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On the averaged Colmez conjecture

By XINYI YUAN and SHOU-WU ZHANG

Abstract

The Colmez conjecture is a formula expressing the Faltings height of
an abelian variety with complex multiplication in terms of some linear
combination of logarithmic derivatives of Artin L-functions. The aim of
this paper to prove an averaged version of the conjecture, which was also
proposed by Colmez.
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1. Introduction

1.1. Statements. First let us recall the definition of Faltings heights in-
troduced by Faltings [Fal83]. Let A be an abelian variety of dimension g
over a number field K, and let A be the relative identity component of the
Néron model of A over Ox. Assume that A is semi-abelian. Denote by
Q(A) = Lie(A)Y the sheaf of invariant differential 1-forms on A. Let w(.A)
be a metrized line bundle over Spec O, whose finite part is defined as

w(A) :=det Q(A)

and whose metric || - ||, at each archimedean place v of K is given by

1

ol = gz [, o]0 A B @ (A = T4 0

Then Faltings [Fal83, §3] defines a moduli-theoretic height h(A) by

h(A) = @d@; 5(A).

Since A is semi-abelian, this height is invariant under base change.
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Now let us state our main result as conjectured by Colmez. Let E be
a CM field of degree [E : Q] = 2g, with the maximal totally real subfield F’
and a complex conjugation ¢ : E — E. Let & C Hom(E,C) be a CM type,
i.e., a subset such that ® N ®¢ = () and ® U ®° = Hom(E,C). Let Agp be a
CM abelian variety over C of CM type (Op,®). By the theory of complex
multiplication, there is a number field K in C such that Ag is defined over K
and has a smooth and projective integral model A over Og. Colmez proved
that the height h(Ag) depends only on the CM type ®. Thus we may denote
this height by h(®).

Colmez gave a conjectural formula expressing the precise value of h(Ag)
in terms of linear combinations of logarithmic derivatives of Artin L-functions
determined by ®. See [Col93, Th. 0.3, Conj. 0.4]. When E/Q is abelian,
the conjecture was proved up to rational multiples of log 2 in the same paper,
and later the rational multiples were eliminated by Obus [Obul3]. When
[E : Q] = 4, the conjecture was essentially proved by Yang [Yanl0], [Yan13].

The goal of this paper is to prove the following averaged formula for general
CM fields using techniques in the proof of the Gross—Zagier formula ([GZ86])
and its generalization ([YZZ13]).

THEOREM 1.1. Let E/F be a CM extension, let n = ne/r be the corre-
sponding quadratic character of A%, and let dp (resp. dp/r) be the absolute
discriminant of F (resp. the norm of the relative discriminant of E/F). Then

1 1 L(0,
SN (@) = —= f( n)
29 r 2Lf(0,7])

where ® runs through the set of all CM types of E, and L¢(s,n) is the finite
part of the completed L-function L(s,n).

1
1 log(dg,rpdr),

The averaged formula was explicitly stated in [Col93, p. 634] with some
typo. Note that we use a different normalization of the Faltings height.

Remark 1.2. Note that the above theorem can be reformulated as an arith-
metic expression for L'(0,7n). This expression is analogous to the class number
formula

H
(0,m) s

where 2% H, and w are respectively the ratios of regulators, class numbers,
and the number of roots of unity of the fields E and F.

Remark 1.3. When FE is an imaginary quadratic, the Colmez conjecture
can be deduced from the Chowla—Selberg formula in [SC67]. Our method
(and also the method of Yang [Yanl0], [Yanl3]) thus gives a different proof
of the Chow—Selberg formula. Another very interesting geometric proof of
the Chowla—Selberg formula was discovered by Gross [Gro78]. He also made
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a conjecture with Deligne for the periods of motives with CM by an abelian
field. Anderson [And82] reformulated the conjecture of Deligne and Gross in
terms of the logarithmic derivatives of odd Dirichlet L-functions at s = 0. All
these predictions were only up to algebraic numbers. Colmez used the Faltings
height instead of just the archimedean periods to make the conjectures precise.

Remark 1.4. Andreatta, Goren, Howard and Madapusi-Pera [AGHMP18]
prove the averaged Colmez conjecture independently. Their proof uses integral
models of high-dimensional Shimura varieties and is based on the method of
Yang [Yan10], [Yan13].

Remark 1.5. By the recent work of Jacob Tsimerman [Tsil8], the theorem
implies the Andre—QOort conjecture for Siegel abelian varieties: Let X be a
Shimura variety of abelian type over C. Let Y C X be a closed subvariety
which contains a Zariski dense subset of special points of X. Then Y 1is a
special subvariety.

Theorem 1.1 is a direct consequence of Theorems 1.6 and 1.7 below. The
proof of each of the latter two theorems forms a part of this paper, so this
paper is naturally divided into two parts. Theorem 1.6 is proved in Part I;
Theorem 1.7 is proved in Part II.

1.2. Faltings heights. Part I (Sections 2-5) of this paper is devoted to
reducing Theorem 1.1 to a Gross—Zagier type formula on quaternionic Shimura
curves. In the following, for quaternionic Shimura curves, Hodge bundles and
CM points, we will use the terminology of [YZZ13, §§1.2, 1.3, 3.1]

Fix a CM extension E/F as above. Let B be a totally definite incoherent
quaternion algebra over A := Ap. Assume that there is an embedding Ag <— B
over A, and fix one throughout this paper. For each open compact subgroup
U of IBS?, we have a Shimura curve Xy, which is a projective and smooth curve
over F. Let X be the projective limit of Xy;. Then X has a right action by
BF with quotients X/U = Xy.

The Shimura curves Xy do not parametrize abelian varieties but can be
embedded into Shimura curves of PEL types over F.. We will construct integral
models Ay following the work of Carayol [Car86] and Cerednik-Drinfeld [BC91]
and define the Hodge bundle £y (Theorem 4.7).

Assume that U =[] U, is a maximal compact subgroup of IB%? containing

53 Then Xy has a canonical integral model Xy over Op. Let Ly be the
arithmetic Hodge bundle of A7, whose hermitian metric at an archimedean
place v is given by

ldz]], = 2Tm(2)

with respect to the usual complex uniformizations by coherent quaternion al-
gebras. See Section 4.2 for the constructions of Xy and L.
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Let Py € Xy (E?) be the image of a point P € X, It has a height
defined by

he, (Py) = deg(Lulp, ),

1
[F(Py): F
where P denotes the Zariski closure of the image of Py in Xyr. The first part

of our paper is to relate this height to the average of the Faltings heights of
CM abelian varieties.

THEOREM 1.6. Let dg be the norm of the product of finite primes of O

over which B is ramified. Assume that there is no finite place of F ramified in
both £ and B. Then

1 1 1
2 % h(®) = Shz, (Pu) — 7 log(dpdr).

We prove this theorem by several manipulations of heights, which are
sketched in the following.

Decomposition of Faltings heights. Let K C C be a number field contain-
ing the normal closure of E over QQ such that any CM abelian variety by O has
a smooth model over Ok. Let A/K be a CM abelian variety of type (O, ®)
and A/Og be the smooth projective integral model. Then we will decompose
the height h(®) into a sum of g terms indexed by 7 € ®,

h(@,7) = JdeE N (A, 7),

where each N'(4, 7) is a hermitian line bundle over Spec O . We will show that
this height depends only on the pair (®,7) in Theorem 2.2 and then denote it
as h(®,7). In Theorem 2.3, we obtain

1
h(®) — h(P,7) = ———=
726;1) A[Eq : Q]
Here Fg is the reflex field of (E, ®) and dg, dge are certain absolute discrimi-
nants of ®, d€.
Let (@1, ®2) be a nearby pair of CM types of E in the sense that |®1N®y| =
g — 1. Let 7; be the complement of ®; N ®9 in ®; for i = 1,2. Define

log(dodge).

h(‘I)l, (I’Q) = %(h(q’l,’ﬁ) + h((I)Q, 7'2)).

We will show that h(®;, P2) does not depend on the choice of (@1, P2) and
that h(®1, ®2) is equal to %h(Ao, 7) for any abelian variety Ay with an action
by Op and isogenous to Ag, X Ag,, where 7 = 7;|p. See Theorem 2.7. Thus
Theorem 1.6 is reduced to the following equality:

1
gh(Ao,7) = hz,, (Pv) — 5 log(dp).
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Assume that A is defined over the number field K containing F'(Py) and has
good reduction over Og. We will prove the above identity by constructing an
isomorphism of hermitian line bundles over Spec O (cf. Proposition 5.7):

(1.2.1) N (Ao, 7) = Nulp,) QOp(py) Ok,

where Ny := Z?](—DE) is a Q-bundle over Xy .

Kodaira—Spencer isomorphisms. We will construct the isomorphism (1.2.1)
by applying Kodaira—Spencer maps for families of abelian varieties, Hodge
structures, and p-divisible groups parametrized by various Shimura curves.
These maps give relations “N = w®?” between invariant differentials of these
objects and differentials of the base curves.

First of all, let (®1,®2) be a nearby pair of CM types of E. Let F’ be
the reflex field of ®; 4+ ®,. Then there is a PEL-type Shimura curve X7, with
minimal level defined over F’ parametrizing the quadruples (A4,4,6, k) of an
abelian variety A, an action i of O on A of type ®; + ®5, a polarization
6 : A — A! inducing complex conjugation on FE, and a level structure & :
Op — IA“(A) On X[, there is a point P/, representing an abelian variety Ag
which is isogenous to Agp, X Ag,. By the Kodaira—Spencer map, there is an
isomorphism

N(Ag,T) =~ w}e}?

v
We will prove an archiemdean Kodaira—Spencer isomorphism (Theorem 3.7)
in terms of hermitian structures using complex uniformization of X”.

There are no natural maps between the Shimura curves Xy and X, over
the reflex fields, even though they have isomorphic connected components over
F. We will construct another Shimura curve X {r» with morphisms Xy — X{j»
and X[, — X{j» so that both points Py and P/, have the same image P[},.

This gives an isomorphism over K required in (1.2.1):
(122) N(Ao,T) — NPU ®F(PU) K.

This isomorphism is in fact an isometry at all archimdean places.

It remains to show that the isomorphism (1.2.2) extends to the isomor-
phism (1.2.1). We need only do this by working on every place of K. For each
prime @’ of F, there is a p-divisible group H” on a certain infinite cover {’,p,
of X/, defined over K' := o+ the completion of the maximal unramified
extension of Fiy. This group restricts to the p-divisible group H' := A[p™]
on X{,p” an infinite cover of Xj;,. On the other hand, on an infinite cover
X1, of Xy over K := FJ', where p := ¢'|F, there is a p-divisible group H
independent of the choice of E. The groups H and H” are related by the Tate
module of a p-divisible group I on Y. See Proposition 5.1.
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We will give a description for Nj g, in terms of the deformation of H via

a Kodaira—Spencer isomorphism (Theorem 4.10). By Proposition 5.1, this

also gives a description of N, ® Opnr in term of the deformation of H”
©

(Corollary 5.5) which is the required extension of the isomorphism (1.2.1) at
places over ¢'.

1.3. Quaternionic heights. Part II (Sections 6-9) of this paper is devoted
to the proof the following height formula on quaternionic Shimura curves. Let
U =T], U, be a maximal open compact subgroup of IB%;? containing the image

of 0% =11, O},

THEOREM 1.7. Assume that at least two places of F' are ramified in B, and
that there is no non-archimedean place of F' ramified in both E and B. Then

L (077]) 1 dIB%
hy (Py)=-—-L1"1" 4] .
2o (1) L¢(0,m) g dg/r

Here dg = N(0p) is the absolute discriminant of B.

We prove this theorem by extending our method of proving the Gross—
Zagier formula in [YZZ13]. Recall that the Gross—Zagier formula is an iden-
tity between the derivative of an L-series of a Hilbert modular form and
the height of a CM point on a modular abelian variety. This formula is
proved by a comparison of the analytic kernel PrI’(0,g,¢) and a geometric
kernel 2Z(g,(1,1),¢) parametrized by a certain modified Schwartz function
¢ € S(B x AX). More precisely, we have proved that the difference

D(ga¢):PTI/(Oagv¢)_2Z(ga(171)’¢)’ geGL2(AF)

is perpendicular to the relevant cusp forms.

The cancellation for the “main terms” of D(g, ¢) eventually implies the
Gross—Zagier formula; however, the cancellation of the “degenerate terms”
imply Theorem 1.7. To retrieve information of these degenerate terms, we
need to compute this difference for a wider class of Schwartz functions ¢ than
those considered in [YZZ13]. In fact, [YZZ13] makes some assumptions on ¢
so that the degenerate terms vanish automatically. In the following, we sketch
some new ingredients of the proof.

Derivative series. By the reduced norm ¢, the incoherent quaternion al-
gebra B is viewed as a quadratic space over A = Ar. Then we have a mod-
ified space S(B x A*) of Schwartz functions with a Weil representation r by
GL2(A) x BX x BX. For each ¢ € S(B x A*) invariant under an open compact
subgroup U x U of IB%;? X IB%;, we have a finite sum of products of the theta
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series and the Eisenstein series

I(s,9.0)u= > > 5(v9)° D r(vg)o(z1,u),

uep? \F* v€P(F)\SL2(F) r1€E

where uyy = F* NU, and P! is the upper triangular subgroup of SLs.

For the decomposition B = Ey + E4j, this function is a linear combination
of the products 6(g, ¢1)-E(s, g, ¢2) of the theta series (g, ¢1) for some coherent
Schwartz functions ¢; € S(Ej), and the Eisenstein series E(s, g, ¢2) for some
incoherent Schwartz functions ¢o € S(Eaj). This implies that 1(0,g,¢) = 0.
Let PrI’(0,g,¢) be the holomorphic projection of the derivative at s = 0 of
I(s,9,9).

In Theorem 7.2, we give a precise formula for PrI’(0, g, ¢) under some
assumptions of Schwartz functions, which particularly includes the following
term:

L'(0,
(1.3.1) (2M+1og\dmpdp\> YooY oy,

pE\F* yeEx

Notice that this term was killed in [YZZ13] by some stronger assumption on
Schwartz functions.

Height series. For any ¢ € S(B x A*) invariant under U x U, we have a
generating series of Hecke operators on the Shimura curve Xj:

Z(g,0)u = Zo(g,0) +wu Y. > r(g)e(x,aqz) ") Z(x)u,

acF* er\]BfX /U

where wy = |u2 N U|, the constant term Zy(g,¢) is a linear combination of
Hodge classes on Xy x Xy, which can be neglected in this paper, and every
Z(z)y is a divisor of Xy x X7 associated to the Hecke operator corresponding
to the double coset UzU. By [YZZ13, Th. 3.17], this series is absolutely
convergent and defines an automorphic form on g € GLg(A) with coefficients
n PiC(XU X XU)(C'

Let P = Py be the CM point of Xy as above, and let Py € Jac(Xy) be
the divisor of degree zero modified by the Hodge classes. Then we can form a
height series

Z(g,0)v = (Z(9,®)u Py, Po)nt,
where the right-hand side is the Neron-Tate height pairing.
In Theorem 8.6, we give a precise formula for Z(g, ¢)y under some assump-
tion of Schwartz functions, which particularly includes the following term:
7;0 (Pv P)
(1.3.2) ——= > >, 9oy, ),

X
[OE : F] uE,u%]\FX yeEx
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where io(P, P) is a modified arithmetic self-intersection number of the Zariski
closure P on the integral model A7;. Notice that this term was killed in [YZZ13]
by some stronger assumption on Schwartz functions.

Finally, Theorem 1.7 essentially follows from an identity between (1.3.1)
and (1.3.2). To get this identity, the idea is to use the theory of pseudo-theta
series in Section 6.2. There is already a basic concept of pseudo-theta series in
[YZZ13], but here we develop a more general theory to cover the degenerate
terms.

Pseudo-theta series. From the explicit formulas in Theorems 7.2 and 8.6,
the difference D(g, ¢) is a finite sum of the so-called pseudo-theta series
A= > > dslgmuwrv(9)e(@u),  geGLyA),
uep\F* zeVi\V
where
S is a finite set of places of F' including all archimedean places,
p C O is a subgroup of finite index,
Vo C V1 C V is a filtration of totally positive definite quadratic spaces of F,
#% € S(V(A®) x A%X) is a Schwartz function outside S, and
e ¢ is a locally constant function on

[ (GL2(F) x (Vi = Vo)(Fy) x Fy)

veS

with some extra smoothness or boundedness conditions.
Notice that a pseudo-theta series usually is not automorphic. But our key
Lemma 6.1 shows that if a sum of pseudo-theta series is automorphic, then we
can replace them by the difference 04,1 — 64,0 of the associated theta series

0a1(9)= D D ru(@ds(l,z,u)ry (9)¢° (z,u),

uep\Fx zeVy
baolg) = Y X ri(9)ds(Lia, u)riy(9)6% @, w).
uep\F* zeVp
Since the weights of these theta series depend only on the dimensions of Vj,
there is a vanishing of some sums of theta series grouped in terms of dim V;.
Combining Lemma 6.1 for D(g, ¢) with some local computation gives the
following identity for the self-intersection of CM points P (Theorem 9.1):

1 Ly(0,m) 1
———io(P,P) = ——— + = log(d dg).
[Og‘ : O;]ZO( ) ) Lf(oyn) + 2 Og( E/F/ B)

This is essentially the desired identity between (1.3.1) and (1.3.2). Now The-
orem 1.7 follows the following arithmetic adjunction formula (Theorem 9.3):

o o PP = g, (P),

which will be proved by explicit local computations.
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Part 1. Faltings heights

The goal of this part is to prove Theorem 1.6. Throughout this part, we
fix a quadratic CM extension E/F.

2. Decomposition of Faltings heights

In this section, we will first decompose h(®) into a sum of components
h(®,7) for each 7 € ®. See Theorem 2.3. This is done by using a hermitian
pairing between Q(Ag) and Q(A%). Then we define the height h(®y, ®2) for
a nearby pair (®1, ®2) of CM types of E (in the sense that ®; NPy has g — 1
elements) as the average of two heights h(®;, 7;), where 7; is the complement
of ®; N Py in ®;. We will end this section by showing that h(®;, P2) can be
computed by any abelian variety isogenous to the product of two CM abelian
varieties with CM types ®; and ®s.

