. For simplicity, write
w = wy4. For each finite place v # p and an open compact subgroup V,, of EJ, let
D(wy, K, V) be the quotient K -algebra of D(E/ V4, K) divided by the closed ideal
generated by {w, (#)§; — 1|t € F)}. Put

D(wy, K) = %anD(a)v, K, Vy),

where the limit runs over all V;,’s. Let D (w,, K) be the quotient of D(E.*, K) by the
closed ideal generated by {w,(1)8; — 1 | # € F,}. For every finite place v, we have a
natural homomorphism D (w,, K) - D(w, K).

LEMMA 4.1.8
Let v # p be a finite place of F.
(D) There exists a unique element

L7 (pa0) € D(wy, MFy)

such that, for every locally constant character yy: E; — K> satisfying wy -
XvlFx =1, we have

L7 paw) o) = L(1/2, paws o)~
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2) For fy, € HvﬂE Rupm K, there exists a unique element

Q(f+v, [-v) € D(wy, K)

such that, for every locally constant character y,: E) — K* satisfying wy -

Xvlpx = lLandfori: Cp 5 C, we have
(Q(frv f-0) ) = & (S fif ).

Proof
The uniqueness is clear. In the following proof, we suppress v from the notation, and
we will use the subscript ¢ for all changing of coefficients of representations via ¢.

To prove (1), we first consider the following situation. Let F be either F or E s
and let IT be an irreducible admissible M -representation of GLz(I*: ). We claim that
there is a (unique) element éﬁ;:l (M) € Dy(F*, M Fy,), where

Dy(F*,K):= l(lll/:l_lD(F /V.K)

with V' running over all open compact subgroups of F* such that, for every locally
constant character y: F* — K* and(: C, — C,

EF () =L(1/2,0,® r)7"

In fact, for a locally constant character p: FX > M *_ define éﬁ};l (n) € Db(l*: x,
MF,) by the formula

:ﬁﬁl(u)(h)zl—/m w(@a)h(wa)da

for h € li_I)nV C(F*/V, MF,). Here, @ is an arbitrary uniformizer of F,and da is
the Haar measure on O ;é with total volume 1. Then we have three cases.

. If I is supercuspidal, put e?3;;1(1:1) =1.

. If I is the unique irreducible subrepresentation of the unnormalized parabolic
induction of (i, t|-|72) for acharacter i : F* — M*, then we put é‘i}l (1) =
£ .

. If I1 is the irreducible unnormalized parabolic induction of (u', 2| -|~")

for a pair of characters y': F* — M* (i = 1,2), then we put i}l (1) =
220 () 27 (1),
Here, we adopt the unnormalized induction in order to track the rationality properties.
Go back to (1). First, assume that E/F is nonsplit. Then we define £ !(p4)
to be the image of iEI(HE) in O(w, MF,), where I1g is the base change of IT to



802 LIU, ZHANG, and ZHANG

GL,(E), which depends only on p4. Second, assume that E = F, x F, is split, where
Fe = F, = F. Then we define £~'(p4) to be the image of £7!(I1) ® £7!(T1) in
D(w, MFy).

Now we consider (2). First, assume that £/ F is nonsplit. Then the torus F*\ E*
is compact; hence, the matrix coefficient @7, ¢ (g) := (It (g) f+. f-) is finite
under E*-translation. We may assume that the restriction ® s o Ex = Yiaixiisa
finite K-linear combination of K-valued (locally constant) characters y; of E* such
that @ - y;|Fx = 1. Assigning to every locally constant function & on E™ satisfying
w(t)h(at) =h(a) foralla € E* and t € F* the integral

Yaf  nonoar

which is a finite sum, defines an element a( £, ) in O (w, K). Put

{F(2)
L(1,p4,Ad)L(1,n

i = ) e e £,

Second, assume that E = F, x F, is split. We may suppose that the embedding
E — Mat,(F) is given by
le
te, 1o
awir ()

for t,, 1, € F. Moreover, a character y of E* is given by a pair (e, o) of characters
of F* such that y((fe,)) = xe(te) xo(to).

Now we realize IT* in their Kirillov models with respect to (nontrivial) additive
characters Y+ : F — C* of conductor 0, respectively, where ¥~ = (¥ +)~!. More-
over, we may assume, for fi € I1* ®j K that are compactly supported on F*,
that

(foofo) = /F fr@f (@) da.

where da is the Haar measure on F* such that the volume of 01’§ is ¢ for some
¢ € M. We have the formula

zF<2>L<1/2,p£?,xt))—l
L(1,n)L(1, 0%, Ad)

x/FXLer(a)-)(.L(a)da/FXLf_(b)-)(.t(b_l)db

( Cr(2) )
L(1,n)L(1,pY, Ad)

Ao fi0 = (

—1
ZWfr xo)ZWf— xah). @)
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where
Z0fe 05 = L0/2TE 9 )7 [ st 15 @) da.

Note that the above integrals are simply local zeta integrals. To conclude, it suf-
fices to show that there exist elements Z(fy) € Dy(F*, K) such that, for every
locally constant character y: F* — K™ and every isomorphism¢: C,, 5 C, we have
Z(fe) () = Z(tfx, Xftl), respectively. Without loss of generality, we only construct
Z(f+)-

By enlarging M if necessary to include /'/2, where [ is the cardinality of the
residue field of F, there is a subspace IT1¢ of II* such that IIT¢ ®,, K is the
subspace of TIT ®3s K of functions that are compactly supported on F*. For f4 €
¢ ®u K, we may define Z( f1) such that, for every locally constant function A
on F*,

Z(f)(h) = LF (1) (h) x /FX J+(@)h(a)da.

Therefore, we may conclude the proof if dim IT*/TI1>¢ = 0. There are two cases
remaining.

First, [T is a special representation, that is, dim IT*/TTT¢ = 1. We may choose
a representative f = j(a) - chp,\(0y(a) for some character p: F* — M. Then
Z(Lf+, x.) = c (resp., 0) if p - y is unramified (resp., otherwise). Therefore, we may
define Z( f+) such that

Z(f4)(h) = /0 j(@)h(a) da

for every locally constant function 2 on F*,

Second, TTT is a principal series, that is, dim [T /IT">¢ = 2. There are two pos-
sibilities. In the first case, we may choose representatives fi = pi(a) - chop\(0y(a)
for two different characters u', u?: F* — M*. Without loss of generality, we con-
sider f!. Then Z(tf}, x.) = L(1/2, u2- x,)~" (resp., 0)if ' - x is unramified (resp.,
otherwise). Therefore, we may define Z( f' Jl) such that

Z(fH)(h) = LF (1w (h) x /ox p(a)h(a)da

for every locally constant function 2 on F*. In the second case, we may choose
representatives f! = ju(a) - cho,\(03(a) and fZ = (1 —log; la|)p(a) - cho,\(03(a)
for some character y: F* — M*. The function /! has been treated above. For f2,
we have Z (¢ ff, X.) = c (resp., 0) if @ - y is unramified (resp., otherwise). Therefore,
we may define Z( f) such that
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200 = [ n@ha)da
OF
for every locally constant function 4 on F*. O

LEMMA 4.1.9
Let fi, € (Hf)? be two n-admissible stable vectors. There exists a unique element

Q(f+p, J=p) € D(wy, K)

with the following property: for every character x: E;‘ — K* satisfyingwa)p .
)(plex =land ygpc(t) =t7" fort € (1 +p")* and some w € Z and for: C, — C,
we have

L(1/27 PA,p ® X‘ﬁc)z
€(1/2,9.pa,p ® Jpe)

L(Q(f+p, f—p)()(p) = L( )atl(f+p’f_p;)(’(3l))_

Here, j is defined similarly as in Definition 3.2.2(2). Moreover, there are n-admissible
stable vectors fi, € (Hf)% such that @(fyp, f—p)(Xp) 7 O for every such x,.

