
A p-ADIC WALDSPURGER FORMULA

YIFENG LIU, SHOUWU ZHANG, and WEI ZHANG

Abstract
In this article, we study p-adic torus periods for certain p-adic-valued functions on
Shimura curves of classical origin. We prove a p-adic Waldspurger formula for these
periods as a generalization of recent work of Bertolini, Darmon, and Prasanna. In
pursuing such a formula, we construct a new anti-cyclotomic p-adic L-function of
Rankin–Selberg type. At a character of positive weight, the p-adic L-function inter-
polates the central critical value of the complex Rankin–Selberg L-function. Its value
at a finite-order character, which is outside the range of interpolation, essentially
computes the corresponding p-adic torus period.
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1. Introduction
The aim of this article is to generalize a recent formula of Bertolini, Darmon, and
Prasanna in [1] which relates the p-adic logarithm of Heegner points in Abelian
varieties parameterized by the modular curve X0.N / and certain p-adic L-values
at a point outside its range of interpolation, for a prime p split in the imaginary
quadratic field. The paper [1] works in the same setting as the Gross–Zagier formula
(see [12]) under the Heegner hypothesis. Prior to the Bertolini–Darmon–Prasanna for-
mula, Rubin [23] obtained a similar formula for elliptic curves with complex multipli-
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cation, and after the Bertolini–Darmon–Prasanna formula, Brooks [4] also obtained a
similar formula allowing the modular curve to be a rational Shimura curve.

Our formula is for the general case concerning Heegner points on Abelian vari-
eties parameterized by Shimura curves over a totally real number field F , for a prime
p of F split in a CM fieldE . Even in the case in which F DQ, our result is new since
we remove all ramification restrictions from [1] and [4]. Moreover, we will place our
formula in the setting of the Waldspurger formula (see [29], [30]) which compares the
global torus periods of automorphic forms with products of global central L-values
and local torus periods. More precisely, we will define the relevant p-adicL-function,
introduce the notion of p-adic Maass functions and their torus periods, and compare
them with products of p-adic L-values and local torus periods. For practical applica-
tions of our formula, one may need a formula for local torus periods of Gross–Prasad
test vectors. Fortunately, this formula was worked out recently by Cai, Shu, and Tian
[6].

To construct the p-adic L-function and prove our p-adic Waldspurger formula,
we study the congruence relation for both global (torus) periods and local (torus)
periods appearing in the complex Waldspurger formula. A key ingredient of our con-
struction is the existence of action of the Lubin–Tate formal group on Shimura curves
at the infinite level; this allows us to use p-adic Fourier analysis from [26].

In the rest of this section, we will sketch our construction and the proof for the
formula in the case of elliptic curves over Q. To be consistent with the notation in the
main body of the article, we fix (1) an elliptic curve A over Q, (2) an indefinite quater-
nion algebra B over Q, and (3) an imaginary quadratic field E embedded into B .

As usual, put A D R � bQ as the ring of adèles of Q, and put AE WD A˝Q E .
By the modularity theorem, the elliptic curve A determines an irreducible cuspidal
automorphic representation … of GL2.A/. We assume that this representation has
a nontrivial Jacquet–Langlands correspondence �C to B�, uniquely realized on a
subspace of AC.B

�/—the space of automorphic forms on B�n.B ˝Q A/�.

1.1. Complex Waldspurger formula
First let us review the (complex) Waldspurger formula (see [29], [30]) for the cusp-
idal automorphic representation �C of .B ˝Q A/�. Let � W E�A�nA�

E ! C� be an
automorphic character. Then we can form the (torus) period integrals

PC.�;�
˙1/ WD

Z
E�A�nA�

E

f .t/�˙1.t/ dt; � 2 �C: (1.1)

Here we adopt the Haar measure such that the total volume of E�A�nA�
E is 2. We

consider these integrals as elements in the linear dual of representation spaces as
follows:

PC.�; �/ 2HomA�
E
.�C˝ �;C/; PC.�; �

�1/ 2HomA�
E
.�C˝ �

�1;C/:
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By a theorem of Saito and Tunnell (see [24], [28]), either both spaces have dimen-
sion 1 or they have dimension 0. Suppose that we are in the first case. Although we
do not know how to construct a canonical basis in either space, we do know how to
construct a canonical one in their tensor product. Namely, we have the element

˛D
Y
v�1

˛v 2HomA�
E
.�C˝ �;C/˝C HomA�

E
.�C˝ �

�1;C/

defined via the integration of local matrix coefficients

˛v.�1; �2I�/ WD
L.1; �v/L.1;…v;Ad/

�v.2/L.1=2;…v; �v/

Z
Q�

v nE�
v

�
�C.t/�1; �2

�
v
�v.t/ dt; (1.2)

where �D
Q
v �v is the quadratic character corresponding to the quadratic field exten-

sion E=Q, and .�; �/D
Q
v.�; �/v is the bilinear Petersson inner product pairing on �C

defined by the Haar measure on .B ˝Q A/� such that the total volume of B�A�n

.B˝Q A/� is 2. It was proved by Waldspurger [29, Section 3] that ˛ is in fact a finite
product for every pair of test vectors .�1; �2/.

Thus, there is a unique constant ƒ.�C; �/ 2C, depending only on �C and �, such
that

PC.�; �/ �PC.�; �
�1/Dƒ.�C; �/ � ˛.�; �I�/:

The Waldspurger formula gives an expression for ƒ.�C; �/ in terms of the Rankin–
Selberg central value ƒ.1=2;…;�/.

THEOREM 1.1.1 (Waldspurger)
We have

ƒ.�C; �/D
ƒQ.2/

2ƒ.1; �/ƒ.1;…;Ad/
ƒ.1=2;…;�/:

In other words, for every pair of vectors �1; �2 2 �C, we have

PC.�1; �/PC.�2; �
�1/D

ƒQ.2/ƒ.1=2;…;�/

2ƒ.1; �/ƒ.1;…;Ad/
� ˛.�1; �2I�/:

Remark 1.1.2
In the above theorem,ƒ stands for complete globalL-functions, that is, those as prod-
ucts of local L-functions over all places. However, in the main body of the article, we
use global L-functions that are products of local L-functions over non-Archimedean
places, which will be denoted by L (except for �F .s/ with F a number field). For
example, if �1.z/D .z= Nz/

˙k with k � 1, then we have
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ƒ.�C; �/D
kŠ.k � 1/Š

.2�/2k�1
�
�Q.2/L.1=2;…;�/

2L.1; �/L.1;…;Ad/
:

It is a simple computation using the formulas in, for instance, [21, Lemma 2.3].

Remark 1.1.3
Note that, unlike our unified choice of the Tamagawa measure on A�nA�

E , in [29]
and [30] the Haar measure in (1.1) has volume 1 on E�A�nA�

E , and the product
Haar measure in (1.2) has volume 2ƒ.1; �/ on E�A�nA�

E . Therefore, the constant
ƒ.�C; �/ in their formulas differs from ours by 4ƒ.1; �/.

1.2. p-Adic Maass functions
From now on, we fix a prime p and equip B with an isomorphism B˝R'Mat2.R/.
For each (sufficiently small) open compact subgroup U of .B ˝Q

bQ/�, the double
quotient

B�n.C nR/� .B ˝Q
bQ/�=U (1.3)

is the set of complex points of a Shimura curve XU defined over Q. The curve XU is
smooth over Q, and it is proper if and only if B is division. We put X D lim

 �U
XU as

a scheme over Q with a right action of .B ˝Q
bQ/� under which XU DX=U .

We say that a function � W X.Cp/! Cp is a p-adic Maass function on X if it
is the pullback of some locally analytic function XU .Cp/! Cp on XU . Denote by
ACp

.B�/ the Cp-vector space of all p-adic Maass functions on X . It is a represen-

tation of .B ˝Q
bQ/�.

Denote by �Cp
the subspace of ACp

.B�/ spanned by functions of the form

f � log! W X.Cp/
f
�!A.Cp/

log!
���!Cp;

where f W X ! A is a nonconstant map, ! is a differential form on A˝Q Cp , and
log! is the p-adic logarithm map (see, e.g., [3]). The subspace �Cp

�ACp
.B�/ is a

subrepresentation of .B ˝Q
bQ/�. Thus, on one hand we have a complex realization

�C, and on the other hand we have a p-adic realization �Cp
. They are related as

follows. For every isomorphism � W Cp
�
�!C, we have a canonical isomorphism

�Cp
˝Cp ;� C

�
�! �

.2/
C ; (1.4)

where �.2/C � �C is the subspace of weight 2 forms. It sends f � log! to f ��!, which
is well defined. The latter is a differential form on X ˝Q C and, hence, induces an
element in AC.B

�/.
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1.3. p-Adic torus periods
From now on, we also fix an embedding E � Cp and an isomorphism � W Cp

�
�! C.

Then we have an induced isomorphism E ˝Q R ' C. We assume that the isomor-
phism B˝R'Mat2.R/ is chosen such that the induced embedding C'E˝QR!

B ˝R'Mat2.R/ is the standard one sending xC iy to . x y
�y x /.

We proceed exactly as in the complex Waldspurger formula. Let � W E�bQ�nbE�!C�
p be a finite-order character. Then parallel to (1.1), we can define the p-adic

(torus) period integral as

PCp
.�;�˙1/ WD

Z
E�bQ�n bE�

�
�
��1Œ˙i; t �

�
�˙1.t/ dt; � 2 �Cp

: (1.5)

Here we have used the double coset presentation (1.3) of X.C/ and adopt the Haar
measure on E�bQ�nbE� of total volume 2. Note that the above integrals are actually
finite sums and, respectively, induce elements

PCp
.�; �˙1/ 2Hom bE�.�Cp

˝ �˙1;Cp/:

Similar to the complex case, both spaces Hom bE�.�Cp
˝ �˙1;Cp/ have the same

dimension—either 1 or 0. Suppose that they have dimension 1. Now we construct a
basis of their tensor product. For �1; �2 2 �Cp

, we define

˛0.�1; �2I�/D
Y
v<1

��1˛v.��1; ��2I ��/;

where ˛v is the same as (1.2). Here, by abuse of notation, �� denotes the image of �
under the map (1.4). Then ˛0 is a basis of Hom bE�.�Cp

˝ �;Cp/˝Hom bE�.�Cp
˝

��1;Cp/. The invariant pairing
Q
v<1.�; �/v we use in the definition of ˛0 is the one

such that
Q
v<1.��1; ��2/v is equal to the (bilinear) Petersson product of ��1 and

�C..
1

�1 /1/��2.
Thus, there is a unique constant L.�Cp

; �/ 2Cp , depending only on �Cp
and �,

such that

PCp
.�; �/ �PCp

.�; ��1/D L.�Cp
; �/ � ˛0.�; �I�/:

Our main objective is to give a formula for L.�Cp
; �/, which we call the p-adic

Waldspurger formula, under the only assumption that p splits in E .
Thus, from now on we assume that p splits in E . Denote by P the place of E

induced by the default embedding E �Cp , and denote by Pc the other one above p.

1.4. p-Adic characters
Put G D E�bQ�nbE�, which is a profinite group. Denote by OG the continuous dual
over Qp . In other words, for every complete (commutative) Qp-algebra R, OG.R/
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is the set of all continuous characters from G to R�. Then OG is represented by a
(complete) Qp-algebra D.G/. Thus, there is a universal character ı W G!D.G/�

such that composing with ı induces a bijection

Hom
�
D.G/;R

�
' OG.R/ (1.6)

for every complete Qp-algebra R, where Hom is taken in the category of topological
Qp-algebras.

The place P induces an injective homomorphism Z�
p ,!G. We say that a char-

acter � 2 OG.R/ has weight w 2 Z if �jV is the wth power homomorphism for some
subgroup V � Z�

p of finite index. For a character � W G! C�
p of weight w, there is

a standard way to attach an automorphic character �.�/ W E�A�nA�
E ! C� under �;

in fact, �.�/ is the unique automorphic character satisfying (1) �.�/jbE�;p D � ı �jbE�;p

and (2) �.�/1.z/D .z= Nz/
w for z 2C'E ˝Q R.

A character � 2 OG.Cp/ induces a homomorphism D.G/ ˝Qp
Cp ! Cp via

(1.6), and we denote its kernel by I�, which is a closed ideal of D.G/˝Qp
Cp . Put

D.GI�Cp
/DD.G/˝Qp

Cp=
\

�2„.�Cp /

I�;

where „.�Cp
/ is the set of all � such that dim Hom bE�;p .�Cp

˝ �;Cp/D 1. In par-
ticular, elements in D.GI�Cp

/ can be viewed as functions on „.�Cp
/ valued in Cp .

1.5. p-Adic Waldspurger formula
Our first theorem is about the existence of a p-adic L-function interpolating values
ƒ.�C; �

.�//, which appeared in Theorem 1.1.1, for � of positive weight.

THEOREM 1.5.1
There is a unique element L.�Cp

/ 2D.GI�Cp
/ such that, for every � 2„.�Cp

/ of
weight k � 1, we have

�L.�Cp
/.�/Dƒ.�C; �

.�// � 2�2k�1 �
	.1=2; ;…p ˝ �

.�/
Pc/

L.1=2;…p ˝ �
.�/
Pc/2

:

Here,  W Qp!C� is the standard additive character.

Remark 1.5.2
We have the following remarks concerning the above theorem.
(1) By the theorem of Saito and Tunnell, a character � 2 OG.Cp/ of an integer

weight belongs to „.�Cp
/ if and only if, for every finite place v of Q other

than p, we have 	.1=2;…v; �
.�/
v /D �v.�1/	.Bv/, where 	.Bv/ is the Hasse

invariant.
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(2) The uniqueness part is clear, since the subset of characters in „.�Cp
/ of pos-

itive weight is dense in „.�Cp
/.

Using this p-adic L-function, we can answer the question at the end of Sec-
tion 1.3 about the ratio L.�Cp

; �/.

THEOREM 1.5.3
Let � 2„.�Cp

/ be a finite-order character, that is, � has weight 0. Then we have

L.�Cp
; �/DL.�Cp

/.�/ � ��1
� L.1=2;…p ˝ �

.�/
Pc/2

	.1=2; ;…p ˝ �
.�/
Pc/

�
:

In other words, for every pair of vectors �1; �2 2 �Cp
, we have

PCp
.�1; �/PCp

.�2; �
�1/DL.�Cp

/.�/ � ��1
� L.1=2;…p ˝ �

.�/
Pc/2

	.1=2; ;…p ˝ �
.�/
Pc/

�
�˛0.�1; �2I�/:

Theorems 1.5.1 and 1.5.3 follow from the more general context of Theorems
3.2.10 and 3.4.4. See Remark 3.4.5 for the reduction process.

1.6. Main ideas of the proofs
We now explain the main ideas of our proofs. The same ideas work for the general
case as well. There are three major steps in the proofs of our main theorems:
(1) construct universal torus periods;
(2) construct universal matrix coefficient integrals;
(3) construct the p-adic L-function.

For (1), by a universal torus period, we mean an element in D.GI�Cp
/ such that

it specializes to Waldspurger periods at characters of positive weight. A key ingredient
in our construction is a Mellin transform for forms on the Shimura curve with the
infinite Iwahori level structure at p. This seems to be new and matches the philosophy
that things look more canonical at the infinite level, which has appeared in some other
works recently. The Mellin transform of a form f has two variables: the Shimura
curve itself and the weight space. If we restrict the Shimura curve to an arbitrary
open disk which reduces to a point on the special fiber, then we recover the (local)
Mellin transform on the Lubin–Tate group from [26]. If we restrict to a classical point
(a nonnegative integer, actually) on the weight space, then this recovers an iteration
of the Atkin–Serre operator on the Shimura curve.

For (2), by a universal matrix coefficient integral, we mean again an element in
D.GI�Cp

/ such that it specializes to classical matrix coefficient integrals at charac-
ters of integral weight. In our construction, we need to choose suitable test vectors in
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the representation �Cp
and show that the classical matrix coefficient integrals form a

rigid analytic family. Our key idea is to use the Kirillov model to deal with arbitrary
ramification at p of �Cp

and characters in„.�Cp
/ for the matrix coefficient integrals.

For (3), by the p-adic L-function, we mean an element in D.GI�Cp
/ such that

it specializes to complex special L-values appearing in the complex Waldspurger for-
mula at characters � of positive weight. The p-adic L-function is defined essentially
as the ratio of a universal torus period to a universal matrix coefficient integral. The
complex Waldspurger formula will imply that this ratio is independent of the choice
of the test vectors. In order to show that we have enough universal matrix coefficient
integrals whose nonvanishing loci cover the entire space, we use a classical result of
Saito and Tunnel on the dichotomy of matrix coefficient integrals and some argument
in rigid analytic geometry. In particular, we need our constructions in (1) and (2) to
be applicable to sufficiently many test vectors.

Finally, to obtain the p-adic Waldspurger formula, that is, the special value for-
mula for finite-order characters in terms of the p-adic logarithm of Heegner cycles,
we use the multiplicity one property, a property from the global Mellin transform, and
slight generalization of Coleman’s work from Appendix A.

1.7. A glance at the general case
In the main body of the article, we will put ourselves in a more general context. Since
it is a p-adic theory, we fix a CM number field E inside Cp , with the maximal totally
real subfield F . Let p be the distinguished place of F induced by the inclusion F �
Cp . Recall that an Abelian variety A over F is of GL.2/-type if MA WD End.A/˝Q

is a field of the same degree as the dimension of A.
Given a modular Abelian variety A over F of GL.2/-type up to isogeny equipped

with an embedding M WDMA ,! Cp , we will construct a p-adic L-function L.A/

and prove a p-adic Waldspurger formula or, rather, a family of p-adic Waldspurger
formulas for all relevant realizations of A via p-adic Maass functions. Note that A
has a central character !A W F �nbF �!M�.

The space of all locally Fp-analytic and smooth-away-from-p characters � W E�nbE�!K� with a complete field extension K=MFp such that !A � �jF �n bF � D 1 can
be organized into an ind-rigid analytic variety E over MFp. It has a disjoint union
decomposition E D EC

`
E� defined by a certain Rankin–Selberg 	-factor of A. We

denote by D.A;K/ the coordinate algebra of E�b̋MFp
K for every complete field

extension K=MFp. In Theorem 3.2.10, we construct our p-adic L-function for A as
an element

L.A/ 2 .LieA˝FM LieA_/˝FM D.A;MF lt
p /;

where MF lt
p is the complete subfield of Cp generated by M , the maximal unramified

extension of Fp, and the Lubin–Tate period (see Section 1.8); and FM WD F ˝QM ,



A p-ADIC WALDSPURGER FORMULA 751

which maps to MF lt
p naturally. Our p-adic L-function L.A/ interpolates classical

Rankin–Selberg central critical values for algebraic characters � of positive weight
with respect to an arbitrary comparison isomorphism � W Cp

�
�!C. In other words, we

will not choose an Archimedean place of F as the theory should be entirely p-adic.
In Theorem 3.4.4, we prove a p-adic Waldspurger formula computing p-adic torus
periods of p-adic Maass functions coming from A in terms of special values of L.A/

at finite-order characters.

1.8. Notation and conventions
The article is self-contained from now on in the sense that if readers would like to
study the general case directly, they can start from here, and no other preliminar-
ies will be used. Throughout the article, we fix a prime p and a CM number field
E � Cp with F the maximal totally real subfield contained in E . Thus, we obtain a
distinguished place p (resp., P) of F (resp., E) above p. We introduce the following
key (and only) assumption of the article.

Assumption 1.8.1
We assume that p splits in E; in other words, Fp DEP.

We introduce the following notation and conventions.
� Let g be the degree of F .
� Let c 2Gal.E=F / be the (nontrivial) Galois involution.
� Denote by A (resp., A1) the ring of adèles (resp., finite adèles) of F . Put

AE DA˝F E and A1
E DA1˝F E .

� Let �D
Q
�v W F

�nA�!¹˙1º be the quadratic character associated toE=F .
In particular, we have the L-function L.s; �/D

Q
v<1L.s; �v/.

� Let dE 2 Z>0 be the absolute value of the discriminant of E .
� We denote by Op the ring of integers of Fp. We denote by F nr

p (resp., F ab
p ) the

completion of the maximal unramified (resp., Abelian) extension of Fp in Cp

and by Onr
p (resp., Oab

p ) its ring of integers. Denote by 
 the residue field of
Onr

p , which is an algebraic closure of Fp .
� Denote by F � (resp.,E�) the closure of F � (resp.,E�) in A1� (resp., A1�

E ).
Put Oanti

p DO
�
Ep
=O�

p .
� We write elements t 2 Ep D E ˝F Fp in the form .t�; tı/, where t� 2 Fp

(resp., tı 2 Fp) is the component of t at Pc (resp., P). We fix the following
embedding Ep!Mat2.Fp/ of Fp-algebras:

t 7!

�
t�

tı

�
: (1.7)
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� We adopt ND ¹m 2 Z jm� 0º and write elements in A˚m in columns for an
object A (with a well-defined underlying set) in an Abelian category.

� Denote by J the two-by-two matrix . 0 1
�1 0 /.

� For m 2 Z, define the p-Iwahori subgroup of level m of GL2.Op/ to be

Up;m D

²
g 2GL2.Op/

ˇ̌̌̌
g�

�
1 �

0 1

�
mod pm

³
if m� 0;

Up;m D

²
g 2GL2.Op/

ˇ̌̌̌
g�

�
1 0

� 1

�
mod p�m

³
if m< 0:

� We adopt the convention that the local or global Artin reciprocity maps send
uniformizers to geometric Frobenii.

� If G is a reductive group over F , we always take the Tamagawa measure
when we integrate on the adèlic group G.A/. In particular, the total volume of
E�A�nA�

E is 2.
� For a relative (formal) schemeX=S , we will simply write�1X instead of�1

X=S

for the sheaf of relative differentials if the base is clear from the context. The
tensor product of quasicoherent sheaves on X will simply be denoted as ˝,
instead of ˝OX

, where OX is the structure sheaf of X .
� Denote by bGm (resp., bGa) the multiplicative (resp., additive) formal group.

They have the coordinate T . We denote by bGmŒp1� the induced (formal) p-
divisible group of bGm.

� Denote by LT the Lubin–Tate Op-formal group over Onr
p , which is unique

up to isomorphism. We denote by LT Œp1� the induced (formal) Op-divisible
group of LT (see Section B.1 if not familiar with the terminology).

� Denote by F lt
p � Cp the complete field extension of F nr

p generated by the
“period” of the Lubin–Tate group LT (see [26, p. 460]). Its valuation is dis-
crete only when FpDQp by [26, Lemma 3.9], in which case F lt

p DQnr
p .

� In this article, we will only use basic knowledge about rigid analytic varieties
over complete p-adic fields in the sense of Tate. Readers may use the book
[2] for a reference. If X is an L-rigid analytic variety for some complete non-
Archimedean field L, we denote by O.X;K/ the complete K-algebra of K-
valued rigid analytic functions on X for every complete field extension K=L.

Definition 1.8.2 (Abelian Haar measure)
We fix the Haar measure dtv on F �

v nE
�
v for every place v of F determined by the

following conditions:
� When v is Archimedean, the total volume of F �

v nE
�
v 'R�nC� is 1.

� When v is split, the volume of the maximal compact subgroup of F �
v nE

�
v '

F �
v is 1.
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� When v is nonsplit and unramified, the total volume is 1.
� When v is ramified, the total volume is 2.
Then the product measure

Q
v dtv equals the product of 2�gd�1=2

E L.1; �/ and the
Tamagawa measure (cf. [30, Section 1.6]).