2.1. Hermitian pairings. Let A be a complex abelian variety with space
Q(A) of holomorphic 1-forms. Then we define a metric on the complex line
w(A) = det Q(A) by

1
2 _
= N .
llev]| @) /A(C) | A @]
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In terms of Hodge theory, this norm is given by the following pairing between
det H(A,C) and det Hy(A,Z):

1
(2m)9
where ey is a basis of det H1(A,7Z) = Hoy(A,Z).

Let A? be the dual abelian variety of A. Then we have a uniformization

ANC) = H'(A,04)/H" (A, 2miZ).

led? = [{aAa,ea)l,

This induces the following canonical isomorphisms:
Q(AYY = Lie(A") ~ H'(A,04) ~ H(A) = Q(A).
Thus we have a perfect hermitian pairing
Q(A) x QA" — C.

The hermitian pairing is functorial in the sense that if ¢ : B — A is a
morphism of abelian varieties, then we have

(¢ a,B) = (o, (6")°B),  a€Q(A), BeQB).
Here ¢! : AY — B! denotes the dual morphism.

Taking determinants, this gives a hermitian norm || - || on w(4) ® w(A?).
Using this norm, we obtain the following product formula:

LEMMA 2.1. For any o € det Q(A) and 8 € det Q(A?),
le® - 11811% = llae @ BII*.

Proof. The direct sum of the pairing Q(A) ® Q(A") — C and its complex
conjugate give a perfect hermitian pairing

H'(A,C)® H'(A',C) — C.
This pairing is dual to the canonical perfect pairing
H(A,Z)® H (A", Z) — 27iZ

by the above uniformization of A’. Taking determinants and using the Hodge
decomposition, we obtain the following isomorphism of lines:

w(A) @w(A) ® w(A") @ w(A") ~ C.
This isomorphism is dual to the isomorphism
det Hay(A,Z) ® det Hog(A", Z) — (271)*9Z.
Then we have
lad® - 1811* = (2m) "2 [{a A @, ea)] - [(B A B, ear)]
=@2n) P a®pf-a®f, ea®@en) =ladb|%

In the last step, we use the pairing (e, e4:) = (2mi)%9. O
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Now we assume that A has a multiplication by an order of a number
field E. Then F is either totally real or CM. Let ¢ be the CM involution on
E (which is trivial if F is totally real). Then for each embedding 7 : £ — C,
we have a projection £ ® C — C and a 7-eigencomponent space

W(A,7) :=Q(A) ®ggc,- C.

The action of E on A induces an action of E on A*. More precisely, for any
v € E corresponding to v : A — A, let v act on A’ via ' : A® — A', where the
latter is just the morphism compatible with the pull-back map v* : Pic?(A4) —
Pic’(A). Now we define W (A?, 7) analogously. Then there are decompositions

QA) = @ W(A,T), QA = @ W (A, 7).
T:E—C T:E—C
The above hermitian pairing between Q(A) and Q(A?) is an orthogonal sum of
hermitian parings between W (A, 7) and W (A?, 7¢) for each complex embedding
Tof E.

2.2. Decomposition of heights. Now we assume that A is defined over a
number field K C C with a semi-abelian relative identity component of the
Neron model A over Ok, that A has actions by the ring of integers Op of a
field E, and that K contains the normal closure of E in Q. Then for each
embedding 7 : F — K, we can define the 7-quotient Og-module

W(Av 7-) = Q(A) ®OK®OE,T OK-

The action of E on A induces an action on A? as above, so we define W(A?, )
analogously. Define a line bundle over Spec O by

N(A,7) :=det W(A, 7) @ det W(A", Te).

At each archimedean place v of K, there is a norm || - ||, on N (A, 7) defined as
above. Thus we have a metrized line bundle N'(A,7) := (N,] - ||). We define
the 7-part of the Faltings height:

WA, T) = deg(N(A,7)).

1
2K:Ql

THEOREM 2.2. Assume that A has CM by Op with type ® C Hom(E, K).
Then h(A,T) depends only on the pair (®,T).

Proof. Let B be another abelian variety with CM by Op of type ®. After
a base change, we can assume that A and B are defined over K and have
everywhere good reduction over Og. We can also assume that there is a dual
pair of Op-isogenies over K:

f:A— B, ft: Bt — At
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These isogenies extend to integral models over Of:
f:A— B, ffB — A
They further induce nonzero morphisms of line bundles:
FWB, ) — WA T), WAL Te) — W(B, 7).
Thus we have a rational map of metrized line bundles:
p: N(B,7) — N(A, 7).

Computing the norm of this map gives

BAT) =B = g Y lomllerly

) P<o0 5 K—Qp

Theorem 2.2 will follow from the identity

I lleol,=1

U:K—>@p

for each place p of Q. Notice that this identity is compatible with base changes.
If p = oo, by the above functoriality of the hermitian pairing of invariant forms,
it is easy to see that ¢, is an isometry.

It remains to study the product when p < co. We will use the p-divisible
groups A[p™] and B[p™| over Ok, and analogous space of differential forms.
For a place o of K over a prime p, and an abelian variety X from A, A', B, B¢,
we have identities

QX)s = UX[P™))o, W(X,T)e = W(X[p™], 7)o

Thus we may view ¢, as a morphism of line bundles induced from p-divisible
groups:
Po N(B[poo]v 7—) — N(A[poo]’ T)'
Notice that Homo,, ,(A[p™], B[p>]) is a free module of rank 1 over Op,y.
Thus we have an isomorphism of p-divisible Z, ® Og-modules over O:

L A[p™] — B[p™].

We can use this morphism to identify B[p™] with A[p>°], and B![p>°] with
Al[p>]. In this way, f is an Op,-endomorphism of A[p™]. Since the Tate
module of this group at the generic fiber is a free Of ,-module of rank 1, f is
given by multiplication by an element a € Opj, on A[p™]. Taking the dual,
f!is given by @ € Op,, on A'[p™®]. Thus ¢, is given by the multiplication by
(a/@), on the group N (A[p™], 7). It follows that

M leoly= [ A2l qp doel oo

U:K—)@p U:K—)@p ‘am—c| O’ZK—}QP ‘anUT‘
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Here ¢, is an element Gal(Q,/Q,) which induces the complex conjugation on
F via every embedding £ — Qp. O

By Theorem 2.2, we can denote h(A,7) by h(®,7) if A has CM type
(Og, ®). In the following, we want to compute the difference:

— Z h(®, 7).
Ted

Let Eg be the reflex field of ® generated by all ®-traces and t : E — Fg be
the induced trace map. Then the action E on the Eg-vector space Fg ®g F
gives a decomposition into a direct sum of F ® Eg-subspaces,

FEs ®QE = Eq; EBEq)c,
so that the traces of the actions of E are ¢ and ¢° respectively. In particular,
Eg and Egc are two quotient algebras of Fe ®g E. Let Rg denote the image

of O, ® Of in Eq,. Denote by 04 the relative discriminant of the extension
Ry /Og,, and denote by dg the norm of 9.

THEOREM 2.3. h(®) — > h(®,7) log(dodge).

1
Teq) [E(I) : Q]
Proof. By definition, we have morphisms
o: QA — @W(A, T), o QA — @W(Atﬂ'c).
TED TE€D

Thus we have elements

det ¢ € (@ W(A, 7’)) @ det Q(A)7L,

TED
det ¢' € <® W(A ) @ det Q(AH) ™1
TED
This gives a section of the line bundle:

le <® N(A,T)) ® (w(A) ® w(Ah))™1

TP
With metrics defined on these line bundles, we have an adelic metric on £. Now
we have an identity

- Z h(fb, T) [ Z Z IOg Hf Hpa
red U= 000,

where
1l = || det dg | - || det L |-

By the above discussion, it is clear that £ has norm 1 at all archimedean places.
So we need only consider p < oo.
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As a Z,-algebra, Of, is generated by one element x € Of , which has a
minimal equation
pPty=J[ @-a")ezt], a"€K}.
oc€Hom(E,K)

Py(t) = [[(t—a7) € Eaplt], Pac(t)= [] (t —27) € Egplt].
TED TeEDC

It is clear that Rg , = O, p[t]/Po(t). Thus the ideal 04 , of Op,, , is generated
by A(®), = [Tic;(z™ — 2™)2.

To study ¢, let us write K, for the completion of o(K), O, for the ring
of p-adic integers in K,, and A, for the model of A over O,. Consider the
Hodge—de Rham filtration

(2.2.1) 0 — Q(Ay) — Hig(As) — H'(A;,04,) — 0.

With respect to the action of O, one has that Hl.(A,) is free of rank 1 over
0,®0g. See [Col93, Lemma II. 1.2]. The other two terms are free O,-modules
under which O acts with type ® and ®¢ respectively.

LEMMA 2.4. The above exact sequence of Oy @ Op-modules is isomorphic
to the following sequence:
Os[t] Pee(t) Oglt] O, t]
Py (t) P(t) Pge(t)

Proof. First we want to show that (2.2.2) is an exact sequence. It is clear

— 0.

(2.2.2) 0—s

that the sequence is exact at the first and the third term, and that it is exact
at the middle term after base change to K,. Thus the exactness at the middle
term is equivalent to the following statement: an element o € O, [t] divisible by
Pge(t) in Ky[t] is divisible by Ppc(t) in Oy[t]. This follows from the classical
Gauss’s lemma.

It remains to construct an isomorphism from (2.2.1) to (2.2.2). By the
above discussion, we can fix an isomorphism of the O, ® Og-module

0: Hig(Ar) — ?;(E;]

We want to extend this isomorphism to an isomorphism from the exact se-
quence (2.2.1) to (2.2.2). It is clear that under the actions by Op, all terms
in the exact sequence (2.2.1) are torsion-free with the same CM types as cor-

responding terms in (2.2.2). It follows that ¢ induces an isomorphism from
(2.2.1) to (2.2.2). O

COROLLARY 2.5. There is an isomorphism of (O, ® Of)-modules
Q(A)o = Oa[t]/Pcb(t)

under which x acts as t.
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By this corollary, the evaluation ¢ — z7 gives an isomorphism Q7 ~ O, .
Thus we have the following model of ¢,:

b0 O6[t]/®(t) — P Oy,  tr—— (a7 17 € D).

TED
Notice that O,[t]/® has the the basis (1,t,...,t971), and @ O, has a usual
basis e1,...,eq by choosing an ordering (71, ...,74). We have

(det o) (L AEAEEA - AtI7H) = £ det((t7)7) -er A= A ey
=\A®)p-e1 A+ Ney.
Thus finally, we have shown
I det ol = |A(2),]'2.

Put everything together to obtain

S E Z > log|A(®), - A(PY),|

Ted P<OOJK~>QP
1
=— ———log(de - doc). O
s T og(dg - da-)

By a nearby pair of CM types of E, we mean a pair (®1, P2) of CM types
of F such that ®; N ®, has order g — 1. Let 7; be the complement of &1 N ®o
in ®; for i = 1,2. Define

h(‘l)l, (192) = (h(q)l, 7'1) + h(q)g, 7’2)) .

N =

COROLLARY 2.6. We have

1

% h(®) = 5T IR <1>1,<1>2)7710ng,
[ (<I>1,<I>2)

where the second sum is over nonordered pairs of nearby CM types of E.

Proof. Take the average over all types ® in Theorem 2.3 to obtain
1 1

29 ~ h((I))—Q—gZh({), Z Z QngoglA A(D),],

®,7 | <o o K—Q,

where the second sum is over pairs of CM type ® C Hom(E,Q) and 7 € ®.

For a fixed 0 : K — Q,, the last sum on the right-hand side is a sum of
log |x1 — x2|12) over pairs z1,zy of roots of ® with zo # z1 and z9 # z{. Let
x1,%2,..., T be all roots of P(t) such that x{ = x;,4. Then the last sum on
the right-hand side is a multiple of

[Ti<) (i — )

[Ti<g(i — Tigg)?

log

= log s = log |dp|*.
dg/r
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Since there are 297! such terms, we have

1 1 .
) Z —Zlog|A((I))p-A(<I> ol = log |dF|p.
K:Q 2
0:K—Q, ®
Thus we have
1 1 1
[ D, 7

Then it is easy to obtain the result. O

2.3. Some special abelian varieties. In this subsection, we fix a nearby
pair (91, ®3) of CM types of E. We want to compute the height h(®q, ®2) by
a single abelian variety.

THEOREM 2.7. Let A, A1, Ay be abelian varieties over a number field K
with endomorphisms by Og such that the following conditions hold:

(1) Ay, Ay are CM-abelian varieties of type ®1 and Py respectively;
(2) A is Og-isogenous to Ay x Aj.

Then
1 1
h(®1,®2) = B (h(A1,m1) + h(A2,72)) = §h(A,T),

where T; is the complement of ®1 N ®y in ®;, and 7T is the place F under T;.
Here in the last equality, A is considered to have a multiplication by Op.

Proof. From an Og-isogeny A; x Ao — A, we obtain an Og-morphism
i : A1 — A with a finite kernel. By Theorem 2.2, we may replace A; by
the image of ¢ to assume that ¢ is an embedding. Now we have an isogeny
Ay — AJA;. Similarly, we may assume that Ay = A/A;. Thus we have a
dual pair of exact sequences of Og-abelian varieties:

0— A — A— A —0, 0— A — A" — AL —0.

After a base change, we may assume that A; and As have good reductions
over Og. This implies that A also has good reduction over Ok . Thus we have
a dual pair of exact sequences of their Neron models:

0— A —A— Ay — 0, 0— A — A — A} — 0.

These exact sequences induce a dual pair of exact sequences of their invariant
differentials:

0 — Q(Ay) — QA) — QA1) — 0,
0 — QAY) — QA" — QAL — 0.
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Then we have the following exact sequences:
0 — W(Ag, 1) — WA, 7) — W(A1,11) — 0,
0 — WAL 1) — W(AL 1) — W(AL, 1) — 0.
Taking determinants, we obtain
det W(A, 7) = W(A1, 7)@W(A2,12), det W(A', 7) = W(AL, m)W(AL, 11).
It follows that we have a canonical isomorphism
N(A,7) ~N(A1,11) @ N(Ag, 12).

It is easy to show that this isomorphism is compatible with the metric defined
by Hodge theory at infinite places. Thus we have

h(A,T):h(Al,T1)+h(A2,TQ). D
3. Shimura curve X’

In this section, we study a Shimura curve of PEL type following Deligne
[Del71], Carayol [Car86], and Cerednik-Drinfeld [BC91], [Che76]. After re-
viewing the basic facts about the moduli problems, we will study in special
cases of the integral models over the ring of integers of the reflex field, and the
Kodaira—Spencer map over complex numbers.

3.1. Moduli interpretations. Recall that we have a totally real number
field F, a quadratic CM extension E/F, and a totally definite incoherent
quaternion algebra B over A = Ap. We will consider one of the following
special cases later:

(1) E = F(V/A) with a A € Q as in Carayol [Car86];
(2) Ag is embedded into B over A as in the introduction.

Let (®1,P2) be a nearby pair of CM types of E. Let 7 be the place
of F' missing in ®; N ®2, and let B be the quaternion algebra over F with
ramification set X(B) \ {r}. We form a reductive group G” := B* xpx E*,
the quotient of BX x EX by F* via the action a o (b,e) = (ba!,ae). Let B!
and E' denote respectively the subgroups of B and E with norm 1. Then G”
has the same derived subgroup Gy := B! as G = B* with quotient isomorphic
to F* x E' via the following map:

v=(v,1n):G"/Gy — F* x E', (b,e) — (q(b)ee,e/e).

Here ¢(b) denotes the reduced norm of b.
Define an algebraic group G’ over Q as a subgroup of G” by

G'(Q = {9 € C"(Q :mlg) € Q7.

Let ' : C* — G'(R) be the complex structure which has a lifting to a
morphism hxhg to (BRR)* x (E®R) as follows: the component to (BRR)* =
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G(R) is the same as h for defining quaternion Shimura curve as in Carayol
D,
[Car86] (see also Section 4.1); the component to (E®QR)* — (C*)9 is given by

hg:z— (1,274 ..., 271),

where the first component corresponds to the place over 7. The class of a
G'(R)-conjugacy class of A’ is identified with h* = C \ R by

ghg™ '+ g(i), g€ G'(R).

Thus we have Shimura curves over C indexed by open and compact sub-

—~

groups U’ of G'(Q):
X{7(C) = G'(Q\b* x G'(Q)/U".
It is not difficult to show that the reflex field of A’ is the same as the reflex

field of ®1 + ®5. Let F’ be the reflex field of h'. Then X|;, is defined over F’.
The following is a relation between F' and F”:

PROPOSITION 3.1. Let ¥ denote ®1 NPy, and let 7 : F — C be the place
of F missing in ¥|p. Then F' contains 7(F).

Proof. By definition, Gal(C/F") consists of elements o € Aut(C) fixing
the weighted set ®; + ®5. It is clear that

O + Do =2V + 71 + 70,
with 7; the complement of ¥ in ®;. Considering multiplicity, such a o fixes
71 + 72. In other words, it fixes 7(F). O
Let X’ be the projective limit of X7, for all X[,. Then X’ is a scheme

—~

over F’ with a right action by G'(Q) and a uniformization given by
X'»(€) = G'(@\0* x G'(@).
See Carayol [Car86, §3.1].
Denote by G”(Q) the subgroup of elements (b, €) in G”(Q) = B> x px E*
such that ¢(b) € F is totally positive. As in Carayol [Car86, §3.4], the curve
X' is equipped with a right action of the subgroup G = G"(Q);+ - G'(Q) of

—~ —~

G"(Q) as follows: for any elements (go,91) € G"(Q)+ x G'(Q), define

[, 1] - (9091) = g5 2, 95 "hgogn].

The subgroup of elements fixing every point on X’ is given by the center
Z"(Q) ~ E* of G"(Q)+.

In the following, we want to describe the moduli problem associated to
Xj;, following Carayol [Car86, §2]. For this, we will work on the quaternion
algebra B' = B®p F over E. Let V' := B’ as a left B’-vector space. Fix an
invertible element 7/ € B’ such that ¥/ = —' where b — b is the involution
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on B’ = B®p E induced from the canonical involution on B and the complex
conjugation on E. Then we define a symplectic form on V' by

(3.1.1) V' (v,w) = trggtrp  p(y'vw).

Here trp//p is the reduced trace on B’. This form induces an involution * on
B’ by

(3.1.2) ' (v, w) = Y (v, £Fw), 0= 7/_1577’.