Proof
The uniqueness of @( f4,, f—p) is clear, as those characters y, in the statement span
a dense subspace of €(wy, K) by Lemma 2.1.11.

For the existence of @( fp, f—p), first note that the formula (4.1) also works for
v = p. Moreover, we have the functional equation

Z(tf~ps X;%)C_l) =1e(1/2,9,pa,p ® fope) - Z(L(H;(J)f—p),)(%)c).

By Remark 4.1.2, we only need to show that, for f € H;f ®um K that is supported on
(1 +p™")*, there exists Q"(f) € D(wp, K) such that, for y, as in the statement and ¢,

@0 = [ @ da.

Then we may set

{r, (2)
L(1,pap. Ad)L(1,7p)

For the existence of @'(f'), since )((%)c restricts to the trivial character on (1 +

p™)*, we have

Qi f-p) = ( ) @@ (0 1),

/ Lf(a)-)(;%)c(a)dazz f(a)da.
oy oy
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We may put
Q(f) :[ flayda e K. “2)
o

which is a constant (depending only on f). The last part of the lemma follows from
4.2). O

Proof of Proposition 4.1.6

Let fi € (Hi)i be two n-admissible stable vectors. It is clear that @( f4y, f—y)
constructed in Lemma 4.1.8 is equal to 1 for almost all v’s. Therefore, we may simply
define Q( f+, f—) to be the image of

Q(frp- ) ® R Q(f1v. fv)
vFEp

in D(w4, K). O

4.2. Universal torus periods
Let B be as in the previous section. As in Section 3.3, we choose a CM point P+ €
Y+(E®) and put P~ = cP*+. By Lemma 2.4.2, we regard P* as points in
X (j:oo)(F;‘b), respectively. By the same lemma, the morphism I'; from (2.14) pre-
serves 2)* (oco) for t € 0"p , respectively.

Recall that, for m € N U {oo}, we have the closed formal subscheme 9)* (m) of
X(m) as in Section 2.4. For a complete field extension K/ F, o> put

NE(m, K) =H(D*(m). Ogy () B 03 K.

LEMMA 4.2.1

Suppose that K is a complete field extension of F;‘b. Then the respective maps from
NE(00, K) to the K-algebra of continuous K -valued functions on ?\A%"X that
send f € N*(oo,K) to the functions x — f(Y+TxPT) are isomorphisms. We
recall that Y4 are in Definition 2.2.10. Moreover, the induced actions of t € ng

on N* (0o, K) are, respectively, given by
fxt)  for f e NF (oo, K).

(Ft )= {f(x[c) for f € N™ (o0, K),

for x € EX\AF™.
Proof

The isomorphism follows from Lemmas 2.4.2 and 2.4.4. The action is a consequence
of Lemma 2.2.11. O
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Notation 4.2.2
Consider a locally constant character

w: FX\A®* — M*.

Let K be a complete field extension of M F,. For every V'? € 0 on which w is trivial,
denote by D(w, K, V) the quotient K-algebra of D(EX\AY®*/V?*, K) divided by
the closed ideal generated by {@(¢)6; — 1 | t € A®*}.

Then by some standard facts from functional analysis (see [27, Propositions 2.11
and 2.12]) and Remark 2.1.1, we have a canonical isomorphism

D(w,K) ~ 1(21 D(w,K,V?)
Vrey

of topological K -algebras, where the former one is in Definition 3.2.5(1). The (unique)
continuous homomorphism D(Oxp ,K) — D(W\A%"X / VP, K) sending §; to
Wy (to)8; for t = (te,1o) € ng descends to a continuous homomorphism w: D(O;“ﬁ,
K) — D(w, K, V?) of K-algebras, which is compatible with respect to the change
of V?. In other words, we have a homomorphism

w: D(O™, K) - D(w, K). 4.3)

Definition 4.2.3 (Universal character)
We respectively define the &=-universal character to be

_ FES
xE EX\AYY s D(w, MF,)™,
where § is defined in Definition 3.2.5(4).

The universal characters depend on w. Since we will always take w = w4, we
suppress it from notation.

LEMMA 4.2.4
The universal characters Xl:lliliv are elements in N * (0o, F;b)@) FSbJD(w, M F;‘b) satis-

Jying
+ +
1-‘If*)(univ = St * Xuniv»

Sm.

respectively, for t € OEP m if @ is trivial on F,* N OEP

Proof
It follows from the definition, Lemma 4.2.1, and the observation that conjugation and
inversion coincide on Ogmi. O
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Suppose that K is a complete field extension of M th F ;b. Given a stable conver-
gent modular form f € M’ (m, K )¥ for some w, m € N (Definition 2.3.10), we have
the global Mellin transform M( ) by Theorem 2.3.17, and by (4.3),

wM(f) € MP(m, K)°®k D(w, K).
By restriction, we obtain elements
WM(f)lgy+ (o0 € N (00, K)RK D (@, K).
By Theorem 2.3.17(2) and Lemma 4.2.4, the product (WM( f) |@i (Oo)) . Xlﬁiv descends
to an element in N ¥ (m, K)@ g D(w, K) if w is trivial on Frn Ol’;p m
For every V? € 2J under which f is invariant, we regard (WM( f )|&z)i(oo)) . Xﬁiv

as elements in N *(m, K)@x D (w, K, V?), respectively. They are invariant under the
action of V? on N *(m, K).

Definition 4.2.5 (Universal torus period)
We define the universal torus periods of f to be the elements

PE(S) = 2 S (WMD) 1))

O EX\A®X/VrO
AR/ EP"”'EX\A?X/VPOEPM

in D(w, K, VP).

Remark 4.2.6
We add the factor 2 in the above definition in order to be consistent with the Tamagawa
measure we chose in the complex Waldspurger formula recalled in Section 1.1.

By construction, the elements J’f (f) are independent of m and are compatible
with respect to the change of V?. Therefore, they are elements in D (w, K). In fact,
for a character y € E(w, K), Lemma 4.2.1 allows us to write

i = [

| wWM((fE o)) D(YLT: PF) -y () dt.
EX\AX
4.3. Interpolation of universal torus periods

We keep the setting from the previous section. Let M F;‘ F, ;‘b C K Cc C, be acomplete
intermediate field.