Notation 1.8.3
In the main part of the article, we will fix the choices of an additive character  W
Fp!C�

p of level 0 and a generator � W LT ! bGm in the free Op-module Hom.LT ;bGm/ of rank 1. Then there are unique isomorphisms

�˙ W Fp=Op

�
�!LT Œp1�.Cp/ (1.8)

such that the induced composite maps

�.Cp/ ı �˙ W Fp=Op! bGmŒp1�.Cp/�C�
p

coincide with  ˙, respectively, where  C D and  � D �1.

Definition 1.8.4
Recall from [30, Section 1.2.1] that a coherent/incoherent totally definite quaternion
algebra over A is a quaternion algebra B over A such that the ramification set of B,
which is a finite set, contains all Archimedean places and has even/odd cardinality.
For such B, put B1 D B˝A A1.

An E-embedding of a totally definite quaternion algebra B over A is an embed-
ding

eD
Y0

v
ev W A1

E D
Y0

v<1
E ˝F Fv ,! B1 (1.9)

of A1-algebras. We say that B isE-embeddable if there exists anE-embedding of B.

2. Arithmetic of quaternionic Shimura curves
In this section, we study some p-adic arithmetic properties of quaternionic Shimura
curves over a totally real field. In Section 2.1, we start from the local theory of some
p-adic Fourier analysis on Lubin–Tate groups, following the work of [26]. In Sec-
tion 2.2, we study the Gauss–Manin connection and the Kodaira–Spencer isomor-
phism for quaternionic Shimura curves. This is followed by a discussion of universal
convergent modular forms in Section 2.3. In particular, we prove Theorem 2.3.17,
which is one of the most crucial technical results of the article. In Section 2.4, we
prove some results involving comparisons with transcendental constructions under
a given complex uniformization. Finally, Section 2.5 contains the proofs of the six
claims in the previous sections, which require the auxiliary use of unitary Shimura
curves.
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2.1. Fourier theory on Lubin–Tate groups
We use [25] for some terminologies from non-Archimedean functional analysis. Let
G be a topologically finitely generated Abelian locally Fp-analytic group—for exam-
ple, G D Op, which will be studied later. For a complete field K containing Fp,
denote by C.G;K/ the locally convex K-vector space of locally (Fp-)analytic K-
valued functions on G, and denote by D.G;K/ its strong dual (see Remark 2.1.1),
which is a topological K-algebra with the multiplication given by convolution (see
[26, Section 1]). We have a natural continuous injective homomorphism

ı W G!D.G;K/�

sending g 2 G to the Dirac distribution ıg . Moreover, we have D.G;K/b̋KK
0 '

D.G;K 0/ for a complete field extension K 0=K .

Remark 2.1.1
We briefly recall the notion of strong dual from [25]. Let V be a locally convex K-
vector space, like C.G;K/ above. Denote by L.V;K/ theK-vector space of continu-
ous K-linear maps from V to K . For every bound subset B of V (i.e., for every open
neighborhood U � V of 0, there exists a 2K such that B � aU ) and an ideal I of
OK , the subset L.B; I / WD ¹f 2L.V;K/ j f .B/� I º is a lattice in L.V;K/. Then
the strong dual of V is the (topological) K-vector space L.V;K/ equipped with the
topology defined by the family of lattices L.B; I / for all bounded subsets B of V and
ideals I of OK . When G is compact, there is a more explicit description of D.G;K/
on [26, p. 451].

Notation 2.1.2
Let B be the generic fiber of (the underlying formal scheme of) LT , which is iso-
morphic to the open unit disk over F nr

p . We have a map

˛ W B �SpfF nr
p

B!B

induced by the formal group law, and we have a map Op � B ! B denoted by
.a; z/ 7! a � z coming from the Op-action on LT . Denote by O.B;K/ the set of
all K-valued rigid analytic functions on B, which is a topological K-algebra.

Definition 2.1.3 (Stable function)
A function � 2O.B;K/ is stable ifX

z2KerŒp�

�
�
˛.z; �/

�
D 0;
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where KerŒp��B.Kac/ is the subset of z such that $ � z D 0 for one and hence all
uniformizers $ of Op. We denoted by O.B;K/~ the subspace of O.B;K/ of stable
functions.

From now on, we will assume that K contains F lt
p (see Section 1.8). By [26,

Theorems 2.3 and 3.6] (together with the remark after [26, Corollary 3.7]), we have a
Fourier transform

F W D.Op;K/
�
�!O.B;K/;

which is an isomorphism of topological K-algebras, with respect to the homomor-
phism � W LT ! bGm (Notation 1.8.3).

Remark 2.1.4
In fact, the pairing .a; z/ 7! �.a � z/ on Op � B identifies B as the rigid analytic
space parameterizing locally analytic characters of O�

p ; and the Fourier transform F

is the unique isomorphism satisfying F .ıa/.z/ D �.a � z/ for z 2 B. In particular,
the topological K-vector space O.B;K/ is topologically generated by rigid analytic
functions �a on B defined by �a.z/D �.a � z/, for a 2Op. See [26] for more details.

Remark 2.1.5
We have an action of Op on B coming from the Lubin–Tate group and, hence, an
action of Op on D.Op;K/ via F . More precisely, the action of t 2Op on D.Op;K/

is given by the multiplication of the Dirac distribution ıt .

We identify D.O�
p ;K/ with the closed subspace of D.Op;K/ consisting of dis-

tributions supported on O�
p .

LEMMA 2.1.6
We have the following.
(1) The isomorphism F restricts to an isomorphism F W D.O�

p ;K/
�
�!O.B;K/~

of topological K-vector spaces.
(2) The image of ˛�jO.B;K/~ is contained in O.B;K/~b̋KO.B;K/~.

Proof
By [26, Section 3], for z 2B.K/, we have a locally analytic character 
z of Op such
that 
z.a/ D �.a � z/ for every a 2 Op, and 
.
z/ D F .
/.z/ for 
 2 D.Op;K/.
Moreover, the set of 
z is dense in C.Op;K/. Let e1 (resp., e0) be the characteristic
function of O�

p (resp., OpnO
�
p ), viewed as elements in C.Op;K/.
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For (1), we have the identityX
z2KerŒp�


zf D .#Op=p/e0f:

Thus, if f is supported on OpnO
�
p , then f D e0f D .#Op=p/

�1
P
z2KerŒp� 
zf . By

[26, Lemma 4.6.5], for � 2O.B;K/~, we have

¹�;f º D
°
�; .#Op=p/

�1
X

z2KerŒp�


zf
±
D .#Op=p/

�1
° X
z2KerŒp�

�
�
˛.z; �/

�
; f

±
D 0;

where ¹�;f º D F �1.�/.f / and the same for the others. This means that F �1O.B;

K/~ �D.O�
p ;K/. On the other hand, if � 2 FD.O�

p ;K/, then for an arbitrary f 2
C.Op;K/, we have

.#Op=p/
�1

° X
z2KerŒp�

�
�
˛.z; �/

�
; f

±
D

°
�; .#Op=p/

�1
X

z2KerŒp�


zf
±
D ¹�; e0f º D 0:

This means that FD.O�
p ;K/�O.B;K/~.

For (2), we consider the map ˛Š, defined as the following composite map:

D.Op;K/
F
�!O.B;K/

˛�

�!O.B �SpfF nr
p

B;K/'O.B;K/b̋KO.B;K/

F �1 b̋F �1

�������!D.Op;K/b̋KD.Op;K/!
�
C.Op;K/˝K C.Op;K/

�_
:

In view of (1), it suffices to show that, for every 
 2D.Op;K/ and f1; f2 2 C.Op;K/,
we have the formula

˛Š
.f1˝ f2/D 
.f1f2/: (2.1)

For this, we may assume that fi D 
zi
for some zi 2B.K/ (i D 1; 2) as the image

of D.Op;K/b̋KD.Op;K/ consists of continuous linear forms. Then we have, for

 2D.Op;K/,

˛Š
.
z1
˝ 
z2

/D
�
.F �1˝F �1/

�
˛�F .
/

��
.
z1
˝ 
z2

/D
�
˛�F .
/

�
.z1; z2/

by [26, Lemma 4.6.3]. But�
˛�F .
/

�
.z1; z2/D F .
/

�
˛.z1; z2/

�
D 
.
˛.z1;z2//D 
.
z1


z2
/

as 
z1

z2
D 
˛.z1;z2/. Thus, (2.1) holds, and (2) follows.

Remark 2.1.7
Lemma 2.1.6 implies that the function �a in Remark 2.1.4 is stable if and only if a
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belongs to O�
p . Moreover, the topologicalK-vector space O.B;K/~ is topologically

generated by �a for a 2 O�
p . The notion of stable functions is a local avatar of the

notation of stabilization in the theory of p-adic modular/automorphic forms.

In a later argument, we will work on the compact Abelian locally Fp-analytic
group Oanti

p . Note that we have identified Oanti
p with O�

p via t 7! t=t c. Thus, we have
the following definition.

Definition 2.1.8 (Local Mellin transform)
We call the following composite map

Mloc W O.B;K/
~!O.B;K/~b̋KO.B;K/~

idb̋F �1

�����!O.B;K/~b̋Fp
D.Oanti

p ;Fp/;

fulfilled by Lemma 2.1.6, the local Mellin transform.

Remark 2.1.9
In fact, the composite map

M0 W O.B;K/!O.B;K/b̋KO.B;K/
idb̋F �1

�����!O.B;K/b̋Fp
D.Op;Fp/

is more like an analogue of the classical Mellin transform, as we may regard M0 as a
map sending a function on B valued in K to a function on B valued in (K-valued)
distributions on the Lie group Op. Recall that the classical Mellin transform M sends
a function � on R�

C to a function M.�/ on C. In fact, we may regard M as a map
sending a function � on R�

C valued in C to a function x 7!M.f .x��// on R�
C valued

in (C-valued) distributions on the Lie group Ga.C/. We have analogies between R�
C

and B—both are “spaces with Abelian group structure”—and between Ga.C/ and
Op—both are commutative Lie groups. Moreover, the properties in [26, Lemma 4.6]
are the analogues of those for the classical Mellin transform.

The continuous map M0 is uniquely determined by the formula M0.�a/D �a˝ıa
for a 2Op, where �a is the function in Remark 2.1.4.

Notation 2.1.10
For every integer k, we have the character hki W Oanti

p 'O�
p !O�

p �K sending t to
.t=t c/k . It is an element in C.Oanti

p ;K/.

LEMMA 2.1.11
For every integer N , the topological K-vector space C.Oanti

p ;K/ is topologically
generated by hki for all k �N .
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Proof
We may assume that N D 0, since for every k 2 Z, the function hki is the limit of
functions hk0i for k0	 0. By [26, Theorem 4.7], every function in C.Op;K/ and,
hence, C.Oanti

p ;K/ is the limit of finite linear combinations of polynomials on Op.
Thus, the lemma holds for N D 0 and then every N .

Definition 2.1.12 (Lubin–Tate differential operator)
We define the Lubin–Tate differential operator ‚ on O.B;K/ by the formula

‚� D
d�

�� dT
T

;

where we recall that � is as in Notation 1.8.3 and T is the standard coordinate of bGm.

Example 2.1.13
For a 2 Op, we have ‚�a D a�a, where �a 2 O.B;K/ is the function in Remark
2.1.4.

The following lemma reveals the relation between the local Mellin transform and
the Lubin–Tate differential operator.

LEMMA 2.1.14
Let � 2 O.B;K/~ be a stable function. Then Mloc.�/ is the unique element in
O.B;K/~b̋Fp

D.Oanti
p ;Fp/ satisfying

(1) Mloc.�/.hki/D‚
k� for every k � 0; and

(2) ‚Mloc.�/.h�1i/D �.
Here hki is introduced in Notation 2.1.10.

Proof
This follows from [26, Lemma 4.6.8] and Lemma 2.1.11.

Definition 2.1.15 (Admissible function)
We say that a stable function � 2O.B;K/~ is n-admissible for some n 2N if

�
�
˛.�; z/

�
D �.z/�

for every z 2KerŒpn��B.Kac/.

LEMMA 2.1.16
Let � 2O.B;K/~ be an n-admissible stable function for some n� 1. Then F �1.�/

is supported on 1C pn. In particular, we have
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Mloc.�/
�
hki

�
DMloc.�/

�
�hki

�
for every k 2 Z and every (locally constant) character � W Oanti

p !K� that is trivial
on 1C pn.

Proof
This again follows from [26, Lemma 4.6.5]. In fact, by a similar strategy to the proof
of Lemma 2.1.6(1), it suffices to show thatX

z2KerŒpn�


z.a/�.z/
�1 D 0

for a 2O�
p n.1Cpn/, where KerŒpn��B.Kac/ is the subset of z such that$n �z D 0

for one uniformizer and, hence, all uniformizers $ of Op. This holds as 
z.a/ D
�.a � z/.

Remark 2.1.17
Let n� 1 be an integer. Lemma 2.1.16 implies that the function �a in Remark 2.1.4
is n-admissible stable if and only if a belongs to 1C pn. Moreover, the topological
K-vector space of n-admissible stable functions is topologically generated by �a for
a 2 1C pn.

2.2. Shimura curves and Kodaira–Spencer isomorphism
Let B be a totally definite incoherent quaternion algebra over A equipped with an iso-
morphism Bp 'Mat2.Fp/. Then we have the system of (noncompactified) Shimura
curves ¹X.B/U ºU indexed by (sufficiently small) open compact subgroups U of B1�

associated to B over SpecF (see, e.g., [30, Section 1.2.1]). More precisely, X.B/U is
the scheme over SpecF , unique up to isomorphism, such that, for every embedding
� W F ,!C, X.B/U ˝F �.F / is the canonical model of the complex Shimura curve

B.�/�nH �B1�=U

over the reflex field �.F /�C, where B.�/ is a nearby quaternion algebra over F with
respect to � (see Definition 2.4.10 for more details).

As projective limits with affine transition morphisms exist in the category of
schemes, we may put X.B/ D lim

 �U
X.B/U . We will simply write XU and X if B

is clear.

Notation 2.2.1
For an element g 2 B1�, we denote by Tg W X ! X the morphism induced by the
right translation of g, known as the Hecke morphism.
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Denote by U the set of all open compact subgroups of B1p� D .B˝A A1p/�,
which is a filtered partially ordered set under inclusion. For U p 2 U and m 2 Z, put

X.m;U p/DXUpUp;m
˝F F

nr
p ;

where we recall that Up;m is the p-Iwahori subgroup of level m as introduced in
Section 1.8. Put

X.˙1;U p/ WD lim
 �
m!1

X.˙m;U p/:

For m 2 N [ ¹1º, if we take the inverse limit over the partially ordered set U, then
we obtain F nr

p -schemes

X.˙m/D lim
 �
Up2U

X.˙m;U p/:

We have successive surjective morphisms

X.˙1/! � � � !X.˙1/!X.0/;

which are equivariant under the Hecke actions of B1p�. By the work of Carayol [7,
Section 6], the F nr

p -scheme X.0/ admits a canonical smooth model (see [19, Defini-
tion 2.2] for its meaning) X over SpecOnr

p .

Remark 2.2.2
Strictly speaking, Carayol assumed that F ¤Q. But when F DQ, one may take X

to be the model defined by modular interpretation using elliptic curves (resp., Abelian
surfaces with quaternionic actions) when B1 is (resp., is not) the matrix algebra—this
is well known.

We recall the construction in [7, Section 1.4] of an Op-divisible group G on X.
We first introduce some notation.

Notation 2.2.3
For an integer m� 1, we write
(1) U

pr
p;m WD ¹g 2 Up;0 j g � 1 mod pmº for the principal congruence subgroup

of level pm;
(2) X.m/pr! X.0/ for the corresponding covering with respect to the subgroup

U
pr
p;m; and

(3) O�
Ep;m

WDO�
Ep
\U

pr
p;m, where Ep is an Fp-subalgebra of Bp'Mat2.Fp/ via

(1.7).
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Consider the right action of Up;0=U
pr
p;m on .p�m=Op/

˚2 such that v:g D g�1v

for g 2Up;0=U
pr
p;m 'GL2.Op=p

m/ and v 2 .p�m=Op/
˚2. Then the quotient scheme�

X.m/pr � .p�m=Op/
˚2

�
=.Up;0=U

pr
p;m/

defines a finite flat group scheme Gm over X.0/, with the obvious Op-action. The
inductive system ¹Gmºm�1 defines an Op-divisible group G over X.0/ (which is,
however, denoted by E1 in [7, Section 5]). In particular, over X.C1/ (resp.,
X.�1/), we have an exact sequence

0 Fp=Op G Fp=Op 0 (2.2)

such that the second arrow is the inclusion into the first (resp., second) factor and the
third arrow is the projection onto the second (resp., first) factor. By [7, Section 6.4],
the Op-divisible group G extends uniquely to an Op-divisible group G of dimension
1 and height 2 over X, together with an action by B1p� that is compatible with the
Hecke action on the base.

Put hD ŒFp WQp�. For m� 1, put X.m/ DX ˝Op
Op=p

m and G .m/ D G jX.m/ .
We have the exact sequence

0 !
�.m/
p L

.m/
p .!

ı.m/
p /_ 0; (2.3)

where
� L

.m/
p is the Dieudonné crystal of G .m/ evaluated at X.m/, which is a locally

free sheaf of rank 2h;
� !

�.m/
p is the sheaf of invariant differentials of G .m/=X.m/, which is a locally

free sheaf of rank 1; and
� !

ı.m/
p is the sheaf of invariant differentials of .G .m//_=X.m/, which is a

locally free sheaf of rank 2h� 1.
They are equipped with actions ofOp under which (2.3) is equivariant. The projective
system of (2.3) for all m� 1 induces the following Op-equivariant exact sequence

0 !�
p Lp .!ı

p/
_ 0 (2.4)

of locally free sheaves over bX, the formal completion of X along its special fiber. Let
L (resp., !ı_) be the maximal subsheaf of Lp (resp., .!ı

p/
_) where Op acts via the

structure map. Then we have the B1p�-equivariant exact sequence

0 !� L !ı_ 0; (2.5)

where !� D !�
p . We call (2.5) the formal Hodge exact sequence.
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We have the Gauss–Manin connection

rp W Lp!Lp ˝�
1bX ; (2.6)

for the Dieudonné crystal, which is equivariant under the Hecke action of B1p� and
the action of Op. Thus, it induces the Gauss–Manin connection

r W L!L˝�1bX ; (2.7)

which is equivariant under the Hecke action of B1p�.
We have the following Lemma 2.2.4 and Proposition 2.2.6 whose proof will be

given in Section 2.5.

LEMMA 2.2.4
The formal Hodge exact sequence (2.5) is algebraizable, that is, it is the formal com-
pletion of an exact sequence of locally free sheaves

0 !� L !ı_ 0 (2.8)

on X. Here, by abuse of notation we adopt the same symbols for these quasicoherent
sheaves. Moreover, the Gauss–Manin connection (2.7) is algebraizable.

We simply call (2.8) the Hodge exact sequence.

Remark 2.2.5
For m � 1, one may consider the right action of Up;0=U

pr
p;m on .Op=p

m/˚2 such
that v:g D g�1v for g 2 Up;0=U

pr
p;m ' GL2.Op=p

m/ and v 2 .Op=p
m/˚2. Then the

quotient scheme �
X.m/pr � .Op=p

m/˚2
�
=.Up;0=U

pr
p;m/

defines an Op=p
m-local system Lm on X.0/ of rank 2. Denote by L the Op-local

system over X.0/ defined by .Lm/m�1. Then OX.0/ ˝Op
L is canonically isomor-

phic to the restriction of L on the generic fiber X.0/. Moreover, the induced connec-
tion on OX.0/ ˝Op

L coincides with the restriction of r on X.0/, by the proof of
Lemma 2.2.4.

PROPOSITION 2.2.6
The composite map

!�!L
r
�!L˝�1X! !ı_˝�1X (2.9)

is an isomorphism of locally free sheaves on X, where !ı is the dual sheaf of !ı_.



A p-ADIC WALDSPURGER FORMULA 763

Definition 2.2.7 (Kodaira–Spencer isomorphism)
We call the (B1p�-equivariant) isomorphism

KS W !�˝!ı �
�!�1X ; (2.10)

induced by the isomorphism (2.9), the Kodaira–Spencer isomorphism.

For w 2N, put LŒw� D Symw L˝ Symw L_. The Gauss–Manin connection r_

on the dual sheaf L_ and the original one r induce a connection

rŒw� W LŒw�!LŒw�˝�1X :

Define ‚Œw� to be the composite map

.�1X/
˝w KS�1

���! .!�/˝w ˝ .!ı/˝w!LŒw� rŒw�

���!LŒw�˝�1X ; (2.11)

where KS is the isomorphism (2.10).

Notation 2.2.8
Let X.0/ be the (dense) open subscheme of X by removing all points on the spe-
cial fiber where G is supersingular. For every integer m � 1, denote by X.m/ the
functor classifying Op=p

m-equivariant frames over X.0/, that is, homomorphisms
LT Œpm�! G Œpm� and G Œpm�! p�m=Op such that the sequence

0 LT Œpm� G Œpm� p�m=Op 0

is exact.

Remark 2.2.9
The scheme X.m/ is usually denoted by X.m/ord in the rest of the literature. But
since we will only work with the ordinary locus, to reduce the burden of notation, we
will omit the superscript.

For m 2 N, the functor X.m/ is representable by a scheme that is finite étale
over X.0/, which we again denote by X.m/. Note that the generic fiber of X.m/

is canonically isomorphic to X.m/. Again as projective limits with affine transition
morphisms exist in the category of schemes, we may put

X.1/ WD lim
 �
m!1

X.m/:

We define G , rŒw�, KS, ‚Œw�, and the sequence (2.8) for X.m/ (m 2 N[ ¹1º) via
restriction and denote them by the same notation. Over X.1/, we have the universal
frame
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0 LT Œp1�
%univ

�

G
%univ

ı

Fp=Op 0 : (2.12)

By definition, there is an action of O�
Ep

on the morphism X.1/!X.0/ such that
the pullback of (2.12) along the action of .t�; tı/ 2O�

Ep
is the frame

0 LT Œp1�
t�1
� ı%univ

�

G
%univ

ı ıt�1
ı

Fp=Op 0 : (2.13)

This action is B1p�-equivariant. In what follows, we denote by

�t W X.1/!X.1/ (2.14)

the morphism induced by the action of t 2O�
Ep

.

Definition 2.2.10
We define the transition isomorphisms to be

‡˙ W X.˙1/˝F nr
p
F ab
p

�
�!X.1/˝Onr

p
F ab
p

such that the pullbacks of (2.12) under ‡˙ coincide with (2.2) in terms of the isomor-
phisms (1.8), respectively.

LEMMA 2.2.11
The Hecke morphism TJ (Notation 2.2.1) descends to an (iso)morphism TJ W

X.C1/!X.�1/, and the following diagram

X.C1/˝F nr
p
F ab
p

‡C

TJ

X.�1/˝F nr
p
F ab
p

‡�

X.1/˝Onr
p
F ab
p

commutes. Here, we regard JD . 0 1
�1 0 / as an element in Bp via the fixed isomorphism

Bp 'Mat2.Fp/.
Moreover, the isomorphism ‡C (resp., ‡�) is B1p�-equivariant and O�

Ep
-

equivariant (resp., O�
Ep

-conjugate-equivariant).

Proof
It is clear that the Hecke morphism TJ descends as the conjugation of J turns Up;m to
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Up;�m. The commutativity of the diagram follows from the fact that T�
J GjX.�1/ is

isomorphic to GjX.C1/.
The B1p�-equivariant property follows from the construction. By definition, ‡C

isO�
Ep

-equivariant. The conjugate-equivariant property for‡� follows from the iden-
tity

J

�
t�

tı

�
J�1 D

�
tı

t�

�
for every t D .t�; tı/ 2O�

Ep
.