The group G’ can be identified with the group of B’-linear symplectic simili-
tudes of (V' 4’). More precisely, G’ is a subgroup of G” which can be identified
with the subgroup B* - EX of B which acts on V' = B’ by right multiplica-
tion.

The composition of A’ and the action of G'(R) on Vg induce a Hodge
structure on V’ of weights (—1,0) and (0, —1). One can choose a v such that
1" induces a polarization of the Hodge structure (V’/, h’):

Oz, h/ ()" >0 Vo e Vg
By Deligne [Del71, §6], X/, represents the following functor Fy» on the
category of F’-schemes when U’ is sufficiently small. For any F’-scheme S,
Fu(S) is the set of isomorphism classes of quadruples [A, ¢, 0, k], where
(1) A is an abelian scheme over S up to isogeny;

(2) ¢: B’ — End’(A/S) is a homomorphism such that the induced action of
E on the Og-module Lie(A/S) has the trace given by

tr(¢, Lie(A/S)) = t(trp p(0) Ve B,

where t : E — F" is the trace map of ®; + ®o;

(3) 0 : A — A! is a polarization whose Rosati involution on End’(A/S)
induces the involution * of B’ over I

(4) k: V' x § — Hi(A,Q) is a U-orbit of similitudes of B'-skew hermitian
modules.

The group G acts on the inverse system of Fyr as follows:
[A,[,,e,/ﬁ}] g = [A7L7V1(g)97"£ g]

3.2. Curves X' in case 1. Let p be a prime number, and let @’ be a prime
ideal of O dividing p. We want to study the integral model of Xj;, over the
ring O(,y) := Oplz™' : © € Op \ ¢/] in the case considered in Carayol [Car86,
§62 and 5|; i.e., E = F(v/\) with A a negative integer such that p is split in
Q(v/)\). Fix a square root u of A in C which gives a CM type of E by

d: E=FoqQWVA) —FogC~C% VA= (1,...,0).

Let @5 be a nearby CM type of E which differs from ®; at the place over 7
of F'. Then the reflex field of ®; + &5 is F.
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Using the isomorphism
Ey = Fp @ Fp, A— (1, —p),

we have an identification B;D = B, X B}, so that the involution * on B’ defined in
(3.1.2) induces an involution on By, still denoted by *, so that (a, b)* = (b*, a*).
In this way we may assume that Ops ), = Op ,® Opp. The form v induces a
perfect (Bp, *)-hermitian pairing 1, : B, x B, — Q, as follows:
%’D((CL, b)7 <C7 d)) = wp(a7 d) - wp(c7 b)

The subgroup G'(Q,) of B;,X consists of elements (Ab,b) with A € Q' and
b€ By. We identify G'(Q,) ~ Q,f x B, by this description.

Let Opr, be an order of B), stable under involution £ — £*, and let A, be
an Opr - lattice of V;?’ such that /| A, takes integral value and is perfect. Such

an order Op ), and a lattice A]’D can be constructed from a maximal order Op ),
of B, by the following formulae:

OB/J, = O*B,p S, OB7p, AJID = Oé’p D OB’p,
where
Ova,p ={zeBy,: Ylx,y)€Z, YycOpy}.
The elements of G(Q,) fixing Aj, form a maximal compact subgroup U, (1) :=
Zy % Oﬁ,p-
Let o be the prime of O under ¢'. Write Op), = O, + O as a direct
sum of Zy-algebras. Then we have a decomposition

OEp =O0pp ®OFpp =0, 0 ® Oy, © 0¥,
For any Op jp-module M, there is a corresponding decomposition
M = My, + MY + Mg, + MS.

Let Z,) = Z» N Q be the localization of Z at p. Let Opr () = Oprp N B’
be the Z,)-lattice in B’.

For an open compact subgroup U’? of G’ (@7’), define a moduli problem
Fiuw over O, as follows: for any Og-scheme S, Fy y»(S) is the set of isomor-
phism classes of quadruple [A, ¢, 0, k], where

(1) A is an abelian scheme over S up to prime-to-p isogeny;
(2) ¢: Oprpy — End(A/S) ® Zp) is a homomorphism such that the induced
action of Ops on the Og-module Lie(A/S) has the following properties:
e Lie(A)y, is a special Op -module in the sense that it is locally free
of rank 1 over O ® Og for any unramified quadratic extension K of
O, embedded into Op (,, and
e Lie(A)Y = 0;
(3) 6: A — A'is a polarization whose Rosati involution on End(A/S) ® Z,)
induces the involution * of Op/ p;
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(4) k: VP xS —s Hy(A,QP) a UP-orbit of similitudes of 5%,—skew hermitian
modules.

PROPOSITION 3.2. When U'P is sufficiently small, the scheme Fyymw is
represented by a reqular scheme X| ., over O(yy with the following properties:

(1) for the embedding 7' : Oy — C, the curve Xy yw(C) is isomorphic to
XU;(l),U/p((C), where Uy(1) is the maximal open compact subgroup of B
fizing A,;

(2) if p is split in B, then Xl’vU,p is smooth over O;

(3) if p is ramified in B, then XI’,U,,, is a semistable relative Mumford curve in
the sense that every irreducible component in the special fiber is isomorphic
to PL.

Proof. Let Ops be an Og-order of B’. Replacing Op by Op/NO%,, we may
assume that Op is stable under *. Let A’ be an Op/-lattice of B’ with localiza-
tion A;. With A replaced by mA with an m prime to p, we may assume that v’
takes integral value on A’. Assume now that U’ fixes A’? and fixes every point
in A’? /nA’P for some n > 3 prime to p. It is easy to see that the above functor is
isomorphic to the following functor }:Urp over Og-schemes: for any O -scheme
S, Fum (S) is the set of isomorphism classes of quadruple [A4, ¢, 0, k] where

(1) A is an abelian scheme over S;

(2) ¢: Opr — End(A/S) is a homomorphism such that the induced action of
Op' on the Og-module Lie(A/S) has the following properties:
e Lie(A)y, is a special Op -module in the sense that it is locally free
of rank 1 over O ® Og for any unramified quadratic extension K of
O, embedded into Op ,, and
e Lie(A)§ = 0;

(3) 8 : A — A is a polarization whose Rosati involution on End(A/S) in-
duces the involution * of Opr;

(4) & : APxS —s Hy(A,ZP) is a U'P-orbit of similitudes of O g-skew hermitian
modules.

Condition (4) implies that the relative dimension of A/S is 2¢. Also the
degree of the polarization 6 in (3) is d = [A’Y, A’], where A’V is the dual lattice
of A’. By Mumford theory, there is a fine moduli space Mgy g, over Ly clas-
sifying the the triples of (A, 0, k,,) of an abelian variety A of dimension 2g, and
a polarization 6 of degree d, and a full level n structure k,,. Thus we have a
morphism of functor F{;, — Mag qr,. Now we can use the theory of Hilbert
schemes to prove the existence of a scheme Xé,U,p — Mag an to classify other

additional structures on the triple (A, #, k,,) required in the functor .%/07[]/17.
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The second statement is proved in Carayol [Car86, §5.4] in the case where
@ is split in B and proved by Cerednik-Drinfeld (cf. [BC91, Che76]) in case
where p is not split in B. ([

Remark 3.3. Our moduli problem here is slightly different from the moduli
problem ima g in Carayol [Car86, §5.2.2] in three points:

(1) we do not require that p is prime to the discriminant 9 C O of B;
(2) we allow A to have prime-to-p isogeny which is more flexible than [Car86];
(3) we do not input a level structure kf as in [Car86].

p-divisible groups. Let U’ = U} (1) - U"? with U sufficiently small so that
the functor Fyr is representable by a universal family of abelian varieties:

.AU/ — XU/.

There is a Barsotti-Tate Op ,-module Ay [p™] on X, for any sufficiently

—~

small compact open subgroup U? of G'(Q)?. With our assumption, this group
has a decomposition

Av/[p™] = A/ [p™]1 + Avr[p™]2
= Av[p>he + Av [p]] + Avr [p™20 + Av [p™]5.
We define
7‘[/U/ = Ay [pOO]Q-

By part (2) in the definition of Fj y», the p-part ’H’U,,@ is a special Op -
module, and the prime-to-gp-part 7—[/(?, is an étale O%,-module.

It is clear that the generic fiber H[;, = Ay [p™]2 of Hy; on X|, is dual to
Ay [p™]1 by the polarization; thus Hj,, determines the structure of Ay [p™].
Notice that Hy; can be constructed without using abelian varieties:

Hip = (p>°0p,p/Opy x X') JUJ(1) x U,
where Up(1) ~ Z; x O, acts on p~*Op;/Op, by the right multiplication
of Op, (cf. [Car86, §2.5]).

Remark 3.4. Our p-divisible group H{;, relates to the group E._ of [Car86,
§3.3] in the case Op, ~ M>(O,,) by

1 0

Level structure at p. For any ideal n of O dividing a power of p, let Uj(n)
denote the subgroup of B, of the form Z x (14+n0Op;)*, and let X"LU/p denote

X['];(n)xU,p. Let H, 17, denote the pull-back of Hj ;7 = H[’];(I)U,p to Xy g
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Using the above description, the map X, y» — Xiy» defines a full level
n-structure on H, ;,, i.e., an isomorphism of Op p-modules:

Kp : niloB’p/OBm — H1/,L7U/p [n]

When n is prime to dp, this level structure extends to the minimal model
X‘;U,p. More precisely, the scheme XAU, represents a functor F, ;e over Fi g
to classify a pair of level structures k, = (K, ) so that x is a full level

structure on the étale sheaf ’H:fU/,, [n], and £y, is a Drinfeld basis of H,, ;7 [n].

Integral models. In the above, we have interpreted XA,U@ at a prime @
as the functor F,y» when n is prime to 9p, and U” is sufficiently small
(independent of n). In the following, we want to extend such interpretation
to large U'P. Fix a lattice A’ of B’ with a completion Aj. For any positive

—~

integer N, let U'(N) denote the subgroup of G'(Q) consisting of elements which
stabilize A’ and induce the identity action on A’/NA’.

PROPOSITION 3.5. Assume that U’ is contained in U'(N) as a normal
subgroup for some N > 3 and prime to p. Then the functor F,ymw is repre-
sented by the minimal reqular model XAUW over O,.

Proof. First let us reduce the proposition to the case U’ = U'(N). In
fact if Fpy(y is represented by Ay () — Xl/ﬂ( N)» then JF, e is represented
by an X/ (vy-Sscheme Yy prw to classify a pair (K, <) of a full Drinfeld level
structure x, and an étale level structure x¥. Thus it is clear that ), y» is
regular without any exceptional curve. Thus Y, yw = Xy yrw.

Assume now U’ = U(N). Let Uép be a sufficiently small normal subgroup
of U'(N)P so that JFy g is representable by Al,U(')p — & yr. Then we have
an action of U(N) on this family. It suffices to show that U(N) acts freely
on X r. Let v € U'(N) fix a closed point z in XLU@. Let [A, ¢, 0, k] be the
quadruple corresponding to x. Replace A by some aobelian variety prime to
p isogenous to A; we may assume that <P induces an isomorphism morphism
between AP and TP(A). In this way, we have an automorphism ¢ of (A, §) and
an u € U'P such that k-v-u = ko T(p). Since v € G(N), it follows that ¢
fixes all points in A[N]. Thus ¢ = 1, and thus y = v~ € U". O

COROLLARY 3.6. The integral models X; 7.5, with n prime to dp and U
contained in U'(N) with N > 3 and prime to p, form a projective system of
reqular schemes over Oy,. Moreover, the special fiber of each Xé}U/p above p is
a smooth curve if o1 ndp, and a relative Mumford curve if p | 0p.

3.3. Curve X' in case 2. In this subsection, we assume that E is embedded
into B over F'. Then we can write B = E+FEj, where j € B* such that jx = Tj
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for all z € E. We can identify B’ = B® E with M(E) by the following maps:

a®br ab | > 1
ab)’ J 52 '

It follows that V/ = B’ is the sum of two copies of a subspace V over E. In
fact, we can take V; = B with two conjugate left multiplications of E:

Vi = VieVs: b® er— (eb,eb).

The operator w = (; ') switches two factors by (u,v) + (jv,j tu). We may

assume that v/ =y ® 1 with v € E ® 1 so that ¢’ is the sum of two copies of
a symplectic form i on V; = B by

Y(u,v) = trpjgtrp, p(yuv), u,v €V; =B.

The group G’ can be identified with the group of E-linear symplectic simili-
tudes of (V1) by right action on V: (b,e)x = exb.

It follows that when U’ is sufficiently small, X7, represents the following
functor F), on the category of F’-schemes. Here F” is the flex field as before.
For any F’-scheme S, F/%(S) is the set of isomorphism classes of quadruples
[A,¢,0, k], where
(1) A is an abelian scheme over S up to isogeny;

(2) ¢ : E — End°(A/S) is a homomorphism such that the induced action of

E on the Og-module Lie(A/S) has the trace given by

tr(¢, LieA) = t(¢) Vil € E;

(3) # : A — A! is a polarization whose Rosati involution on End’(A/S)
induces the complex conjugation ¢ of E over F;

(4) k: V xS — Hy(A Q) is a U'-orbit of similitudes of skew hermitian
E-modules.

Let Op be a maximal order of B, and let A = Opg be viewed as a lattice
in V. Assume that 1 takes integral value on A. Then ]:(’}), is equivalent to the
following functor Fy,,. For any F'-scheme S, F,(S) is the set of isomorphism
classes of quadruples [A, ¢, 0, k], where

(1) A is an abelian scheme over S;

(2) ¢: O — End(A/S) is a homomorphism such that the induced action of
Opg on the Og-module Lie(A/S) has the trace given by

tr(¢, Lied) = t(6) VL€ Op;

(3) @ : A — A' is a polarization whose Rosati involution on End(A/S) in-
duces the complex conjugation ¢ of O over Op;

(4) k : A x S — Hy(A,Z) is a U'-orbit of similitudes of skew hermitian
Opg-modules.
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CM points. Again assume that F is embedded into B over F. Let T’
(resp. T") be the subgroup of G’ (resp. G'(Q)) of elements (b, e) € (EX)? (resp.
(b,e) € (EX)?). Then the subscheme X7 of X’ of points fixed by 1" is a
principal homogenous space of T Moreover, each point P’ € X'T" represents
an abelian variety Aps which is isogenous to a product Ag, x Ag, of CM
abelian varieties by O with types ®1, ®2. In fact, in terms of above complex
uniformization, X T ig represented by pairs (z,t) with z the unique point on
h fixed by T, and ¢ € T. Fix a point P’ € X'T".

Hodge—de Rham sequence. In the following, we want to study the Kodaira—
Spencer map. Assume that Fy- is represented by a universal abelian variety
7 Ayr — X[;. Then there is a local system H{®(Ay) of F® (’)X{ﬂ—modules
with an integrable connection V and a Hodge filtration

0 — Q(AL) — HIR(Ay) — QAp)Y — 0,

where Q(Ay) = W*(QAU//Xzﬂ) and Q(A},) = ﬂ*(QAZ//X{J/). This sequence
of vector bundles on Xj;, has an action by F by pulling back of cohomology
classes. Taking a quotient according to the morphism F ® OX{]/ — OX;]/
given by sending (z ® y) — 7(x)y, we have

0 — QAL)T — HI®(Ap)™ — Q(Ap)™Y — 0.
For simplicity, let us introduce the following notation:
My = H®(Ap)T, W= Q(Ap)", W= W(AL).
Then we have an exact sequence of vector bundles:
(3.3.1) 0 — Wl — My — Wy, — 0.

In terms of the complex uniformization, the bundle (Mg, V) and its fil-
tration can be described explicitly by representations of G'(Q) as follows. First
define the local system of R-vector spaces on X'y (C):

V= GQ\V; x b* x Z(Q)/U,  V,:=V @p,R.

This system has a Hodge structure given by h. ThlS definition makes sense
since the stabilizer of G(Q) on every point of h* x G'(Q) /U’ is its center Z(Q)
which acts trivially on V. Then we have

My =V &g Oy, , W = HYN V), Wy = (My /W)Y,

Kodaira—Spencer maps at archimedean places. Inserting the Gauss—Manin
connection to the sequence (3.3.1) gives a chain of morphisms:

Wﬁ/ — My l) My ®ngﬂ — W&/I®QX;]/
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By Kodaira—Spencer, this induces an isomorphism of F ® p Ox/-line bundles:
Wi — Wi ® Qxy -
Taking determinants, this gives an isomorphism of Ox-line bundles:
KSy : Ny» — Q?;f]
where Ny is a line bundle on X7;, defined by
Ny = det Wy @ det W

In the remaining part of this subsection, we want to study the Kodaira—
Spencer isomorphism at a fixed place 7" of F’. Here we put a metric on Ny
by the Hodge theory as in Section 2.1, and we put a metric on 2 X1, by the
following formula in terms of the complex unformization:

|dz| = 2y.
THEOREM 3.7. The morphism KSy is isometric.

Proof. The Kodaira—Spencer isomorphism induces a norm on {2 X1, We
want to give an explicit description of this metric as follows. First, let us give
an explicit formula for the Kodaira—Spencer map. Fix an isomorphism B, =
V, ~ M>(R) and identify h* with the moduli space of B,-Hodge structures on
M>(R). It is equivalent to studying the Hodge structures on R?. In a concrete
matter, for each z € h*, take a Hodge structure on L = R? inducing a complex
structure given by isomorphisms

v, : L — C, (a,b) — a + bz.
Then L%~ is given as ker ©2,c, S0 we have
L% = Ce,, L7V =Ces, e, :=(—21).
Thus the filtration of the de Rham homology has the following form:
0 — Ce, — C* — Ce; — 0.

Apply the Gauss—Manin connection to obtain

€z — €z
21y

Viey) = (-1,0)dz = dz.

It follows that under the Kodaira—Spencer map,

dz = 2iy?, |dz| = 2y. O
€z
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p-divisible groups. Assume that U’ is sufficiently small so that X/, has a
universal abelian scheme Ay representing the functor Fy». Then we have a
p-divisible group

Hyy o= A [p™).
Notice that this p-divisible group can be constructed directly by the following
formula:
Hi, = (Bp/Op, x X') /U,
where U” acts on B,,/O,, via its projection to the subgroup Op Xox Og, of
G(Qp) and the action !
z(b,e) = exb, b€ By/Opyp, (bye) €O, x0f .

Integral models. In this subsection we give some results about integral
models of X{;,, Ay, and Hj;,, which can be proved in Section 5.2. The results
here will not be used in the rest of paper.