By Definition 4.1.1, elements fjE € [T ® K can be realized as K -linear com-
binations of morphisms from Xg» Uyt 1O A, respectively, for some (common) U? €
il and m € N. We now assume this.

Take differential forms w4 € H(A*, S2114 +)- Using the notation in (2.26), we
have convergent modular forms (ff®+)ora € M?(oo, K). Then (fw+)oma are sta-
ble (in the sense of Definition 2.3.10) if and only if f * are stable (in the sense of
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Definition 4.1.1), respectively. By Proposition 2.3.5(3), ( f} @4 )ora are n-admissible
(in the sense of Definition 2.3.13) if and only if f * are n-admissible (in the sense of
Definition 4.1.1), respectively.

Notation 4.3.1
For stable vectors [+ (Hi)% define the elements

c7):|:

univ

(fr) €Lie AT @ pm D(wa, K)
by the formulas
(2. Pisi () = P, (fE©£)ora)-
In this section, we study the relation between
P ()0 1P (S () € (Lie AT @ par LieA™) @, C

for a given isomorphism ¢: C, =5 €, with classical torus periods, for f* as above
and a character y € E(w4, K)}, of weight k > 1 and depth n (Definition 4.1.3). For
this purpose, we choose an t-nearby data for B (Definition 2.4.10). In particular, we
have

YE(C) = EX\{#i} x A®* C X,(C).

Choose elements 7+ € AP such that LP* are represented by [+, 7], respectively.
Define {F € C* such that

dz([£i,t4]) = &5 10y £ p= (4.4)
where wy 4 are defined in (3.2). We also introduce matrices j £ = (! ,,) in

Mat,(R) = B(1) ®F, R.

Notation 4.3.2
For a cusp form ® € sy (B(1)™) with central character ¢ o a)jfl, we respectively
define

Po(®, 7OF1) = / O 2V (1) * dr
EXAX\A%

to be the complex torus periods appearing in the complex Waldspurger formula.

LEMMA 4.3.3
Let the notation be as above. We have
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Hos Poriy (F)(0) - -, P (f) ()
=@k Vet
Pe(ARGDG(fFo1)). x0T Pe(A T RGD S F0o)), 107,
where ¢, is defined in Lemma 2.4.15 and x©® is the t-avatar of x as in Defini-

tion 3.2.2(3).

Proof
Take VP € 0 under which f1 and y are invariant. By Theorem 2.3.17 and Defini-
tion 4.2.5, we have

(£, 25 (f£)(0)
2
|EX\A°°X/ Ve OE m|

x > Of T (frow)oa(Ye T PE) - ¥ (YL T, PE) - y*1(1)
EX\AF*/VPOF,
2
|EX\A°°X/VP0E m|
X Z T:i:®0rd (f:l:(‘):l:)ord(Tt :t) a) (Tt :t) Xil(t)

EX\AF*/VP O},
for some sufficiently large m > n. By (4.4) and Lemma 2.4.9, we have

o, Po (f£)(0)

_ 2(55)*
T ENAFY/VPOR ]

_ . —k
x > OF ! frow (T PE)dz ([ 1xt]) - O (0)*!
EX\AFX/VPOE,

=@ [ RSO o 00 d

(R ) / R(jE)p (O frwi)(t) - x V() at,
EXAX\A%

which by Lemma 2.4.17 equals
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(o iR Sy /EW\AX RUS A fEon) @) O * di
E

= 5% Ve / AT RGHG(frow) @) - xO0)* dr.
EXAX\A%
This completes the proof. O
PROPOSITION 4.3 .4

Given n-admissible stable vectors fi € (Hi)g and a character x € E(wa, K)j, of
weight k > 1 and depth n, we have

P D0 - 1P (f) ()
=1Q(f4. f)(0)

x L(1/2,p9 . 1)

2g—1d}5/2§F(2)PL(A, x) ' (6(1/2, V. pap @ )Vmc))
L(Ln2L(1,pW0 Ad) N L(1/2.pap ® fpe)? /)

as an equality in (Lie AT ® pm Lie A7) @ pm , C.

Proof

It suffices to show the equality after pairing with @ ® w_ for an arbitrary pair of
differential forms w+ € HO(A*, QL L)

By the complex Waldspurger formula (see [29] and [30, Theorem 1.4.2]) and
Proposition 4.1.6, we have

Pe(85 RGNS 7o) 20 2B RGBS 0-) 1O7)

_ o ir@L0/2.p7 1) 2 , (ea/z,w,m,p ®)?f;3€))
CLL Y ALy 278d5 2Ly N L(1/2.pap ® iype)?

1Q(f+. [0

where C, is the complex constant such that

(AT RGO fF0r). ARG G(fF0-)))py = Cor Ll 4 f-) 4

holds for all f and f_. Here (-, -)pe is the bilinear Petersson inner product pairing.
By Lemma 4.3.3, the proposition is reduced to the formula

{0y ® 0_, P (A, 1)) = C.- (&TeD - x V7 ). (4.5)

By Lemma 3.2.8, it suffices to show that
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dx

1oy ® g @ / OF ! fror @ OF ! f*o_
Hp+.9-)y X.(©) e

= e AV ) - (A RO SF00). AL RGDA(SF0-)))p

for some choice of ¢4 € J;—L((Cp). We take elements @+ such that oL (P¥) =

dz([%i,1+])¥, respectively. Then ¢(¢., Y )y = (¢FE7)7* by (4.4). Now we take p

to be the standard invariant hyperbolic metric on X, = B())*\# x B®*/FX. Then
1o+ ® c*to_ ® pk is the constant y© (t7'1-), and

dx

/ OF 1 f*w, ® O f*w_
X,(C) Mk

= (ARG DO (fro). ARG G(fF02)))py-
Thus, (4.5) holds, and the proposition follows. (|

The proposition has the following corollary.

COROLLARY 4.3.5
For y € E(wa, K)} with k > 1, the ratio

Pt F+) ) P (F) (1)
Q(f+, f-)X0)

if the denominator is nonzero, is independent of the choice of n-admissible stable
vectors fi € (Hi)% Moreover, for 1: C, — C, we have

€ (LieA" @ pm LieA”") @ pum K,

L(?u’;iv(er)(X)e‘/’u;iv(f—)(x) )
QS+ /-0

2
= L(1/2,pY, ).

1} Cr P4, 1) (L2042 8 )
L(LyPL(1pf. Ad)

L(1/2,p4,p @ JYope)?