2.3. Universal convergent modular forms
For m 2N[ ¹1º, denote by X.m/ the formal completion of X.m/ along its special
fiber. It is an affine formal scheme over Onr

p , equipped with an Op-divisible group G

induced from G . In particular, X.1/ is indeed the projective limit lim
 �m!1

X.m/ in
the category of formal schemes over Onr

p .
The action of O�

Ep
(2.13) makes itself the Galois group of the B1p�-equivariant

pro-étale Galois cover X.1/! X.0/, in which O�
Ep;m

(Notation 2.2.3) is the sub-
group of O�

Ep
that fixes the subcover X.m/!X.0/ for m 2N. By abuse of notation,

the formal completion of those quasicoherent sheaves on X.m/ and their maps will
be denoted by the same symbols.

The following lemma will be proved in Section 2.5.

LEMMA 2.3.1
There is a unique morphism ˆ W X.0/! X.0/ lifting the Frobenius morphism on the
special fiber of degree #Op=p such that ˆ�G ' G=G0Œp�, where G0 is the formal
part of G. In particular, ˆ induces an endomorphism ˆ� on L.

Moreover, we have a unique ˆ�-stable splitting

LD !�˚Lı (2.15)

with Lı an invertible quasicoherent formal sheaf on X.0/. In addition, Lı is hori-
zontal with respect to the Gauss–Manin connection, that is, rLı �Lı˝�1

X.0/
.

Remark 2.3.2
The splitting (2.15) is called unit-root splitting. It induces an isomorphism Lı �

�!

!ı_. Dually, it induces a splitting L_ D !ı˚L� possessing similar properties as in
Lemma 2.3.1, with an isomorphism L� �

�! !�_.

If we restrict the unit-root splitting in both Lemma 2.3.1 and Remark 2.3.2 to
X.m/ for m 2N[ ¹1º, then we obtain a map
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�
Œw�
ord W L

Œw�! .!�/˝w ˝ .!ı/˝w
KS
�! .�1

X.m//
˝w

for allw 2N, where KS is the (formal completion of the restriction of the) map (2.10).

Definition 2.3.3 (Atkin–Serre operator)
For m 2N[ ¹1º and w 2N, define the Atkin–Serre operator to be

‚
Œw�
ord W .�

1
X.m//

˝w
‚Œw�jX.m/

�������!LŒw�˝�1
X.m/

�
Œw�
ord
���! .�1

X.m//
˝wC1;

where ‚Œw� is defined in (2.11). For k 2N, define the Atkin–Serre operator of degree
k to be

‚
Œw;k�
ord D‚

ŒwCk�1�
ord ı � � � ı‚

Œw�
ord W .�

1
X.m//

˝w! .�1
X.m//

˝wCk:

In what follows, w will always be clear from the text; hence, we will suppress w from
notation. In other words, we simply write ‚ord (resp., ‚kord) instead of ‚Œw�ord (resp.,

‚
Œw;k�
ord ) for all w 2N.

By using Serre–Tate coordinates (Theorem B.1.1), the formal deformation space
of theOp-divisible group LT Œp1�˚Fp=Op (over 
) is canonically isomorphic to LT .
Thus, we have the classifying morphism

c W X.1/!LT

of Onr
p -formal schemes. It induces a morphism

c=x W X.1/=x!LT (2.16)

for every closed point x 2 X.1/.
/, where X.1/=x denotes the formal completion
of X.1/ at x. The following Lemma 2.3.4 and Proposition 2.3.5 will be proved in
Section 2.5.

LEMMA 2.3.4
The morphism c=x is an isomorphism for every x.

By the above lemma, we have, for every closed point x 2X.1/.
/, a restriction
map

resx W M
0.1;K/!O.B;K/ (2.17)

induced from c=x (see (2.16)).
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PROPOSITION 2.3.5
There is a morphism ˇ W LT �SpfOnr

p
X.1/!X.1/ such that

(1) for every x 2X.1/.
/, ˇ preserves X.1/=x , and the induced morphism

ˇ=x W LT �SpfOnr
p
X.1/=x!X.1/=x

is simply the formal group law after identifying X.1/=x with LT via c=x;
(2) if we equip LT with the action of O�

Ep
� B1p� via the inflation O�

Ep
!

O�
p by t 7! t=t c and trivially on the second factor, then ˇ is O�

Ep
� B1p�-

equivariant;
(3) for every x 2 Fp=Op, the following diagrams

X.1/b̋Onr
p
F ab
p

ˇ�˙.x/

‡�1
˙

X.1/b̋Onr
p
F ab
p

‡�1
˙

X.˙1/˝F nr
p
F ab
p

T
n˙.x/

X.˙1/˝F nr
p
F ab
p

commute, where

nC.x/D

�
1 x

0 1

�
; n�.x/D

�
1 0

x 1

�
;

respectively; and ˇz is the restriction of ˇ to a point z of B.
In particular, LT acts trivially on the special fiber of X.1/, and this ˇ is unique.

Definition 2.3.6
We call

!� WD c
��� dT

T

the global Lubin–Tate differential, where � is the homomorphism in Notation 1.8.3.
It is a nowhere-vanishing global differential form on X.1/b̋Onr

p
OCp

, and in fact, it
belongs to H0.X.1/;�1

X.1/
/b̋Onr

p
F lt
p by the definition of F lt

p .

Remark 2.3.7
The pullbacks ‡�

˙!� depend only on  (or rather  ˙), not on the choice of �.

In the following definition, we generalize the notion of convergent modular forms
first introduced by Katz [15] to Shimura curves.
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Definition 2.3.8
Suppose that we have m 2N[ ¹1º, w 2 Z, and a complete field extension K=F nr

p .
(1) Define the space of (K-valued) convergent modular forms of weight w and

p-Iwahori level m to be

Mw.m;K/DH0
�
X.m/; .�1

X.m//
˝w

�b̋Onr
p
K;

which is naturally a complete K-vector space.
(2) A convergent modular form of weight 0 is simply called a convergent modular

function.
(3) Put Mw

[
.m;K/D

S
Up2U Mw.m;K/U

p

�Mw.m;K/.

Remark 2.3.9
For m 2 N [ ¹1º and w 2 Z, the space Mw.m;K/ has a natural action by O�

Ep
�

B1p� under which Mw
[
.m;K/ is stable. Moreover, M0.m;K/ is the complete ten-

sor product of the coordinate ring of X.m/ and the field K , and thus, Mw.m;K/ is
naturally a topological M0.m;K/-module.

In particular for w 2N, we have the Atkin–Serre operator

‚ord W M
w
[ .m;K/!MwC1

[
.m;K/ (2.18)

induced from the corresponding operator of sheaves (Definition 2.3.3). The operator
is O�

Ep
�B1p�-equivariant.

From now on, we suppose that K is a complete field extension of F ab
p . Then for

every w 2 Z, the multiplication by !w� (Definition 2.3.6) induces a canonical B1p�-

equivariant isomorphism M0.1;K/
�
�!Mw.1;K/.

Definition 2.3.10 (Stable convergent modular forms)
A convergent modular function f 2M0.1;K/ is stable ifX

z2KerŒp�	B.Kac/

ˇ�
zf D 0;

where ˇ�
z W M0.1;K/! M0.1;K/ is the map induced by ˇ from Proposition

2.3.5. Denote by M0.1;K/~ the subspace of M0.1;K/ of stable convergent mod-
ular functions.

For m 2N[ ¹1º and w 2 Z, put

Mw
[ .m;K/

~ DMw
[ .m;K/\M0.1;K/~ �!w� �Mw.m;K/:
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Remark 2.3.11
By Proposition 2.3.5, a convergent modular function f is stable if and only if resxf
from (2.17) is stable (Definition 2.1.3) for every x 2X.1/.
/.

Remark 2.3.12
The space Mw

[
.m;K/~ does not depend on the choices of  or �.

Definition 2.3.13 (Admissible convergent modular forms)
Let n � 0 be an integer. We say that a stable convergent modular function f 2
M0.1;K/~ is n-admissible if ˇ�

zf D �.z/f holds for all z 2 KerŒpn� � B.Kac/.
We say that f 2Mw

[
.m;K/ is an n-admissible stable convergent modular form if

f!�w
� is an n-admissible stable convergent modular function.

Remark 2.3.14
By Proposition 2.3.5(1), a stable convergent modular function f is n-admissible if
and only if resxf from (2.17) is n-admissible (in the sense of Definition 2.1.15) for
every x 2X.1/.
/.

The following lemma is a comparison between the Atkin–Serre operator ‚ord

from (2.18) and the Lubin–Tate differential operator ‚ (Definition 2.1.12).

LEMMA 2.3.15
For an element f 2Mw

[
.m;K/ for some w;m 2N, we have

resx
�
.‚ordf /!

�w�1
�

�
D‚

�
resx.f!

�w
� /

�
for every x 2X.1/.
/.

Proof
It follows from Lemma 2.3.4, Theorem B.2.3, and the definition of ‚.

Definition 2.3.16 (Universal convergent modular form)
A universal convergent modular form of depth m 2 N and tame level U p 2 U is an
element

M 2M0.1;K/b̋Fp
D.Oanti

p ;Fp/

such that M is U p-invariant and

��
t MD ı

�1
t �M (2.19)
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for t 2O�
Ep;m

. Here, �t W X.1/! X.1/ is the formal completion of the morphism
(2.14); and we regard ıt as the Dirac distribution of the image of t under the quotient
homomorphism O�

Ep
!Oanti

p .

The next theorem produces universal convergent modular forms from a stable
convergent modular form (of a fixed weight). In this way, the universal convergent
modular forms can be regarded asp-adic families interpolating iterations of the Atkin–
Serre operator.

THEOREM 2.3.17
Let f 2Mw

[
.m;K/~ be a stable convergent modular form for some w;m 2N. Then

there is a unique element

M.f / 2M0.1;K/b̋Fp
D.Oanti

p ;Fp/

such that, for every k 2N,

M.f /
�
hwC ki

�
D .‚kordf /!

�w�k
� ; (2.20)

where ‚ord is the map (2.18). Moreover, we have the following.
(1) If f is fixed by U p 2 U, then so is M.f /.
(2) M.f / is a universal convergent modular form of depth m (Definition 2.3.16).
(3) If w � 1, then we have

‚ord
�
M.f /

�
hw � 1i

�
!w�1
�

�
D f:

(4) Suppose that f is n-admissible (Definition 2.3.13). Then we have

M.f /
�
hki

�
DM.f /

�
�hki

�
for every k 2 Z and every (locally constant) character � W Oanti

p !K� that is
trivial on .1C pn/�.

Proof
The uniqueness follows from Lemma 2.1.11. The morphism ˇ in Proposition 2.3.5
induces a map

ˇ� W M0.1;K/!M0.1;K/b̋KO.B;K/:

By Lemma 2.1.6(2) and Remark 2.3.11, it sends M0.1;K/~ into M0.1;K/~b̋K

O.B;K/~. Thus, we may regard ˇ�.f!�w
� / as an element in M0.1;K/~b̋Fp

D.Oanti
p ;Fp/ via the Fourier transform F , since K contains F lt

p . Define a (contin-
uous Fp-linear) translation map
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�w W D.O
anti
p ;Fp/!D.Oanti

p ;Fp/

such that .�w�/.g/D �.g � h�wi/ for every g 2 C.Oanti
p ;Fp/. We take

M.f /D �w
�
ˇ�.f!�w

� /
�
:

For the formula (2.20), it suffices to check it after applying resx for every x 2

X.1/.
/. In fact, we have

resxM.f /
�
hwC ki

�
D resx

�
ˇ�.f!�w

� /
��
hki

�
DMloc

�
resx.f!

�w
� /

��
hki

�
(2.21)

by Definition 2.1.8 and the definition of ˇ. By Lemma 2.1.14, we have that (2.21) is
equal to ‚k.resx.f!�w

� //. Finally by Lemma 2.3.15, we have ‚k.resx.f!�w
� //D

resx..‚kordf /!
�w�k
� /.

Property (1) follows from Proposition 2.3.5(2). Properties (3) and (4) follow from
Lemmas 2.1.14 and 2.1.16, respectively. For property (2), we only need to show that
(2.19) holds for M D M.f / and t 2 O�

Ep;m
. In fact, since f is fixed by O�

Ep;m
,

we have M.f /DM.��
t f /, which equals ıt � ��

t M.f / by Proposition 2.3.5(2) and
Remark 2.1.5.

The following definition is suggested by the formula (2.21) in the proof of the
above theorem.

Definition 2.3.18
We call M.f / in Theorem 2.3.17 the global Mellin transform of f .

2.4. Comparison with Archimedean differential operators
Now suppose that B is equipped with an E-embedding as in Definition 1.8.4 such
that ep coincides with (1.7) under the fixed isomorphism Bp 'Mat2.Fp/.

Definition 2.4.1 (CM-subscheme)
We define the CM-subscheme Y to be XE

�
, the subscheme of X fixed by the action

of e.E�/ for e as in Definition 1.8.4. Define Y ˙ to be the subschemes of Y such
that E� acts on the tangent space of points in Y ˙ via the characters t 7! .t=t c/˙1,
respectively. See also [30, Section 3.1.2].

In what follows, we will regard Y ˙ as their base change to F nr
p ; in particular,

they are closed subschemes of X ˝Fp
F nr
p .

LEMMA 2.4.2
We have Y D Y C

`
Y �. Moreover, we have the following.
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(1) Both Y C.Cp/ and Y �.Cp/ are equipped with the natural profinite topology,
isomorphic to E�nA1�

E , and admit a transitive action of A1�
E via Hecke

morphisms (see Section 1.8 for the notation E�).
(2) The projection maps X ˝Fp

F nr
p ! X.˙1/ restrict to isomorphisms from

Y ˙ to their images, respectively. In particular, we may regard Y ˙ as closed
subschemes of X.˙1/.

(3) The closed subschemes Y ˙.1/ WD ‡˙Y
˙ of X.1/ ˝Onr

p
F ab
p descend to

closed subschemes of X.1/˝Onr
p
F nr
p , where ‡˙ are the transition isomor-

phisms in Definition 2.2.10.

Proof
The decomposition follows directly from the definition. For the rest, we consider
Y C.Cp/ without loss of generality.

Part (1) can be seen from the complex uniformization by choosing an arbitrary
isomorphism Cp ' C. Part (2) follows from the fact that A1�

E does not contain any
nontrivial unipotent element. Part (3) follows from the fact that Gal.F ab

p =F
nr
p / acts

via local class field theory as the right multiplication of O�
p on the double coset pre-

sentation X.1/.Cp/ and, hence, preserves the subset Y C.Cp/.

Notation 2.4.3
For m 2N\ ¹1º, denote by
(1) Y ˙.m/ the image of Y ˙.1/ in X.m/˝Onr

p
F nr
p ,

(2) Y˙.m/ the Zariski closure of Y ˙.m/ in X.m/, and
(3) Y˙.m/ the formal completion of Y˙.m/ along the special fiber.

LEMMA 2.4.4
For m 2 N [ ¹1º, we have Y˙.m/.Cp/ D Y˙.m/.F nr

p / D Y˙.m/.Onr
p /. Here, for

an Onr
p -algebra R, Y˙.m/.R/ are the sets of morphisms from SpecR to Y˙.m/ over

SpecOnr
p , respectively.

Proof
Without loss of generality, we only prove the case for YC.m/. We first consider the
case where mD 0. The first identity Y˙.0/.Cp/D Y˙.0/.F nr

p / is well known from
the class field theory. Take an element x 2 YC.0/.F nr

p /. It induces a unique morphism
y W SpecOnr

p !X. Since y is fixed by E�, there are strict actions of E� \O�
Ep

and,
hence, OEp

on the Op-divisible group Gy . Therefore, the reduction of Gy is ordinary.
In other words, y factors through X.0/. As YC.0/ is defined as the Zariski closure
of Y C.0/ in X.0/, we obtain an element x0 2 YC.0/.Onr

p / uniquely determined by x.
Thus, we have Y˙.0/.F nr

p /D Y˙.0/.Onr
p /.
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The case for general m follows from the case for mD 0 and the following two
facts: (1) YC.m/ is a closed subscheme of YC.0/�X.0/ X.m/; (2) X.m/!X.0/ is
a finite étale morphism (resp., a projective limit of finite étale morphisms) for m 2N
(resp., mD1).

Notation 2.4.5
Let S be a scheme that is locally of finite type over SpecC. We denote by MS the under-
lying real analytic space with the complex conjugation automorphism cS W MS! MS .

In what follows, we will sometimes deal with a complex scheme S that is of
the form lim

 �I
Si , where I is a filtered partially ordered set and each Si is a smooth

complex scheme, with a sheaf F that is the restriction of a quasicoherent sheaf F0 on
some S0. Then we will write MS D ¹ MSiºi2I for the projective system of the underly-
ing real analytic spaces together with the complex conjugation cS , and we will write
MF D ¹ MFiºi�0 for the projective system of real analytification of the restricted sheaf

Fi for i � 0. Moreover, we denote

H0. MS; MF / WD lim
�!
i�0

H0. MSi ; MFi /:

For an isomorphism � W Cp
�
�!C, put X� DX ˝F;� C and denote by

c� W MX�! MX� (2.22)

the complex conjugation. Denote by .L�;r�/ the restriction of the pair .L;r/˝Onr
p ;�C

along �� W X� ! X ˝Onr
p ;� C, where .L;r/ appears in Lemma 2.2.4. Applying the

same procedure to the sequence (2.8), we obtain the sequence

0 !�
� L� !ı_

� 0

of locally free sheaves on X�. Similarly, we have the Kodaira–Spencer isomorphism

KS� W !
�
� ˝!

ı
�

�
�!�1X�

(2.23)

induced by (2.10).

LEMMA 2.4.6
The natural map M!�

� ˚ c�
� M!

�
� !

ML� is an isomorphism of sheaves on the real analytic
space MX . Moreover, we have r�.c�

� M!
�
� /� .c

�
� M!

�
� /˝

M�1X�
.

Proof
It follows from Lemma 2.4.12 later in this section.
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We have a remark similar to Remark 2.3.2, which together with Lemma 2.4.6
induces a map

� Œw�� W
MLŒw�
� ! . M!�

� /
˝w ˝ . M!ı

� /
˝w

KS�(2.23)
�������! . M�1X�

/˝w (2.24)

for all w 2N.

Definition 2.4.7
Similar to Definition 2.3.3, define the Shimura–Maass operator to be

‚Œw�� W .
M�1X�

/˝w
(2.11)
����! MLŒw�˝ M�1X�

�
Œw�
� (2.24)
�������! . M�1X�

/˝wC1:

For k 2N, define the Shimura–Maass operator of degree k to be

‚Œw;k�� D‚ŒwCk�1�
� ı � � � ı‚Œw�� W .

M�1X�
/˝w! . M�1X�

/˝wCk :

As for ‚ord, we will suppress w from the notation and write ‚� (resp., ‚k� ) for ‚Œw��

(resp., ‚Œw;k�� ). In particular, we have the map

‚� W H0
�
MX�; . M�

1
X�
/˝w

�
!H0

�
MX�; . M�

1
X�
/˝wC1

�
: (2.25)

Notation 2.4.8
Put

X.m/� DX.m/˝F nr
p ;� C; m 2 Z[ ¹˙1º;

Y ˙.m/� D Y
˙.m/˝F nr

p ;� C; m 2N[ ¹1º:

Let F ab
p �K �Cp be a complete intermediate field. Take an element

f 2H0
�
X.m/; .�1X.m//

˝w
�
˝F K

with m 2 Z [ ¹˙1º and w 2 N. Then by the transition isomorphism and by the
restriction to an ordinary locus, we have an element

ford WD

´
‡C�f 2Mw

[
.m;K/ for m� 0;

‡��f 2Mw
[
.�m;K/ for m
 0:

(2.26)

By base change, f induces another element

f� 2H0
�
X.m/�; .�

1
X.m/�

/˝w
�
:

The following lemma shows that the Atkin–Serre operator (2.18) and the
Shimura–Maass operator (2.25) coincide on CM points. Note that the operator ‚�
descends along the projection map X�!X.m/�.
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LEMMA 2.4.9
Let the notation be as above. We have, for k 2N,

�‡�
˙

�
.‚kordford/jY˙.m/

�
D .‚k� f�/jY˙.m/�

as functions on Y ˙.m/�, regarded as closed subschemes ofX.˙m/� via the transition
isomorphisms ‡˙ in Definition 2.2.10, respectively.

Proof
Generally, once we restrict to stalks, we cannot apply differential operators anymore.
Therefore, we need alternative descriptions of ‚Œw;k�ord and ‚Œw;k�� . (Here, we retrieve
the original notation for clarity.)

We denote by #w the composite map

.!�/˝w ˝ .!ı/˝w!LŒw� rŒw�

���!LŒw�˝�1
X.n/

�
Œw�
ord
���! .!�/˝w ˝ .!ı/˝w ˝�1

X.n/

KS�1

���! .!�/˝wC1˝ .!ı/˝wC1;

and by ıw the composite map

LŒw� rŒw�

���!LŒw�˝�1
X.n/

KS�1

���!LŒw�˝ .!�˝!ı/!LŒwC1�:

Since we haverLı �Lı˝�1
X

by Lemma 2.3.1(2) and its dual version from Remark
2.3.2, the composition #wCk�1 ı � � � ı #w coincides with the map

.!�/˝w ˝ .!ı/˝w!LŒw� ı
wCk�1ı


ııw

����������!LŒwCk�
�

ŒwCk�
ord
�����! .!�/˝wCk ˝ .!ı/˝wCk :

Therefore, the map ‚Œw;k�ord coincides with the composite map

.�1
X.n//

˝w KS�1

���! .!�/˝w ˝ .!ı/˝w!LŒw�

ıwCk�1ı


ııw

����������!LŒwCk�
KSı�

ŒwCk�
ord

�������! .�1
X.n//

˝wCk:

The advantage of the above description is that �ord appears only at the end of the
sequence of maps. Since we have r�.c�

� M!
�
� /� .c

�
� M!

�
� /˝

M�1X�
by Lemma 2.4.6, there

is a similar description of ‚Œw;k�� as above. Therefore, to prove the lemma, we only
need to show that the splitting in Lemma 2.4.6 coincides with the restriction of the
splitting

L˝Onr
p ;� CD .!

�˝Onr
p ;� C/˚ .L

ı˝Onr
p ;� C/

on Y C
� and Y �

� .
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Pick up an arbitrary point y 2 Y C.m/�.C/ [ Y
�.m/�.C/. We have an action of

E� on both the splitting M!�
� jy ˚c

�
� M!

�
� jy and .!� ˝Onr

p ;� Cjy/˚ .L
ı ˝Onr

p ;� Cjy/. By
definition, M!�

� jy and !�˝Onr
p ;� Cjy coincide, which is one of the two complex eigen-

lines with respect to the E�-action. It follows that c�
� M!

�
� jy and Lı˝Onr

p ;� Cjy have to
coincide as well, which contributes to the other complex eigenline.

We now study the behavior of the Shimura–Maass operator under complex uni-
formization.

Definition 2.4.10 (�-nearby data)
Let � W Cp

�
�!C be an isomorphism. An �-nearby data for B consists of

� a quaternion algebra B.�/ over F such that B.�/v is definite for Archimedean
places v other than �jF ,

� an isomorphism B.�/v ' Bv for every finite place v other than p,
� an isomorphism B.�/� WDB.�/˝F;� R'Mat2.R/, and
� an embedding e.�/ W E ,! B.�/ of F -algebras such that e.�/v coincides with

ev under the isomorphism B.�/v ' Bv for every finite place v other than p,
and HE�

D ¹˙iº.

We now choose an �-nearby data for B. It induces a complex uniformization

X�.C/'B.�/
�nH �B1�=F �;

where H D C nR denotes the union of Poincaré upper and lower half-planes. Let z
be the standard coordinate on H .