Assume that U’ is sufficiently small as in the previous paragraph. A
natural question is to extend the universal family Ayr — Xy to a flat family
Ay — Xy over Opr. The natural way is to extend the functor Fy: over
schemes over Op/, which we do not know how to define. However, we can
extend this abelian scheme pointwise on Xj;.

PROPOSITION 3.8. Let L be a finite extension of F' and 2’ € Xy/(L)
a point which represents an abelian variety A, over L. Then Ay has good
reduction A, over Op,.

By the works of Grothendieck [GRR72] and Raynaud [Ray74], it is suf-
ficient to extend p-divisible groups locally. We will prove this extension in
Proposition 5.2 using the Breuil-Kisin theory.

One consequence of this integral model is to give a hermitian integral
structure on Ny ., at each point x € Xj,(L) by N(A,7). Using method in
Section 5.2, we can construct an integral model &y}, of X, over Ops and a line
bundle A, such that

N(A, T) = ./\/’(/]/@/

as integral structures on the Hodge bundle Li,.

4. Shimura curve X

In this section, we study a quaternionic Shimura curves X over a totally
real field. We will first review some basic facts about the integral models
X studied in Carayol [Car86] at split primes, and Cerednik-Drinfeld [BC91],
[Che76] at nonsplit primes. Then we will construct integral models of the curve
X by a comparison with the curve X’ in the last section. Finally we will study
the integral models of p-divisible groups H using the p-divisible groups H'| X',
and study the local Kodaira—Spencer morphisms induced from the Hodge-de
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Rham filtration and the Gauss—Manin connections, following a deformation
theory of p-divisible groups H of Grothendieck-Messing [I1185], [Mes72].

4.1. Shimura curve X. Let F be a totally real field and B a totally def-
inite incoherent quaternion algebra over A := Ap as before. Then we have a
projective system of Shimura curves Xy over F indexed by open and compact
subgroups U of G :=B7; see [Car86], [YZZ13].

For any archimedean place 7 of F', the curve Xy » over C is defined by the
following Shimura data (G, h), where G = Resp/p(B*) with B a quaternion
algebra over F' with the ramification set ¥X(B) \ {7}, and h : C* — G(R) a
morphism as follows. Fix an isomorphism

G(R) = GLy(R) x (H*)9 1,

Then h brings z = x + yi to

() ]

The class of G(R)-conjugacy class of h is identified with h* = C \ R by
ghg™ ' g(i), g€ GR).

Fix an isomorphism By ~ B which gives an isomorphism Gy ~ G(@)
Then we have a uniformization

Xu-(C) = GQ)\b* x G@Q)/U.

This curve is compact if B # M3(Q) or equivalently 3 (B) is not a singlet. In
the following discussion we always assume that Xy is compact; but the results
hold in general with taking care of cusps.

If F #£ Q, this curve does not parametrize abelian varieties, but its geo-
metric connected component can be embedded into Shimura curves of PEL
types over F. In the following we want to review the work of Carayol [Car86]
on p-divisible groups on some integral model of Xy with infinite level.

Let X denote the projective limit of Xy. Then X has a right action

—~

by G(Q) = IB%JT. The maximal subgroup of IB%; which acts trivially on X
is F'X, the closure of Z(Q) = F* in IBB;?. Thus we can write Xy = X/U with
U :=U/(UNF*). When U is sufficiently small, U acts freely on X. If F' # Q,
then F'X # X, This means that the intersection F'* N U is nontrivial for any
open compact subgroup U of F.

Fix a maximal order Op of By, and consider the projective system of
Shimura curves Xy indexed by an open compact subgroup U of Op . For each
positive integer N, let U(N) denote a compact subgroup of O of the form
U(N):= (14 NOg)*.



562 XINYI YUAN and SHOU-WU ZHANG

PROPOSITION 4.1. If U is contained in U(N) for some N > 3, then

Proof. This can be seen from the above complex uniformization. The
curve Xy, is a disjoint union of quotients X, := I'y\b, for g sits in a subset of
G(Q) representing the double coset quotient G(Q)\G(Q)/U, and

Iy=BXNgUg ' CBIN(l+NgOpg )*.

Let T'y denote the quotient I'y/(T'y N F*). We claim that I'; acts freely on b.
This claim will show that X, has a (free) uniformization by b, and thus its
genus greater than 1.

Let v € I'y \ F* be an element fixing a point z € h. Then the subfield
E := F(v) of B generated by v over F' is a quadartic CM extension of F.
It is clear that v € Op and v —1 € NOg. Write ¢ = 7/7. Then ¢ has
norm 1 at all places of E. Thus ( is a root of unity with the property ( — 1 €
NOg N Q(¢) € NZ[¢]. It follows that Z[C]/NZ[(] = Z/NZ. On the other
hand, we know that Z[(]/NZ[(] is a free module over Z/NZ of rank equal to
deg Q(¢). It follows that ¢ € Q, or ( = £1. Since N > 3, ¢ = 1. It follows
that v € (14+ NOp)*. O

p-divisible groups. Let p be a prime, and fix a maximal order Og, of
B, containing Of,. For any ideal n of Op dividing a power of p, let U,(n)
denote (1 +nOgp)*. Then we have a Shimura curve X, := X/Upy(n). Write

X

»» and write

Up(1) = Up(Or) = Oy, for the maximal compact subgroup of B
X1 = Xy,(1)- We define the p-divisible group Hy on X, by

Hy = [Bp/Opyp x X|/Up(n),

where Uy(n) C Og, acts on B,/Op, by right multiplication. This definition
makes sense, since Up(1) acts freely on X. Moreover, for each n, its n-torsion
subgroup Hi[n] can be descended to Xy (1)xy» for some open compact sub-

group UP of IB%?’X as follows:

Hy,(yxu»In] = [n7'08/05 x X/(Up(n) x UP)] /(Up(1)/Up(n)).

For this we need to find UP so that Up(1)/Up(n) acts freely on X/(U,(n) x UP).
The existence of such a UP can be proved in the same way as [Car86, Cor.
1.4.1.3).

Relation between X° and X'°. In the following sections we want to study
integral models of Xy and Hy by Carayol [Car86] by relating them to X7, and
Hj;, studied in Sections 3.1 and 3.2 for Shimura curves defined using imaginary
quadratic field E = F(v/A) with A € Q such that p is split in Q(v/).

Let X° be the identity connected component of X over F (which was
denoted as M+ in [Car86, §4.1]), and let A be the stabilizer of X° in G =
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G(Q)/Z(Q). Then A is represented by the subgroup A C G(Q) = B* con-
sisting of elements g with determinants ¢(g) € F. In other words, we have
A =A/2(Q).

Similarly, let X’ be the identity connected component of X’ over F' (which
was denoted as in M't in [Car86, §4.1]), and let A’ be the stabilizer of X"
in @ := G/Z"(Q). Then A’ is represented by the subgroup A’ C G”(Q) =
E* X Fix B* of elements (e, b) with norm (q(b)eé, e/é) € FY x Ef in F{. In
other words, we have A = A’/Z"(Q).

It is clear that the embedding G — G” induces an isomorphism A ~ A’
Here is the first comparison result:

PROPOSITION 4.2. There is an isomorphism X° ~ X' with compatible
actions by A ~ A

Proof. Same as Carayol [Car86, Prop. 4.2.2]. O

For the second fundamental result, let p be a prime and let X and X7
be the quotients

X? = XO/OlB7p7 Xio = X/0/01B7p7

where 011371) is the subgroup of Op, with norm 1. Then XV and X{° are
defined over a maximal extension of F' which is unramified over every place
of F' dividing p. Let p be a prime of Op over a prime p, and let FZ" be the
completion of the maximal unramified extension of F,,. Then X{ (resp. X{°)
is the connected component of the limit X; (resp. X}) of X y» (X{,U,,,) over
Fgr. Let Ag denote the subgroup A consisting of elements whose components
over p are in Op . Define Aj in the same way. Then X 9 and X710 have actions
respectively by Ag/Of , C Ao/Of ..
Define the p-divisible groups on these schemes by
HIX) = (B0, < X°) (O, X = (B,/0p, x X") (O,

These are also defined over F" with natural actions by Ag/ OlB,p and Af/ OIB,p
respectively. Our second comparison result is as follows.

PROPOSITION 4.3. There is an isomorphism of the p-divisible groups H|X?
and H'| X! with compatible action by Ao/Op, C ZO/OlB,p'

Proof. Same as Carayol [Car86, Prop. 4.4.3]. O
Here is a consequence of the above two comparison results:

PROPOSITION 4.4. For any ideal n of O dividing a power of p and prime
to 0p, and any sufficiently small open compact UP C G(Q) depending on n,
there is an open compact UP C G'(Q) such that XI?,UP is isomorphic to X‘Q?U,p
over K.
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Proof. Same as Carayol [Car86, Prop. 4.5.5]. O

4.2. Integral models and arithmetic Hodge bundles. The goal of this sub-
section is to introduce integral models Xy of Xy for any open compact sub-
group U =T], Uy, of IB%? which is maximal at every prime ramified in B. Then

we introduce an arithmetic Hodge bundle £y on &p.

Integral models of Shimura curves. By Proposition 4.1, Xy has a unique
minimal regular (projective and flat) model Ay over Op when U C U(N)
for some N > 3. We want to check if these integral models form a projective
system. More precisely, for any U; C Us C U(N), there is a morphism Xy, —
Xy, and thus a rational map Xy, — Xp,. We want to check if this rational
map is actually a morphism. For this, we first check the regularity over a prime
@ of O dividing a prime p. Let K = FJ' be the completion of the maximal
unramified extension of Fy,. We will consider the open subgroups of Op of the
form U = Up(n)UP, where Up(n) = (1 4+ nOp,)* for some ideal n dividing a
power of p, and U? is an open compact subgroup of Op,. Let X, y» denote
XUp(n)XUP'

THEOREM 4.5. Consider the system of reqular surfaces X, y» @Oy, indeved
by pairs (n, UP) with the following properties:

(1) n is prime to Op;
(2) UP C UP(N):= (14 NOge)* for some N > 3 and prime to p.

Then these surfaces form a projective system of curves over Oy. Moreover,
if o 1 n, then each such curve Xy yr ® Oy is smooth if o is split in B and a
relative Mumford curve if o is ramified in B.

Proof. By Proposition 4.4, Theorem 3.2 and Corollary 3.6, there is a sys-
tem of regular models X, U,p of Xy pr ~ X/ nUP (for UP sufficiently small over
O,, depending on n) which is smooth if © 1 nis split in B and a relative Mum-
ford curve if p | 9p. Under the condition of the theorem, these models must
be X yr by the uniqueness of the smooth models of curves with genus > 2.
It remains to enlarge this system to all cases of UP satisfying the condition of
the theorem.

Let &, be the projective limit of &, yy», which has generic fiber X /Up,(n).

Then X, has an action by BX := ( ﬁp . B?’X)/O(Xp). For any open compact

subgroup U?, we can construct a normal integral model Xy i of Xy i by the
categorical quotient

Xy = Xa/U = Xy, ik /(U/Up),

where Uy is a sufficiently small normal subg@p of U. This model satisfies the
condition of the theorem if U := U/[(U N F*)Og | has a free action on &;.
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Thus it suffices to show that U(N) acts freely on X, for any N > 3 prime

to p. Furthermore, we need only check this freeness on the identity connected
component X; i.e., A(N)g := U(N) N Ag acts freely on X.

By our construction, the model X} is isomorphic to the identity connected

component X1 of the limit Xj of A7 ;;, constructed in Theorem 3.2 with

compatible action by Ag = Ap. Thus it suffices to show that AL(N) :=
Z:) N G(N) acts freely on X{°, where Go(N) is the subgroup of elements of
Go which fix Op/ and induce identity on Opg//NOpg/. Let § € ZS(N) fix a
point x on X. We want to show that 6 € U” - F*. Let [A,t,0,k] be the
object represented by . There is an element ¢ € End(4) ® Z,),u € U'P such
that Kk 0 d ou = T(p) o k. Replace 0 by 0 o u; we may simply assume that
u = 1. The effect on the polarization gives an identity ¢(d) = ¢ o ¢* € F. It
follows that q(8) also fixes x and that §/§ fixes = too. Since §/§ € U’(N), by
Proposition 3.5, § = 6. Thus ¢ € OF. O

Now we extend the definition of the integral model X to any open com-
pact subgroup U = [], U, of IB%? which is maximal at every prime ramified
in B. Let p be a prime number coprime to 205 such that U, is maximal. De-
note U' = UPU,(p) with Upy(p) = (1 + pOg,p)*. Define Ay to be the quotient
scheme

Xy =Xy JU = Xy [(UJU') = X [ ([T)T).

Here U := U/(UNFX) as before, so the stabilizer of U/U at the generic point
of Xy is trivial. Note that U/U’ is a finite group, so U/U is also a finite
group. Then Ay is a normal integral scheme, projective and flat over O, and
the quotient map 7 : Xy» — Xy is finite of degree [U : U’]. By Theorem 4.5,
the definition does not depend on the choice of p. It recovers the minimal
regular model if U C U(N) for some N > 3.

By construction as above, the morphism 7 : Xpy» — Ay is flat at all
codimension one points but not necessarily at all points. Thus 7.0, is not
necessarily a locally free sheaf over A77. But we can still define the norm map
JA\p W*OXU/ — Ox,, by

N (f) = H u*f.
ueﬁ/ﬁ/
Using this norm map, for any line bundle £ on Ay, we can define the

norm bundle N (£) on Ay as the line bundle locally generated by the symbols
Nz (¢), where £ are sections of 7. L, with relations for local sections f of 7. Ox,,:

Nz (f€) = Nz (f) - N (£).
It is clear that if M is a line bundle on Xy, then we have

Nq(m*M) = degm - M.
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COROLLARY 4.6. Consider the system { Xy }u of surfaces with U = [[, U,
mazximal at every prime ramified in B. Then this system is a projective system
of curves over Of extending the system {Xy}y. Moreover, the following are
true:

(1) IfU C U(N) for some N > 3, then Xy is smooth at any prime © 1 0p such
that Uy, is mazimal, and it is a relative Mumford curve at any prime @ | 0p.

(2) Let Xy be any element in the system. Let H be any finite extension of F
which is unramified above every finite prime v of F' such that B, is ramified
or U, is not mazimal. Then the base change Xy ®o, On is Q-factorial
in the sense that any Weil divisor of Xy ®o, O has a positive multiple
which is Cartier.

Proof. We already know (1) from Theorem 4.5. For (2), to illustrate the
idea, we first treat the case H = F. Let m : Ay» — Ay be a quotient map
in the construction of Ay, where U’ = UPU)(p) and Up(p) = (14 pOgp)* are
as above. Let C' be a prime divisor of Ay;. The schematic preimage 7 1(C)
in Xy is locally defined by a single equation f € Oy, since Xy is regular.
Then the divisor (degw) - C' is locally defined by the image of f under the
norm map Ny : m.Ox,, — Ox,. This proves the case H = K. In general, the
map Xy @ O — Xy ® Oy is still a quotient map by the same finite group
U/U'. By (1), Xy» ® Og[1/p] is regular. Then the same proof shows that
Xu ® Og[1/p] is Q-factorial. Take a different prime p’, and apply the same
argument. Then Xy ® Og[1/p'] is also Q-factorial. This implies the result for
XU ® 0 H- O

For any ideal n of O, let U(n) denote the compact group U(n) = (1 +
nOg)*. Let X'(n) denote the integral model Xy;(,y over O if n is coprime to .
In particular, we have an integral model X(1) := X(Op) which is a normal,
projective, and flat scheme over Op, and every X' (n) is the normalization of
X (1) in the projection X (n) — X (1).

In the modular curve case, X' (1) ~ P}, is regular. In general, it is not clear
if X(1) is regular. For the purpose of intersection theory, the property of being
Q-factorial is sufficient.

Arithmetic Hodge bundle. For any scheme S, denote the groupoid of line
bundles on S by Pic(S), and denote the group of isomorphism classes of line
bundles on S by Pic(S). Denote by Pic(S)g the groupoid of Q-line bundles
on S. The objects of Pic(S)qg are of the form aL with a € Q and L € Pic(S).
The homomorphism of two such objects is defined to be

Isom(aL,bM) := lim Isom(LZ*™, M=),
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where m runs through positive integers such that am and bm are both inte-
gers. The group of isomorphism classes of such Q-line bundles is isomorphic
to Pic(S)q := Pic(S5) ® Q.

Similarly, we define the groupoid 73;(3 )q of hermitian Q-line bundles on
an arithmetic variety S. We will usually write the tensor products of (hermit-
ian) line bundles additively.

In [YZZ13, §3.1.3], for each open compact subgroup U of By, the curve
Xy has a Hodge bundle Ly € Pic(Xy)g. It is the Q-line bundle for holomor-
phic modular forms of weight two, and it is the canonical bundle modified by
ramification points. It is determined by the following two conditions:

(1) the system {Ly}y is compatible with pull-back maps;
(2) if U acts freely on X, then Ly = Wxy /F-

For general U, we have the following explicit formula:

Ly =wy,r+ . (1—e5") 0Q),
QeXy(F)

where the operation in Pic(Xy)q is written additively, and eq is the ramifica-
tion index of the map X — Xy .

Next, we want to extend the Hodge bundle Ly to a hermitian Q-line
bundle £y over &y for U = [[, U, maximal at every prime ramified in B.
Note that our definition is different from that of [YZZ13, §7.2.1] including the
normalization of the hermitian metric.

THEOREM 4.7. There is a unique system {Ly }u of hermitian Q-line bun-
dles Ly on the arithmetic surface Xy extending the system {Lv}u, where
U = [, Uy is maximal at every prime ramified in B, so that the following
conditions hold:

(1) The system {Ly}y is invariant under the pull-back maps among differ-
ent U.

(2) If U is sufficiently small in the sense that U C U(N) for some N > 3,
then there is a canonical isomorphism for any @ such that U, is mazimal

Ly ® Oy = wxy20,/0,-

Here the right-hand side denotes the relative dualizing sheaf.
(3) At an archimedean place, the metric is given by |dz| = 2y under the com-
plex uniformization.