PROPOSITION 4.3.6
For n-admissible stable vectors fi € (Hi)i and a character y € E(wy, K)§ of
weight 0 and depth n, we have

g)uzgiv(fﬂ:)()() = 1OgAi P;:(fj:)

Proof
We may choose a tame level UP € il that fixes both f and f_ and such that y is
fixed by UP NA%F™. We may realize fi as K-linear combinations of morphisms from
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Xye Upam 1O A%, respectively, for some sufficiently large integer m > n. By linearity,
we may assume that f1 are just morphisms from Xg» Upim 1O A™, respectively.
For w+ € HO (4%, in), we have by Theorems 2.3.17(3) and 2.3.17(4) that

dM((fj):kw:I:)ord) (X| 02(4}0 ) = ®ordM((f::w:|:)ord) (X| OE‘ISC ) = (f::wzl:)ord'

On the other hand, by Proposition A.0.1, we know that (/" log, jE)(,rd are Coleman
integrals of (f}w4)ora On (the generic fiber of) X(m, UP), respectively. Therefore,
we have

M((f::a):l:)ord) (X|ogmc) = (f:: logwi)ord (4.6)

on X(m,UP), since both of them are Coleman integrals of f}w+ on X(m,UP) that
belong to ‘Ml? (m, K)©, respectively. By Definition 3.3.1, we have

log,,, Py (fe)= /W\Am log,,, fx(T,P*)- x(1)*"dt
E
= [ s, (. g d
EX\ASPX

= [T (T TP 0 di,
EX\ASPX
which by (4.6) is equal to

[ M(onu)Glog, N(TeTP®) x0* ds
EX\AG™ Be

= [ Mo TP 0
EX\A*
respectively. Then the proposition follows from Remark 4.2.6. O

4.4. Proofs of main theorems
Let K be a complete field extension of M F,. For V'? € 2, denote by €(w, K, V)
the (closed) subspace of €(w, K) (Definition 3.2.5) of functions that are invariant
under the right translation of V?. It is also a closed subspace of C(E*\A*/ V¥, K).
The strong dual of €(w, K, V?) is canonically isomorphic to D(w, K, V?) (Nota-
tion 4.2.2).

We consider totally definite (not necessarily incoherent) quaternion algebras B
over A such that, for a finite place v of F, €(By) = 1 if v is split in E or the Galois
representation p4,,, corresponds to a principal series.
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For such (a representative in the isomorphism class of) B, we choose an E-
embedding as (1.9), which is possible. We define representations

/
(B4 = ®an,Ai’

where the restricted tensor products (over M) are taken over all finite places v # p
of F and IT, 4+ are M -representations of B} determined by p 4+ ,, respectively. In
particular, if B is incoherent (i.e., B € 8(A4) in Notation 3.2.1), then IT(B tj‘f are iso-
morphic to the away-from-p components of IT(B) 4+ (Notation 3.1.2), respectively.

Notation 4.4.1
Let (w4, K, V?) be the closed ideal of D (w4, K, V?) generated by

{@(fs. /)| fr e (MBEE)" @ K. e(B) =+1},

and let d_ (w4, K, V'?) be the closed ideal of D (w4, K, VP) generated by

Q(fe )| fr e (MBET) @i K.e(B) =1},

where @( f+, f-) is defined as the product of those elements @( f,, f—,) in Lemma
4.1.8(2).

Let €4 (w4, K, V) (resp., €_(w4, K,V?)) be the subspace of €(wy, K,V?)
consisting of functions lying in the kernel of every element in J_(wg4, K, V?) (resp.,
Jy(wa, K, VP).Put E(A,K,VP)=E(A, K)NC(wy,K,VP)and E(wy, K,V?) =
E(wg, K)NE€(wy, K,VP), where E(A, K) and E (w4, K) are introduced in Defini-
tion 3.2.5.

Remark 4.4.2
The ideals Ji(wy4, K,V?P) are topologically finitely generated. The subspaces
Ci(wa, K, VP) are closed in € (w4, K, VP).

The following lemma concerns some algebraic properties of the objects intro-
duced above.

LEMMA 4.4.3

Suppose that VP € 0 is sufficiently small. We have

(1) Jy(wa, K, VP)NJ_(waq,K,VP)=0;

2) Jy(wa, K, VP)+d_ (w4, K, VP)=D(wg,K,VP);

3) Cwg, K, VP) =Cr(wag, K, VP) D E_(wy, K, V?);

4) the subset E(A, K,V?) is contained in and generates a dense subspace of
C_(wg, K, VP);
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5) di(wyg, K, VP) is the closed ideal generated by elements that vanish on E(A,
K,VP).

Proof

We first realize that E(wy4, K, VP) generates a dense subspace of €(wy4, K, V?).
Thus, (1) follows from the dichotomy theorem of Saito and Tunnell (see [28] and
[24]). For (2), assume the converse, and suppose that J (w4, K, VP)+d_(w4, K, VP)
is contained in a (closed) maximal ideal with residue field K'. Then all local period
distributions @( f+, f—) will vanish on the character

EXARY VP S D(wa, K. VP) = K,

which contradicts the theorem of Saito and Tunnell. Part (3) is a direct consequence
of (1) and (2). It is clear that E(A4, K, V?) is contained in €_(w4, K, V?) and, by
the theorem of Saito and Tunnell, E(w4, K, VP) \ B(A, K,V?) C €1 (w4, K, V?),
which together imply (4). Finally, (5) follows from (4). O

Remark 4.4.4
Ifweput D(A, K, VP)=D(wy, K,VP)/Jd+(wy, K, VP), then we obtain a canonical
isomorphism

D(A,K) > lim D(A. K, V?).
Ve
Moreover, we have D(4, K) =~ [[pcg(a) P(4,B, K) (Definition 3.2.5). We have
DA K. VA)QkK' ~ D(A,K',VP) and D(A4, K)®xK' ~ D(A,K’) for a com-
plete field extension K’/ K.

Remark 4.4.5

In fact, for sufficiently small V¥ € %0, the morphism w from (4.3) is injective with
the quotient which is a finite étale K-algebra. We also have D(Ogmi, K)yndi(wa,
K, V?)={0}. Thus, if K is discretely valued, then D (A4, K, V'?) is a (commutative)
nuclear Fréchet—Stein K-algebra (defined, e.g., in [ 10, Definition 1.2.10]). Moreover,
it is not hard to see that the transition homomorphism D (4, K, V'?) — D(A, K, V?)
is finite étale for VP C V¥, The rigid analytic variety &_(V'?) associated to D (4,
MF,, V?¥)is asmooth rigid curve over M F,,, which may be regarded as an eigencurve
for the group U(1)g,F of tame level V?, twisted by (the cyclotomic character) w4
and cut off by the condition that €(1/2, py4,-) = —1. The ind-rigid analytic variety &_
mentioned in Section 1.7 is actually lim &E_(VP).

—Vrey

Proof of Theorem 3.2.10
For the existence, note that the union (., E(w4.C,)} already spans a dense sub-
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space of €(w4,Cp,) by Lemma 2.1.11. By Corollary 4.3.5, Lemma 4.4.3, and (the
nonvanishing part of) Lemma 4.1.9, the collection of ratios

Pt ) P ()

Q(f+. f-)

for fi running over (IT1(B) Ai)% with €(B) = —1 defines an element

£(A) € (LieAT @ pm Lie A7) @ g D(A,C)).

It actually belongs to (Lie AT ® pam Lie A7) @ psr D(A, MF, ;t) by the lemma below.
We need to show that the element

£(A) € (LieA” ®@pum Lie A”) @ pu D(A, MFy))

introduced in Definition 4.4.7 satisfies (3.4). However, this follows from Corollary
4.3.5.