LEMMA 2.4.11
Denote by L� the C-local system on X� defined by the quotient map

B.�/�nC˚2 �H �B1�=F �!B.�/�nH �B1�=F � 'X�.C/;

where the action of � 2B.�/� is given by the formula

�
�
.a1; a2/

t ; z; g
	
D

��
.a1; a2/�.�/

�1
�t
; �.�/.z/; �1g

	
:

Then we have a canonical isomorphism L� ' OX�
˝C L� under which r� coincides

with the induced connection on OX�
˝C L�.

Proof
It follows from the fact that L� is canonically isomorphic to the restriction of L˝Op;�C

along the natural morphism ��, where L is the Op-local system on X defined in
Remark 2.2.5.



A p-ADIC WALDSPURGER FORMULA 777

The following lemma will be proved in Section 2.5.

LEMMA 2.4.12
Under the isomorphism L� 'OX�

˝C L� in Lemma 2.4.11, the subsheaf !�
� is gener-

ated by the section !�
� whose value at z is .z; 1/t .

The following lemma shows that our definition of Shimura–Maass operators
coincides with the classical one.

LEMMA 2.4.13
For every f 2H0. MX�; . M�1X�

/˝w/ with some w 2N, we have

‚�f ˝ dz
˝�w�1 D

� @
@z
C

2w

z � z

�
f ˝ dz˝�w :

Proof
We may pass to the universal cover H � B1�=F � and suppress the part B1�=F �

in what follows. Over H , the sheaf L� is trivialized as C˚2, and the subsheaf !�
� is

generated by the section !�
� whose value at z is .z; 1/t by Lemma 2.4.12. Dually, the

sheaf L_
� is trivialized as 2-dimensional complex row vectors, and the subsheaf !ı

�

is generated by the section !ı
� whose value at z is .1;�z/. Then we have KS.!�

� ˝

!ı
� /D dz.

It is easy to see that

‚�
�
.!�
� /

˝w ˝ .!ı
� /

˝w
�
D

2w

z � z

�
.!�
� /

˝w ˝ .!ı
� /

˝w
�
˝ dz;

since c�
� !

�
� (resp., c�

� !
ı
� ) is generated by the section .z; 1/t (resp., .1;�z/). The lemma

follows.

We now introduce the notion of automorphic forms.

Notation 2.4.14
For every w 2 Z, denote by A.2w/.B.�/�/ (resp., A

.2w/
cusp .B.�/

�/) the space of real
analytic (resp., cuspidal) automorphic forms on B.�/�.A/ of weight 2w at �jF and
invariant under the action of B.�/�v at Archimedean places v other than �jF .

The spaces A.2w/.B.�/�/ and A
.2w/
cusp .B.�/

�/ are representations of B.�/�.A/ by
the right translation R.

LEMMA 2.4.15
There is a natural B1�-equivariant map
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�� W H0
�
MX�; . M�

1
X�
/˝w

�
!A.2w/

�
B.�/�

�
such that, for g� 2B.�/�� DGL2.R/,

��.f /
�
Œg�; 1�

�
j.g�; i /

w D f
�
g�.i/

�
˝ dz˝�w ;

where j.g�; i /D .detg�/�1 � .ci C d/2 is the square of the usual j -factor.

Proof
This is the well-known dictionary between modular forms and automorphic forms.

We denote by H0cusp.
MX�; . M�

1
X�
/˝w/ � H0. MX�; . M�1X�

/˝w/ the inverse image of

A
.2w/
cusp .B.�/

�/ under ��.

Definition 2.4.16
Define �˙ to be the matrices

1

4i

�
1 ˙i

˙i �1

�
in gl2;C DMat2.C/, respectively. For an isomorphism � W Cp

�
�!C, define �˙;� to be

the matrices �˙ when regarded as elements in LieC.B.�/˝F;� C/ D gl2;C, respec-
tively. Finally, define �k˙;� D�˙;� ı � � � ı�˙;� to be the k-fold composition.

LEMMA 2.4.17
For every f 2H0cusp.

MX�; . M�
1
X�
/˝w/ and k 2N, we have

��.‚
k
� f /D�

k
C;���.f /;

where �� is defined in Lemma 2.4.15.

Proof
This follows from Lemma 2.4.13, together with [5, p. 130, p. 143, and Proposi-
tion 2.2.5 on p. 155].

2.5. Proofs of claims via unitary Shimura curves
In this section, we prove the six claims (Lemma 2.2.4, Proposition 2.2.6, Lemma
2.3.1, Lemma 2.3.4, Proposition 2.3.5, and Lemma 2.4.12) left from previous sec-
tions. Suppose that we are in the case of modular curves, that is, F D Q and B is
unramified at every prime; then these statements except for Proposition 2.3.5 are clear.
In fact, in this case,
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� Lemma 2.2.4 follows from the fact that (2.5) is the formal completion of the
Hodge sequence coming from the universal elliptic curve;

� Proposition 2.2.6 is well known;
� Lemma 2.3.1 is proved by Katz as [16, Theorem 1.11.27];
� Lemma 2.3.4 follows from Serre–Tate coordinates in [17];
� Proposition 2.3.5 again can be proved via Serre–Tate coordinates (one can

adjust our proof below to the case of modular curves); and
� Lemma 2.4.12 is again well known.
The main idea is to use the existence of a universal family of elliptic curves with
deformation theory. However, in the general case, X is not a moduli space; therefore,
we have to use some auxiliary moduli space to deduce these statements. The reader
may skip the rest of this section for the first reading.

Our strategy is to use the unitary Shimura curves considered by Carayol [7]. Thus,
we will fix an isomorphism � W Cp

�
�!C. In particular, F nr

p is a subfield of C. We also
fix an �-nearby data for B (Definition 2.4.10) and put B DB.�/ for short.

Note that when F D Q there is no need to change the Shimura data as X is
already a moduli space. In order to unify the argument, we will choose to do so in
this case as well. We will also assume that we are not in the case of classical modular
curves (i.e., F D Q and B is unramified at every prime) where all these statements
are known, as explained above.

Fix an element 
 2 C such that Im
 > 0, �
2 2 N, p splits in Q.
/ � C, and
Q.
/ is not contained in E . We have subfields F.
/ and E.
/ of C, and we identify
their completion inside C' Cp with Fp. In [7, Section 2] (see also [13, Section 2]),
a reductive group G0 over Q is defined as a subgroup of ResF=Q.B� �F � F.
/�/

(which itself is a subgroup of ResF.�/=Q.B ˝F F.
//�) with “rational norms.” In
particular, we have

G0.Qp/DQ�
p �GL2.Fp/� .B

�
p2
� � � � �B�

pm
/;

where p2; : : : ;pm are primes of F over p other than p. Put

G0pDG0
�� Y
q¤p

Zq

�
˝Q

�
� .B�

p2
� � � � �B�

pm
/;

and let U0 be the set of all (sufficiently small) open compact subgroups U 0p of G0p.
Then for each U 0p 2 U0, there is a unitary Shimura curve X 0

U 0p , smooth and pro-
jective over SpecFp, of the level structure Z�

p � GL2.Op/ � U
0p. It has a canonical

smooth model X0
U 0p over SpecOnr

p defined via a moduli problem (see [7, Section 6]).
In particular, there is a universal Abelian variety � W AU 0p !X0

U 0p with a specific
p-divisible subgroup G 0

U 0p WD .AU 0p Œp1�/
2;1
1 �AU 0p Œp1� (it is denoted as E0

1 in
[7, Section 6]), which is an Op-divisible group of dimension 1 and height 2. Here,
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for an object M with OF.�/ ˝ Zp-action, we denote by M 2;1 the direct summand

corresponding to the p-adic place F.
/
�7!��
����! F.
/ � Cp . Then .AU 0p Œp1�/2;1

admits an action by OB ˝OF
Op 'Mat2.Op/. Put e1 D . 1 00 0 / and .AU 0p Œp1�/

2;1
1 D

e1.AU 0p Œp1�/2;1. See [7, Section 2.6] for more details.
We let X0.0/U 0p be the (dense) open subscheme of X0

U 0p by removing all points
on the special fiber where G 0 is supersingular. For n 2 N, define X0.n/U 0p to be the
functor classifying Op-equivariant extensions

0 LT Œpn� G 0Œpn� p�n=Op 0

of G 0 over X0.0/U 0p . The obvious map X0.n/U 0p !X0.0/U 0p is étale. Finally, put
X0.1/U 0p D lim

 �n
X0.n/U 0p .

The construction of Carayol amounts to saying that, for every sufficiently small
U p 2 U and a connected component X

	
Up of XUp , there exists a member U 0p 2 U0

such that
� X.n/

	
Up WDX

	
Up �XUp X.n/Up is isomorphic to the neutral connected com-

ponent of X0.n/U 0p for n 2N[ ¹1º; and
� under the above isomorphism, GUp j

X.n/
�

Up
is isomorphic to the restriction of

G 0
U 0p to (the neutral connected component of) X0.n/U 0p .

In what follows we may and will fix a sufficiently small subgroup U p 2 U, a
connected component X

	
Up of XUp , and a corresponding subgroup U 0p 2 U0. To

simplify notation, we will suppress U p and U 0p and will regard X	 as a connected
component of X0 as well.

Consider the Hodge exact sequence

0 ���
1
A=X0 H1

dR.A=X
0/ R1��OA 0:

It has a direct summand

0 .���
1
A=X0/

2;1
1 H1

dR.A=X
0/
2;1
1 .R1��OA/

2;1
1 0;

(2.27)

which is Op-equivariant, where .�/2;11 is defined similarly as above. Here in (2.27),
the three sheaves are locally constant of rank 1, 2h, and 2h � 1, respectively, where
hD ŒFp W Qp�.

We introduce the following notation.

Notation 2.5.1
If M is a locally free sheaf on a scheme over SpecOp equipped with an Op-action
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Op! EndM , then we denote by MOp the maximal subsheaf on which Op acts via
the structure homomorphism.

In what follows, we denote the sequence (2.27) after applying .�/Op by

0 !0� L0 !0ı_ 0: (2.28)

Proof of Lemma 2.2.4
It suffices to consider the problem after the restriction to an arbitrarily chosen con-
nected component X	 of X. By the definition of G 0 in [7, Section 5.4], we know that
(2.27) is the Hodge exact sequence for G 0. Since G is isomorphic to G 0 on X	, (2.27)
is also the Hodge exact sequence for G . Therefore, if we restrict (2.27) to X	 and

take formal completion, we recover the exact sequence (2.4) (restricted to cX	); and if
we further apply the functor .�/Op , then we recover the exact sequence (2.5). In other

words, the formal completion of (2.28) coincides with (2.5), both restricted to cX	.
This shows that (2.5) is algebraizable.

For the next assertion, we have the Gauss–Manin connection

r 0
A W H

1
dR.A=X

0/!H1
dR.A=X

0/˝�1X0

and the induced connection

r 0
p W H

1
dR.A=X

0/
2;1
1 !H1

dR.A=X
0/
2;1
1 ˝�

1
X0 : (2.29)

Since applying .�/2;11 commutes with the formation of the Gauss–Manin connection,
we know that the formal completion of (2.29) coincides with rp from (2.6) when

restricted to cX	. Now applying the functor .�/Op , we know that the formal completion
of the induced connection

r 0 W L0!L0˝�1X0 (2.30)

coincides with r from (2.7) when restricted to cX	. In other words, r from (2.7) is
algebraizable. Lemma 2.2.4 is proved.

Proof of Proposition 2.2.6
Denote by

KS0 W !0�˝!0ı!�1X0 (2.31)

the Kodaira–Spencer map induced from r 0 from (2.30), where !0ı is the dual sheaf
of !0ı_. We know from the proof of Lemma 2.2.4 that, when restricted to X	, (2.28)
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coincides with (2.8) under which r 0 from (2.30) coincides with r from (2.7). There-
fore, under the previous identification, KS0 coincides with KS from (2.10). Then
Proposition 2.2.6 follows from the following analogous statement for X0: (2.31) is
an isomorphism.

The proof is similar to [9, Lemma 7], which essentially follows from the
Grothendieck–Messing theory. Denote by A_ the dual Abelian variety of A. Then
!0ı_ is canonically isomorphic to .Lie.A_=X0/

2;1
1 /Op . We only need to show that,

for every closed point t W Speck.t/!X0, the induced map

!0�˝ k.t/!
�
Lie.A_=X0/

2;1
1

�Op
˝�1X0 ˝ k.t/ (2.32)

is surjective, where Lie denotes the sheaf of tangent vectors.
Let A=Speck.t/ be the Abelian variety classified by t . Put T D Speck.t/Œ"�=

."2/. The lifts A
 of A (with other PEL structures) to T correspond to homomor-
phisms

� W t�!0�!
�
Lie.A_=X0/

2;1
1

�Op
˝ k.t/:

Since both sides are k.t/-vector spaces of dimension 1, we may choose a homomor-
phism � that is surjective. Let t
 W T !X0 be the morphism that classifies A
=T .
Compose the isomorphism t�
!

0� ˝ k.t/! t�!0� and the surjective map �. By the
isomorphism�

Lie.A_=X0/
2;1
1

�Op
˝ k.t/' t�


�
Lie.A_=X0/

2;1
1

�Op
˝�1T=k.t/˝ k.t/;

we obtain a surjective map

t�
!
0�˝ k.t/! t�


�
Lie.A_=X0/

2;1
1

�Op
˝�1T=k.t/˝ k.t/;

which is the pullback of (2.32) under t
 . Therefore, (2.32) is surjective.

For n 2 N [ ¹1º, denote by X0.n/ the formal completion of X0.n/ along its
special fiber, which is equipped with an Op-divisible group G0 induced from G 0.

Proof of Lemma 2.3.1
By the proof of Lemma 2.2.4, it suffices to prove the same statement for X0.0/. The
desired morphism ˆ0 W X0.0/! X0.0/ is constructed through the moduli interpreta-
tion of X0.0/ by “dividing G00Œp�,” which lifts the Frobenius on the special fiber of
degree #Op=p. The uniqueness of such ˆ0 is ensured by (the proof of) Lemma 2.3.4
and Theorem B.1.1.

The proof of the remaining part is similar to [16, Theorem 1.11.27]. The only
modification we need is to show that the subsheaf L0ı of L0 glues to a formal quasi-
coherent sheaf. For this, we adopt the proof of [14, Theorem 4.1] in the case where
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Zp is replaced by Op and p is replaced by a uniformizer $ of F . The assumptions
are satisfied because the Newton polygon of the underlying p-divisible group of G0jx
for every x 2X0.0/.
/ is the one starting with .0; 0/, ending with .2h; 1/, and having
the unique breaking point at .h; 0/.

Remark 2.5.2
In fact, the induced map of ˆ0 constructed in the above proof on the coordinate ring
is simply the operator Frob defined in [13, Definition 11.1].

Proof of Lemma 2.3.4
We only need to prove a similar statement for X0.1/. By the moduli interpretation of
X0.1/ and the Serre–Tate theorem on deformation of Abelian varieties, we have an
isomorphism X0.1/=x 'Mx , where Mx is the formal scheme representing defor-
mations of G 0jx . By Theorem B.1.1, we know that Mx is canonically isomorphic to
LT , and the induced isomorphism X0.1/=x 'LT is just c=x by definition.

Proof of Proposition 2.3.5
Recall that we have a similarly defined formal scheme X0.1/ over SpfOnr

p . The
uniqueness of ˇ is clear. Thus, by comparison, it suffices to construct the morphism
ˇ0 W LT �SpfOnr

p
X0.1/!X0.1/with similar properties to those in Proposition 2.3.5,

since the action of LT is supposed to preserve the special fiber.
We use the moduli interpretation of X0.1/. For a scheme S over SpecOnr

p where
p is locally nilpotent, X0.1/.S/ is the set of isomorphism classes of quintuples
.A; �; �; kp; 
p/, where .A; �; �; kp/ is the same data in [7, Section 5.2] but kp is an
isomorphism instead of a class, and 
p is an exact sequence

0 LT Œp1� .Ap1/
2;1
1 Fp=Op 0:

On the other hand, LT .S/ is the set of isomorphism classes of .G; 
G/ where 
G is
an exact sequence

0 LT Œp1� G Fp=Op 0:

Using the group structure on LT , we may add the above two exact sequences to a
new one, denoted by ˛.
p; 
G/, which can be written as

0 LT Œp1� ˛
�
.Ap1/

2;1
1 ;G

�
Fp=Op 0:

By the Serre–Tate theorem on deformation of Abelian varieties and the fact that étale
level structures are determined on the special fiber, we canonically associate a quintu-
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ple .A0; �0; � 0; k0p; 
0
p/ with 
0

p D ˛.
p; 
G/. This defines the morphism ˇ0. The prop-
erties of Proposition 2.3.5 for ˇ0 follow directly from the construction.

Proof of Lemma 2.4.12
We define X 0

� similarly as the projective limit over all level structures over C. Then
we have the complex uniformization

X 0
� .C/'G

0.Q/nH �G0.A1/;

where G0.Q/ acts on H via the �-component of G0.R/. We similarly define a C-local
system L0

� on X 0
� via the quotient map

G0.Q/nC˚2 �H �G0.A1/!G0.Q/nH �G0.A1/;

where the action of � 2G0.Q/ is given by the formula

�
�
.a1; a2/

t ; z; g
	
D

��
.a1; a2/�.�/

�1
�t
; �.�/.z/; �1g

	
;

where we regard �.�/ as an element in GL2.C/ in the formula .a1; a2/�.�/�1. By the
same reasoning as in Lemma 2.4.11, we have a canonical isomorphism L0

� 'OX 0
�
˝C

L0
�. Here, we regard L0

� as the restriction of L0 from (2.28) to X 0
� . By the comparison

between (2.28) and (2.8) established in the proof of Lemma 2.2.4, it suffices to show
that the subsheaf !0�

� is generated by the section !0�
� whose value at z is .z; 1/t .

However, the coherent sheaf H1
dR.A=X

0/ is obtained from the local system

G0.Q/nC˚2g �H �G0.A1/!G0.Q/nH �G0.A1/;

whereG0.Q/ acts on C˚2g DC˚2˚� � �˚C˚2 diagonally via all Archimedean places
of F . From the Hodge homomorphism in the Shimura data of G0, we see that the
restriction of !0� ' .���

1
A=X0/

2;1
1 to X 0

� is generated by the section !0�
� whose value

at z is .z; 1/t . This follows from the same computation for the case of modular curves.
Therefore, Lemma 2.4.12 is proved.

3. Statements of main theorems
In this section, we state our main theorems about p-adic L-functions and the p-adic
Waldspurger formula for the general case. We start by recalling some background
about representations of incoherent algebras and Abelian varieties of GL.2/-type in
Section 3.1. In Section 3.2, we state the main theorem about p-adic L-functions in
terms of Heegner cycles on Abelian varieties. In Section 3.3, we state the main the-
orem about the p-adic Waldspurger formula in terms of Heegner cycles on Abelian
varieties. In Section 3.4, we provide an alternative formulation of our main theorems
in terms of periods of p-adic Maass functions, in the same spirit as in Section 1, and
deduce them from the previous formulation via Heegner cycles on Abelian varieties.
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3.1. Representations for incoherent quaternion algebras
We recall some materials from [30, Section 3.2]. Let �1; : : : ; �g be all Archimedean
places of F . Let B be a totally definite incoherent quaternion algebra over A. As
in Section 2.2, there is an associated projective system of Shimura curves ¹XU D
X.B/U ºU over F , and X D lim

 �U
XU . We recall the following definition from [30,

Section 3.2.2].

Notation 3.1.1
Let L be a field embeddable into C. Denote by A.B�;L/ the set of isomorphism
classes of irreducible (admissible) representations … of B1� over L such that, for
some and hence all embeddings L ,! C, the Jacquet–Langlands transfer of …˝L
C to GL2.A1/ is a finite direct sum of (finite components of) irreducible cuspidal
automorphic representations of GL2.A/ of parallel weight 2.

Let A be an Abelian variety over F .

Notation 3.1.2
Recall from [30, Section 3.2.3] the following notation

….B/A WD lim
�!
U

Hom�U
.X�

U ;A/;

where
� the colimit is taken over all open compact subgroups U of B1�;
� X�

U is the smooth compactification of XU (which is simply XU unless in the
case of classical modular curves);

� �U is the normalized Hodge class on X�
U (see [30, Section 3.1.3]); and

� Hom�U
.X�

U ;A/ denotes the Q-vector space of modular parameterizations,
that is, the Abelian group of morphisms from X�

U to A that send �U to a
torsion point, tensoring with Q.

We simply write …A for ….B/A if B is clear from the context.

If we denote by JU the Jacobian of X�
U , then �U induces a morphism X�

U !

JU . Thus, Hom�U
.X�

U ;A/ is canonically identified with Hom0.JU ;A/ WDHom.JU ;
A/˝Q.

PutMA WD End0.A/ WD End.A/˝Q. It is clear that both….B/A andMA depend
only on A up to isogeny.

Definition 3.1.3
We say that A can be parameterized by B if there is a nonconstant morphism from
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X D X.B/ to A. Denote by AV0.B/ the set of simple Abelian varieties over F that
can be parameterized by B up to isogeny.

The set AV0.B/ is stable under duality. Take an element A 2 AV0.B/. Then
…A is a nonzero rational irreducible representation of B1�, which is an element
in A.B�;Q/ (Notation 3.1.1). The assignment A 7!…A induces a bijection between
AV0.B/ and A.B�;Q/. Moreover, MA is a field of degree equal to the dimension
of A, and it acts on the representation …A. Denote by A_ the dual Abelian variety
(up to isogeny) of A, and we have …A_ similarly. There is a canonical isomorphism
MA_ 'MA as in [30, Section 3.2.4].

Definition 3.1.4 (Canonical pairing, [30, Section 3.2.4])
We have a canonical pairing

.�; �/A W …A �…A_ !MA

induced by maps

.�; �/U W Hom0.JU ;A/�Hom0.JU ;A
_/!MA

defined by the assignment .fC; f�/ 7! vol.XU /�1 ı fC ı f
_

� 2 End0.A/DMA for
all open compact subgroups U of B1�.

Recall that an Abelian variety A (up to isogeny) over F is of GL.2/-type if MA

is a field of degree equal to the dimension of A. Let A be such an Abelian variety (up
to isogeny), and denote by

!A W F
�nA1�!M�

A

the central character associated to A. For a finite place v of F , choose a rational prime
` that does not divide v. We have a Galois representation �A;v of Dv , the decomposi-
tion group at v, on the `-adic Tate module V`.A/ of A, which is a free module over
MA;` WDMA˝Q Q` of rank 2. It is well known that the characteristic polynomial

Pv.T /D detMA;`

�
1� Frobv

ˇ̌
V`.A/

Iv
�

belongs to MAŒT � and is independent of `, where Iv �Dv is the inertia subgroup and
Frobv 2Dv=Iv is the geometric Frobenius.

Remark 3.1.5
We use ! to denote both differential forms and central characters, since both ways
are standard. We hope this does not cause any confusion for readers.
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Definition 3.1.6 (L-functions and 	-factors)
Let K be a field containing MA.
(1) Define the local L-function of A as L.s; �A;v/ WD Pv.N

�s�1=2
v /�1 2

MA ˝Q C. In a similar manner, we define the local adjoint L-function of A,
which we denote as L.s; �A;v;Ad/; in particular, L.1; �A;v;Ad/ 2MA.

(2) For a locally constant character �v W F �
v !K�, we have the twisted local L-

function L.s; �A;v ˝ �v/ 2K ˝Q C. If  W Fv!K� is a nontrivial additive
character, then we have the 	-factor 	.1=2; ;�A;v ˝ �v/.

(3) For a locally constant character �v W E�
v ! K� such that !A;v � �vjF �

v
D 1,

we have the local Rankin–Selberg L-function L.s; �A;v; �v/ 2 K ˝Q C and
the 	-factor 	.1=2; �A;v; �v/. See Remark 3.1.7 for more details.