Proof. The third property is simply a definition of metrics. So we only
need to consider the first two properties. To construct the system, by pull-
back, it suffices to construct the Q-line bundle £y for the maximal compact
subgroup U = Oﬁf of IB%?. Let m : Xyv — Xy be a quotient map in the
construction of Xy. Then U’ = UPU,(p) with Up(p) = (1 + pOgp)* for some
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prime p coprime to 20p. Let w” = wy, ,11/p)/0p[1/p) De the relative dualizing
sheaf of Ay away from p. Here we write Xyv[1/p] = Ay ® Op[1/p]. Then
the bundle N (wP) is a line bundle on Xy7[1/p] with restriction deg 7Ly on the

generic fiber Xy, Then @Nﬂ(uﬂ’) already defines the restriction of Ly to

Xu[1/p]. To get the whole Ly, take a different prime p’, and glue ﬁ(w)Nﬂ (wP)

and WN,,/ (w?") along Xy [1/pp']. This finishes the proof. O
For any ideal n of Of coprime to 9, we have written X'(n) for Xy(,). Here
U(n) = (1+n0g)*. Write (L(n), L(n), L(n)) for (Ly ), Lum): Luwm)) similarly.

Remark 4.8. For an alternative approach of this paper, instead of defining
Xy as the quotient scheme A / U/ U’), one may define it as the quotient stack

[XU/ / (U/U’)] . It is a regular Deligne-Mumford stack, proper and flat over Op.
The quotient scheme is just the coarse scheme of the quotient stack. Then one
may define Ly to be the relative dualizing sheaf of the quotient stack.

4.3. Integral models of p-divisible groups. Let p be a prime of Op divid-
ing p, let O, be the ring of integers in Fj,, and let H = H, x H¥ be the de-
composition according to the decomposition Ory, = O, @ Of,,p of Z,-algebras.
When B, ~ Ms(F,,) is split, Carayol [Car86, §1.4.4] has defined a p-divisible
group Eo|Mj related to our H|X; by the formula

10
My/Up(1) = Xy, Ey = (0 O) H |,

The treatment of all facts in Carayol [Car86] can be copied to H|X; with some
little modifications. In the following, we want to use his method to study
integral model for H|X].

Let K = FJ" be the completion of the maximal unramified extension
of F,, and let O be its ring of integers.

THEOREM 4.9. Let n be an ideal of Op prime to 0p, and let X, be the
projective limit of Xy, myvr» @ Ok as UP varies. Then Hy has an integral model
Hn over X, with the following properties:

(1) H® is étale over Xy, and H, is a special formal Op, ,-module in the sense
that Lie(H,,) is a locally free sheaf over Oy, , ® Ok, of rank 1 where Ko
is an unramified quadratic extension of I, embedded into By;

(2) the formal completion Xy along its special fiber over k (k = Op/g) is the
universal deformation space of Hy,;

(3) for any n prime to 9 and with decomposition n = " - v’ with n' prime
to p, the morphism X, — X1 classifies pairs of a full level v -structure
on on HY and a Drinfeld level p"-structure on Hi .
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Proof. 1t suffices to prove the corresponding statement for the connected
component X of X,. By Proposition 4.4, H|X? is isomorphic to H'|X/°.
Thus all of the conclusions of Theorem 4.9 follow from Theorem 3.5. See also
Carayol [Car86, §§6.4, 6.6, 7.2, 7.4, 9.5] and Cerednik-Drinfeld [BC91]. O

Let us define M, = D(H,,) to be the covariant Deudonné crystal [I1185],
[Mes72], and W,, = Lie(H)", W, = Lie(H")", where H[, is the Cartier dual of

H,. Then we have an exact sequence
0— W, — My, — W, —0.

Applying the Gauss-Manin connection V on M., we obtain the following
composition of morphisms:

v
Taking determinants, we obtain a morphism
¢ v ®2
det W, — det W @ w X,
In other words, we obtain a Kodaira—Spencer morphism of line bundles:
KSp: Np — wi?, N o= det W, @ det W

THEOREM 4.10. Let 0p,, be the divisor on Spec OZ" corresponding to B,
Then KS,, extends to an isomorphism of line bundles on X,:

KS, : N, — w% X, 2(—op )
Proof. Let (;Y\p,ﬁp) be the formal completion of the pair (X, H,) along

its special fiber over the residue field k := k(p) of Og'. Then (AA,’@, 7/{\@) is the
universal deformation of (X

o Ho ). By deformation theory of p-divisible

groups [I1185] and [Mes72], we have an isomorphism
w}/(p — Homo, | W, W)
induced from the above composition of morphisms:
W;J — M, ~, M, @wx, — Wg ® wx,,-
Taking determinants, we obtain an embedding
w;fi C N

If p is split in B, then we can write Op, = M2(O,,). Using idempotents
e1 = ($9) and ex = (39), we can write Q(H) (resp Q(H})) as a direct
sum of components Q(H,,)" := e;Q(H,,) (resp. Q( L)' = eiQ(HL,)). These two

components are isomorphic by the operator (). Thus we have

QY ~ Homo, (UHL)", AH,)"™) = QHL)Y @ UH,)"
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This shows, in particular, that
2

Now assume that @ is nonsplit in F'. Then M, is a free module over
Op,p ® Ox,. Let K be a unramified extension of F|, in B,. Then we have a
decomposition

Op, = Ok + OkJ,
where j a uniformizer of Op, such that jo = zj for all z € Og. Making a
base change to O, then we have a decomposition of (#,,) to the direct sum
of the eigenspaces of Ok according to the embedding Ox — Oy, , and its
conjugate:

Q(’H;) =L1® Loy, (resp. Q(Hy)" = N1 & N2).

The action of j has grade Z/27Z with j2 = 7 a uniformizer of Op. Let j; and
jo be the restrictions of j on two components. Then j; o jo = . It follows
that for each point on &|,, exactly one of j; or js is an isomorphism. Thus we
can assign a type i € {1,2} to Q(#,,) if j; is an isomorphism. Notice that the
types of Q(H,,) and Q(H})" are opposite.

We claim that the condition j; o jo = 7 implies the following identity:

mug% =N.
To prove this claim, without loss of generality, we assume that Lo = j£; and
N1 = jN3. Now an element « € Qx, corresponds a pair of morphism of line
bundles

bi s Li — N;
compatible with action of j. It is clear that this morphism determines and is
determinated by ¢1, and that ¢ = j¢1j ! always has image included into wN5.
Conversely, for any morphism ¢y divided by m, the above equation determines
a ¢1. Our claim follows from this description of ¢1 ® ¢2. O

Define a system of Q-line bundles NM'(n) on X'(n) by
N(n) = L(n)**(~0op).
Then Theorem 4.10 shows that for any prime p of Op, this bundle has the
pulling back NV, on X/(Of ).

5. Shimura curve X"

In this section, we study the relation between Shimura curves X and X’
in case 2: Ag is embedded into B. For this, we need to consider another
Shimura curve X” which includes both X and X’. We will first study some
basic properties of X”, especially the p-divisible groups parametrized by X",
and the construction of X” using X and a Shimura variety Y of dimension 0.
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Then we construct an integral model X" of X” using the integral model X,
and a p-divisible group #H/,, for each p-adic point 2" of X" using Breuil-Kisin’s
theory [Kis06], [Kis10]. We show that the deformations of the p-divisible group
1", are given by deformations of H,. Finally, we use all of the results in this
section to complete the proof of Theorem 1.6.

5.1. Shimura curve X”. Let (®1,®2) be a nearby pair of CM types of E,
and let F’ be the reflex field of ®; + ®5. In the following, we want to define a
Shimura curves X” defined over F’, depending on (®1, ®3), and with an action
by the group
G" =B x,x A%
The stabilizer subgroup Z” is generated by (1, ) with 2 € EX, the closure of
E* in E*. The scheme X" includes X’ as a union of connected components
via the embedding G’ — G”.
At an archimedean place 7’ of F’ over a place 7 of F', we define a reductive
group over Q as follows:
G" = B* xpx E*,
where as before B is a quaternion algebra over F' with ramification set 3(B) \
{r}. Then we have an embedding G’ — G”. The Hodge structure b’ : C*
— G'(R) induces the Hodge structure h” : C* — G”(R). The congugacy
class of h" is b*. It is easy to show that the reflex field of (G”, h") is still F’.
Thus for each open compact subgroup U of G” (@) ~ ’]ﬁ, we have a Shimura
curve X7, over F’ with uniformization at 7" given by

X(-(C) = G"(@\b* x G"(@Q)/U.
Let X" be the projective limit of X7;. Then X” has a uniformization as follows:
X7/(C) = G"(@\b* x G"(Q)/Z".
The embedding G’ — G” defines an embedding 7 : X/ — X"
In the following, we want to study the relation between X and X”. First

let us start with a Shimura variety Y of dimension 0 defined by the group E*
with the Hodge structure on hg : C* — (F®R)* given by the composition of

C* — (C*)9, z+— (1,271,271

with the inverse of the isomorphism ®; : (£ ® R)* — (C*)9. Here the
component 1 corresponds to the unique element of ®; \ ®3. Note that hy is
determined by ¥ = ®; N ®,. For any open compact subgroup J of E X, we
have a Shimura variety Y of dimension zero defined over F’ (which includes
the reflex field of hy). This set has an action by E*. In fact the set of its geo-
metric points is a homogenous space over F X\E */J. Let Y be the projective
limit of Y;. Then the set of geometric points of Y is a principal homogenous
space over ﬁ\/E\ X where EX is the closure of EX in EX.
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At the archimedean place 7 of F’ over a place 7 of F' as above, the product
(Xu xpYy)r = Xuz Xc Yy

of Shimura varieties over C is defined by the reductive group B* x E* and the
product of Hodge structures (G x E*,h x hy). We have a natural homomor-
phism of reductive groups:

BXXEX—>G:BX XFXEX,

which is compatible with the Hodge structures. Thus we have a surjective
morphism of Shimura curves over F’:

f: Xy XFYJ—>X(,J/'//,

where U” is the image of U x J. Taking limits, we obtain a morphism of
schemes over F”:
X xpY — X",

This morphism is compatible with the actions of Gy, EX, and G” 7 and induces
an isomorphism
f: (X xpY)/AF*) = X",
where A is the twisted diagonal map
A:F* — BX x EX, 2z (2,271,
The isomorphism property of f can be checked at the place 7" using uniformiza-

tions of X,Y, X".

p-divisible groups. Fix a prime number p and a maximal order Og, con-
taining Op,. We want to study certain p-divisible groups parametrized by
X(’},, and Y;. Write A, = Op,, as a left Opp-module. For any idea n of Op
dividing a power of p, denote by U}/(n) the closed subgroup of G} fixing A,
and acting trivially on A,/nA,. Write UJ(1) = U} (OF). Then we define

X = X”/Ull)’(l), Y1 = Y/Ogyp.
With our previous definition of X7, we have an isomorphism
f1: (X1 xp Y1) /AFX) =5 X1
Define the p-divisible groups on Y; and X} by making quotients
H" = [B,/Og,p x X" /Ull,’(l), I=(E,/OR) x Y)/ng.

Here U)(1) (resp. Op ) acts on B,/Op,, (vesp. E,/Opp) on the right-hand
side as follows:

xT - (b, 6) = &Tb, WS Bp/OB,p; (bv 6) € U/,(1)7

(resp. y-e=ey, y e Ep/OEvp’ ec Og,p)'
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These definitions make sense since U”(1) and OF , act freely on X" and Y
respectively. These groups can be defined on finite levels as in the case of H
over X;. We sketch the case of H” as follows. The group H” is a direct limit of
finite subgroups H”[p"]. Each H"[p"] descends to a quotient X" /(U" (1) xU"P)
for some compact open subgroup U"P of (G”)? by the formula

Hiyaya 07 = [0 A/ Ay x X" /(UL x U™)] J(UL(1) x U"™).
For this we need to find U"P so that U}/(1)/U}(p") acts freely on X" /(U (p™)
x U"P). This can be done by copying the argument in the proof of [Car86,

Cor. 1.4.1.3]. Tt is clear that H' = H"|x/. The groups H, H"” and I are related
as follows.

PROPOSITION 5.1. Let w1 and wo be the projections of X1 Xp Y1 to the
two factors, and let T(H"), T(H), T(I) be the Tate modules of the correspond-
ing p-divisible groups. There is a canonical isomorphism of étale sheaves on
Xl XE Yi:

fiT(H") =5 7iT(H) ®op., T T(I).

Proof. By definitions, the Tate modules of these groups can be written as

follows:

T(H) = (0p, x X)/U(1), T(H") = (0p, x X")/U"(1),
T(I) = (Op, x Y)/O} - O

5.2. Integral models. Let ¢’ be a finite place of F’ dividing p, and let p be
a place of F' under ¢'. Let F g}r be the completion of the maximal unramified
extension of F| K’_},, which is a finite extension of F{J'. For simplicity, we introduce
the following notation: K := Fg" and K’ := FJ".

Consider the following schemes:

Xip=Xi@pK, X!, =X|epK, Yig=YiopK.
Then we have an isomorphism
fp/ : Xl,p XK YLK,//A(F\X) L) X{/,p"

By construction, all geometric points of Y7 are defined over K’. Thus Y] . is a
principal homogenous space of W\E x/ Og’p. In this way, the integral model
X1, of X1, and the model Spec Ok of Spec K’ induce an integral model Xl”’p,
for X7 ,. This in turn induces an integral model A7 , by the embedding
X{’p, — X{/,p"

Notice that if © does not divide dp, then A7, is smooth over Of. It
follows that both Xl”p, and Xl” o are smooth over Of. If p divides 9p, then
X1, is a regular and stable Mumford curve. It follows that Xé, and Xg, are

both stable Mumford curves. Notice that they are not regular if p is ramified
in F'.
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Recall that we have defined a line bundle Nj, on X, extending wgﬁ’p.
This bundle induces bundles N , and MY, on &] , and &Y', respectively.

Now we would like to extend the groups I, H’, H” to integral models
Z,H',H" point-by-point using Breuil-Kisin’s classification of p-divisible group
[Kis06]: any crystalline representation of G := Gal(K’/K') of Hodge-Tate
weights 0 or —1 arises from a p-divisible group over Ofr.

PROPOSITION 5.2. Let L be a finite extension of K'. For each point
y €Y (L) (resp. ' € X'(L), resp. 2" € X"(L)), the group I, (resp. H.,, H!)
over L extends uniquely to a p-divisible group over Ofp.

Proof. For I, recall that the action of Gxs on T(I) ~ Og, is given by
the reciprocity map for the type (E,®; N ®3). Fix an isomorphism C ~ Q,.
Then T(I) Xg, @, is a direct sum of one-dimensional spaces V, indexed by
o € Hom(E,Q,) = Hom(E,C). The action of Gg+ on V is trivial if o ¢ ¥;
otherwise it is given by the character

Ggr — G ~0F, C Q.
® ®

Thus T(]) is crystalline of weight —1 or 0.

For H!,, let (x,y) be an L-point of X x ¥ with image z” € X{(L). Con-
sider the p-adic representation T(H,). By Proposition 5.1, it is the product
T(H,) x T(I;). Both T(I,) and T(H,) are cryslalline since both H, and I,
extend to a p-divisible group over a ring of integers by Proposition 4.9 and the
above discussion. It follows that T(H.,) is crystalline. It also has weights 0
and —1. Thus by Breuil-Kisin [Kis06], H?, extends to a p-divisible group H,
over Oy,.

The statement for H' is clear as it is the restriction of H” on X”. O

Deformation theory. Let L be a finite extension of K’ and let (z,y) be an
L-point of X7 xY; with image 2” € X{(L). We have covariant Dieudonné mod-
ules D(H”,) over Ok, D(H,) over Ok, D(Z,) over O and their filtrations:

00— Q(Hgf/) — D(Hg//) — Q(%g//)v — O,
0 — QHL) — D(Hy) — Q(Hz) — 0,
0 — Q(Z;) — D(Z,) — Q)" — 0.

ProPOSITION 5.3. There is a canonical isomorphism of filtered Op -
modules:

D(Hg//) ~ D(Hz) ®OE,p®OK ]D)(Iy)

Proof. By Kisin [Kis10, Th. 1.4.2] for p # 2 and by Kim [Kim12|, Lau
[Laul4], and Liu [Liul3] for p = 2, for a p-divisible group G over Oy, with L

a finite extension of the fraction field of W (k) (k := Oy/p), the module D(G)
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with its filtration depends canonically on its Tate module T(G) as an object in
criso

the category Repg; [ of integral crystalline representations of G, := Gal(L/L).

More precisely, let & = W (k)[[u]] be the ring of power series over W (k) with
a surjective map & — Op, by sending v to a uniformizer 7y, of L; then
D(G) = Or ®e ¢*MT(G),

where 9 is a functor from RepCGriLSO to certain category Modg of modules over

noncommutative ring S[y|, defined in [Kis10, Th. 1.2.1].

Applying this to divisible groups H..,, (Hz)o,., Iy over O = Ok, and
taking care of the isomorphism in the above proposition, we obtain a canonical
isomorphism of filtered O ,-modules:

D(Hg//) ~ D(%x) ®OE,p®OK ]D(Iy) |

Now we consider these p-divisible groups with actions by Opj,. Their
cohomology groups are modules over of the Ok-algebra Op) ®z, Ok. The
quotient Of, — O, induces a quotient 7 : O, ®z, Oxg — Ok. Use this 7
to take quotients of cohomology groups to obtain

0 — W(HL) — M(HL) — W(HL)Y — 0,
0 — W(HL) — M(Hy) — W(Hz)Y — 0,
0 — W(Z;) — M(Z,) — W(Z,)" — 0.
Notice that W(Z,) = 0 and W(Z}) is a free module of rank 1 over Op i :=
Ok, ®o, Ok . Thus we have
PROPOSITION 5.4. There are canonical isomorphisms
W(H) = W(Hg) @op i W(T,),  W(Hg) 2 W(Hy) ®0,c W)
We want to apply these facts to compute the universal deformation space
of H!,, as p-divisible Og p-module:
Hommo, (2(HL), Q(Ha)¥) = Homoy,, (W (HE), W(HI))
= HomoE’p(W(Hi), W(Hz)") @0, Ok
= HomOB7p(W(HfE), W(Hz)Y) @ Ok
= w}llﬂw ® Ok
-1

= W
XLBO“

x// M

Here

(1) the first identity follows from a consideration of types under actions by O,
(2) the second identity follows from the above proposition,

(3) the third identity follows from a precise computation,

(4) the fourth identity follows from the Kodaira—Spencer map on H, and

(5) the last one follows from the definition.
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This shows that the formal completion 2?1” o of A7 o at z" is indeed the uni-
versal deformation of the p-divisible group HZ,.
Taking determinants of the above isomorphism, we obtain the following
identity of two Og-lattices of the module w;(?, L
6

COROLLARY 5.5. N/, = det W(H,) @ det W(H).