The uniqueness follows from the fact that | ;. E (w4, Cp)k is dense in €(wy,
C,), which we already used in the construction of Eﬁ(A). O

LEMMA 4.4.6
The element £(A) belongs to (Lie AT ® pm Lie A7) ® pmr D(A, MFY).

Proof
Note that, in the definition of £(A), we only need to consider fi € (I1(B) Ai)?/[ Fi
P

such that both /4 and IT1(B) 4~ (J) f- are invariant under Og.. Then the lemma fol-
lows if we can show that, for every x € U, E(A,Cp)} and o € Gal(C,/MFY),
we have

olow, PE(f)(0) = (0, PE(fe) (0 0 x)). 4.7)

Without loss of generality, we consider the one for fT. As in the proof of Lemma
4.3.3, we have the equality

{0y, P () (D)

=Cc Y O (ffea(TLT PY) -0y (YT PH) - (1),
EX\AF™/VPOF,
where C is a positive rational constant. However, the product ®’§rgl (ffo4)o - @, k
is naturally an element in ,M;) (0o, MF, ;t) (Definition 2.3.8), and y can be viewed as an
element in N+ (00, C,) (Section 4.2). Thus, (4.7) holds, and the lemma follows. [J
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Definition 4.4.7 ( p-adic L-function)
We call the element

£(A) € (LieAT @ pum Lie A”) @ prr D(A, MF)))

in the proof of Theorem 3.2.10 the anti-cyclotomic p-adic L-function attached to A.

Proof of Theorem 3.3.2
It follows from Propositions 4.3.6 and 4.1.6. O

Appendices

A. Compatibility of logarithm and Coleman integral

In this appendix, we generalize a result of Coleman [8] about the compatibility of the
p-adic logarithm and Coleman integral. This result will only be used in the proof of
Proposition 4.3.6.

Let F be a local field contained in C, with ring of integers Of and residue
field k. Let X be a quasiprojective scheme over F, and let U C X" be an affinoid
domain with good reduction. We say a closed rigid analytic 1-form w on U is Frobe-
nius proper if there exist a Frobenius endomorphism ¢ of U and a polynomial P (X)
over C, such that P(¢*)w is the differential of a rigid analytic function on U and
such that no root of P(X) is a root of unity. Therefore, by [8, Theorem 2.1], there
exists a locally analytic function f, on U(C), unique up to an additive constant on
each geometric connected component, such that
. dfw = o;

. P(¢*) fo is rigid analytic.
Such f,, is known as a Coleman integral of w on U, which is independent of the
choice of P (see [8, Corollary 2.1(b)]).

PROPOSITION A.0.1

Let X and U be as above. Let A be an Abelian variety over F which has either totally
degenerate reduction or potentially good reduction. Then for a morphism f: X — A
and a differential form w € QY (A/F), the form f*w|y is Frobenius proper, which
admits f*log, |u as a Coleman integral, where log,,: A(C,) — C, is the p-adic
logarithm associated to .

Proof

We may assume that X is projective. Replacing F' by a finite extension, we may
assume that A has good reduction or split totally degenerate reduction (i.e., the con-
nected neutral component #A; of the special fiber 4, of the Néron model 4 of A is
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isomorphic to Gf’n’ «» Where d is the dimension of A). The first case follows from [8,
Theorem 2.8 and Proposition 2.2].

Now we consider the second case. Denote by +j the analytic domain of Arie
of points whose reduction is in ;. By a well-known result of uniformization from
[20, Section 6], we have A" ~ (G;;g, )¢/ A for alattice A C G;dn’ 7 (F). Moreover,
oA is isomorphic to Sp F(Ty,.... T4, Ty ',..., T; '), the rigid analytic multitorus of
multiradius 1.

Choose an admissible covering U of X" containing U, which determines a for-
mal model Xq of X over Of. Since X is projective, we may assume that Xq is
algebraic. Let Z be the nonsmooth locus of Xq; over OFf . The set of closed points of
X whose reduction is not in Z forms an analytic domain W of X", Since U has good
reduction, we have U C W. By the Néron mapping property, the morphism f extends
uniquely to a morphism Xq — Z — +, which induces a morphism f': U — A"e,
Without loss of generality, we assume that f'(U) is contained in ;. By [8, Propo-
sition 2.2], we only need to show that w| Ag 1s Frobenius proper and log, | Ag 18 @
Coleman integral of it.

In fact, we have
d T1 d Td }

weQ (A/F)) =SpanF{Tl,..., T

{olag

By linearity, we may assume w° := w| A = dT—Tll. We choose the Frobenius endo-
morphism on #4; to be given by ¢((T1.....Tg)) = (T{.....T]), where g = |k|. We
have that P(¢*)w® = 0 for P(X) = X — ¢g. On the other hand, the p-adic logarithm
log on Sp F (T, T{') is also killed by P(¢*). Therefore, the function (log, 1,...,1)
on Sp F(Ty, T ) x -+- x Sp F(Ty, Td_l) >~ »A; is a Coleman integral of °, which
coincides with the restriction of log,,,. |

B. Serre-Tate local moduli for @-divisible groups (following N. Katz)

In this appendix, we describe the Kodaira—Spencer isomorphism for ordinary O-
divisible groups in terms of their Serre-Tate coordinates, generalizing a classical
result of Katz [17, Theorem 3.7.1] which is for ordinary p-divisible groups. Only
Theorems B.1.1 and B.2.3 will be used in the main part of the article. Some notation
in this appendix may be different from that in Section 1.8.

B.1. O-Divisible groups and Serre—Tate coordinates

Let F be a finite field extension of QQ,, where p is a rational prime. Denote by F the
completion of a maximal unramified extension of F. The ring of integers of F' (resp.,
F) is denoted by O (resp., ©). Let k be the residue field of @, which is an algebraic
closure of F,. For a p-divisible group G over Spec R, we denote by Q2(G/R) the
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R-module of invariant differentials of G over R, which is the dual R-module of the
tangent space Lie(G/R) at the identity.

Let S be an O-scheme. Recall that an O-divisible group over S is a p-divisible
group G over S with an action by @ such that the induced action of (9 on the sheaf
Lie(G/S) coincides with the natural action as an @g-module (hence, an (9-module).
Denote by BT? the category of @-divisible groups over S, which is an Abelian cate-
gory. We omit the superscript O if it is Z,. The height & of G, as a p-divisible group,
must be divisible by [F : Q,]. We define the O-height of G to be [F : Q,]"1h. An
O -divisible group G is connected (resp., étale) if its underlying p-divisible group is.
We denote by £J the Lubin-Tate ()-formal group over Spec O, which is unique up
to isomorphism. We use the same notation for its base change to S

For an O-divisible group G over S, there exists an @-formal group G° over S,
unique up to isomorphism, such that its associated p-divisible group G°[p™°] is the
maximal connected subgroup of G. In particular, G°[p*] is an ©-divisible group.
We define the O-Cartier dual of G to be

D._ n rd PR
G i= limHomo (617" £717")
as in [11]. An @-divisible group G is ordinary if (G°[p®°])? is étale. Denote by
T,G = l(iLnn G[p"] the Tate module functor. Denote by Nilp; the category of O-
schemes on which p is locally nilpotent.