(4) Let � W K ,! C be an embedding, which induces a homomorphism � W K ˝Q

C! C by abuse of notation. We define the global L-function of A (with
respect to �) to be

L.s; �
.�/
A / WD

Y
v<1

�L.s; �A;v/:

Similarly, we have the global version L.s; �.�/A ;Ad/ and L.s; �.�/A ; �
.�// of other

L-functions as well.
(5) We say that A is automorphic if L.s; �.�/A /, for some and hence all �, is (the

finite component of) the L-function of an irreducible cuspidal automorphic
representation of GL2.A/.

Remark 3.1.7
If v splits into two places v1 and v2 of E , then L.s; �A;v; �v/ is defined to be the
product L.s; �A;v1

˝�v1
/L.s; �A;v2

˝�v2
/. If v induces a single place w of E , then

we define L.s; �A;v; �v/ WD L.s; .�A;vjDw
/˝ �v/. By choosing a nontrivial additive

character  W Fv!C�, we have the local Rankin–Selberg 	-factor 	.s; ; �A;v; �v/.
It is well known that 	.1=2; v; �A;v; �v/ belongs to ¹˙1º and does not depend on
the choice of  . We denote its value by 	.1=2; �A;v; �v/. The global L-functions
L.s; �

.�/
A /, L.s; �

.�/
A ;Ad/, and L.s; �

.�/
A ; �

.�// are always absolutely convergent for
Re s > 1.

Remark 3.1.8
It is conjectured that every Abelian variety of GL.2/-type is automorphic. In particu-
lar, when F DQ, every Abelian variety of GL.2/-type is parameterized by modular
curves. This follows from Serre’s modularity conjecture (for Q) [22, Theorem 4.4],
where the latter has been proved by Khare and Wintenberger [18].
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3.2. p-Adic Rankin–Selberg L-functions for Abelian varieties of GL.2/-type
From now on, we fix an Abelian variety A of GL.2/-type over F up to isogeny that
is automorphic (Definition 3.1.6(5)) and equipped with an embedding MA �Cp . For
simplicity, in what follows, we put M WDMA DMA_ regarded as a subfield of Cp ,
and we put FM D F ˝Q M , which is naturally equipped with a homomorphism to
Cp .

Notation 3.2.1
Denote by B.A/ the (finite) set of isomorphism classes of totally definite incoherent
quaternion algebras B over A that is E-embeddable (Definition 1.8.4) and such that
A can be parameterized by B (Definition 3.1.3).

For each (representative) B 2B.A/, we fix an isomorphism Bp'Mat2.Fp/ and
an E-embedding (Definition 1.8.4) under which ep coincides with (1.7). Then we
have the F -scheme X D X.B/ and its closed subscheme Y D Y C

`
Y � (Defini-

tion 2.4.1). We also fix an A1�
E -equivariant isomorphism

c W Y C.Cp/
�
�! Y �.Cp/; (3.1)

which we call an abstract conjugation for B.

Definition 3.2.2
Denote by V the set of open compact subgroups of A1p�

E , which is a filtered partially
ordered set under inclusion. Let K be a complete field extension of Fp.
(1) A (K-valued) character

� W E�nA1�
E !K�

is a character of weight w 2 Z if the following hold.
� � is invariant under some V p 2V.
� There is an open compact subgroup Vp of E�

p such that �.t/D .tP=
tPc/w for t 2 Vp.

We call V p the tame level of �.
(2) For a character � of weight w as above, we define two characters L�P and L�Pc

of F �
p by the formulas L�P.t/D t�w�P.t/ and L�Pc.t/D tw�Pc.t/.

(3) Suppose thatK is contained in Cp . Let � be aK-valued character of weightw.

Given an isomorphism � W Cp
�
�!C, we define the following local characters:

� �
.�/
v D 1 if v j1 but is not equal to �jF ;

� �
.�/
v .z/D .z= Nz/

w for vD �jF , where z 2E ˝F;� R
�jE
��!C;

� �
.�/
v D ��v for v <1 but v¤ p;
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� �
.�/
p .t/D �. L�P.tı/ L�Pc.t�// for t 2E�

p .

The product �.�/ WD
N
v �

.�/
v W A

�
E !C� is called the �-avatar of �.

(4) Suppose that K contains M . Denote by „.A;K/w the set of all K-valued
characters of weight w such that
(a) !A � �jA1� D 1;
(b) #¹v <1; v¤ p j 	.1=2; �A;v; �v/D�1º � g � 1 mod 2.
Put „.A;K/D

S
Z„.A;K/w .

Remark 3.2.3
The character �.�/ is automorphic, that is, it factors through E�nA�

E .

LEMMA 3.2.4
For a character � 2„.A;K/, there is a unique element B� 2B.A/ such that 	.1=2;
�A;v; �v/D �v.�1/�v.�1/	.B�;v/ for every finite place v¤ p of F .

Proof
The existence of such B� follows from Definition 3.2.2(4.b). The uniqueness is clear,
since B� is unramified at p and the 	.B�;v/’s are prescribed at all other places v.

The following definition generalizes the discussion in [26, Section 1].

Definition 3.2.5 (Distribution algebra)
Let K=Fp be a complete field extension that contains M .
(1) For a locally constant character ! W F �nA1�!M�, denote by C.!;K/ the

locally convex K-vector space of K-valued locally analytic functions f on
the locally Fp-analytic group E�nA1�

E satisfying that
� f is invariant under translation by some V p 2V;
� f .xt/D !.t/�1f .x/ for all x 2E�nA1�

E and t 2 F �nA1�.
Let D.!;K/ be the strong dual of C.!;K/ as a topological K-algebra (see
Remarks 2.1.1 and 3.2.6).

(2) Define D.A;K/ to be the quotient K-algebra of D.!A;K/ divided by the
closed ideal generated by elements that vanish on „.A;K/� C.!A;K/.

(3) For B 2B.A/, define D.A;B;K/ to be the quotient K-algebra of D.!A;K/

divided by the closed ideal generated by elements that vanish on � 2„.A;K/
with B� ' B for B� as in Lemma 3.2.4.

(4) Define

ı W E�nA1�
E !D.!A;K/

�!D.A;K/�!D.A;B;K/�

to be various continuous homomorphisms given by Dirac distributions.
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Remark 3.2.6
The topological K-vector space D.!;K/ is a commutative topological K-algebra
with the multiplication given by convolution (see [26, Section 1]). For a complete field
extension K 0=K , we have D.!;K/b̋KK

0 'D.!;K 0/. Moreover, if K is discretely
valued, then D.!;K/ may be written as a projective limit, indexed by tame levels
V p 2V, of nuclear Fréchet–Stein K-algebras with finite étale transition homomor-
phisms (see Remark 4.4.5) and, thus, complete. We have similar remarks for D.A;K/

and D.A;B;K/.

Remark 3.2.7
Suppose that F DM D Q and that ! D 1 is the trivial character. Fix a (sufficiently
small) tame level V p 2 V. Define C.1;Qp; V p/ similarly to Definition 3.2.5 by
requiring that f be invariant under translation by A1�V p , and define D.1;Qp; V p/
as the strong dual of C.1;Qp; V p/ as a topological Qp-algebra. Then for every com-
plete field extensionK=Qp , there is a natural bijection between continuous characters
D.1;Qp; V p/!K� and continuous characters E�A1�nA1�

E =V p!K�. In par-
ticular, D.1;Qp; V p/ is isomorphic to the coordinate ring of a finite disjoint union
of open unit disks over Qp (compare with Section 2.1). See Remark 4.4.5 for an
interpretation in the more general case.

For a representative B 2B.A/, put �X;Y˙ D�
1
X jY˙ . For t 2 E�nA1�

E , there
are canonical isomorphisms T�

t �X;Y˙ '�X;Y˙ . Put

! ˙ D .‡
�
˙!�/jY˙˝F nr

p
F lt
pF

ab
p
; (3.2)

where‡˙ are in Definition 2.2.10 and !� is the global Lubin–Tate differential in Def-
inition 2.3.6. Then ! ˙ are sections of �X;Y˙ ˝Fp

F lt
pF

ab
p , respectively, depending

only on the additive character  (Remark 2.3.7).
Let MF lt

pF
ab
p �K � Cp be a complete intermediate field. Take a character � 2

„.A;K/k with k � 0, and take BD B�. Define �˙
� to be theK-subspaces of H0.Y ˙;

�˝�k

X;Y˙
/˝F K consisting of ' such that T�

t ' D �.t/
˙1', respectively. By Lemma

2.4.2(1), both �C
� and ��

� have dimension 1. The abstract conjugation c from (3.1)
induces an A1�

E -invariant bilinear pairing

.�; �/� W �
C
� � �

�
� !K

by the formula .'C; '�/� D .'C˝!
k
 C/ � c

�.'�˝!
k
 �/, where the right-hand side

is a K-valued constant function on Y C and, hence, can be regarded as an element
in K .

Put AC D A, A� D A_, and …˙ D…A˙ 2 A.B�
� ;Q/. We have the canonical

pairing .�; �/A W …C �…�!M �Cp (Definition 3.1.4).
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LEMMA 3.2.8
Assume that k � 1. For every � W Cp

�
�! C, we have a unique B1� �A1�

E -invariant
bilinear pairing

.�; �/
.�/
A;� W .…

C˝FM �C
� /� .…

�˝FM ��
� /! .LieAC˝FM LieA�/˝FM ;� C

such that, for every f˙ 2…
˙, '˙ 2 �

˙
� , and !˙ 2H0.A˙;�1

A˙
/, we have˝

!C˝!�; .fC˝ 'C; f�˝ '�/
.�/
A;�

˛
D .�'C˝ c�

� �'�˝�
k/

Z
X�.C/

‚k�1
� f �

C!C˝ c�
� ‚

k�1
� f �

�!�

�k
dx; (3.3)

where
� h�; �i is the canonical pairing between H0.AC;�1

AC/˝FM H0.A�;�1A�/ and
LieAC˝FM LieA�;

� � is an arbitrary Hecke invariant hyperbolic metric on X�.C/;
� c� is the complex conjugation on MX� (2.22);
� �'C ˝ c�

� �'�˝�
k is a constant function on Y C

� .C/ and, hence, is viewed as
a complex number;

� ‚� is the Shimura–Maass operator (Definition 2.4.7); and
� dx is the Tamagawa measure on X�.C/.
Moreover, there is a unique (nonzero) element P�.A;�/ 2 .LieAC ˝FM

LieA�/˝FM ;� C such that

.�; �/
.�/
A;� D P�.A;�/ � �.�; �/A˝ �.�; �/�:

Proof
For given !˙ 2H0.A˙;�1

A˙
/, the formula (3.3) defines a bilinear pairing

.…C˝FM �C
� /� .…

�˝FM ��
� /!C;

which is B1� � A1�
E -invariant. By duality, all these pairings for different !˙ give

rise to a nonzero pairing

.�; �/
.�/
A;� W .…

C˝FM �C
� /� .…

�˝FM ��
� /! .LieAC˝Q LieA�/˝F;� C;

and it is easy to see that .�; �/.�/A;� takes values in .LieAC˝FM LieA�/˝FM ;�C. The
existence of P�.A;�/ follows from the uniqueness of the Petersson inner product and
the fact that .LieAC˝FM LieA�/˝FM ;�C is a C-vector space of dimension 1.

Remark 3.2.9
The element P�.A;�/ can be viewed as a function on the set

S
k�1„.A;K/k valued
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in the 1-dimensional C-vector space .LieAC ˝FM LieA�/˝FM ;� C. It depends on
the choices of c and  .

THEOREM 3.2.10
There is a unique element

L.A/ 2 .LieAC˝FM LieA�/˝FM D.A;MF lt
p /

such that, for every character � 2„.A;K/k with k � 1 and MF lt
pF

ab
p �K � Cp a

complete intermediate field and for every � W Cp
�
�!C, we have

�L.A/.�/DL.1=2; �
.�/
A ; �

.�// �
2g�1d1=2E �F .2/P�.A;�/

L.1; �/2L.1; �
.�/
A ;Ad/

� �
�	.1=2; ;�A;p˝ L�Pc/

L.1=2; �A;p˝ L�Pc/2

�
(3.4)

as an equality in .LieAC˝FM LieA�/˝FM ;� C.

Remark 3.2.11
The element L.A/ depends only on the choices of (1) an additive character  of
Fp of level 0 and (2) the abstract conjugation c from (3.1) for each (representative)
B 2B.A/, in an elementary way. More precisely,
(1) if we change  to  a for some a 2 O�

p , where  a.x/D  .ax/ for x 2 Fp,
then L.A/ is multiplied by !�p.a/ � ı

2
a , where a is regarded at the place Pc in

the Dirac distribution ıa;
(2) if we write L.A/D ¹L.A;B/ºB2B.A/ under the canonical isomorphism D.A;

K/'
Q

B2B.A/D.A;B;K/ (Remark 4.4.4) and change c (for B) to c0 D Tt ıc
for some t 2 A1�

E , then the component L.A;B/ is multiplied by ıt (Defini-
tion 3.2.5(4)).

3.3. p-Adic Waldspurger formula
Let K be a complete field extension of M . Consider an element � 2„.A;K/0. We
take BD B� 2B.A/. Choose a CM point PC 2 Y C.Eab/D Y C.Cp/, and put P� D

cPC.

Definition 3.3.1
For every f˙ 2…

˙, we define the Heegner cycles P˙
� .f˙/ on A˙ to be

P˙
� .f˙/D

Z
E�nA1�

E

f˙.TtP
˙/˝M �.t/˙1 dt;



A p-ADIC WALDSPURGER FORMULA 793

a finite sum in fact. Here, we recall that Tt is the Hecke morphism (Notation 2.2.1),
and we adopt the Haar measure dt of total volume 2.

Suppose now that K contains MF ab
p . We have K-linear maps

logA˙ W A
˙.K/˝M K! LieA˙˝FM K

given by p-adic logarithms on A˙ (see, e.g., [3]). As a functional on …C �…�,
the product logAC PC

� .fC/ � logA� P�
� .f�/ defines an element in the 1-dimensional

K-vector space

HomA1�
E
.…C˝ �;K/˝K HomA1�

E
.…�˝ ��1;K/˝FM .LieAC˝FM LieA�/:

It depends on the choice of c but not on the choice of PC.

THEOREM 3.3.2 (p-adic Waldspurger formula)
There exists a unique element

˛�.�; �/ 2HomA1�
E
.…C˝ �;K/˝K HomA1�

E
.…�˝ ��1;K/

such that, for every � W Cp
�
�!C,

�˛�.fC; f�/D ˛
\.fC; f�I�

.�//

for every f˙ 2…
˙, where the right-hand side is the (normalized) matrix coefficient

integral appearing in the complex Waldspurger formula (which will be recalled in
Definition 4.1.4). Moreover, for a character � 2„.A;K/0, we have

logAC PC
� .fC/ � logA� P�

� .f�/DL.A/.�/ �
L.1=2; �A;p˝ �Pc/2

	.1=2; ;�A;p˝ �Pc/
� ˛�.fC; f�/

for every f˙ 2…
˙.

3.4. p-Adic Maass functions and alternative formulation
Let B be an arbitrary totally definite incoherent quaternion algebra over A. As in
Section 2.2, we have X.B/D lim

 �U
X.B/U as the projective limit of Shimura curves

associated to B over SpecF . The following definition generalizes the one in Sec-
tion 1.2.

Definition 3.4.1 (p-adic Maass function)
We say that a function � W X.B/.Cp/! Cp is a p-adic Maass function on X.B/
if it is the pullback of some locally analytic function X.B/U .Cp/! Cp . Denote
by ACp

.B�/ the Cp-vector space of all p-adic Maass functions on X.B/. It is a
representation of B1�.



794 LIU, ZHANG, and ZHANG

We go back to the setting in Section 3.2, where we have fixed an Abelian variety
A of GL.2/-type over F up to isogeny that is automorphic and equipped with an
embedding M DMA � Cp . Denote by �.B/rat

A the subspace of ACp
.B�/ spanned

by functions of the form

f � log! W X.B/.Cp/
f
�!A.Cp/

log!
���!Cp;

where f W X.B/!A is a nonconstant map, ! is a differential form on A˝QCp , and
log! D hlogA;!i. The subspace �.B/rat

A is a subrepresentation of B1�, which also
receives an action of M by acting on A. Denote by �.B/A the subspace of �.B/rat

A on
whichM acts via the default embeddingM �Cp , which is again a subrepresentation
of B1�.

LEMMA 3.4.2
Suppose that B belongs to B.A/ (Notation 3.2.1). For every nonzero differential form
! 2H0.A;�1A/, the map

&! W ….B/A! �.B/A

sending f to f � log! jX.B/.Cp/ is B1�-equivariant and M -linear, and the induced
map ….B/A˝M Cp! �.B/A is an isomorphism.

Proof
It follows directly from the definition that &! is B1�-equivariant and M -linear. To
show the isomorphism, it suffices to show that �.B/A is a nonzero irreducible repre-
sentation of B1�. Since B belongs to B.A/, the space �.B/rat

A is nonzero and, hence,
so is �.B/A.

For the irreducibility, we choose an isomorphism � W Cp
�
�! C. Consider the map

�.B/A ˝Cp ;� C! Acusp.B.�/
�/ sending f � log! to �f �! regarded as a weight 2

holomorphic cusp form on B.�/�.A/. The map is well defined, injective, and B1�-
equivariant. Its image coincides with the weight 2 subspace of the cuspidal automor-
phic representation of B.�/�.A/ determined by A and the embedding � W M �C (see
[30, Theorem 3.3.2]). It follows that the image is irreducible as a representation of
B1�. Therefore, �.B/A itself is an irreducible representation of B1�.

From now on, we fix a representative B in B.A/, and we will prove a p-adic
Waldspurger formula for p-adic Maass functions on X WDX.B/ contained in �.B/A.
Take two nonzero differential forms !˙ 2H0.A˙;�1

A˙
/. By Lemma 3.4.2, we have

isomorphisms

&!˙
W ….B/A˙ ˝M Cp

�
�! �.B/A˙ :
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Let � 2„.A;Cp/0 be a character such that B� ' B. For �˙ 2 �.B/A˙ , we put

˛
!C;!�
� .�C; ��/D ˛�.&

�1
!C
�C; &

�1
!�
��/ 2Cp;

where ˛�.�; �/ is the pairing in Theorem 3.3.2. Then ˛
!C;!�
� .�; �/ is a basis of the

1-dimensional space

HomA1�
E

�
�.B/AC ˝ �;Cp

�
˝Cp

HomA1�
E

�
�.B/A� ˝ ��1;Cp

�
: (3.5)

Globally, we have the following definition. Choose a CM point PC 2 Y C.Eab/ D

Y C.Cp/, and put P� D cPC as in Section 3.3.

Definition 3.4.3
For �˙ 2 �.B/A˙ and � 2„.A;Cp/0, we define the p-adic torus period to be

PCp
.�˙; �

˙1/ WD

Z
E�nA1�

E

�˙.TtP
˙/ � �.t/˙1 dt;

where the Haar measure dt has total volume 2 as in Definition 3.3.1.

The above integrals are, in fact, finite sums valued in Cp . The product PCp
.�; �/ �

PCp
.�; ��1/ defines another element in (3.5), which depends on the choice of c but

not on the choice of PC. In particular, it is proportional to ˛
!C;!�
� .�; �/.

The following theorem is the p-adic Waldspurger formula for p-adic Maass func-
tions. Recall that we have the p-adic L-function L.A/ from Theorem 3.2.10. Put
� D �.B/A as an irreducible subrepresentation of ACp

.B�/.

THEOREM 3.4.4 (p-adic Waldspurger formula for p-adic Maass functions)
Put

L!C;!�
.�/D

˝
!C˝!�;L.A/

˛
;

regarded as an element in D.A;Cp/. Then for a character � 2„.A;Cp/0, we have

PCp
.�C; �/PCp

.��; �
�1/DL!C;!�

.�/ �
L.1=2;�p˝ �Pc/2

	.1=2; ;�p˝ �Pc/
� ˛
!C;!�
� .�C; ��/

for every �˙ 2 �.B/A˙ .

Proof
It follows from Theorem 3.3.2, after pairing with !C˝!�.
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Remark 3.4.5
In this remark, we explain how to deduce Theorems 1.5.1 and 1.5.3. We take A to be
an elliptic curve over Q. In particular, we have that F DM DQ, AC DA� DA and
that !A D 1 is the trivial character. We also fix an isomorphism � W Cp

�
�!C. We have

the indefinite quaternion algebra B over Q. Take B 2B.A/ such that B1 ' B ˝Q

A1. So we may identify B with B.�/ in the �-nearby data for B (Definition 2.4.10).
Moreover, we take  W Qp ! C�

p to be the additive character such that � ı  is the
standard one. We choose the abstract conjugation c from (3.1) such that c˝Cp ;� C

coincides with the restriction of the complex conjugation on MX�. We also note that
D.G/ is simply D.1;Cp/; and D.GI�Cp

/ is simply D.A;B;Cp/ (Definition 3.2.5).
(1) We first deduce Theorem 1.5.1. Take the p-adic L-function L.A/ as in The-

orem 3.2.10, regarded as an element in .LieA/˝2 ˝Q D.A;Cp/. Take a basis ! of
H0.A;�1A/. Then there is a unique element P! 2 C�

p such that �.P�1
! .f1; f2/A/ is

equal to the (bilinear) Petersson inner product of ��.f �
1 !/ and R.. 1 �1 /1/��.f

�
2 !/

for every f1; f2 2…A. Now we define L.�Cp
/ to be the image of

P! � ��1
�
d�1=2
E L.1; �/

�
�
˝
! ˝!;L.A/

˛
under the canonical projection D.A;Cp/!D.A;B;Cp/DD.GI�Cp

/. It is clear
that L.�Cp

/ does not depend on the choice of ! and, hence, is well defined. Then
Theorem 1.5.1 follows from Theorem 3.2.10, Remark 1.1.2, and Lemma 3.4.6 below
(with r D 2).

(2) Now we deduce Theorem 1.5.3. In Definition 3.4.3, we choose PC such
that �PC D ŒCi; 1�, and thus, �P� D Œ�i; 1�. Then PCp

.�; �˙1/ in Definition 3.4.3
coincide with those in (1.5). Therefore, Theorem 1.5.3 follows from Theorem 3.4.4.

LEMMA 3.4.6
Let � be the discrete series representation of weight r � 2 of GL2.R/ with trivial cen-
tral character. Fix a nonzero GL2.R/-equivariant bilinear pairing .�; �/ W � ��!C.
Let fC 2 � be a generator of weight r , that is, the Archimedean component of holo-
morphic modular forms of weight r . Put f� D �..

1
�1 //fC, which is a generator of

weight �r . Then we have

.�kCfC;�
k
�f�/

.fC; f�/
D
kŠ.kC r � 1/Š

4k.r � 1/Š
;

where �˙ are as in Definition 2.4.16.

Proof
It is well known that .fC; f�/¤ 0. Put

X˙ D
1

2

�
1 ˙i

˙i �1

�
D 2i�˙; H D�i

�
1

�1

�
:
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Recall from [5, p. 157, (2.39)] the Casimir element

�D�
1

4
.2XCX�C 2X�XCCH

2/:

It acts on � by the scalar


r WD
r

2

�
1�

r

2

�
:

We say that a vector g 2 � has weight � if HgD �g. For such g, we have

X�XCgD�
�H 2C 2H

4
C�

�
gD�

��2C 2�
4

C 
r

�
g:

Now for each k � 0, the vector XkCfC is of weight r C 2k. Therefore, we have for
k � 1 the formula

X�X
k
CfC DX�XC.X

k�1
C fC/D�

� .r C 2k � 2/.r C 2k/
4

C 
r

�
Xk�1

C fC:

We prove the identity

.XkCfC;X
k
�f�/

.fC; f�/
D
kŠ.kC r � 1/Š

.r � 1/Š

by induction on k � 0. The case k D 0 is trivial. Suppose that we know this for k� 1.
Then we have

.XkCfC;X
k
�f�/D�.X�X

k
CfC;X

k�1
� f�/

D
� .r C 2k � 2/.r C 2k/

4
C 
r

�
� .Xk�1

C fC;X
k�1
� f�/

D k.kC r � 1/ � .Xk�1
C fC;X

k�1
� f�/:

The lemma follows as X˙ D 2i�˙.