5.3. Proof of Theorem 1.6. Let y € Y be any fixed point. Then we have
an embedding X — X”. Recall that P € X7(@ is a fixed CM point by FE.
Let P” € X" be the image of (P,y). Then P” is a point fixed by 7”(Q).

LEMMA 5.6. There is an embedding X' — X" such that P" is the image
of a P in X' fized by T'(Q).

Proof. We fix one archimedean place 7/ of F’ over a place 7 of F'. This
gives a nearby quaternion algebra B = B(7). We may assume that P is

represented by (zp,1) € h x G(Q) with 2y € b a fixed point by E* in the
following uniformization:

X-(C) ~ G@)\v* x GQ/Z(@.
Similarly, we may assume that y is represented by 1 € E*. Then
Y,(C) = EX\E*.
In this way, the image P” of (P,y) in X”(C) is represented by (zp,1) € b x

G”(@):

7 =G"(Q\b* x G"(@/Z2"(Q).
Thus P” is the image of a point P/ € X'T". O

Recall that we have fixed a maximal order Op of By including O, which
defines maximal compact subgroups U,U’,U" of G, G’ and G”, curves Xy,
X{y, X{;», and morphisms

XU —)X(,}//, Xl{]’ —)X{}//.

The images of P, P', P" define CM points Py, P/, P}, which are compatible
with the above morphisms.

By Corollary 2.6, it suffices to show that for each nearby pair (®1, ®2) of
CM types of E,

1 1
g+ h(®1, ) = Shy, (Py) — 7 log(ds).

By Theorem 4.10, the right-hand side is ihﬁu (Py).
Let Ag be the corresponding abelian variety represented by F;, over some
finite extension K of F'(P[,). Then Ay is isogenous to the products of CM



ON THE AVERAGED COLMEZ CONJECTURE 577

abelian varieties A1, As of CM types ®1, ®o. By Theorem 2.7,
1
h(®1, Pg) = ih(Ao,T).
Thus we have reduced Theorem 1.6 to the identity

1
h(Ao,7) = %hﬁU(PU)-

Since éhﬁu (Py)= mge\g(ﬁ ulp, ), it suffices to prove the following result:

PROPOSITION 5.7. There is an isomorphism of hermitian line bundles

over Og:
N(AOvT) = NPU ®OF(PU) Ok-.
Proof. Notice that both sides have the restriction L%?, ® K on the generic
U//

fiber of X’. Thus two sides define two integral and hermitian structures on
L%?, ® K. Also by Theorem 3.7, they have the same metric. Thus it suffices
to show that they define the same lattice at each finite place of K. Let v be a
finite place of K with residue characteristic p. Let O}, be the completion of
the maximal unramified extension of O ,. Then

Q(Ag) ® OF ,, ~ QU(Ao[p™]) @ OF -
By Corollary 5.5,
N(A()aT) ® Olfl(r,v = NP['J',, ® Olfl(r,v = NPU ® ?(r,v'

This completes the proof of the proposition. O

Part 2. Quaternionic heights

The goal of this part is to prove Theorem 1.7. We use notation from our
previous work [YZZ13]. We will make a specific explanation when we come to
a setting different from that of [YZZ13].

6. Pseudo-theta series

In this section, we introduce the notion of pseudo-theta series, an impor-
tant concept used in the following sections. We will first recall the usual theta
series defined by Schwartz functions in [YZZ13]. Then we define a pseudo-theta
series, which looks like a theta series but is not automorphic. We will show
that it can be approximated by the difference of two theta series associated to
it. Finally, we will show that if a sum of pseudo-theta series is automorphic,
then these pseudo-theta series can be actually replaced by the difference of the
theta series associated to them, and we get some extra identities between these
theta series.
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6.1. Schwartz functions and theta series. We first recall the notion of
Schwartz functions and theta series in [YZZ13], which is a variant of the stan-
dard notions.

Let F' be a totally real number field and A the adele ring of F'. Let (V, q)
be a positive definite quadratic space over R. Let

S(V(A) x A*) = @,S(V(F,) x F)\)
be the space of Schwartz functions introduced in [YZZ13, §4.1]. We recall it
in the following.
If v is non-archimedean, then S(V (F,) x F.}) is the usual space of locally
constant and compactly supported functions.
If v is archimedean, then F, = R, and then S(V(F,) x R*) consists of
functions on V(F,) x R* of the form

bu(,u) = (Pi(ug(x)) + sgn(u) Py (ug(x))) e >4
with polynomials P; of complex coefficients. Here sgn(u) = u/|u| denotes the
sign of u € R*. The standard Schwartz function ¢, € S(V(F,) x R*) is the
Gaussian function
b, u) = e~ 2m1a@) I, (u).

Here 1g, is the characteristic function of the set R of positive real numbers.
In this paper, ¢ is always the standard Gaussian function at archimedean
places.

Assume that dim V is even in the following, which is always satisfied in
our application. In [YZZ13, §2.1.3], the Weil representation on the usual space
S(V(A)) is extended to an action of the similitude groups on S(V(A) x AX).
This gives a representation of GL2(A) x GO(V(A)) on S(V(A) x AX). This
extension is originally from Waldspurger [Wal85].

Take any ¢ € S(V(A) x AX). There is the partial theta series

0(g,u, ) = Z r(g)p(z,u), g€ GLy(A), ue A*.
zeV
If w € F*, it is invariant under the left action of SLa(F') on g. To get an
automorphic form on GL2(A), we need a summation on wu.

There is an open compact subgroup K C GO(A ) such that ¢ is invariant
under the action of K by the Weil representation. Denote pux = F*NK. Then
pi is a subgroup of the unit group O and thus is a finitely generated abelian
group. Define a theta function by

0g, )= Y, Ogue)= Y. > r(ge(x,u), geGLy(A).
uep \F* uepd \F* zeV
The summation is well defined and absolutely convergent. The result (g, ¢)x
is an automorphic form on g € GLy(A), and 6(g,r(h)¢)k is an automorphic
form on (g,h) € GL2(A) x GO(V(A)). Furthermore, if ¢ is standard, then
0(g, )k is holomorphic of parallel weight %dim V.
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By choosing fundamental domains, we can rewrite the sum as

09, 9)x =Y 1(9)0(0,u) +wk > r(g)p(x, ).

u€p2 \Fx (zu)epr \((V—{0})xFx)

Here the natural action of px on V x F* is just ao (x,u) — (ax,a2u). The
summation over u is well defined since ¢(az,a 2u) = r(a=!)¢(z,u) = ¢(z, u)
for any o € pg. We have the factor wg = [{1, -1} N K| € {1,2}. See [YZZ13,
§2.1.3] for more details.

6.2. Pseudo-theta series. Now we introduce pseudo-theta series. Let V'
be a positive definite quadratic space over F, and let Vi € V4 C V be two
subspaces over F' with induced quadratic forms. All spaces are assumed to be
even-dimensional. We allow V to be the empty set (), which is not a subspace
in the usual sense. Let S be a finite set of non-archimedean places of F,
and let ¢° € S(V(A®) x ASX) be a Schwartz function with standard infinite
components.

A pseudo-theta series is a series of the form

AP =Y Y dslg,zur, (9)6%(z,u), g€ GLa(A).

u€p\F* zeV1—-Vp
We explain the notation as follows:
e The Weil representation r,, is not attached to the space V7 but to the
space V;

b ¢f§(97 x, u) = HUES d);)(g’lh Ly, uv) as local product;
e For each v € S, the function

¢, : GLo(Fy) x (Vi — Vo) (Fy) x F)* = C

is locally constant, and it is smooth in the sense that there is an open
compact subgroup K, of GLa(F},) such that

Gu(g,,u) = ¢y (g, 2, u) V(g 2, u) € GLa(Fy) x (Vi — Vo) (Fo) x B, K € K.

e 4 is a subgroup of O with finite index such that ¢ (z,u) and (g, z,u)
are invariant under the action « : (z,u) — (ax,a 2u) for any o € pu. This
condition makes the summation well defined.

e For any v € S and g € GLy(Fy), the support of ¢! (g,-,-) in (Vi1 — V) (F,) x
F is bounded. This condition makes the sum convergent.

The pseudo-theta series A sitting on the triple Vo € Vi C V is called
nondegenerate if V1 =V and is called nontruncated if V is empty. It is called
nonsingular if for each v € S, the local component ¢, (1, xz,u) can be extended
to a Schwartz function on Vi (F,) x EF*.

Assume that A((i;,q) is nonsingular. Then there are two usual theta series
associated to A5). View ¢/ (1,,-) as a Schwartz function on V;(F,) x FX for
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each v € S, and view ¢,, as a Schwartz function on Vi (F,) x F,* for each
w ¢ S. Then the theta series

Oan(g) = D D 1y (@)¢s(l,z,u)r, (9)6°(,u)

uep\F* zeWq

is called the outer theta series associated to Af). Note that the Weil represen-
tation ry, is based on the quadratic space V. Replacing the space Vi by Vj,
we get the theta series

0a0(9) = D D ry(@ds(l,z,u)ry, (9 )¢° (2, ).

uep2\F* z€Vp

We call it the inner theta series associated to A(€). We set 040 = 0 if Vj is
empty.

We introduce these theta series because the difference between 641 and
4,0 somehow approximates A®) | 1t will be discussed as follows.

Approzimation by induced theta series. We start with two invariants of
GL2(A) defined in terms of the Iwasawa decomposition. For g € GLa(A), we
define 6(g) = [], dv(gv) and peo(g) = [lvjoc Pv(gv). Here the local invariants
are defined as follows.

Denote by P the algebraic group over Q of upper triangular matrices. For
any place v, the character §, : P(F,) — R* defined by

5U:<a Z)r—)

extends to a function 4, : GLo(F,) — R* by the Iwasawa decomposition.
If v is a real place, we define a function p, : GLa(F,) — C by p,(g) = €% if

[ a b cosf sinf
9= d —sinf cosf

is in the form of the Iwasawa decomposition, where we require a > 0 so that
the decomposition is unique.

Resume the notation from the last subsection. Now we consider the rela-
tion between the nonsingular pseudo-theta series Ag) and its associated theta
series 04,1 and 04,.

We first consider the nontruncated case. Then Vj is empty, and

A= 3 3 #slg.z,u)r, (9)0° (@, u).

uep2\F* zeVy

al2

d

Obviously we have Agf)(l) =04,1(1), but of course we can get more.
A simple computation using the Iwasawa decomposition asserts that, if ¢,
is the standard Schwartz function on V' (Fy,) x F,, then for any g € GLa(F})
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and (z,u) € V1(Fy) x Fy,

6w<g>d Py, (9)(. ) if w { 00,
pulg) =" 5() S (9)bul(a,u) i w | .

Here we write d = dimV and d; = dim V3.
This result implies that

Ty (9)pw(@,u) = {

(9) d-dy  d-d; .
Ay’ (9) = poo(9) 2 6(9) 2 041(9) Vg€ legGLa(A™).
Here S’ is a finite set consisting non-archimedean places v such that v € S or
¢y is not standard.
Now we consider a general nonsingular pseudo-theta series

AP = Y Y slg,x ), (9)6% ().

u€p\F*x zeV1—-Vp

We have to compare it with the difference between the same theta series

ar(g) = D D 1y (@)s(l,z,u)r, (9)6°(,u)

uep\F* zeWq

and the nontruncated pseudo-theta series

B = 3 3 r (9)s(1mw)ry, ()65 (2, ).

uep\F* zeVp

Note that B®) is just a part of 64 1, where summation is taken over the whole
Vo but the representation is taken over V;. By what we discussed above, we
should compare B®) with the associated theta series

Opo(9) = Y > ry(9)ds(lz,u)ry (9)9° (z, ).

uEp\F* zelp
But this is exactly the same as 04. By the same argument, there exists a
finite set S” of non-archimedean places such that
—dq d—d

A (g) = pocl9) 7 6(9) 7 (0a(9) - B (9)) ¥ g € 15GLa(AY),

dy—d d1—d, ,
BY (9)=psol9) "7 0(9) 77 0a0(g) V¥ g€ LyGLa(AY).

Our conclusion is that for any g € 15GLy(AS"),

(S) d=dy _ d=dj d—dy _  d-dg
(6.2.1) A5 (9) = pool(9) 2 6(9) 2 041(9) — po(9) ™2 (9) 2 Ba0(9)-
By the smoothness condition of pseudo-theta series, there exists an open com-

pact subgroup Kg of GLa(Fs/) such that the above identity is actually true
for any g € KgGLy(AS").
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6.3. Key lemma. Now we can state our main result for this subject.

LEMMA 6.1. Let {AES‘Z)}K be a finite set of nonsingular pseudo-theta series

sitting on vector spaces Vyog C V1 C Vy. Assume that the sum Y, Aése)(g) 18
automorphic for g € GLa(A). Then

1) ZAgge) = Z QAEJ;
¢

ﬁELoyl
Z Oa,1 — Z 04,0 =0 for all k € Z~o.
¢€Ly (eLip

Here Ly, 1 is the set of £ such that dimV, —dim Vy 1 =k, and Ly is the set of
¢ such that dimV, — dim V; o = k. In particular, Lo is the set of £ such that
Via = Vi

Proof. Denote f =3, A S‘ . In the equation f — 3, Agsé) = 0, replace

each AE 2 by its correspondlng combinations of theta series on the right-hand
side of equation (6.2.1). After recollecting these theta series according to the
powers of pao(g9)d(g), we end up with an equation of the following form:

(6.3.1) S psel) 6(9) fulg) =0 Vg € KsGLy(A%).

Here S is some finite set of non-archimedean places, Kg is an open com-
pact subgroup of GLy(Fs), and fo, f1,..., fn are some automorphic forms
on GLy(A) coming from combinations of f and theta series. In particular,
Jo=1[—2eery, 04,1 We will show that fo = f1 =--- = f,, = 0 identically,
which is exactly the result of (1) and (2).

It suffices to show fi(go) = 0 for all gy € GL2(A?), since GLg(F)GLg(A?)
is dense in GLa(A). Fix gg € GL2(A?). For any g € GLa(F) N KgGLa(A%),
we have

Zpoo 990)*5(990)" fr(990) = 0,

and thus
Z poo(9)*6(990)" fr(g0) = 0

by the modularity.

These are viewed as linear equations of fo(go), f1(g0),-- -, fn(g90). To show
that the solutions are zero, we only need to find many g to get plenty of
independent equations. We first find some special g to simplify the equation.

The intersection KgGLo(A®) N ggGLg(ap)gal is still an open compact
subgroup of GLy(A). For any g € GLo(F) N (KsGLa(A%) N goGLg(ap)gal),
we have

990 = 90 - 95 990 € goGLa(Op).
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Then d¢(g9g0) = d¢(g0), and our linear equation simplifies as

Z Poo(g 9)%67(90)" fi(g0) = 0.

To be more explicit, consider gy = (& ;) for any N € Z. Then we know
that gy € GLa(F) N (KsGLa(A%) N goGLa(Or)gy ') when N is divisible by
enough integers. Explicit computation gives

Poo(9N )0 (gn) = (1 +iN)™",

where n = [F': Q]. Then we have

n

D (1 +iN)"6(g0)* fx(g0) = 0.

k=0
Any n + 1 different values of N imply that all fi(go) = 0 by Van der Mond’s
determinant. (]

7. Derivative series

The goal of this section is to study the holomorphic projection of the
derivative of some mixed Fisenstein-theta series. We will first review the
construction of the series PrI’(0,g,¢) treated in [YZZ13, Ch. 6], the ana-
lytic ingredient for proving Theorem 1.7. Then we compute the series under
some assumptions of Schwartz functions. The final formula contains a term
L'(0,1)/L(0,7n), which is a main ingredient of our main theorem in the paper.
In [YZZ13], this constant terms was killed under some stronger assumptions
of Schwartz functions.

7.1. Derivative series. Let F be a totally real field, and let E be a totally
imaginary quadratic extension of F'. Denote by A the ring of adeles of F. Let
B be a totally definite incoherent quaternion algebra over A = Ap with an
embedding Ey — B of A-algebras.

Fix a Schwartz function ¢ € S(B x A*) invariant under U x U for some
open compact subgroup U of IB%?. Start with the mixed theta-Eisenstein series

I(s,9,0)u = > oo (v Y r(vg)e(w,u).

uep? \F* vE€P(F)\SL2(F) z1€E

It was first introduced in [YZZ13, §5.1.1].

The derivative series PrI’(0,g,¢) is the holomorphic projection of the
derivative I'(0, g, ¢) of I(s, g, ). It has a decomposition into local components
as follows.
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FEisenstein series of weight one. To illustrate the idea, we first assume
that ¢ = ¢1 ® ¢2 as in [YZZ13, §6.1]. Then

I(S7gv¢)U: Z 0(97U,¢1) E(S,g,U,QSg),

uepd \F*

where for any g € GLa(A), the theta series and the Eisenstein series are given by

e(gau7¢1) = Z T(g)d)l(l'l,U),

r1ER

E(s,g,u, ¢2) = > 3(v9)r(vg)$2(0, u).

YEP(F)\SL(F)

The Eisenstein series has the standard Fourier expansion

E(S, g, U, ¢2) = 5(g)sr(g)¢2(07 u) + Z Wa(S, g,u, ¢2)

aeF

Here the Whittaker function for a € F, u € F* is given by

Wals. g.,02) = [ 8(wn(b)g)® r(wn(5)g)da (0, u)(~ab)ds
We also have the constant term

Eo(s,9,u, ¢2) = 0(9)°r(9)92(0, u) + Wo(s, g, ).

For each place v of F', we also introduce the local Whittaker function for
acF,, ueF) by

W (5, 9 1, d2.0) = /F 5(wn(b)g)® r(wn(b)g)ds,u(0, u)ty(—ab)db

For a € F,}, denote

W(;,U(‘g?g? ’LL) = %qu)Wa,v(Sa 9, u)a

where 7, ,, is the Weil index of (Eyj,, uq). Normalize the intertwining part by

o 1 L(s+1,m,)
WO,v(Smgvua ¢2,v) 7u11) <L(8 n )v
s Th

In the following we will suppress the dependence of the series on ¢, ¢1, ¢
and U.