THEOREM B.1.1 (Serre-Tate coordinates)
Let G be an ordinary O-divisible group over k. Consider the moduli functor Mg
on Nilpg such that, for every O-scheme S on which p is locally nilpotent, M (S)
is the set of isomorphism classes of pairs (G, @), where G is an object in BT? and
¢: Gxs(S®gk) = G Xspeck (S ® k) is an isomorphism. Then Mg is canonically
pro-represented by the (5—formal scheme Homg (T ,G(k) ®0 TpGD k), £T7).

In particular, for every Artinian local @-algebra R with the maximal ideal mp
and G/ R a deformation of G, we have a pairing

q(G/R;-,"): T,G(k) ®0 T,GP (k) = £T (R) = 1 + mg.

It satisfies the following.
(1)  Foreverya € T,G(k) and ap € T,,GD (k), we have

q(G/R;a,ap) = q(GP /R;ap,a).

2) Suppose that we have another ordinary O-divisible group H over k and its
deformation H over R. Let £: G — H be a homomorphism, and let f° be its
dual. Then £ lifts to a (unique) homomorphism f: G — H if and only if
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q4(G/R;a,t?Bp) = q(H/R:fa, Bp)

for every a € T,G(k) and Bp € T,,HD (k).

By abuse of notation, we will use g to denote the formal scheme
Homg (T, G(k) ®0 T,GP (k), £T). The proof of the theorem follows exactly that
of [17, Theorem 2.1].

Proof
The fact that 91 is pro-presentable is well known. Now we determine the represent-
ing formal scheme.

Since G is ordinary, we have a canonical isomorphism

G~ G [p®] xT,G(k) ®p F/O.
By the definition of (O-Cartier duality, we have a morphism
epn: G[p"] x GP[p"] - £T[p"].
The restriction of the first factor to G°[p”] gives rise to an isomorphism
G°[p"] = Homo (G [p"](k). £7 [p"])

of group schemes over k preserving (9-actions. Passing to the limit, we obtain an
isomorphism of (9-formal groups over k

G® = Homg (T,G? (k), £T),
which induces a pairing
Eg: G*xT,GP (k) — £7.
Let G/ R be a deformation of G. Then we have an extension
0 ——= Gp®] —= G ——= T,Gk)®p F/O ——= 0 (B.1)
of @-divisible groups. We have pairings
Eg.pn: G°[p"] x GP[p"] > LT [p"],
Eg: G xT,GP (k) > £7.

which lift e,» and Eg, respectively.
Similar to the p-divisible group case, the extension (B.1) is obtained from the
extension
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0 — T,Gk) — T,Gk)Q@p F —— T,G(k)®9 F/O —— 0

by pushing out along a unique ()-linear homomorphism
o6/r: TpG(k) > G°(R).

The homomorphism ¢g,g may be recovered from (B.1) in the way described in [17,
p. 151]. It is the composite

T,G(k) = T,Glp"|(k) > G(R)
for every n > 1 such that m’}fl = 0. Therefore, from G/ R, we obtain a pairing

4(G/R:-") = EG(R) o (¢/r.1d): T,G(k) ®0 TGP (k) — £T (R) = 1 + mg.

This shows that the functor g is canonically pro-represented by the O-formal
scheme Homep (T, G(k) ®¢ TpGD k), £T7).

For (2), if the given homomorphism f: G — H can be lifted to f : G — H, then
we must have the commutative diagram

0 —— Homg (T,,GD(k), c‘t‘i’f[pc’o]) — G ——=T,Gk)®09 F/O ——0
oT P (k) l L f J/ Tpfk)®@ F/O

0 —— Homg (T,H? (k). £T [p>°]) — H —— T,H(k) ®¢ F/O — 0.
Conversely, if we may fill f in the above diagram, then f lifts.
The existence of the middle arrow is equivalent to the pushout of the top extension

by the left arrow being isomorphic to the pullback of the lower extension by the right
arrow. The above-mentioned pushout is an element in

Extgro (TpG(k) ®o F/O.Home (T,HP (k). £T [p™])).
which is isomorphic to
Homg (T,G(k) ®¢ T,HP (k), £T (R))
by the bilinear pairing
(. Bp) — q(G/R;a,f° Bp).
Similarly, the above-mentioned pullback is an element in

Homg (T,G(k) ®¢ T,HP (k), £T (R))
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defined by the bilinear pairing
(«.Bp) = q(H/R:fa, Bp).

It remains to prove (1). Choose n such that m';;rl = 0. Then both G°(R) and
(GP)°(R) are annihilated by p”. Denote by a(n) the image of & under the canonical
projection T,G(k) — G[p"](k) and similarly for ap (n). By construction, we have
¢G/r(@) = (p")a(n) € G°(R) and ¢gpg(ep) = (p")ap(n) € (GP)°(R). There-
fore, we have

q(G/R;a,ap) = Eg,pn ({(p")a(n),ap(n)).

Similarly, we have ¢(G? /R;ap,a) = Egp pn({p")ap(n),a(n)).

The remaining argument is formal, and one only needs to replace @m (resp.,
Abelian varieties) by £7 (resp., O-divisible groups) in the proof of [17, Theorem 2.1].
In particular, we have the following. Given an integer » > 1 and elements x €
G°[p"](R) and y € GP[p"](k), there exist an Artinian local ring R’ that is finite
and flat over R and a point ¥ € GP[p"](R’) lifting y. For every such R’ and Y, we
have the equality Eg,pn(x,y) = epn(x,Y) inside LT (R'). O

B.2. Main theorem
We fix an ordinary (-divisible group G over k. Denote by R the coordinate ring of
Mg, which is a complete @-algebra. We have the universal pairing

q: Tp,G(k) ®0 TGP (k) — £T (R) C R*.

Therefore, we may regard g (o, p) as a regular function on 9g. For each @-linear
form £ € Homg (T ,G(k) ®0 T,GP (k), ©), denote by D({) the translation-invariant
continuous derivation of R given by

D(0)q(e.ap) = (@ @ ap) - q(a,ap).

By abuse of notation, we also denote by D(£) the corresponding map 2, 6> R
Denote by & the universal (-divisible group over M. We choose a logarithm log :
LT — Gq over O ® Q such that wg := log* d T is a generator of the free rank 1
O-module Q(éﬁ‘]’/@).

Let R be as in Theorem B.1.1, and let G/ R be a deformation of G. We have the
canonical isomorphism of (9-modules

Ag: T,GP (k) > Homgro (G°[p>], £T [p™]).
Define the @-linear map wg : T pGD (k) = Q(G/R) by the formula

wG(@p) =Ag(ap)*wo € QG/R) = QG/R).
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Let Lg: Homg (T,,GD (k),©) — Lie(G/R) be the unique @-linear map such that
wg(ap)-Lg(a))=ap-a) €.
In fact, the R-linear extensions
wG: T,GP (k) ®9 R — Q(G/R)
and
Lg: Homg(T,GP (k). R) — Lie(G/R)
are isomorphisms. Similarly, we have an isomorphism
Agv: TpG(k) = T,G%(k) = T,G*(R) = Homgr, ((G*)", Gm[p*]),
which induces an isomorphism
T,G(k) ®z, R — Q((G*)V/R)
by pulling back the differential form dTT on ﬁm It further induces an isomorphism
wv: TpG(k) ®o R = (T,G(k) ®z, R) 5 — Q((G*)"/R),.