4. Proofs of main theorems
This section is dedicated to the proofs of Theorems 3.2.10 and 3.3.2. In Section 4.1,
we construct the distribution interpolating matrix coefficient integrals appearing in
the complex Waldspurger formula. We construct the universal torus period in Sec-
tion 4.2, which is a crucial construction toward the p-adic L-function. In Section 4.3,
we study the relation between universal torus periods and classical torus periods,
based on which we complete the proofs of our main theorems in Section 4.4.
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4.1. Distribution of matrix coefficient integrals
Recall that we have fixed an Abelian variety A of GL.2/-type over F up to isogeny
that is automorphic, equipped with an embedding M DMA �Cp , as in Section 3.2.
Let K=MFp be a complete field extension. Take a representative B in B.A/. As
in Section 3.2, we fix an isomorphism Bp 'Mat2.Fp/ and an E-embedding under
which ep coincides with (1.7). Recall that we put …˙ D …A˙ D ….B/A˙ (Nota-
tion 3.1.2).

Definition 4.1.1 (Stable/admissible vector)
We say that elements f˙ in …˙ ˝M K or …˙

p ˝M K are stable vectors if, respec-
tively,
(1) f˙ are fixed by N˙.Op/;
(2) f˙ satisfy the relation X

g2N˙.p�1/=N˙.Op/

…˙
p .g/f˙ D 0:

We denote by .…˙/~K the subsets of …˙˝M K consisting of stable vectors, respec-
tively. We denote by .…˙

p /
~
K the subsets of …˙

p ˝M K consisting of stable vectors,
respectively.

For n 2 N, we say that stable vectors f˙ in .…˙/~K or .…˙
p /

~
K are n-admissible

if, respectively,

…˙
p

�
n˙.x/

�
f˙ D 

˙.x/f˙

for every x 2 p�n=Op, where n˙.x/ are the same as in Proposition 2.3.5.

Remark 4.1.2
If we realize…˙

p in their Kirillov models with respect to the pair .NC; ˙/, then f˙p

belong to .…˙
p /

~
K if and only if fCp (resp., …�

p .J/f�p) is supported on O�
p , and they

are n-admissible if and only if fCp (resp., …�
p .J/f�p) is supported on .1C pn/�.

Definition 4.1.3
Let w 2 Z, let n 2 N be integers, and let ! W F �nA1�!M� be a locally constant
character. We say that a K-valued character � W E�nA1�

E ! K� of weight w is of
central type ! and depth n if
� ! � �jA1� D 1; and
� �Pc.t/D t�w for all t 2 .1C pn/�.
We denote by „.!;K/nw the set of all K-valued characters of weight w, central type
!, and depth n. Moreover, put „.!;K/n D

S
Z„.!;K/

n
w .
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We recall the definition of the classical (normalized) matrix coefficient integral.
Suppose that K is contained in Cp . We take a character � 2„.!A;K/. Let � W Cp

�
�!

C be an isomorphism. Morally speaking, the integral should be defined as

˛\.fC; f�I�
.�// “D”

Z
A1�nA1�

E

�
�
….t/fC; f�

�
A
� �.�/.t/ dt:

However, it is not absolutely convergent, so we need regularization recalled as fol-
lows.

Definition 4.1.4 (Regularized matrix coefficient integral)
Take an arbitrary decomposition �.�; �/A D

Q
v<1.�; �/�;v , where .�; �/�;v W …C

v �…
�
v !

C is a B�
v -invariant bilinear pairing. For f˙ D

N
v<1 f˙v such that .fCv; f�v/�;v D

1 for all but finitely many v’s, we put

˛.fCv; f�vI�
.�/
v /D

Z
F �

v nE�
v

�
…v.t/fCv; f�v

�
�;v
�.�/v .t/ dt I

˛\.fCv; f�vI�
.�/
v /D

��Fv
.2/L.1=2; �

.�/
A;v; �

.�/
v /

L.1; �v/L.1; �
.�/
A;v;Ad/

��1

˛.fCv; f�vI�
.�/
v /:

Here, dt is the measure on F �
v nE

�
v given in Section 1.8, and �.�/A;v is the correspond-

ing admissible complex representation of B�
v via �. Then by [29, Section 3] we have

˛\.fCv; f�vI�
.�/
v /D 1 for all but finitely many v’s, and the product

˛\.fC; f�I�
.�// WD

Y
v<1

˛\.fCv; f�vI�
.�/
v /

is well defined. We extend the functional ˛\.�; �I�.�// to all fC; f� by linearity.

Remark 4.1.5
The functional ˛\.�; �I�.�// does not depend on the choice of the decomposition of
�.�; �/A.

The following proposition is our main result, whose proof will be given at the end
of this section. Note that, since „.!;K/n is a subset of C.!;K/, we have a natural
pairing D.!;K/�„.!;K/n!K .

PROPOSITION 4.1.6
Let MFp � K � Cp be a complete intermediate field. Let f˙ 2 .…

˙/~K be two n-
admissible stable vectors for some (common) n 2 N. Then there is a unique element
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Q.fC; f�/ 2 D.!A;K/ such that, for all K-valued characters � 2 „.!A;K/n of
central type !A and depth n and for � W Cp

�
�!C, we have

�Q.fC; f�/.�/D �
� L.1=2; �A;p˝ L�Pc/2

	.1=2; ;�A;p˝ L�Pc/

�
� ˛\.fC; f�I�

.�//:

Definition 4.1.7
The element Q.fC; f�/ is called the (K-valued) local period distribution.

Before giving the proof, we make a convenient choice of a decomposition of
.�; �/A. Realize the representations …˙

p in their Kirillov models as in Remark 4.1.2.
We may assume that f˙ D

N
f˙v , with f˙v 2…

˙
v ˝M K , are decomposable and are

fixed by some (common) sufficiently small open compact subgroup V p 2V. Choose
a decomposition .�; �/A D

Q
v<1.�; �/v such that

(1) .fCv; f�v/v D 1 for all but finitely many v’s;
(2) .f 0

Cv; f
0

�v/v 2K for all f 0
˙v 2…

˙
v ˝M K;

(3) for f 0
˙p
2…˙

p ˝M K that are compactly supported on F �
p ,

.f 0
Cp; f

0
�p/pD

Z
F �
p

f 0
Cp.a/f

0
�p.a/da;

where da is the Haar measure on F �
p such that the volume of O�

p is 1.
We need two lemmas for the proof of Proposition 4.1.6. For simplicity, write

! D !A. For each finite place v ¤ p and an open compact subgroup Vv of E�
v , let

D.!v;K;Vv/ be the quotientK-algebra ofD.E�
v =Vv;K/ divided by the closed ideal

generated by ¹!v.t/ıt � 1 j t 2 F �
v º. Put

D.!v;K/D lim
 �
Vv

D.!v;K;Vv/;

where the limit runs over all Vv’s. Let D.!p;K/ be the quotient of D.E�
p ;K/ by the

closed ideal generated by ¹!p.t/ıt � 1 j t 2 F
�
p º. For every finite place v, we have a

natural homomorphism D.!v;K/!D.!;K/.

LEMMA 4.1.8
Let v¤ p be a finite place of F .
(1) There exists a unique element

L�1.�A;v/ 2D.!v;MFp/

such that, for every locally constant character �v W E�
v !K� satisfying !v �

�vjF �
v
D 1, we have

L�1.�A;v/.�v/DL.1=2; �A;v; �v/
�1:
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(2) For f˙v 2…
˙
v ˝M K , there exists a unique element

Q.fCv; f�v/ 2D.!v;K/

such that, for every locally constant character �v W E�
v !K� satisfying !v �

�vjF �
v
D 1 and for � W Cp

�
�!C, we have

�Q.fCv; f�v/.�v/D ˛
\.fCv; f�vI�

.�/
v /:

Proof
The uniqueness is clear. In the following proof, we suppress v from the notation, and
we will use the subscript � for all changing of coefficients of representations via �.

To prove (1), we first consider the following situation. Let QF be either F or E ,
and let Q… be an irreducible admissible M -representation of GL2. QF /. We claim that
there is a (unique) element L�1

QF
. Q…/ 2D[. QF

�;MFp/, where

D[. QF
�;K/ WD lim

 �
V

D. QF �=V;K/

with V running over all open compact subgroups of QF � such that, for every locally
constant character � W QF �!K� and � W Cp

�
�!C,

�L�1
QF
. Q…/.�/DL.1=2; Q…�˝ ��/

�1:

In fact, for a locally constant character � W QF � ! M�, define L�1
QF
.�/ 2 D[. QF

�;

MFp/ by the formula

L�1
QF
.�/.h/D 1�

Z
O�

QF

�. Q$a/h. Q$a/da

for h 2 lim
�!V

C. QF �=V;MFp/. Here, Q$ is an arbitrary uniformizer of QF , and da is
the Haar measure on O�

QF
with total volume 1. Then we have three cases.

� If Q… is supercuspidal, put L�1
QF
. Q…/D 1.

� If Q… is the unique irreducible subrepresentation of the unnormalized parabolic
induction of .�;�j � j�2/ for a character� W QF �!M�, then we put L�1

QF
. Q…/D

L�1
QF
.�/.

� If Q… is the irreducible unnormalized parabolic induction of .�1;�2j � j�1/
for a pair of characters �i W QF � !M� (i D 1; 2), then we put L�1

QF
. Q…/ D

L�1
QF
.�1/ �L�1

QF
.�2/.

Here, we adopt the unnormalized induction in order to track the rationality properties.
Go back to (1). First, assume that E=F is nonsplit. Then we define L�1.�A/

to be the image of L�1
E .…E / in D.!;MFp/, where …E is the base change of … to
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GL2.E/, which depends only on �A. Second, assume thatE D F��Fı is split, where
F� D Fı D F . Then we define L�1.�A/ to be the image of L�1

F�
.…/˝L�1

Fı
.…/ in

D.!;MFp/.
Now we consider (2). First, assume that E=F is nonsplit. Then the torus F �nE�

is compact; hence, the matrix coefficient ˆfC;f�
.g/ WD .…C.g/fC; f�/ is finite

under E�-translation. We may assume that the restrictionˆfC;f�
jE� D

P
i ai�i is a

finite K-linear combination of K-valued (locally constant) characters �i of E� such
that ! � �i jF � D 1. Assigning to every locally constant function h on E� satisfying
!.t/h.at/D h.a/ for all a 2E� and t 2 F � the integralX

i

ai

Z
F �nE�

�i .t/h.t/ dt;

which is a finite sum, defines an element ˛.fC; f�/ in D.!;K/. Put

Q.fC; f�/D
� �F .2/

L.1; �A;Ad/L.1; �/

��1

L�1.�A/˛.fC; f�/:

Second, assume that E D F� � Fı is split. We may suppose that the embedding
E!Mat2.F / is given by

.t�; tı/ 7!

�
t�

tı

�
for t�; tı 2 F . Moreover, a character � of E� is given by a pair .��; �ı/ of characters
of F � such that �..t�; tı//D ��.t�/�ı.tı/.

Now we realize …˙ in their Kirillov models with respect to (nontrivial) additive
characters  ˙ W F ! C� of conductor 0, respectively, where  � D . C/�1. More-
over, we may assume, for f˙ 2 …

˙ ˝M K that are compactly supported on F �,
that

.fC; f�/D

Z
F �

fC.a/f�.a/da;

where da is the Haar measure on F � such that the volume of O�
F is c for some

c 2M . We have the formula

˛\.fC; f�I��/D
��F .2/L.1=2; �.�/A ; ��/
L.1; �/L.1; �

.�/
A ;Ad/

��1

�

Z
F �

�fC.a/ � ���.a/da

Z
F �

�f�.b/ � ���.b
�1/ db

D
� �F .2/

L.1; �/L.1; �
.�/
A ;Ad/

��1

Z.�fC; ���/Z.�f�; �
�1
�� /; (4.1)
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where

Z.�f˙; �
˙1
�� /DL.1=2;…

˙
� ˝ �

˙1
�� /

�1

Z
F �

�f˙.a/ � �
˙1
�� .a/da:

Note that the above integrals are simply local zeta integrals. To conclude, it suf-
fices to show that there exist elements Z.f˙/ 2 D[.F

�;K/ such that, for every
locally constant character � W F �!K� and every isomorphism � W Cp

�
�!C, we have

�Z.f˙/.�/DZ.�f˙; �
˙1
� /, respectively. Without loss of generality, we only construct

Z.fC/.
By enlarging M if necessary to include l1=2, where l is the cardinality of the

residue field of F , there is a subspace …C;c of …C such that …C;c ˝M K is the
subspace of …C ˝M K of functions that are compactly supported on F �. For fC 2

…C;c ˝M K , we may define Z.fC/ such that, for every locally constant function h
on F �,

Z.fC/.h/DL�1
F .…

C/.h/�

Z
F �

fC.a/h.a/da:

Therefore, we may conclude the proof if dim…C=…C;c D 0. There are two cases
remaining.

First,…C is a special representation, that is, dim…C=…C;c D 1. We may choose
a representative fC D �.a/ � chOF n¹0º.a/ for some character � W F �!M�. Then
Z.�fC; ��/D c (resp., 0) if � � � is unramified (resp., otherwise). Therefore, we may
define Z.fC/ such that

Z.fC/.h/D

Z
O�

F

�.a/h.a/da

for every locally constant function h on F �.
Second, …C is a principal series, that is, dim…C=…C;c D 2. There are two pos-

sibilities. In the first case, we may choose representatives f iC D �
i .a/ � chOF n¹0º.a/

for two different characters �1;�2 W F �!M�. Without loss of generality, we con-
sider f 1C. ThenZ.�f 1C; ��/DL.1=2;�

2
� ���/

�1 (resp., 0) if �1 �� is unramified (resp.,
otherwise). Therefore, we may define Z.f 1C/ such that

Z.f 1C/.h/DL�1
F .�

1/.h/�

Z
O�

F

�.a/h.a/da

for every locally constant function h on F �. In the second case, we may choose
representatives f 1C D �.a/ � chOF n¹0º.a/ and f 2C D .1 � logl jaj/�.a/ � chOF n¹0º.a/

for some character � W F �!M�. The function f 1C has been treated above. For f 2C,
we have Z.�f 2C; ��/D c (resp., 0) if � � � is unramified (resp., otherwise). Therefore,
we may define Z.fC/ such that
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Z.fC/.h/D

Z
O�

F

�.a/h.a/da

for every locally constant function h on F �.

LEMMA 4.1.9
Let f˙p 2 .…

˙
p /

~
K be two n-admissible stable vectors. There exists a unique element

Q.fCp; f�p/ 2D.!p;K/

with the following property: for every character �p W E�
p ! K� satisfying !p �

�pjF �
p
D 1 and �Pc.t/D t�w for t 2 .1Cpn/� and some w 2 Z and for � W Cp

�
�!C,

we have

�Q.fCp; f�p/.�p/D �
� L.1=2; �A;p˝ L�Pc/2

	.1=2; ;�A;p˝ L�Pc/

�
˛\.fCp; f�pI�

.�/
p /:

Here, L� is defined similarly as in Definition 3.2.2(2). Moreover, there are n-admissible
stable vectors f˙p 2 .…

˙
p /

~
K such that Q.fCp; f�p/.�p/¤ 0 for every such �p.

Proof
The uniqueness of Q.fCp; f�p/ is clear, as those characters �p in the statement span
a dense subspace of C.!p;K/ by Lemma 2.1.11.

For the existence of Q.fCp; f�p/, first note that the formula (4.1) also works for
vD p. Moreover, we have the functional equation

Z.�f�p; �
.�/�1
Pc /D �	.1=2; ;�A;p˝ L�Pc/ �Z

�
�
�
…�

p .J/f�p

�
; �
.�/
Pc

�
:

By Remark 4.1.2, we only need to show that, for f 2…C
p ˝M K that is supported on

.1C pn/�, there exists Q0.f / 2D.!p;K/ such that, for �p as in the statement and �,

�Q0.f /.�p/D

Z
O�

p

�f .a/ � �
.�/
Pc.a/da:

Then we may set

Q.fCp; f�p/D
� �Fp

.2/

L.1; �A;p;Ad/L.1; �p/

��1

Q0.fCp/Q
0
�
…�

p .J/f�p

�
:

For the existence of Q0.f /, since �.�/
Pc restricts to the trivial character on .1C

pn/�, we have Z
O�

p

�f .a/ � �
.�/
Pc.a/daD �

Z
O�

p

f .a/da:
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We may put

Q0.f /D

Z
O�

p

f .a/da 2K; (4.2)

which is a constant (depending only on f ). The last part of the lemma follows from
(4.2).

Proof of Proposition 4.1.6
Let f˙ 2 .…

˙/~K be two n-admissible stable vectors. It is clear that Q.fCv; f�v/

constructed in Lemma 4.1.8 is equal to 1 for almost all v’s. Therefore, we may simply
define Q.fC; f�/ to be the image of

Q.fCp; f�p/˝
O
v¤p

Q.fCv; f�v/

in D.!A;K/.

4.2. Universal torus periods
Let B be as in the previous section. As in Section 3.3, we choose a CM point PC 2

Y C.Eab/ and put P� D cPC. By Lemma 2.4.2, we regard P˙ as points in
X.˙1/.F ab

p /, respectively. By the same lemma, the morphism �t from (2.14) pre-
serves Y˙.1/ for t 2O�

Ep
, respectively.

Recall that, for m 2 N[ ¹1º, we have the closed formal subscheme Y˙.m/ of
X.m/ as in Section 2.4. For a complete field extension K=F nr

p , put

N ˙.m;K/DH0
�
Y˙.m/;O

Y˙.m/

�b̋Onr
p
K:

LEMMA 4.2.1
Suppose that K is a complete field extension of F ab

p . Then the respective maps from
N ˙.1;K/ to the K-algebra of continuous K-valued functions on E�nA1�

E that
send f 2 N ˙.1;K/ to the functions x 7! f .‡˙TxP˙/ are isomorphisms. We
recall that ‡˙ are in Definition 2.2.10. Moreover, the induced actions of t 2 O�

Ep

on N ˙.1;K/ are, respectively, given by

.��
t f /.x/D

´
f .xt/ for f 2N C.1;K/;

f .xt c/ for f 2N �.1;K/;

for x 2E�nA1�
E .

Proof
The isomorphism follows from Lemmas 2.4.2 and 2.4.4. The action is a consequence
of Lemma 2.2.11.
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Notation 4.2.2
Consider a locally constant character

! W F �nA1�!M�:

Let K be a complete field extension of MFp. For every V p 2V on which ! is trivial,
denote by D.!;K;V p/ the quotient K-algebra of D.E�nA1�

E =V p;K/ divided by
the closed ideal generated by ¹!.t/ıt � 1 j t 2A1�º.

Then by some standard facts from functional analysis (see [27, Propositions 2.11
and 2.12]) and Remark 2.1.1, we have a canonical isomorphism

D.!;K/' lim
 �
V p2V

D.!;K;V p/

of topologicalK-algebras, where the former one is in Definition 3.2.5(1). The (unique)
continuous homomorphism D.O�

Ep
;K/ ! D.E�nA1�

E =V p;K/ sending ıt to

!p.tı/ıt for t D .t�; tı/ 2O�
Ep

descends to a continuous homomorphism w W D.Oanti
p ;

K/!D.!;K;V p/ of K-algebras, which is compatible with respect to the change
of V p. In other words, we have a homomorphism

w W D.Oanti
p ;K/!D.!;K/: (4.3)

Definition 4.2.3 (Universal character)
We respectively define the ˙-universal character to be

�˙
univ W E

�nA1�
E

ı˙1

��!D.!;MFp/
�;

where ı is defined in Definition 3.2.5(4).

The universal characters depend on !. Since we will always take ! D !A, we
suppress it from notation.

LEMMA 4.2.4
The universal characters �˙

univ are elements in N ˙.1;F ab
p /b̋F ab

p
D.!;MF ab

p / satis-
fying

��
t �

˙
univ D ıt � �

˙
univ;

respectively, for t 2O�
Ep;m

if ! is trivial on F �
p \O

�
Ep;m

.

Proof
It follows from the definition, Lemma 4.2.1, and the observation that conjugation and
inversion coincide on Oanti

p .
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Suppose that K is a complete field extension of MF lt
pF

ab
p . Given a stable conver-

gent modular form f 2Mw
[
.m;K/~ for some w;m 2N (Definition 2.3.10), we have

the global Mellin transform M.f / by Theorem 2.3.17, and by (4.3),

wM.f / 2Mw
[ .m;K/

~b̋KD.!;K/:

By restriction, we obtain elements

wM.f /j
Y˙.1/ 2N ˙.1;K/b̋KD.!;K/:

By Theorem 2.3.17(2) and Lemma 4.2.4, the product .wM.f /j
Y˙.1// ��

˙
univ descends

to an element in N ˙.m;K/b̋KD.!;K/ if ! is trivial on F �
p \O

�
Ep;m

.

For every V p 2V under which f is invariant, we regard .wM.f /j
Y˙.1// ��

˙
univ

as elements in N ˙.m;K/b̋KD.!;K;V p/, respectively. They are invariant under the
action of V p on N ˙.m;K/.

Definition 4.2.5 (Universal torus period)
We define the universal torus periods of f to be the elements

P ˙
! .f / WD

2

jE�nA1�
E =V pO�

Ep;m
j

X
E�nA1�

E
=V pO�

Ep;m

��
wM.f /j

Y˙.1/

�
� �˙

univ

�
.t/

in D.!;K;V p/.

Remark 4.2.6
We add the factor 2 in the above definition in order to be consistent with the Tamagawa
measure we chose in the complex Waldspurger formula recalled in Section 1.1.

By construction, the elements P ˙
! .f / are independent of m and are compatible

with respect to the change of V p. Therefore, they are elements in D.!;K/. In fact,
for a character � 2„.!;K/, Lemma 4.2.1 allows us to write

P ˙
! .f /.�/D

Z
E�nA1�

E

wM
�
.f �

˙!˙/ord
�
.�/.‡˙TtP

˙/ � �.t/˙1 dt:

4.3. Interpolation of universal torus periods
We keep the setting from the previous section. LetMF lt

pF
ab
p �K �Cp be a complete

intermediate field.
By Definition 4.1.1, elements f ˙ 2…˙˝F K can be realized as K-linear com-

binations of morphisms fromXUpUp;˙m
to A, respectively, for some (common) U p 2

U and m 2N. We now assume this.
Take differential forms !˙ 2 H0.A˙;�1

A˙
/. Using the notation in (2.26), we

have convergent modular forms .f �
˙!˙/ord 2M2

[
.1;K/. Then .f �

˙!˙/ord are sta-
ble (in the sense of Definition 2.3.10) if and only if f ˙ are stable (in the sense of
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Definition 4.1.1), respectively. By Proposition 2.3.5(3), .f �
˙!˙/ord are n-admissible

(in the sense of Definition 2.3.13) if and only if f ˙ are n-admissible (in the sense of
Definition 4.1.1), respectively.