_1 _1
|Dy| ™2 |dy| "2 Wo (s, 9, u, P2,0)-

Decomposition of nonconstant part. It is easy to have a decomposition
E,(Oagvu7 ¢2) EO O 9, U, ¢2 Z Z Wav 0 » 49, U, ¢2) (O g,u, ¢2)
U aeFX

according to where the derivative is taken in the Fourier expansion. This
gives a decomposition of I'(0,g). Eventually, [YZZ13, §6.1.2] converts the
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decomposition into
I/(Oag) - - Z I/(07.g)(v)+ Z e(gvu)E(l)(Oagau)a
v nonsplit uepd \F*

where for any place v nonsplit in F,

10.9.0)0 =2f K.t
U
Here
Cy = EX\E™(Ag)/E*(Af)NU
is a finite group and the integration is just the usual average over this finite
group. The series

K )= S ketymyen (909 w)r(g, (b, 2))6° (y, u)
uEu?]\FX yEB(v)—F
is a pseudo-theta series. In the case ¢, = ¢1, ® ¢2, under the orthogonal
decomposition, it is given by

L(1,n, o
k¢v (gayvu) = V£1(£1;T(9)¢1,v(y17u)Wuq(yg),v/(()?gaua ¢2,v)7 Y2 7& 0.

Here kg, (g,y,u) is linear in ¢,, and the result extends by linearity to general
¢ (which are not of the form ¢; ® ¢2).

In [YZZ13], Assumption 5.3 was put to kill the minor term E{(0, g,u). In
this paper, however, we will not impose this assumption, since E{(0, g, u) gives
terms matching the Faltings height from the arithmetic side. In the following,
we give a little computation about it.

Decomposition of the constant term. Now we treat the derivative of the
constant term

EO(Sv g,u, QSQ) - 5<g)sr(g)¢2(07 'LL) + WO(Sv 9, u)
It was actually computed in the proof of [YZZ13, Prop. 6.7] (before applying
the degeneracy assumption).
In fact, by definition,
L(s,n)
L(s+1,7n)

_ L(s,n)/L(0,n) o oo
= LG+ Lp/L( g LBl o)

We take the normalization W¢ (s, g,u) because

Wo.0(0, 9, 1) = 1(g)¢2,0(0, u)

1 1
W5 (s, g,u) [T 1Dl 1dy2

v

Wo(s,g,u) = —

for all v, and
W(iv(sa 9, u) =0y (g)_ST(g)¢2,”U (07 U)
for almost all v. See [YZZ13, Prop. 6.1].
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So the expression gives the analytic continuation of Wy(s, g, u). Taking
derivative from it, we obtain

300,90 = o (108 222 r(a)on(0.0)

=D W5, '(0,9,u)r(9)85(0, w).
In summary, we have

I,(0797¢) == Z I/(Oagv¢)(v) — €0 Z Z T(g)¢(yau)

v nonsplit uE,u%]\FX yelE

= > D o lgy,u)r(9)9" (v, u)

U uep \F* yeE

+ 2logd(g) Z r(9)o(y, u),

uep? \F* yeE

where we have the constant

c :i‘_ 1OgM
07 450 L(s+1,n) )’

and

Coy (97 Y, u) = TE(Q)¢1,U (y7 U)WOO,U I(07 9, U) + log 6(gv)r(g)¢v(y> u)
The term

1'0,9.:0)(0) =2f K (9. (t,0))dt

is as before. Both sums over v have only finitely many nonzero terms.
By the functional equation

L(1 = s,n) = |dg/dr|[* 2 L(s,n),

we obtain

L'(0,m)
L(0,7n)

co =2 +log|dp/dp|.
Note that here L(s,n) is the completed L-function with gamma factors.

The decomposition holds for ¢ = ¢1 ® ¢2, but it extends to any ¢ €
S(B x A*) by linearity. In other words, k¢, (g,y, ) and cg, (g, y, u) are defined
by linearity. We will see that we can actually have coherent integral expressions
for them.
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Holomorphic projection. As in [YZZ13, §§6.4, 6.5], we are going to con-
sider the holomorphic projection of I'(0, g, ¢).

Denote by A(GL2(A),w) the space of automorphic forms of central char-
acter w and by A(()2)(GL2(A),W) the subspace of holomorphic cusp forms of
parallel weight two. The holomorphic projection operator

Pr: A(GLa(A),w) — AP (GLa(A),w)

is just the orthogonal projection with respect to the Petersson inner product.
Consider the action of the center A* on I'(0, g, ¢) by

Z I/(ng7 ¢) — I,(O? Zg’¢)'

The action factorizes though the finite group F X\A? JUN A?. It follows that
we can decompose I'(0, g, ¢) into a finite sum according to characters of this
finite group. In other words,

I'0,9,0) =Y 1I'0,9.¢)w,  I'(0,9,0)0 € A(GL2(A),w),

where the direct sum is over the finite group of characters w : F*\AL/UNAY
— C*. Hence, the holomorphic projection PrI’(0, g, ¢) is still a well-defined
holomorphic cusp form of parallel weight two in g € GLa(A).

We can apply the formula in [YZZ13, Prop. 6.12] to compute PrI’(0, g, ¢).
Note that the formula takes the same form in all central characters, and thus
can be applied directly to PrI’(0, g, ¢), if it satisfies the growth condition of
the proposition. For the growth condition, we make the following assumption.

ASSUMPTION 7.1. Fiz a set So consisting of two non-archimedean places
of F which are split in E and unramified over Q. Assume that for each v € S3,
the open compact subgroup U, is maximal, and

r(9)¢u(0,u) =0 Vg € GLa(F), u € .

This assumption is exactly [YZZ13, Assumption 5.4]. Under the assump-
tion, Prl’(0, g, ¢) satisfies the growth condition of the formula for holomorphic
projection. The proof is similar to that in [YZZ13, Prop. 6.14]. Alternatively,
one can expression I'(0, g, ) as a finite sum of I'(0, g, x, ¢) for different x.

Finally, we have the following conclusion:
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THEOREM 7.2. Assume that ¢ is standard at infinity and that Assump-
tion 7.1 holds. Then

Pri’(0,g.0)y = —>_T(0,9,9)(v Y. 1'0.9.9)(v)

v]oo vfoo nonsplit

o Yy

uepd \F* yeEX

=33 Y gy u)r(9)e ()

vfoo uep? \F* yeE*

+ > > (2logdg(gy) +log lug(y)ly) (9)e(y, ).

uepd \F* yeEX

The right-hand side is explained in the following:

(1) For any archimedean v,
T(0.9.0)0) =2f K (g, (L)t
U

E(;sv)(g, (t1,t2)) = wy Z lim, Z (9, (t1,22))8(y)a Ku,s(y),

agF* yeuu \(B(v) 1 —E*)
(DL
ks = dt,
() 2(4m)s J1 t(1 = Ay)t)stt

where A(y) = q(y2)/q(y) is viewed as an element of F,.
(2) For any non-archimedean v which is nonsplit in E,

I'(0,g,9¢) —2][ IC g,tt)d

Ké’(g,m,tz))— ST ke (9, y, wr(g, (1, £2))8° (v, w),

uep \F* yeB(v)—E

L la o
k¢v (g’ Y, U) = vél(giir(g)%’”(yl’ )Wuq(y2) (07 g,u, ¢2,v)7 Y2 7& 0.

Here the last identity holds under the relation ¢, = ¢1., @ P24, and the
definition extends by linearity to general ¢,.
(3) We have the constant

L (0,m)
Lf(ov 77)

(4) Under the relation ¢, = 1.4 @ P2,

oy (9,9, u) = 7E(9)P1,0(y, W)W, (0,9, u) +1log 8(gy)r(9)du(y, ).

The definition extends by linearity to general ¢,.

61:2

+log |dg/dF|.
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Proof. Apply the formula of [YZZ13, Prop. 6.12] to each term of
I,(Oag7 ¢) = - Z I/(Oagv¢)(v) —Co Z Zr(g)¢(yau)

v nonsplit uepd \F* yek

= > D o9y, u)r(9)9" (v, u)

U uep \F* yeE

+ 2logd(g) Z Zr(g)gb(ym).

uep? \F* yekE

Denote by Pr’ the image of each term. Note that the holomorphic projection
of I'(0,g,$)(v) is already computed in [YZZ13, Prop. 6.15]. Furthermore, if v
is real, we have ¢y, (g,y,u) = 0 by Lemma 7.6.

Note that Pr’ does not change I'(0, g, ¢)(v) for non-archimedean v since
it is already holomorphic of parallel weight two at infinite. Similarly, we have

Pl >0 D r(9)e(y,u)

uepd \F* yek

= > > r9sy,u),

uep \F* yeEx

Pl DY D s (g y,u)r(9)0" (v u)

uep \F* yekE
= Y Y clgpur@)eyu), vic.
uepd \F* yeEx

The only changes are to remove the contributions of y = 0, because the results
do not have constant terms.
It remains to take care of

1
logd(g) >, > r(9)ely,u) = —logd(g) > (9)6(y, w).
uEu \Fx yeE> v (yu)epy \(EX x FX)
Here py = F* NU, and wy = |[{1,—-1} NU| is equal to 1 or 2. The identity
holds as in the case of usual theta series. Its first Fourier coefficient is just

1 > log d(g)r(g)9(y,u).

YU () e \(BX x Fx),
Write
log 8(g)r(9)p(y, u) = log 8(gs)r(9)d(y, w) +10g 8(goc) WP (g00) - 7(gs) b1 (y, w).

Then Pr’ does not change the first sum of the right-hand side since it is holo-
morphic of weight two at infinity, but it changes log §(geo)W ? (goo) in the
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second sum to some multiple co W3 (goo) = ¢ 7(g)doo(y, u), where ¢y is some
constant to be determined. As a consequence,

Pr' | logd(g) D > r(9)e(y,u)

uepd \F* yek

1 * *
=— 2 > log 87 (d*(a)g7)r(d"(a)9)$(y, )
U aeFx (y,u)epu \(EX X F*)y
1

+e— > r(d*(a)g)p(y, w)

U aer* (yu)epu \(EX xF*);

= Z(10g5(9f)+logluq(y)|%)7"(g)¢(y,w

uepd \F* yeEX

+e Y > 9oy, ).

uEu?j\FX yeEX

As for the constant, we have

dy
= 47 lim Se72™Y (o 3 e 2y 7
7 Q) o S, (logy)y ,

o 1
= 271'/ e 4 ogydy = —5(7 + log4m).
0

Here v is Euler’s constant. Then we have the combined constant

L'(0,n)
c1=co—2meo =2 +log |dg/dFr| + (v + log4m)m.
Here we have m = [F' : Q|. The gamma factor
s 1\™
Lools,n) = (7 T( 1))
gives
L _(0,n) 1
Ze\B ) 2 log 47).
Loo(0,7) (0 +logdn)
Thus
L (0,m)
AN
=2 + log dE dF . O
L0, BN

7.2. Choice of the Schwartz function. To make further explicit local com-
putations, we need to specify the Schwartz function.

Start with the setup of Theorem 1.7. Let F' be a totally real field, and let
E be a totally imaginary quadratic extension of F'. Let B be a totally definite
incoherent quaternion algebra over A = Ap with an embedding Ey, — B of
A-algebras. Let U = []yo Uy be a maximal open compact subgroup of IB%}(
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containing (the image of) 5§ = Tlujoo OF,- As in Theorem 1.7, assume that
there is no non-archimedean place of F' ramified in £ and B simultaneously.
Note that we have already assumed that U, is maximal at any v { co. De-
note by Op, the OF,-subalgebra of B, generated by U,. Then Op, is a maximal
order of B,, and U, = Oﬁv is the group of invertible elements. Furthermore,
the inclusion Ogv C Uy, induces Op, C Og,.
As for the Schwartz function ¢ = ®,¢,, we make the following choices:

(1) If v is archimedean, set ¢, be the standard Gaussian.
(2) If v is non-archimedean, nonsplit in E and split in B, set ¢, to be the
standard characteristic function 1, x .
BUXOFU

(3) If v is nonsplit in B, set ¢, to be 10§”X0§” (instead of 1o, XO;U).
(4) There is a set Sy consisting of two (non-archimedean) places of F split in
E and unramified over Q such that

1

o0 =10 x05, T TN, 3 N2 lee s, 2505, TV E S

Here w, denotes a uniformizer of OF,, and
(Og,)2 = {z € O, : v(¢(x)) = 2}.

(5) If v is split in £ and v ¢ S, set ¢, to be the standard characteristic
function 1o, ® 1,5x .
v Fy

By definition, ¢ is invariant under both the left action and the right action
of U.

Note that (4) seems least natural in the choices. However, it is made to
meet Assumption 7.1. In fact, as in the proof of [YZZ13, Prop. 5.15], any
function of the form

Lo — deg(L)po, o € S(By x F)), L € C°(B,05)
satisfies the assumption. The choice of (4) comes from ¢g = 1,x ® 1,x and
By Fy

L =1(0,,),- It is classical that deg((Og, )2) = [(OB,)2/O0g | =1+ N, + N2

For any v { 0o, fix an element j, € Op, orthogonal to E, such that v(q(j»))
is nonnegative and minimal, i.e., v(¢(j,)) € {0, 1}, and such that v(¢(j,)) = 1 if
and only if B, is nonsplit (and thus FE,/F, is inert by assumption). We check
the existence of j, in the following.

If v is nonsplit in B (and inert in E), then Op, is the unique maximal
order of B,. It is easy to see the existence of j,. We have v(¢(j,)) = 1 and an
orthogonal decomposition Og, = Op, + Og, jy-

If v is split in B, start with an isomorphism Ogp, — M>(OpF,). By this
isomorphism, Op, acts on M = O2U, and thus the subalgebra Op, also acts
on M. Fix a nonzero element mg € M. We have an isomorphism Og, — M
of Op,-modules by t — ¢ o mg. Thus it induces an Of,-linear action of Ogp,
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on Op,, which is compatible with the multiplication action of Op, on itself.
Set j, € Op, to be the unique element which acts on Op, as the nontrivial
element of Gal(E,/F,). Then j2 = 1 and j,tj, = t for any t € Op,. It follows
that j, is orthogonal to E,, and ¢(j,) = —1 satisfies the requirement.

For any non-archimedean place v nonsplit in F, let B(v) be the nearby
quaternion algebra. Fix an embedding E — B(v) and isomorphisms B(v), ~
B, for any v # v, which are assumed to be compatible with the embedding
Ey, — B. At v, we also take an element j, € B(v), orthogonal to E,, such
that v(g(jy)) is nonnegative and minimal as above. We remark that this set
{ior : v # v} U {ju} is not required to be the localizations of a single element
of B(v).

LEMMA 7.3. Let v be a non-archimedean place of F' and D, C Op, be the
relative discriminant of E,/F,. Then in the above setting,

DvOIB%U C OEv + OEUjv C OIBU~
Furthermore, Og, = Op, + Og, i, if and only if v is unramified in E.

Proof. This is classical. Assume that v is split in B, since the nonsplit
case is easy. For any (full) lattice M of B,, the discriminant dj; is the fraction
ideal of F,, generated by det(tr(x;Z;)), where x1,...,24 is an Op, -basis of M.
In particular, if M’ C M is a sub-lattice, then [dys : dpp] = [M : M']?. Direct
computation gives do, = 1 and do, 40, j, = D7. The statement follows.

]

7.3. Explicit local derivatives. Let (U, ¢, iy, j») be as in Section 7.2. The
goal of this subsection is to compute kg, (1,y,u) and cg, (1,y,u). The compu-
tations are quite involved, though the result are not so complicated eventually.
The readers may skip this subsection for the first time and come back when
the results are used in the comparison with the height series.

Throughout this subsection, v is non-archimedean. For y € B(v),, write
y = y1 + y2 with respect to the orthogonal decomposition B(v), = E, + Eyjy.
By Lemma 7.3, if v ¢ Ss and v is unramified in F, we have a decomposition
Dy = P10 D P2,y With ¢, = 10EUJ'UXO§U' Here ¢y, = 1OEU xO%, if v is split in B
and ¢1, = 102% <03, if v is nonsplit in B.

All Haar measures are normalized as in [YZZ13, §1.6], unless otherwise
described.

Derivative of Whittaker function 1.

LEMMA 7.4.

(1) Let v be a non-archimedean place inert in E. Then the difference

ko, (1,4, 4) = dulyr,u) - Loy, j, (y2) - %(U(Q(W)/Q(jv)) +1)log N,
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extends to a Schwartz function on B(v), x F,* whose restriction to E, x F
s equal to

|dvq(ju)| — 1
(14N H)(1 = Ny)

¢v(ya u) : log N,.

(2) Let v be a non-archimedean place ramified in E. Then the difference

Fou (15, 0) = Gulun, 0) 10,5, () - 5 (0(a(32) + 1) log N,

extends to a Schwartz function on B(v), x F, whose restriction to E, x F*
s equal to

o) (AL + 5000 =1 ) low N+ G

where
o(dy)—1
log N,
av(yvu) = u;g’f; : lpgloEu_oEU Z N”/ ¢v y+x2,u )d$2
v 2

The result allows more ramifications of v in F or B than its counterpart
in [YZZ13, Cor. 6.8(1)]. The computation follows a similar strategy, but it is
more complicated due to these ramifications.

Recall that if ¢, = @1, @ @2, then

L(1,n
k¢>u(17y7u)_ (I(Eligi)lv(yla )W’[jq(yg) (0,1,11,,(]3271))-

Here vol(E}) is given in [YZZ13, §1.6.2]. By [YZZ13, Prop. 6.10],

We s, Lt ) = ldo] ZN”S*“ [, énula s,

a

where
Dn(a) = {1‘2 € Eyjy : UQ(J:Z) —ac pgdgl}’

and dzo is the self-dual measure for (FE,j,,uq), which gives vol(Og,j,) =
\DU|%|dvuq(jv)|. In the following, we will always denote a = ug(y2) for sim-
plicity.

We can also obtain a coherent expression of kg, (1,y,u) which does not
require ¢, to be of the form ¢, ® ¢2,. In fact, in the case ¢, = 1., ® P2,
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(and v is nonsplit in E'), the above gives

L(1,ny)
vol(El)

d ns+n
: %‘S:O <|d | Z N /D

L(1,my)
vol(E})

d
° S= d N—TLS-‘rn/
ds‘ 0 <| ’ Z

The last expression is actually valid for any ¢,. It is nonzero only if u € OXU,

kd’u(layau) - ¢1 U(yly )

$2,0(2, u)dl“2>

a

Ou(y1 + 2, u)dxg) .

a

which we will always assume in the following.