Here, the subscript @ denotes the maximal flat quotient on which @ acts via the
structure map. By construction, we have the following lemma of functoriality.

LEMMA B.2.1

Let £: G — H be as in Theorem B.1.1, and let f: G — H be a homomorphism

lifting £. Then the following hold.

(1) We have ((f*)V)*(wgv (@) = wgv (fa) for every a € T,G(k), where £ :
G — H is the induced homomorphism on the étale quotient.

(2)  Wehave fi(Lu(a),)) = Lg(a), ofP) for every af, € Homo (T ,GP? (k), 9).

Denote by D(G) the (contravariant) Dieudonné crystal of G. We have the exact
sequence

0 —— Q(BY/R) —— D(GY)x —— Lie(6/R) ——= 0
and the Gauss—Manin connection

V: D(Gv)g}. — D(Gv)m Qn Q%/@

They together define the (universal) Kodaira—Spencer map
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KS: Q(6"/R) — Lie(6/9R) ®n Lyy,5.

which factors through the quotient Q(&Y /R) — Q(BY/R)e. The following lemma
is immediate.

LEMMA B.2.2
The natural map Q&Y /R)e — QUGB /R) g is an isomorphism.

In particular, we may regard wev as a map from T,G(k) to Q(&Y/R)e. The
following result on the compatibility of the Kodaira—Spencer map and the Serre—Tate
coordinate is the main theorem of this appendix.

THEOREM B.2.3
We have the equality

ws (@p) - KS(we~ (@) = d log(q(e.p))

in Qm/é foreverya € T,G(k) and ap € T,,GD (k).

Note that the definition of wg, but not wg v, depends on the choice of log, which
is compatible with the right-hand side.

B.3. Frobenius
Denote by o the Frobenius automorphism of @ such that @ = 9°=!. Put X =
X ®p , O for every O-(formal) scheme X, let Xx : X — X be the natural projec-

tion, and let Fx : X — X be the relative Frobenius morphism which is O-linear. We
omit the subscript X if it is M.

LEMMA B.3.1
We have the following results.
(D) There is a natural isomorphism

Mg = Mo

under which the regular function q(o (), o (ap)) is mapped to Z*q (o, op).
(2)  Under the map % gayv (G ~ ((GH)V)? — (G, we have

E?Gét)vw(;v (O{) = W(Go)V (Ga)

for every a € T,G(k).
3) Under the map Fg: G — G, we have
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Fe«Lg(ap) = Lgo(apoo™)

for every a}, € Homg (T ,G? (k), ).

Proof
The proof is the same as that for [17, Lemmas 4.1.1 and 4.1.1.1].

O

From now on, we choose a uniformizer @ of F, which gives rise to an isomor-
phism £7°° ~ £7 . In particular, we may identify (G?) and (G®)?. For a deforma-
tion G/R of G, we denote by G’/R the quotient of G by the subgroup G°[w]. The

induced projection map
F6:G—G’
lifts the relative Frobenius morphism
Fg: G— G°.
Define the Verschiebung to be
Vg = (Fgn)?: G° ~GPP - G.

Note that the isomorphism depends on @ .

LEMMA B.3.2

Fora € T,G(k) and ap € TPGD (k), we have formulas
(1 Fg(a) =oca andVg(oa) = wap; and

(2)  q(G'/R:oa,0ap) =w.q(G/R:a,ap).

Proof

The proof is the same as that of [17, Lemma 4.1.2], with Vg o Fg = @.

LEMMA B.3.3

For a € T,G(k) and o), € Homg (TpGD (k), O), we have formulas
() (FHY)*wev (@) = v~ (0w); and

(2)  Fo«Lg(a))=wLg (afyoo™).

Proof

O

If we apply the construction to the universal object &, we obtain a formal defor-

mation &'/ of G°. Its classifying map is the unique morphism
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®: Mg — Mge — MG,
such that ®*® ~ &'. Therefore, we may regard F as a morphism
Fo: 6 —> OB
of @-divisible groups over M. Taking the dual, we have
Fo i @* 67 ~ (9¥6%)Y —> &Y.

LEMMA B.3.4
We have the following statements.
(1) The map wev : T,G(k) @9 R — Q&Y /R)e induces an isomorphism

T,G(k) = Q(BY/N) = {w € UBY /R)o | (F&) 'w=d* g0}

of O-modules.
2) The map L : Homg (T pGD (k),R) — Lie(&/R) induces an isomorphism

Homg (T,G? (k), 0)
— Lie(6/M)" := {6 € Lie(&/N) | Fx6 = w O*Fes:6}

of O-modules.

Proof
It can be proved in the same way as [17, Corollary 4.1.5] by using Lemmas B.3.1 and
B.3.3. =

Consider the following commutative diagram:

0 — QBY/R)g —— (DG L Lie@/®) —— 0
FH* D(FY) Fox
0 —= Q(B"V/R)g —= (D(G")n), —= Lie(®'/R) —— 0 (B2

P*ox% D(Z¢v) % oF 5.

0 —— QBY/R)o — (D(Gv)m)g — Lie(/R) —— 0

For k € Z, we define @-modules
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D(G") = {€ € (D(GY)nm) o | DFYE = ' FD(Tgv )k}
= {£€ (D(GV)n) o | DVED(Zev)§ = w*}.

LEMMA B.3.5
The maps wgv and a in (B.2) together induce an isomorphism

ar: T,G(k) = D(GY)L
of O-modules. The maps Lg and b in (B.2) together induce an isomorphism
bo: D(GY)% — Home (T,GP (k),0)
of O-modules.

Proof

For the first part, by a similar argument to that in [17, Lemma 4.2.1], we know that
b(§) =0 for £ € D(GV)},, that is, £ is in the image of a. The conclusion then follows
from Lemma B.3.4(1).

For the second part, it is easy to see that Im(a) N D(GY)% = {0} by choos-
ing an O-basis of T,G(k). Therefore, b restricts to an injective map D(GY)3, —
Lie(®/9)°. We only need to show that this map is also surjective. For every § €
Lie(6/9R)°, choose an element & € (D(GY)n)o. Put &,41 = D(VE)D(Zgv)E, for
n > 0. Then b(§,) = 8, and {&,} converge to an element £ € D(GV)&. O

LEMMA B.3.6
Forevery { € Homg (T ,G(k) @ TpGD (k), O), the action of D(£) under the Gauss—
Manin connection on (D(GY)) satisfies the formula

D()(V(D(VED(E6v)§)) = wD(VED(Zev) (D(E)(VE))
for every £ € (D(GY)n)0.