Notation 4.3.1
For stable vectors f ˙ 2 .…˙/~K , define the elements

P ˙
univ.f˙/ 2 LieA˙˝FM D.!A;K/

by the formulas ˝
!˙;P

˙
univ.f˙/

˛
DP ˙

!A

�
.f �

˙!˙/ord
�
:

In this section, we study the relation between

�P C
univ.fC/.�/ � �P

�
univ.f�/.�/ 2 .LieAC˝FM LieA�/˝FM ;� C

for a given isomorphism � W Cp
�
�! C, with classical torus periods, for f ˙ as above

and a character � 2„.!A;K/nk of weight k � 1 and depth n (Definition 4.1.3). For
this purpose, we choose an �-nearby data for B (Definition 2.4.10). In particular, we
have

Y ˙
� .C/DE

�n¹˙iº �A1�
E �X�.C/:

Choose elements t˙ 2 A1�
E such that �P˙ are represented by Œ˙i; t˙�, respectively.

Define �˙
� 2C

� such that

dz
�
Œ˙i; t˙�

�
D �˙

� � �! ˙jP˙ ; (4.4)

where ! ˙ are defined in (3.2). We also introduce matrices j˙
� D . 1 ˙1 / in

Mat2.R/DB.�/˝F;� R.

Notation 4.3.2
For a cusp form ˆ 2 Acusp.B.�/

�/ with central character � ı !˙1
A , we respectively

define

PC.ˆ;�
.�/˙1/ WD

Z
E�A�nA�

E

ˆ.t/�.�/.t/˙1 dt

to be the complex torus periods appearing in the complex Waldspurger formula.

LEMMA 4.3.3
Let the notation be as above. We have
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�
˝
!C;P

C
univ.fC/.�/

˛
� �

˝
!�;P

�
univ.f�/.�/

˛
D .�C

� �
�
� /
k � �.�/.t�1C t�/

�PC

�
�k�1

C;�

�
R.jC

� /��.f
�

C!C/
�
; �.�/C1

�
PC

�
�k�1

�;�

�
R.j�

� /��.f
�

�!�/
�
; �.�/�1

�
;

where �� is defined in Lemma 2.4.15 and �.�/ is the �-avatar of � as in Defini-
tion 3.2.2(3).

Proof
Take V p 2 V under which f˙ and � are invariant. By Theorem 2.3.17 and Defini-
tion 4.2.5, we have˝
!˙;P

˙
univ.f˙/.�/

˛
D

2

jE�nA1�
E =V pO�

Ep;m
j

�
X

E�nA1�
E

=V pO�
Ep;m

‚k�1
ord .f

�
˙!˙/ord.‡˙TtP

˙/ �!�k
� .‡˙TtP

˙/ � �˙1.t/

D
2

jE�nA1�
E =V pO�

Ep;m
j

�
X

E�nA1�
E

=V pO�
Ep;m

‡�
˙‚

k�1
ord .f

�
˙!˙/ord.TtP

˙/ �!�k
 ˙.TtP

˙/ � �˙1.t/

for some sufficiently large m� n. By (4.4) and Lemma 2.4.9, we have

�
˝
!˙;P

˙
univ.f˙/.�/

˛
D

2.�˙
� /

k

jE�nA1�
E =V pO�

Ep;m
j

�
X

E�nA1�
E

=V pO�
Ep;m

‚k�1
� f �

˙!˙.TtP
˙/ dz

�
Œ˙i; t˙t �

��k
� �.�/.t/˙1

D .�˙
� /
k

Z
E�A�nA�

E

R.j˙
� /��.‚

k�1
� f �

˙!˙/.t˙t / � �
.�/.t/˙1 dt

D .�˙
� /
k � �.�/.t�1˙ /

Z
E�A�nA�

E

R.j˙
� /��.‚

k�1
� f �

˙!˙/.t/ � �
.�/.t/˙1 dt;

which by Lemma 2.4.17 equals
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.�˙
� /

k � �.�/.t�1˙ /

Z
E�A�nA�

E

R.j˙
� /

�
�k�1

C;� ��.f
�

˙!˙/
�
.t/ � �.�/.t/˙1 dt

D .�˙
� /

k � �.�/.t�1˙ /

Z
E�A�nA�

E

�k�1
˙;�

�
R.j˙

� /��.f
�

˙!˙/
�
.t/ � �.�/.t/˙1 dt:

This completes the proof.

PROPOSITION 4.3.4
Given n-admissible stable vectors f˙ 2 .…

˙/~K and a character � 2„.!A;K/nk of
weight k � 1 and depth n, we have

�P C
univ.fC/.�/ � �P

�
univ.f�/.�/

D �Q.fC; f�/.�/

�L.1=2; �
.�/
A ; �

.�// �
2g�1d1=2E �F .2/P�.A;�/

L.1; �/2L.1; �
.�/
A ;Ad/

� �
�	.1=2; ;�A;p˝ L�Pc/

L.1=2; �A;p˝ L�Pc/2

�
;

as an equality in .LieAC˝FM LieA�/˝FM ;� C.

Proof
It suffices to show the equality after pairing with !C ˝ !� for an arbitrary pair of
differential forms !˙ 2H0.A˙;�1

A˙
/.

By the complex Waldspurger formula (see [29] and [30, Theorem 1.4.2]) and
Proposition 4.1.6, we have

PC

�
�k�1

C;�

�
R.jC

� /��.f
�

C!C/
�
; �.�/C1

�
PC

�
�k�1

�;�

�
R.j�

� /��.f
�

�!�/
�
; �.�/�1

�
D C�

�F .2/L.1=2; �
.�/
A ; �

.�//

L.1; �
.�/
A ;Ad/L.1; �/

2

2�gd�1=2
E L.1; �/

� �
�	.1=2; ;�A;p˝ L�Pc/

L.1=2; �A;p˝ L�Pc/2

�
� �Q.fC; f�/.�/;

where C� is the complex constant such that�
�k�1

C;�

�
R.jC

� /��.f
�

C!C/
�
;�k�1

�;�

�
R.j�

� /��.f
�

�!�/
��

Pet D C� � �.fC; f�/A

holds for all fC and f�. Here .�; �/Pet is the bilinear Petersson inner product pairing.
By Lemma 4.3.3, the proposition is reduced to the formula˝

!C˝!�;P�.A;�/
˛
D C� � .�

C
� �

�
� /
k � �.�/.t�1C t�/: (4.5)

By Lemma 3.2.8, it suffices to show that
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�'C˝ c�
� �'�˝�

k

�.'C; '�/�

Z
X�.C/

‚k�1
� f �

C!C˝ c�
� ‚

k�1
� f �

�!�

�k
dx

D .�C
� �

�
� /
k � �.�/.t�1C t�/ �

�
�k�1

C;�

�
R.jC

� /��.f
�

C!C/
�
;�k�1

�;�

�
R.j�

� /��.f
�

�!�/
��

Pet

for some choice of '˙ 2 �
˙
� .Cp/. We take elements '˙ such that �'˙.P

˙/ D

dz.Œ˙i; t˙�/
k , respectively. Then �.'C; '�/� D .�

C
� �

�
� /

�k by (4.4). Now we take �
to be the standard invariant hyperbolic metric on MX� D B.�/�nH � B1�=F �. Then
�'C˝ c�

� �'�˝�
k is the constant �.�/.t�1C t�/, andZ

X�.C/

‚k�1
� f �

C!C˝ c�
� ‚

k�1
� f �

�!�

�k
dx

D
�
�k�1

C;�

�
R.jC

� /��.f
�

C!C/
�
;�k�1

�;�

�
R.j�

� /��.f
�

�!�/
��

Pet:

Thus, (4.5) holds, and the proposition follows.

The proposition has the following corollary.

COROLLARY 4.3.5
For � 2„.!A;K/nk with k � 1, the ratio

P C
univ.fC/.�/P

�
univ.f�/.�/

Q.fC; f�/.�/
2 .LieAC˝FM LieA�/˝FM K;

if the denominator is nonzero, is independent of the choice of n-admissible stable
vectors f˙ 2 .…

˙/~K . Moreover, for � W Cp
�
�!C, we have

�
�P C

univ.fC/.�/P
�
univ.f�/.�/

Q.fC; f�/.�/

�
DL.1=2; �

.�/
A ; �

.�// �
2g�1d1=2E �F .2/P�.A;�/

L.1; �/2L.1; �
.�/
A ;Ad/

� �
�	.1=2; ;�A;p˝ L�Pc/

L.1=2; �A;p˝ L�Pc/2

�
:

PROPOSITION 4.3.6
For n-admissible stable vectors f˙ 2 .…

˙/~K and a character � 2 „.!A;K/n0 of
weight 0 and depth n, we have

P ˙
univ.f˙/.�/D logA˙ P

˙
� .f˙/:

Proof
We may choose a tame level U p 2 U that fixes both fC and f� and such that � is
fixed by U p\A1�

E . We may realize f˙ asK-linear combinations of morphisms from
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XUpUp;˙m
toA˙, respectively, for some sufficiently large integerm� n. By linearity,

we may assume that f˙ are just morphisms from XUpUp;˙m
to A˙, respectively.

For !˙ 2H0.A˙;�1
A˙
/, we have by Theorems 2.3.17(3) and 2.3.17(4) that

dM
�
.f �

˙!˙/ord
�
.�jO�

EPc
/D‚ordM

�
.f �

˙!˙/ord
�
.�jO�

EPc
/D .f �

˙!˙/ord:

On the other hand, by Proposition A.0.1, we know that .f �
˙ log!˙

/ord are Coleman
integrals of .f �

˙!˙/ord on (the generic fiber of) X.m;U p/, respectively. Therefore,
we have

M
�
.f �

˙!˙/ord
�
.�jO�

EPc
/D .f �

˙ log!˙
/ord (4.6)

on X.m;U p/, since both of them are Coleman integrals of f �
˙!˙ on X.m;U p/ that

belong to M0
[
.m;K/~, respectively. By Definition 3.3.1, we have

log!˙
P˙
� .f˙/D

Z
E�nA1�

E

log!˙
f˙.TtP

˙/ � �.t/˙1 dt

D

Z
E�nA1�

E

f �
˙ log!˙

.TtP
˙/ � �.t/˙1 dt

D

Z
E�nA1�

E

.f �
˙ log!˙

/ord.‡˙TtP
˙/ � �.t/˙1 dt;

which by (4.6) is equal toZ
E�nA1�

E

M
�
.f �

˙!˙/ord
�
.�jO�

EPc
/.‡˙TtP

˙/ � �.t/˙1 dt

D

Z
E�nA1�

E

wM
�
.f �

˙!˙/ord
�
.�/.‡˙TtP

˙/ � �.t/˙1 dt;

respectively. Then the proposition follows from Remark 4.2.6.

4.4. Proofs of main theorems
Let K be a complete field extension of MFp. For V p 2V, denote by C.!;K;V p/

the (closed) subspace of C.!;K/ (Definition 3.2.5) of functions that are invariant
under the right translation of V p. It is also a closed subspace of C.E�nA1�

E =V p;K/.
The strong dual of C.!;K;V p/ is canonically isomorphic to D.!;K;V p/ (Nota-
tion 4.2.2).

We consider totally definite (not necessarily incoherent) quaternion algebras B

over A such that, for a finite place v of F , 	.Bv/D 1 if v is split in E or the Galois
representation �A;v corresponds to a principal series.
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For such (a representative in the isomorphism class of) B, we choose an E-
embedding as (1.9), which is possible. We define representations

….B/tame
A˙
D

O0

M
…v;A˙ ;

where the restricted tensor products (over M ) are taken over all finite places v ¤ p

of F and …v;A˙ are M -representations of B�
v determined by �A˙;v , respectively. In

particular, if B is incoherent (i.e., B 2B.A/ in Notation 3.2.1), then….B/tame
A˙

are iso-
morphic to the away-from-p components of ….B/A˙ (Notation 3.1.2), respectively.

Notation 4.4.1
Let IC.!A;K;V

p/ be the closed ideal of D.!A;K;V
p/ generated by®

Q.fC; f�/
ˇ̌
f˙ 2

�
….B/tame

A˙

�V p

˝M K;	.B/DC1
¯
;

and let I�.!A;K;V
p/ be the closed ideal of D.!A;K;V

p/ generated by®
Q.fC; f�/

ˇ̌
f˙ 2

�
….B/tame

A˙

�V p

˝M K;	.B/D�1
¯
;

where Q.fC; f�/ is defined as the product of those elements Q.fCv; f�v/ in Lemma
4.1.8(2).

Let CC.!A;K;V
p/ (resp., C�.!A;K;V

p/) be the subspace of C.!A;K;V
p/

consisting of functions lying in the kernel of every element in I�.!A;K;V
p/ (resp.,

IC.!A;K;V
p/). Put„.A;K;V p/D„.A;K/\C.!A;K;V

p/ and„.!A;K;V p/D

„.!A;K/\C.!A;K;V
p/, where „.A;K/ and „.!A;K/ are introduced in Defini-

tion 3.2.5.

Remark 4.4.2
The ideals I˙.!A;K;V

p/ are topologically finitely generated. The subspaces
C˙.!A;K;V

p/ are closed in C.!A;K;V
p/.

The following lemma concerns some algebraic properties of the objects intro-
duced above.

LEMMA 4.4.3
Suppose that V p 2V is sufficiently small. We have
(1) IC.!A;K;V

p/\ I�.!A;K;V
p/D 0;

(2) IC.!A;K;V
p/C I�.!A;K;V

p/DD.!A;K;V
p/;

(3) C.!A;K;V
p/D CC.!A;K;V

p/˚C�.!A;K;V
p/;

(4) the subset „.A;K;V p/ is contained in and generates a dense subspace of
C�.!A;K;V

p/;
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(5) IC.!A;K;V
p/ is the closed ideal generated by elements that vanish on „.A;

K;V p/.

Proof
We first realize that „.!A;K;V p/ generates a dense subspace of C.!A;K;V

p/.
Thus, (1) follows from the dichotomy theorem of Saito and Tunnell (see [28] and
[24]). For (2), assume the converse, and suppose that IC.!A;K;V

p/CI�.!A;K;V
p/

is contained in a (closed) maximal ideal with residue field K 0. Then all local period
distributions Q.fC; f�/ will vanish on the character

E�nA1�
E =V p ı

�!D.!A;K;V
p/!K 0;

which contradicts the theorem of Saito and Tunnell. Part (3) is a direct consequence
of (1) and (2). It is clear that „.A;K;V p/ is contained in C�.!A;K;V

p/ and, by
the theorem of Saito and Tunnell, „.!A;K;V p/ n„.A;K;V p/ � CC.!A;K;V

p/,
which together imply (4). Finally, (5) follows from (4).

Remark 4.4.4
If we put D.A;K;V p/DD.!A;K;V

p/=IC.!A;K;V
p/, then we obtain a canonical

isomorphism

D.A;K/
�
�! lim
 �
V p2V

D.A;K;V p/:

Moreover, we have D.A;K/ '
Q

B2B.A/D.A;B;K/ (Definition 3.2.5). We have
D.A;K;V p/b̋KK

0 ' D.A;K 0; V p/ and D.A;K/b̋KK
0 ' D.A;K 0/ for a com-

plete field extension K 0=K .

Remark 4.4.5
In fact, for sufficiently small V p 2 V, the morphism w from (4.3) is injective with
the quotient which is a finite étale K-algebra. We also have D.Oanti

p ;K/ \ IC.!A;

K;V p/D ¹0º. Thus, if K is discretely valued, then D.A;K;V p/ is a (commutative)
nuclear Fréchet–Stein K-algebra (defined, e.g., in [10, Definition 1.2.10]). Moreover,
it is not hard to see that the transition homomorphism D.A;K;V 0p/!D.A;K;V p/

is finite étale for V 0p � V p. The rigid analytic variety E�.V
p/ associated to D.A;

MFp; V
p/ is a smooth rigid curve overMFp, which may be regarded as an eigencurve

for the group U.1/E=F of tame level V p, twisted by (the cyclotomic character) !A
and cut off by the condition that 	.1=2; �A; �/D�1. The ind-rigid analytic variety E�

mentioned in Section 1.7 is actually lim
�!V p2V

E�.V
p/.

Proof of Theorem 3.2.10
For the existence, note that the union

S
k�1„.!A;Cp/

0
k

already spans a dense sub-



A p-ADIC WALDSPURGER FORMULA 815

space of C.!A;Cp/ by Lemma 2.1.11. By Corollary 4.3.5, Lemma 4.4.3, and (the
nonvanishing part of) Lemma 4.1.9, the collection of ratios

P C
univ.fC/P

�
univ.f�/

Q.fC; f�/

for f˙ running over .….B/A˙/
~
K with 	.B/D�1 defines an element

L.A/ 2 .LieAC˝FM LieA�/˝FM D.A;Cp/:

It actually belongs to .LieAC˝FM LieA�/˝FM D.A;MF lt
p / by the lemma below.

We need to show that the element

L.A/ 2 .LieAC˝FM LieA�/˝FM D.A;MF lt
p /

introduced in Definition 4.4.7 satisfies (3.4). However, this follows from Corollary
4.3.5.

The uniqueness follows from the fact that
S
k�1„.!A;Cp/k is dense in C.!A;

Cp/, which we already used in the construction of L.A/.

LEMMA 4.4.6
The element L.A/ belongs to .LieAC˝FM LieA�/˝FM D.A;MF lt

p /.

Proof
Note that, in the definition of L.A/, we only need to consider f˙ 2 .….B/A˙/

~

MF lt
p

such that both fC and ….B/A�.J/f� are invariant under O�
Pc . Then the lemma fol-

lows if we can show that, for every � 2
S
k�1„.A;Cp/

0
k

and � 2 Gal.Cp=MF lt
p /,

we have

�
˝
!˙;P

˙
univ.f˙/.�/

˛
D

˝
!˙;P

˙
univ.f˙/.� ı �/

˛
: (4.7)

Without loss of generality, we consider the one for f C. As in the proof of Lemma
4.3.3, we have the equality˝

!C;P
C
univ.fC/.�/

˛
D C

X
E�nA1�

E
=V pO�

Ep

‚k�1
ord .f

�
C!C/ord.‡CTtP

C/ �!�k
� .‡CTtP

C/ � �.t/;

where C is a positive rational constant. However, the product ‚k�1
ord .f

�
C!C/ord � !

�k
�

is naturally an element in M0
[
.1;MF lt

p / (Definition 2.3.8), and � can be viewed as an
element in N C.1;Cp/ (Section 4.2). Thus, (4.7) holds, and the lemma follows.
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Definition 4.4.7 (p-adic L-function)
We call the element

L.A/ 2 .LieAC˝FM LieA�/˝FM D.A;MF lt
p /

in the proof of Theorem 3.2.10 the anti-cyclotomic p-adic L-function attached to A.

Proof of Theorem 3.3.2
It follows from Propositions 4.3.6 and 4.1.6.

Appendices

A. Compatibility of logarithm and Coleman integral
In this appendix, we generalize a result of Coleman [8] about the compatibility of the
p-adic logarithm and Coleman integral. This result will only be used in the proof of
Proposition 4.3.6.

Let F be a local field contained in Cp with ring of integers OF and residue
field k. Let X be a quasiprojective scheme over F , and let U � X rig be an affinoid
domain with good reduction. We say a closed rigid analytic 1-form ! on U is Frobe-
nius proper if there exist a Frobenius endomorphism � of U and a polynomial P.X/
over Cp such that P.��/! is the differential of a rigid analytic function on U and
such that no root of P.X/ is a root of unity. Therefore, by [8, Theorem 2.1], there
exists a locally analytic function f! on U.Cp/, unique up to an additive constant on
each geometric connected component, such that
� df! D !;
� P.��/f! is rigid analytic.
Such f! is known as a Coleman integral of ! on U , which is independent of the
choice of P (see [8, Corollary 2.1(b)]).

PROPOSITION A.0.1
Let X and U be as above. Let A be an Abelian variety over F which has either totally
degenerate reduction or potentially good reduction. Then for a morphism f W X!A

and a differential form ! 2 �1.A=F /, the form f �!jU is Frobenius proper, which
admits f � log! jU as a Coleman integral, where log! W A.Cp/! Cp is the p-adic
logarithm associated to !.

Proof
We may assume that X is projective. Replacing F by a finite extension, we may
assume that A has good reduction or split totally degenerate reduction (i.e., the con-
nected neutral component Aı

s of the special fiber As of the Néron model A of A is
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isomorphic to Gd
m;k

, where d is the dimension of A). The first case follows from [8,
Theorem 2.8 and Proposition 2.2].

Now we consider the second case. Denote by Aı
� the analytic domain of Arig

of points whose reduction is in Aı
s . By a well-known result of uniformization from

[20, Section 6], we have Arig ' .Grig
m;F /

d=ƒ for a lattice ƒ � Gdm;F .F /. Moreover,
Aı
� is isomorphic to SpF hT1; : : : ; Td ; T �1

1 ; : : : ; T �1
d
i, the rigid analytic multitorus of

multiradius 1.
Choose an admissible covering U of X rig containing U , which determines a for-

mal model XU of X over OF . Since X is projective, we may assume that XU is
algebraic. Let Z be the nonsmooth locus of XU over OF . The set of closed points of
X whose reduction is not inZ forms an analytic domainW ofX rig. Since U has good
reduction, we have U �W . By the Néron mapping property, the morphism f extends
uniquely to a morphism XU � Z! A, which induces a morphism f 0 W U ! Arig.
Without loss of generality, we assume that f 0.U / is contained in Aı

� . By [8, Propo-
sition 2.2], we only need to show that !jAı

�
is Frobenius proper and log! jAı

�
is a

Coleman integral of it.
In fact, we have®

!jAı
�

ˇ̌
! 2�1.A=F /

¯
D SpanF

°dT1
T1

; : : : ;
dTd

Td

±
:

By linearity, we may assume !ı WD !jAı
�
D dT1

T1
. We choose the Frobenius endo-

morphism on Aı
� to be given by �..T1; : : : ; Td //D .T

q
1 ; : : : ; T

q

d
/, where q D jkj. We

have that P.��/!ı D 0 for P.X/DX � q. On the other hand, the p-adic logarithm
log on SpF hT1; T �1

1 i is also killed by P.��/. Therefore, the function .log; 1; : : : ; 1/
on SpF hT1; T �1

1 i � � � � � SpF hTd ; T �1
d
i 'Aı

� is a Coleman integral of !ı, which
coincides with the restriction of log! .

B. Serre–Tate local moduli for O-divisible groups (following N. Katz)
In this appendix, we describe the Kodaira–Spencer isomorphism for ordinary O-
divisible groups in terms of their Serre–Tate coordinates, generalizing a classical
result of Katz [17, Theorem 3.7.1] which is for ordinary p-divisible groups. Only
Theorems B.1.1 and B.2.3 will be used in the main part of the article. Some notation
in this appendix may be different from that in Section 1.8.

B.1. O-Divisible groups and Serre–Tate coordinates
Let F be a finite field extension of Qp , where p is a rational prime. Denote by MF the
completion of a maximal unramified extension of F . The ring of integers of F (resp.,
MF ) is denoted by O (resp., MO). Let k be the residue field of MO, which is an algebraic

closure of Fp . For a p-divisible group G over SpecR, we denote by �.G=R/ the
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R-module of invariant differentials of G over R, which is the dual R-module of the
tangent space Lie.G=R/ at the identity.

Let S be an MO-scheme. Recall that an O-divisible group over S is a p-divisible
group G over S with an action by O such that the induced action of O on the sheaf
Lie.G=S/ coincides with the natural action as an OS -module (hence, an O-module).
Denote by BTO

S the category of O-divisible groups over S , which is an Abelian cate-
gory. We omit the superscript O if it is Zp . The height h of G, as a p-divisible group,
must be divisible by ŒF W Qp�. We define the O-height of G to be ŒF W Qp��1h. An
O-divisible group G is connected (resp., étale) if its underlying p-divisible group is.
We denote by LT the Lubin–Tate O-formal group over Spec MO, which is unique up
to isomorphism. We use the same notation for its base change to S .

For an O-divisible group G over S , there exists an O-formal group G0 over S ,
unique up to isomorphism, such that its associated p-divisible group G0Œp1� is the
maximal connected subgroup of G. In particular, G0Œp1� is an O-divisible group.
We define the O-Cartier dual of G to be

GD WD lim
�!
n

HomO

�
GŒpn�;LT Œpn�

�
as in [11]. An O-divisible group G is ordinary if .G0Œp1�/D is étale. Denote by
TpG D lim

 �n
GŒpn� the Tate module functor. Denote by Nilp MO

the category of MO-
schemes on which p is locally nilpotent.

THEOREM B.1.1 (Serre–Tate coordinates)
Let G be an ordinary O-divisible group over k. Consider the moduli functor MG

on Nilp MO
such that, for every MO-scheme S on which p is locally nilpotent, MG.S/

is the set of isomorphism classes of pairs .G;'/, where G is an object in BTO
S and

' W G�S .S˝ MO
k/!G�Speck .S˝ MO

k/ is an isomorphism. Then MG is canonically

pro-represented by the MO-formal scheme HomO.TpG.k/˝O TpGD.k/;LT /.
In particular, for every Artinian local MO-algebra R with the maximal ideal mR

and G=R a deformation of G, we have a pairing

q.G=RI �; �/ W TpG.k/˝O TpGD.k/!LT .R/D 1CmR:

It satisfies the following.
(1) For every ˛ 2 TpG.k/ and ˛D 2 TpGD.k/, we have

q.G=RI˛;˛D/D q.G
D=RI˛D; ˛/:

(2) Suppose that we have another ordinary O-divisible group H over k and its
deformation H over R. Let f W G!H be a homomorphism, and let fD be its
dual. Then f lifts to a (unique) homomorphism f W G!H if and only if
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q.G=RI˛; fDˇD/D q.H=RI f˛;ˇD/

for every ˛ 2 TpG.k/ and ˇD 2 TpHD.k/.

By abuse of notation, we will use MG to denote the formal scheme
HomO.TpG.k/˝O TpGD.k/;LT /. The proof of the theorem follows exactly that
of [17, Theorem 2.1].

Proof
The fact that MG is pro-presentable is well known. Now we determine the represent-
ing formal scheme.

Since G is ordinary, we have a canonical isomorphism

G'G0Œp1�� TpG.k/˝O F=O:

By the definition of O-Cartier duality, we have a morphism

epn W GŒpn��GDŒpn�!LT Œpn�:

The restriction of the first factor to G0Œpn� gives rise to an isomorphism

G0Œpn�
�
�!HomO

�
GDŒpn�.k/;LT Œpn�

�
of group schemes over k preserving O-actions. Passing to the limit, we obtain an
isomorphism of O-formal groups over k

G0
�
�!HomO

�
TpGD.k/;LT

�
;

which induces a pairing

EG W G0 � TpGD.k/!LT :

Let G=R be a deformation of G. Then we have an extension

0 G0Œp1� G TpG.k/˝O F=O 0 (B.1)

of O-divisible groups. We have pairings

EG;pn W G0Œpn��GDŒpn�!LT Œpn�;

EG W G
0 � TpGD.k/!LT ;

which lift epn and EG, respectively.
Similar to the p-divisible group case, the extension (B.1) is obtained from the

extension
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0 TpG.k/ TpG.k/˝O F TpG.k/˝O F=O 0

by pushing out along a unique O-linear homomorphism

'G=R W TpG.k/!G0.R/:

The homomorphism 'G=R may be recovered from (B.1) in the way described in [17,
p. 151]. It is the composite

TpG.k/! TpGŒpn�.k/
hpni
���!G0.R/

for every n� 1 such that mnC1
R D 0. Therefore, from G=R, we obtain a pairing

q.G=RI �; �/DEG.R/ ı .'G=R; id/ W TpG.k/˝O TpGD.k/!LT .R/D 1CmR:

This shows that the functor MG is canonically pro-represented by the MO-formal
scheme HomO.TpG.k/˝O TpGD.k/;LT /.

For (2), if the given homomorphism f W G!H can be lifted to f W G!H , then
we must have the commutative diagram

0 HomO

�
TpGD.k/;LT Œp1�

�
ıTp fD.k/

G

f

TpG.k/˝O F=O

Tp f.k/˝OF=O

0

0 HomO

�
TpHD.k/;LT Œp1�

�
H TpH.k/˝O F=O 0:

Conversely, if we may fill f in the above diagram, then f lifts.
The existence of the middle arrow is equivalent to the pushout of the top extension

by the left arrow being isomorphic to the pullback of the lower extension by the right
arrow. The above-mentioned pushout is an element in

ExtBTO
R

�
TpG.k/˝O F=O;HomO

�
TpHD.k/;LT Œp1�

��
;

which is isomorphic to

HomO

�
TpG.k/˝O TpHD.k/;LT .R/

�
by the bilinear pairing

.˛;ˇD/ 7! q.G=RI˛; fDˇD/:

Similarly, the above-mentioned pullback is an element in

HomO

�
TpG.k/˝O TpHD.k/;LT .R/

�
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defined by the bilinear pairing

.˛;ˇD/ 7! q.H=RI f˛;ˇD/:

It remains to prove (1). Choose n such that mnC1
R D 0. Then both G0.R/ and

.GD/0.R/ are annihilated by pn. Denote by ˛.n/ the image of ˛ under the canonical
projection TpG.k/! GŒpn�.k/ and similarly for ˛D.n/. By construction, we have
'G=R.˛/D hp

ni˛.n/ 2 G0.R/ and 'GD=R.˛D/D hp
ni˛D.n/ 2 .G

D/0.R/. There-
fore, we have

q.G=RI˛;˛D/DEG;pn

�
hpni˛.n/;˛D.n/

�
:

Similarly, we have q.GD=RI˛D; ˛/DEGD ;pn.hpni˛D.n/; ˛.n//.

The remaining argument is formal, and one only needs to replace bGm (resp.,
Abelian varieties) by LT (resp., O-divisible groups) in the proof of [17, Theorem 2.1].
In particular, we have the following. Given an integer n � 1 and elements x 2
G0Œpn�.R/ and y 2 GDŒpn�.k/, there exist an Artinian local ring R0 that is finite
and flat over R and a point Y 2GDŒpn�.R0/ lifting y. For every such R0 and Y , we
have the equality EG;pn.x; y/D epn.x;Y / inside LT .R0/.

B.2. Main theorem
We fix an ordinary O-divisible group G over k. Denote by R the coordinate ring of
MG, which is a complete MO-algebra. We have the universal pairing

q W TpG.k/˝O TpGD.k/!LT .R/�R�:

Therefore, we may regard q.˛;˛D/ as a regular function on MG. For each O-linear
form ` 2HomO.TpG.k/˝O TpGD.k/;O/, denote by D.`/ the translation-invariant
continuous derivation of R given by

D.`/q.˛;˛D/D `.˛˝ ˛D/ � q.˛;˛D/:

By abuse of notation, we also denote by D.`/ the corresponding map �
R= MO
!R.

Denote by G the universal O-divisible group over MG. We choose a logarithm log W
LT ! bGa over MO ˝ Q such that !0 WD log� dT is a generator of the free rank 1
MO-module �.LT = MO/.

Let R be as in Theorem B.1.1, and let G=R be a deformation of G. We have the
canonical isomorphism of O-modules


G W TpGD.k/
�
�!HomBTO

R

�
G0Œp1�;LT Œp1�

�
:

Define the O-linear map !G W TpGD.k/!�.G=R/ by the formula

!G.˛D/D 
G.˛D/
�!0 2�.G

0=R/D�.G=R/:
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Let LG W HomO.TpGD.k/;O/! Lie.G=R/ be the unique O-linear map such that

!G.˛D/ �LG.˛
_
D/D ˛D � ˛

_
D 2O:

In fact, the R-linear extensions

!G W TpGD.k/˝O R!�.G=R/

and

LG W HomO

�
TpGD.k/;R

�
! Lie.G=R/

are isomorphisms. Similarly, we have an isomorphism


G_ W TpG.k/D TpGKet.k/D TpG
Ket.R/

�
�!HomBTR

�
.G Ket/_;bGmŒp1�

�
;

which induces an isomorphism

TpG.k/˝Zp
R

�
�!�

�
.G Ket/_=R

�
by pulling back the differential form dT

T
on bGm. It further induces an isomorphism

!G_ W TpG.k/˝O RD
�
TpG.k/˝Zp

R
�

O

�
�!�

�
.G Ket/_=R

�
O
:

Here, the subscript O denotes the maximal flat quotient on which O acts via the
structure map. By construction, we have the following lemma of functoriality.

LEMMA B.2.1
Let f W G! H be as in Theorem B.1.1, and let f W G ! H be a homomorphism
lifting f. Then the following hold.
(1) We have ..f Ket/_/�.!G_.˛//D !H_.f˛/ for every ˛ 2 TpG.k/, where f Ket W

G Ket!H Ket is the induced homomorphism on the étale quotient.
(2) We have f�.LH .˛

_
D//DLG.˛

_
D ı f

D/ for every ˛_
D 2HomO.TpGD.k/;O/.

Denote by D.G/ the (contravariant) Dieudonné crystal of G. We have the exact
sequence

0 �.G_=R/ D.G_/R Lie.G=R/ 0

and the Gauss–Manin connection

r W D.G_/R!D.G_/R˝R �R= MO
:

They together define the (universal) Kodaira–Spencer map
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KS W �.G_=R/! Lie.G=R/˝R �R= MO
;

which factors through the quotient �.G_=R/!�.G_=R/O . The following lemma
is immediate.

LEMMA B.2.2
The natural map �.G_=R/O!�..GKet/_=R/O is an isomorphism.

In particular, we may regard !G_ as a map from TpG.k/ to �.G_=R/O . The
following result on the compatibility of the Kodaira–Spencer map and the Serre–Tate
coordinate is the main theorem of this appendix.

THEOREM B.2.3
We have the equality

!G.˛D/ �KS
�
!G_.˛/

�
D d log

�
q.˛;˛D/

�
in �

R= MO
for every ˛ 2 TpG.k/ and ˛D 2 TpGD.k/.

Note that the definition of !G, but not !G_ , depends on the choice of log, which
is compatible with the right-hand side.

B.3. Frobenius
Denote by � the Frobenius automorphism of MO such that O D MO
D1. Put X
 D
X ˝ MO;


MO for every MO-(formal) scheme X , let †X W X
 !X be the natural projec-

tion, and let FX W X!X
 be the relative Frobenius morphism which is MO-linear. We
omit the subscript X if it is MG.

LEMMA B.3.1
We have the following results.
(1) There is a natural isomorphism

M

G

�
�!MG�

under which the regular function q.�.˛/; �.˛D// is mapped to †�q.˛;˛D/.
(2) Under the map †.GKet/_ W .G


 Ket/_ ' ..G Ket/_/
 ! .G Ket/_, we have

†�
.GKet/_

!G_.˛/D !.G� /_.�˛/

for every ˛ 2 TpG.k/.
(3) Under the map FG W G!G
 , we have
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FG�LG.˛
_
D/DLG� .˛_

D ı �
�1/

for every ˛_
D 2HomO.TpGD.k/;O/.

Proof
The proof is the same as that for [17, Lemmas 4.1.1 and 4.1.1.1].

From now on, we choose a uniformizer $ of F , which gives rise to an isomor-
phism LT 
 'LT . In particular, we may identify .GD/
 and .G
 /D . For a deforma-
tion G=R of G, we denote by G0=R the quotient of G by the subgroup G0Œ$�. The
induced projection map

FG W G!G0

lifts the relative Frobenius morphism

FG W G!G
 :

Define the Verschiebung to be

VG D .FGD /D W G
 'GD
D!G:

Note that the isomorphism depends on $ .

LEMMA B.3.2
For ˛ 2 TpG.k/ and ˛D 2 TpGD.k/, we have formulas
(1) FG.˛/D �˛ and VG.�˛/D$˛D; and
(2) q.G0=RI�˛;�˛D/D$:q.G=RI˛;˛D/.

Proof
The proof is the same as that of [17, Lemma 4.1.2], with VG ı FG D$ .

LEMMA B.3.3
For ˛ 2 TpG.k/ and ˛_

D 2HomO.TpGD.k/;O/, we have formulas
(1) ..F Ket

G /
_/�!G_.˛/D !G0_.�˛/; and

(2) FG�LG.˛
_
D/D$LG0.˛_

D ı �
�1/.

Proof
It follows from Lemmas B.2.1 and B.3.2.

If we apply the construction to the universal object G, we obtain a formal defor-
mation G0=R of G
 . Its classifying map is the unique morphism
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ˆ W MG!MG�

�
�!M


G

such that ˆ�G
 'G0. Therefore, we may regard FG as a morphism

FG W G!ˆ�G


of O-divisible groups over MG. Taking the dual, we have

F _
G W ˆ

�G
_ ' .ˆ�G
 /_!G_:

LEMMA B.3.4
We have the following statements.
(1) The map !G_ W TpG.k/˝O R!�.G_=R/O induces an isomorphism

TpG.k/
�
�!�.G_=R/1O WD

®
! 2�.G_=R/O

ˇ̌
.F _

G /
�! Dˆ�†�

G_!
¯

of O-modules.
(2) The map LG W HomO.TpGD.k/;R/! Lie.G=R/ induces an isomorphism

HomO

�
TpGD.k/;O

�
�
�! Lie.G=R/0 WD

®
ı 2 Lie.G=R/

ˇ̌
FG�ıD$ˆ

�FG�ı
¯

of O-modules.

Proof
It can be proved in the same way as [17, Corollary 4.1.5] by using Lemmas B.3.1 and
B.3.3.

Consider the following commutative diagram:

0 �.G_=R/O
a

.F _
G
/�

�
D.G_/R

�
O

b

D.F_
G /

Lie.G=R/

FG�

0

0 �.G0_=R/O
�
D.G
_/R

�
O

Lie.G0=R/ 0

0 �.G_=R/O

ˆ�ı†�
G_ �

D.G_/R
�

O

D.†G_ /

Lie.G=R/

ˆ�ıFG�

0

(B.2)

For k 2 Z, we define O-modules
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D.G_/kR D
®
� 2

�
D.G_/R

�
O

ˇ̌
D.F_

G/� D$
1�kD.†G_/�

¯
D

®
� 2

�
D.G_/R

�
O

ˇ̌
D.V_

G/D.†G_/� D$k�
¯
:

LEMMA B.3.5
The maps !G_ and a in (B.2) together induce an isomorphism

a1 W TpG.k/
�
�!D.G_/1R

of O-modules. The maps LG and b in (B.2) together induce an isomorphism

b0 W D.G_/0R
�
�!HomO

�
TpGD.k/;O

�
of O-modules.

Proof
For the first part, by a similar argument to that in [17, Lemma 4.2.1], we know that
b.�/D 0 for � 2D.G_/1

R
, that is, � is in the image of a. The conclusion then follows

from Lemma B.3.4(1).
For the second part, it is easy to see that Im.a/ \ D.G_/0

G
D ¹0º by choos-

ing an O-basis of TpG.k/. Therefore, b restricts to an injective map D.G_/0
R
!

Lie.G=R/0. We only need to show that this map is also surjective. For every ı 2
Lie.G=R/0, choose an element �0 2 .D.G_/R/O . Put �nC1 D D.V_

G/D.†G_/�n for
n� 0. Then b.�n/D ı, and ¹�nº converge to an element � 2D.G_/0

R
.

LEMMA B.3.6
For every ` 2HomO.TpG.k/˝O TpGD.k/;O/, the action ofD.`/ under the Gauss–
Manin connection on .D.G_/R/O satisfies the formula

D.`/
�
r

�
D.V_

G/D.†G_/�
��
D$D.V_

G/D.†G_/
�
D.`/.r�/

�
for every � 2 .D.G_/R/O .

Proof
It is proved in the same way as [17, Lemma 4.3.3].

LEMMA B.3.7
If � 2 .D.G_/R/O satisfies D.V_

G/D.†G_/� D 
� for some 
 2 MO, then for every
` 2HomO.TpG.k/˝O TpGD.k/;O/, the elementD.`/.r�/ 2 .D.G_/R/O satisfies

$D.V_
G/D.†G_/

�
D.`/.r�/

�
D 
D.`/.r�/:
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Proof
It follows immediately from Lemma B.3.6.

PROPOSITION B.3.8
For ˛ 2 TpG.k/ and ˛D 2 TpGD.k/, there exists a unique character Q.˛;˛D/ of
MG such that

!G.˛D/ �KS
�
!G_.˛/

�
D d logQ.˛;˛D/:

Proof
Let ¹˛iº (resp., ¹˛D;j º) be an O-basis of TpG.k/ (resp., TpGD.k/). Let ¹`i;j º be
the basis of HomO.TpG.k/˝O TpGD.k/;O/ dual to ¹˛i ˝ ˛D;j º. Then for every
element � 2 .D.G_/R/O , we have

r� D
X
i;j

D.`i;j /.r�/˝ d logq.˛i ; ˛D;j /:

In particular, for � D !G_.˛/, we have

r!G_.˛/D
X
i;j

D.`i;j /
�
r!G_.˛/

�
˝ d logq.˛i ; ˛D;j /:

By Lemmas B.3.4 and B.3.7, r!G_.˛/ 2 D.G_/0
R

. Therefore, there exist unique
elements ˛_

D;i;j 2HomO.TpGD.k/;O/ such that

r!G_.˛/D b�1
0 .˛_

D;i;j /

for every i , j . By definition,

KS
�
!G_.˛/

�
D

X
i;j

LG.˛
_
D;i;j /˝ d logq.˛i ; ˛D;j /;

and

!G.˛D/ �KS
�
!G_.˛/

�
D d log

�Y
i;j

q.˛i ; ˛D;j /
˛D 
˛_

D;i;j

�
:

The above proposition has the following two corollaries.

COROLLARY B.3.9
For elements ˛ 2 TpG.k/, ˛D 2 TpGD.k/, and ` 2 HomO.TpG.k/˝O TpGD.k/;
O/, we have that D.`/.!G.˛D/ �KS.!G_.˛/// is a constant in O.
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COROLLARY B.3.10
Suppose that, for every integer n� 1, we can find a homomorphism fn W R! MO=pn

such that

fn
�
D.`/

�
!G.˛D/ �KS

�
!G_.˛/

���
D `.˛˝ ˛D/

holds in MO=pn. Then QD q, and Theorem B.2.3 follows.

The condition of this corollary is fulfilled by Theorem B.4.2. Therefore, we have
reduced Theorem B.2.3 to Theorem B.4.2 in the next section.

B.4. Infinitesimal computation
Let R be an (Artinian) local MO-algebra with the maximal ideal mR satisfying
m
nC1
R D 0. Let G=R be the canonical deformation of G. Let QG be a deformation

of G to QR WDRŒ"�=."2/, which gives rise to a map @ W �.G_=R/! Lie.G=R/. Note
that the target Lie.G=R/ may be identified with Ker.G0. QR/!G0.R//.

LEMMA B.4.1
The reduction map TpG.R/! TpG.k/ is an isomorphism.

Proof
It follows from the same argument as in [17, Lemma 6.1].

In particular, we may define maps 
G_ W TpG.k/!HomBTR
.G_;bGmŒp1�/ and

!G_ W TpG.k/!�.G_=R/: (B.3)

THEOREM B.4.2
The Serre–Tate coordinate for QG= QR satisfies

q. QG= QRI˛;˛D/D 1C "!G.˛D/ � @
�
!G_.˛/

�
:

LEMMA B.4.3
For ˛D 2 TpGD.k/ and ˛ 2Ker.G0. QR/!G0.R//D Lie.G=R/, we have

EG.˛;˛D/D 1C "!G.˛D/˛:

Proof
By functoriality, we only need to prove the lemma for the universal object G=R. By
definition,

1C "!G.˛D/˛D 1C "
�

G.˛D/�˛ �!0

�
2LT . QR/:
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We also have


G.˛D/�˛ �!LT D
�
logı
G.˛D/

�
�
˛ � dT

in RŒp�1�. Therefore, we have the equality

EG.˛;˛D/D 1C "!G.˛D/˛

in Ker.LT . QRŒp�1�/!LT .RŒp�1�//.

For an integer N > n, denote by ˛N the image of ˛ in GŒpN �.R/. Let Q̨N 2
QG. QR/ be an arbitrary lifting of ˛N . Then

pN Q̨N 2Ker
�
QG. QR/!G.R/

�
DKer

�
QG0. QR/!G0.R/

�
' Lie.G=R/:

This process defines a map 'G W TpG.R/! Lie.G=R/.

PROPOSITION B.4.4
We have @!G_.˛/D 'G.˛/ for every ˛ 2 TpG.R/.

Assuming the above proposition, we prove Theorem B.4.2.

Proof of Theorem B.4.2
It is clear that G0Œp1� ˝R QR is the unique, up to isomorphism, deformation of
G0Œp1� to QR. Then the deformation QG corresponds to the extension

0 G0Œp1�˝R QR QG TpG.k/˝O F=O 0:

In particular, we may identify QG0 with G0˝R QR. We have

Ker
�
QG. QR/!G.R/

�
DKer

�
QG0. QR/!G0.R/

�
DKer

�
G0. QR/!G0.R/

�
D Lie.G0=R/:

For D 2 Lie.G0=R/, we have

E QG.D; �/DEG.D; �/ W TpGD.k/' Tp
�
G0Œp1�

�D
.k/!LT . QR/;

where in the pairing E QG (resp., EG ), we view D as an element in QG0. QR/ (resp.,
G0. QR/). For ˛D 2 TpGD.k/, we have

EG.D;˛D/D 1C "!G.!˛/D

by definition. Therefore, Theorem B.4.2 follows from Proposition B.4.4 and the con-
struction of q.
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The rest of the appendix is devoted to the proof of Proposition B.4.4. We will
reduce it to certain statements from [17] about Abelian varieties. It is an interesting
problem to find a proof purely using O-divisible groups.

Recall that ordinary O-divisible groups over k are classified by their dimension
and O-height. Let Gr;s be an O-divisible group of dimension r and O-height r C s
with r � 0 and r C s > 0.

Proof of Proposition B.4.4
Choose a totally real number field EC such that F ' EC ˝Q Qp , and choose an
imaginary quadratic field K in which pD pCp� splits. Put E DEC˝QK . Suppose
that �1; �2; : : : ; �h are all complex embeddings of EC. Consider the data .Ar;s; �; i/
where
� Ar;s is an Abelian variety over k;
� � W Ar;s!A_

r;s is a prime-to-p polarization;
� i W OE ! Endk Ar;s is an OE -action which sends the complex conjugation on

OE to the Rosati involution and such that, in the induced decomposition

Ar;sŒp1�DAr;sŒp1�C˚Ar;sŒp1��

of the OE ˝Zp-module Ar;sŒp1�, the summand Ar;sŒp1�C is isomorphic to
Gr;s as an O-divisible group.

It is clear that the polarization � induces an isomorphism Ar;sŒp1�C
�
�!

.Ar;sŒp1��/_. By the Serre–Tate theorem, MGr;s
also parameterizes deformation of

the triple .Ar;s; �; i/. In what follows, we fix r , s and suppress them from notation.
Let R be as in Theorem B.1.1, let A=R be the canonical deformation of A=k, and let
QA be a deformation of A to QR such that QG ' QAŒp1�C.

There is a similar map (B.3) for A, and we have !G_.˛/ D !A_.˛/ for ˛ 2
TpG.R/� TpA.R/, where we view �.G_=R/ as a submodule of H0.A_;�1

A_=R
/.

Moreover, the map 'G W TpG.R/! Lie.G=R/ can be extended in the same way to
a map 'A W TpA.R/! Lie.A=R/. Then Proposition B.4.4 follows from [17, Lemma
5.4 and Section 6.5], where the argument uses normalized cocycles and does not
require A to be ordinary in the usual sense.
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