Proof
It is proved in the same way as [17, Lemma 4.3.3]. O

LEMMA B.3.7
If £ € (D(GY)n)o satisfies D(V{)D(Zgv)é = AE for some A € O, then for every
£ € Homp (T, G(k) ®¢ TPGD (k), ), the element D(£)(VE) € (D(GY)n) o satisfies

@D(VED(Zev)(D(O)(VE)) = AD(E)(VE).
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Proof
It follows immediately from Lemma B.3.6. O

PROPOSITION B.3.8
For o € T,G(k) and ap € TI,GD (k), there exists a unique character Q(o,ap) of
MG such that

we(ap) -KS(wsv(a)) = dlog Q(a,ap).

Proof

Let {a;} (resp., {ap ;}) be an O-basis of T,G(k) (resp., T,GP (k)). Let {¢; ;} be
the basis of Homg (T ,G(k) ®0 TI,GD (k),0) dual to {o; ® ap,;}. Then for every
element & € (D(GY)n)w, we have

VE=Y"D(;;)(VE) @ dlogq(ai,ap,;).
i,j
In particular, for £ = wgv (o), we have
Vo (@) =Y Dt ;)(Vosv (@) ® dlogq(ai,ap,;).
i,j
By Lemmas B.3.4 and B.3.7, Vogv(x) € D(GV)&. Therefore, there exist unique
elements a, ; . € Homg (T »GP (k), ©) such that
Vv (@) = by (ap; ;)
for every i, j. By definition,
KS(wsv (@) = Z Le(ap,; ;) ®dlogg(a;,ap,;)),
i,j
and
ws (@p) - KS(wsv(@)) = d log([ T a(@i,ap,)*>*bi-).
i,J
The above proposition has the following two corollaries.
COROLLARY B.3.9

For elements a € T,G(k), ap € TpGD (k), and £ € Homp (T, G(k) ®¢ TpGD k),
), we have that D(£)(we (ap) - KS(wgv ())) is a constant in O.
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COROLLARY B.3.10
Suppose that, for every integer n > 1, we can find a homomorphism f,: R — O/ p"
such that

(D) (ws(ap) - KS(wev (@) =L(a @ ap)

holds in @/p”. Then Q = q, and Theorem B.2.3 follows.

The condition of this corollary is fulfilled by Theorem B.4.2. Therefore, we have
reduced Theorem B.2.3 to Theorem B.4.2 in the next section.

B.4. Infinitesimal computation

Let R be an (Artinian) local @-algebra with the maximal ideal mg satisfying
m’l’;l =0. Let G/R be the canonical deformation of G. Let G be a deformation
of G to R := R[e]/(¢?), which gives rise to a map 9: (G /R) — Lie(G/R). Note
that the target Lie(G/R) may be identified with Ker(G°(R) — G°(R)).

LEMMA B.4.1
The reduction map T ,G(R) — T, G(k) is an isomorphism.

Proof
It follows from the same argument as in [17, Lemma 6.1]. O

In particular, we may define maps Agv : T,G(k) — Homgr,(G", G [p*°]) and

wgv: Tp,G(k) = Q(GY/R). (B.3)

THEOREM B.4.2
The Serre-Tate coordinate for G / R satisfies

q(G/R;a,ap) =1+ ewg(ap) - d(wev ().

LEMMA B.4.3
For ap € T,GP (k) and a € Ker(G°(R) — G°(R)) = Lie(G/R), we have

Eg(a,ap) =1+ ewg(ap)a.

Proof
By functoriality, we only need to prove the lemma for the universal object & /. By
definition,

1+ ewe(ap)a =1+ e(Ag(@p)wa - wo) € LT (R).
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We also have
Ae(ap)«e - wgr = (logode(ap)) a-dT
in |[p~!]. Therefore, we have the equality
Eg(a,ap) =1+ swe(ap)a

in Ker(£T (R[p~']) — £T R[p~1))). O

For an integer N > n, denote by ay the image of o in G[p"](R). Let ay <
G (R) be an arbitrary lifting of ay. Then

pNay € Ker(G(R) — G(R)) = Ker(G°(R) — G°(R)) ~ Lie(G/R).

This process defines a map ¢ : T, G(R) — Lie(G/R).

PROPOSITION B.4.4
We have dwgv () = @G () for every a € T, G(R).

Assuming the above proposition, we prove Theorem B.4.2.

Proof of Theorem B.4.2
It is clear that G°[p*°] ®r R is the unique, up to isomorphism, deformation of
G°[p™] to R. Then the deformation G corresponds to the extension

0 —> G'P®|®r R —= G —— T,G(k)®p F/O — 0.

In particular, we may identify G° with G® ® g R. We have
Ker(G(R) — G(R)) = Ker(G°(R) — G°(R)) = Ker(G°(R) — G°(R))
=Lie(G/R).
For D € Lie(G°/R), we have
Eg(D,) = Eg(D,-): T,GP (k) ~ T,(G°[p>])” (k) > £T (R),

where in the pairing E (resp., Eg), we view D as an element in Go(ﬁ) (resp.,
G°(R)). For ap € T,GP (k), we have

Eg(D,ap) =1+ ewg(wy)D

by definition. Therefore, Theorem B.4.2 follows from Proposition B.4.4 and the con-
struction of q. O
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The rest of the appendix is devoted to the proof of Proposition B.4.4. We will
reduce it to certain statements from [17] about Abelian varieties. It is an interesting
problem to find a proof purely using (9-divisible groups.

Recall that ordinary (9-divisible groups over k are classified by their dimension
and @-height. Let G, 5 be an @-divisible group of dimension r and O-height r + s
withr >0and r + 5 > 0.

Proof of Proposition B.4.4

Choose a totally real number field £ such that F ~ E* ®¢ Q,, and choose an
imaginary quadratic field K in which p = p™p~ splits. Put E = E* ®q K. Suppose
that 71,12, ..., 1y are all complex embeddings of ET. Consider the data (A, 6,7)

where

. A, s is an Abelian variety over k;

. 0:Ars— A;/,s is a prime-to- p polarization;

. i: O — Endg A, is an Og-action which sends the complex conjugation on

OE to the Rosati involution and such that, in the induced decomposition
A [Poo] =Ars [poo]+ DA [Poo]_

of the O ® Zp-module A, ;[p®], the summand A, ;[p>]* is isomorphic to
G, s as an @-divisible group.
It is clear that the polarization € induces an isomorphism A, [p>]* 5
(Ars[p*]7)". By the Serre-Tate theorem, Mg, , also parameterizes deformation of
the triple (A, s, 0,i). In what follows, we fix r, s and suppress them from notation.
Let R be as in Theorem B.1.1, let A/R be the canonical deformation of A/ k, and let
A be a deformation of A to R such that G ~ Iéf[p°°]+.

There is a similar map (B.3) for A, and we have wgv (o) = wyv(«) for o €
T,G(R) C T, A(R), where we view Q(GV/R) as a submodule of H%(A", QLV/R).
Moreover, the map ¢g: T, G(R) — Lie(G/R) can be extended in the same way to
amap ¢4: TpA(R) — Lie(4/R). Then Proposition B.4.4 follows from [17, Lemma
5.4 and Section 6.5], where the argument uses normalized cocycles and does not
require A to be ordinary in the usual sense. U
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