The computation relies on a detailed description of D, (a). For example,
we will see that D, (a) is empty if n is sufficiently large, so the summation
for kg, (1,y,u) has only finitely many nonzero terms. Then the derivative
commutes with the sum.

In the following lemma, v is a non-archimedean place nonsplit in £. Con-
sider

Dy(a) = {x2 € Eyjy : ug(z2) —a € pgdljl}a u € O;‘va ac UQ(Eijv)
and

D,, = {z2 € Eyjy : uq(z2) € p;‘dgl}, u € Oﬁv.

LEMMA 7.5.

(1) Ifv is inert in E, then

Dy (a) = D,, if n <wv(ad,),
)0 if no> u(ady).

(2) If v is ramified in E, then

D” if n < U(adv)7
Dy (a) =
0 if n>v(ady) +v(Dy) — 1.
If v(ady,) < n < wv(ady) +v(Dy) — 1, then
vol(Dy(a)) = [Dy|2 - |dy| - a],, - N7,

Here the volume is taken with respect to the self-dual measure for (Eyjy, uq),
which gives vol(Og,jy) = |DU|%]dv\.

Proof. The key property is that a is not represented by (E,j,, uq), since
it is represented by (Eyjy, uq).
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We first consider (1), so v is inert in E. Then v(a) # v(ug(z2)) for any
x2 € Eyj, since a is not represented by (Eyjy, uq). It follows that

v(ug(rs) — a) = min{v(a), v(ug(rs))}-

The result follows.

Now we consider (2), so v is ramified in E. If n < v(ad,), the result is
trivial. Assume that n > v(ad,) in the following. Let e, be the smallest integer
such that 1+ pv C q(E)). By the class field theory, we have e, = v(D,).

The condition x2 € D, (a) gives

a tug(zs) €1 + pr—vlade),

v

By a = uq(y2) with yo € EJj,, the condition becomes

q(z2)/qlys) € 1+ pr?(ad).

Note that ¢(E)j,) and q(E, j,) are exactly the two cosets of F, under the
subgroup ¢(E,) of index 2. Then ¢(x2)/q(y2) always lies in the nonidentity
coset. Hence, D (a) is empty if n — v(ad,) > e, by the definition of e,.

It remains to compute vol(Dy(a)) for v(ad,) < n < wv(ady) + e, — 1.
Write m = n — v(ad,), which satisfies 1 < m < e, — 1. The above condition
on xo is just a lug(xs) € (1 + p™). We need to consider the intersection
(1 4+ p™) N atuqg(E)j,). By the definition of e,, we see that (1 + p) is
not completely contained in either ¢(E)j,) or ¢(E)j,). Thus (1 + pJ') is
partitioned into two cosets q(E)j,) N (1 + pi') and q(E)j,) N (1 + p)t). In
particular, (1 + p™) Na~tuq(E)j,) is one of the cosets. Therefore,

1
vol(1+ p7) N 0~ ug(E33n). d*a) = wvol(1 + ', d"o)
vol(Op, ,d*x) |dv|%

T 2N, — NPT o(N, — NP

Here the volumes are under the multiplicative measure d*z = (g, (1)|z|; dz,
but we will convert it back to dz. Similar measures dx and d*z are defined on
E, as in [YZZ13, §§1.6.1-1.6.2]. Both measures are transferred to E,j, by the
identification E,j, — E, sending j,, to 1. The induced measure dz on E,j, is
compatible with the self-dual measure with respect to the quadratic form wugq.

Therefore,

" 1 N [Dy|2]dy|
VOI(Dn(a)vd 33) = VOI(Ev)'VOI((1+pv )ﬂa UQ(EU Jv)’d :L‘) = W
The additive volume is just

1
v v’ Dv 2 - |y
vol(Dn(a), dz) = U2 _vol(Dy(a), d*z) = 1A 1Dol® - ldu] O

(B, (1) N
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Derivative of Whittaker function I1. The goal of this subsection is to prove
Lemma 7.4.

Proof of Lemma 7.4. We first consider (1), so we assume that v is inert
in E. We will take advantage of the decomposition ¢, = ¢1, ® ¢2,, which
simplifies the computation slightly. It amounts to computing the derivative of

WO (s, 1,u) = |do] ( ZN "S+"/ Go.o (02, u) .
’ )

n(a
Note that we always write a = uq(y2). By Lemma 7.5,

v(ady)
Wg ., (0,1,u) = |d, 12 log N, > N"/ B2, (T2, u)dwa.
n=0
It is nonzero only if v(a) > —v(dy).
We first consider the case —v(d,) < v(a) < 0. In this case, we always have
Og,jv C Dy, for all 0 < n < w(ad,). It follows that

v(ady)
We, (0, 1,u) = |dy|2log Ny S N2 vol(Op,jo)
n=0
1
= ol aG) L= g v,

Note that this part does not affect the behavior as a — 0.
Now we assume that v(a) > 0 (still for part (1)). If n < v(dyq(jv)), then
Og,jv C Dyp; if n > v(dyq(jy)), then D,, C Og,j,. It follows that

W;’v'(O, 1,u)

1 v(dvq(iv))—1 v(ady)
= |d,|2 log N, > NI vol(Og,iv)+ Y. NJvol(Dy)

n=0 n=v(dvq(jv))
v(ady)
dv .v -1 v)
= |dy|? log N, <|f(13\|, + > NPvol(D, ))
v n=v(dvq(jv))

Note that
[”_U(dUQ(jv))-Fl}

D, = py 2 OEUjva

SO

v

Nn VOl(D ) — N”—”(%Q(j«:))—ﬂ%] _ 1 lf 2 ‘ (n — 'l)(dvq(jv))7
' NU i 24 (n— v(dug(3v)).
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Since v(q(jy)) and v(a) always have different parities in this inert case, we have
log Ny (|dvq(Gu)| =1  v(q(y2)) — v(4(v)) +1 1
ke, (1 = 1+ N, .
N e s : 1+ N7
This finishes the proof of (1).
Now we prove (2), so v is ramified in £E. We need to compute

1 d i
ks (1 = — = 1-N % N_”s+”/ d .
¢v< ,y,’U,) 2’DU‘% ds|870 (( v )7;) v Du(a ¢v(y1 —|—.I'2,U) .’L’2>
We first use Lemma 7.5 to write
(ady)+v(Dy)—1
log N, "
ko, (1.9.u) = N2 [ uon o+ u)des.
’ 2| D, |2 n; * Jpu@

It is zero if v(a) is too small, so kg, (1,y,u) is compactly supported.
In this ramified case, the first complication is that kg, (1,7,u) can be
nonzero for some y; ¢ Op,. Write

k¢v (1’ Y, u) = k¢v(1’ Y, u) ’ ]‘OE.U (yl) + k¢v(1’ Y, u) ’ 1Ev*0Ev (yl)
We first treat the second term on the right-hand side, so we assume that
1y € By, — OEU-
We claim that kg, (1,y,u) - 1,0y, (y1) is naturally a Schwartz function
on B(v), x F,. In fact, by Lemma 7.3, in order to make ¢, (y; + 2, u) nonzero
in the formula of k¢, (1,y,u), we have

y1 € D, 'Op, = Og,, 3 € D,;"'Og,j, — Og,jo.

Then both v(g(y1)) and v(g(x2)) are bounded from above and below. Consider
the behavior when a = ug(y2) approaches 0. By Lemma 7.5, xo € D,,(a) only if
n < v(g(x2)) +o(dy) +0(Dy) =1 < w(dy D) — L.

The second bound is independent of a. Hence, if v(a) is sufficiently large, then
Dy(a) = Dy is independent of a. So k¢, (1,y,u) - 1g,—0p, (y1) is a Schwartz

function on B(v), x F*.
For the restriction to E, x F,, set yo — 0. The above discussion already
gives

(7.3.1) kg, (Liyr,u)- 15,0, (Y1)

log N, v(dyD3)—1

v

= 1g,—0g, (Y1) N"/ Gu(y1 + T2, u)dzs.
2’Dv‘% Ey nz::o v Dn v

We can further change the bounds of n in the summation from [0, v(d,D3) — 1]
to [0,v(dy)], because x2 € D,, implies

n < o(dy) + v(g(az)) < v(dy).

Then the expression is exactly the function %av in the lemma.
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It remains to treat kg, (1,y,u) - 1o, (y1). Assume that y; € Op,. Then

v(ady)+v(Dy)—1

log N, .
%S NP vol(Dy(a) N Og,iy)-
Q‘Dv|2 n=0

k(bv(]" y’ u) =

The sum is nonzero only if v(a) > —wv(d,) — v(D,) + 1. The behavior of
kg, (1,y,u) when —v(d,) —v(D,) +1 < v(a) < 0 does affect our final result.
So we assume that v(a) > 0 in the following.

The computation is similar to the inert case. Recall that vol(Og,j,) =
|Dy|2|dy| and

Dn(a) = {332 € Eyjy - UQ($2) —ac pgdgl}'

Split the summation as

v(dy)—1 v(ady) v(ady)+v(Dy)—1

IEI LT S

n=0 n=0 n=v(dy) n=v(ady)+1
The first sum gives

v(dy)—1

(7.3.2) ;(y)zg)Né n}::o N vol(Op, jv) = m log N,.
The second sum gives
(7.3.3)
log Ny 5% ey = 10BNy S i p,
T E— 2|Dyl? 2y,
= %(v(a) + 1) log N,.

By Lemma 7.5, the third sum gives

v(ady)+v(Dy)—1
(7.3.4) . > N vol(D,,)

v(ady)+v(Dy)—1

log N, 1 _
= BSOS NE D[R [d] - fa] - N
2|DU’2 n=v(ady)+1
1
= §(U(Dv) —1)log N,.

Combining equations (7.3.1)—(7.3.4), we obtain the result for ramified v. The
proof of Lemma 7.4 is complete. U
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Derivative of intertwining operator. Recall that if ¢, = ¢1,, ® ¢2, for a
place v, then

oo (9, y,1) = O10(y, W)W5, '(0,9,u, d2,0) + 1og 6(g)7(9) 0 (y, ),
where the normalization is

(8 + 1> 77v)

o _ _1 _lL
WO,v(S,gaua¢2,v):'Yu,'})’Dv| 2|dv| 2 L(S,T]v) WD,U(S’gvuaqSZ,U)'

LEMMA 7.6.
(1) For any archimedean place v,
c¢v(g7y7u)zo7 geGL2<R)7 (y,u) e E, XFUX.

(2) For any non-archimedean place v and any (y,u) € E, x F°,

g, (1, y,u) = ¢y(y,u) - log [duq(jy)|
2(|va(jv)| - 1)

v\Y> : lo Nv b Ev Fv ) t7
¢ (y U) (1 _l_Nv—l)(l o NU) g Zf / tner
+ |va(Ju)\ —1 . .
¢v(ya U) : 1—N log N, + O‘v(y,u) if Ev/Fv ramified,
0 if By F, split.
Here
v(dy)—1
log N, n
ay(y,u) = 1 1D710E —Op (v) Z Ny / Go(y + 22, u)dxo
‘DU|2 ! Y v n=0 Dn,

as in Lemma 7.4.

Proof. If v is archimedean, it suffices to check that

W5.(8,9,u) = 0(g)"°r(9)p2,0(0,u), g€ GLa(Fy).

The behaviors of the intertwining operator Wy, (s, g,u) under the left action
of P(R) and the right action of SO(2,R) are the same as those of

6(9)"°r(g)d2,0(0, u).

It follows that two sides are equal up to a constant possibly depending on s.
To determine the constant, it suffices to check W&U(s, 1,u) = 1. By a change
of variable, we can assume that u = 1. At the end of the proof of [YZZ13,
Prop. 2.11], there is a formula for Wy ,(s,1,u) in terms of gamma functions,
which implies the result we need here.

Assume that v is non-archimedean in the following. The proof is similar
to that of Lemma 7.4. We first introduce some formulas for cg4, (1, y,u). Note
that the statement of [YZZ13, Prop. 6.10(1)] is only correct for a € F* due to
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the different normalizing factor defining Wy ,(0, 1, u, ¢2,,). However, its proof
actually gives

WO,U(S7 17”7 ¢2,v) ZVU,U‘dU|%(1 - N;S) Z NJHS+n /D ¢2,v(x2au)dux27
n=0 n

where
D,, = {x2 € Eyjy : uga(z2) € pﬁdgl}

and the measure d,zo gives vol(Opg,jy) = |Dv|%|dvuq(jv)|. Putting these to-
gether, we have

C¢v (17 Y, u) = ¢1,U(y7 U)

d _1L(s+1,m) N
C T |s= Dv —— 1 =N, ’ N ns+n/ v ) du
ds’ 0 <| |72 Lls.10) ( ” )nz:% y . $2,0(72, u) 932)

d ( 1 L(s +1,my)

AN N 1 N N?"&Hi/ , w)dyy | .
dS| 0 ‘ | 2 L(Sunv) ( v )7;) v Dn¢<y+x2 u) :@)

The last expression actually works for any ¢, (not necessarily of the form

(bl,v & ¢2,v)-

For convenience, denote

1L(s+1,m0)

o (5) = 1D ETE

o
(1_N11_3>ZN1)_M+”/D bu(y + x2, u)dy T2,
n=0 n

so that
co, (1, y,u) = 5:%(0).

Note that ¢g,(s) or cg,(1,y,u) is nonzero only if u € O, , which we assume in
the following. We will check the lemma case by case.

First, assume that v is inert in £. Then ¢, = ¢1, ® ¢2, with ¢2, =
10Evjva;U, and

C¢v(1ay7u) = ¢1,U(y7u)W(iv ,(05 17”)

Split the sum in

1 o0
W (5, 1, 1) =y 3 (1 — N;7%) S N7t /D G20 (22, u)drs
n=0 n
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into two parts: n < v(dyq(jy)) and n > v(d,q(j )) Denote n = m + v(dyq(jy))
ju. We have

in the second case, and note D,y y(d,q(,)) = Pv
Wow(s, 1,u
! . ) v(dvq(iv))—1
= Yuuldo|2(1 = N, ) Z Ny n(s= )VOI(OEJ@)

[e.e]

n Z Nv(m+v(dv4(iv)))(s1)V01(Dm+v(dvq(jv)))>

m=0

_ Lo vy [ 1datio)] = ldva(io) | L Ny Y
= Yu|dv|2[Dy|2 (1 = N, )( NG + |dvq(jo)| TN )

Then
L+ N,° |duq(o)| — |dvg(Go)l®

Tt e e U

v

Wou(s,1,u) = (1 - N, )

We get

2(|dwq(iv)| — 1)
(1+NH(1 - N

Woo '(0,1,u) = log |dug(jv)| + log N,.

This finishes the inert case.
Second, assume that v is ramified in E. Consider

Gon(s) = Dy E(1= N ZN“W / Go(y + 22, 0)dzs.

As in the proof of Lemma 7.4, the first complication of this ramified case is
that ¢4, (s) can be nonzero for some y ¢ O, , but it can be treated similarly.

In fact, assume that y ¢ Op, and ¢y, (s) # 0. In order to make ¢, (y+x2,u)
nonzero in the formula of ¢4, (s), we have

y € D;'0p, — Op,, w3 € D;'0p,jv — Op,jv-
Then x9 € D,, gives
n < o(g(z2)) + v(dy) < v(dy).
Then the summation for ¢4, (s) is a finite sum. We have
v(dy)

coo(Ly,u) = &, (0) = | Dy| "2 (log N,) ZN”/ Soly + w2, u)das.

This is exactly the function «, in the lemma.
Now we assume that y € Og,. Then

o0
Epy(5) = | Dyl 72 (1 = N;7) S N vol(Dy, N O, jo).-
n=0
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The computation is similar to the inert case. Split the sum into two parts:
n < v(dy) and n > v(d,). Denote n = m + v(d,) in the second case, and note

Dm—&—v(dv) =pd Og,j». We have

’U(dv
Zou(s) = 1Du] 721 < > N vol(Og)
. Z NJ(m+U(dv))(s—l)vol(Dm+u(du))>
m=0
—s d’U — dv i 5
= (1= N L
1—-Ny

Thus

- dy| — 1
o (1 y,w) = &, (0) = log ] + 1~ Liog v,
v

Third, consider the case that FE,/F, is split and v ¢ Sa. Then |¢(j,)| =

|Dy| =1 and we use it to relieve the notational burden. We compute

C¢v(1ay7u) = ¢1,U(y7u)W(iv ,(05 1,U)

As before, split the sum into n < v(d,) and n > v(d,), and write n = m+wv(dy)
in the second case. We have

dy dyl|®
Wo,v(s,l,u) :'YU,v|dv‘%(1_Nv_s) ( | | _|( | +|d |S
1- N,

v

' i N—m(s—l) VOl(Dm+v( dy) N OEv]v)
v VOI(OEU)U) .

Identity E, = F, ® F,, and O, = Of, ® Op,. For simplicity, we identify E,j,
with E, by sending j, to 1. Then

Dypio(a,) NOE, = {(21,22) € O, ® OF, : 2122 € py'}
=Op, — {(21,22) € Op, ® OF, 1 v(21) + v(z2) <m — 1}

Thus
vol(Dyy40(d,) N O,) = vol(OE,) — Z kOX Jvol(Op, — pm™=F)
- m—1
=vol(Op,) —vol(Og,) Y N, *(1 - N1 — Ny mh)
k=0

=vol(Og, ) (N, ™+ (1 — Nv_l)va_m).
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Therefore,

|do| — \d

Woﬂ,(s,l,u) = ’Yu,v’dv’%G — N, %) ( | + |dyl® Z N, m

+(1— N,;l)mN;m)>

1 o (1] = 1 * 1- N, Ot
= Yuuldy 1—Nv5 _— dy|* ——m—— .
Voo 2 ( >Q_N4&D+rwamﬂ2

v

Hence,

o _ N, ®
We.(s,1,u) :%,zl;lNisHW vl ™ 2WOv(S 1,u)

R A
1— Ny Ot Ny e

+ |do[*.

The first term has a double zero and no contribution to the derivative, so
W '(0,1,u) = log |d,|.

This finishes the case that E,/F, is split and v ¢ Ss.
Fourth, we treat the case v € S, which is the last case. Then v is split
in F, and
=1 71 1
0= Loz x05, T T N, 7 N2 '@ (05,)2x0F,

Note that |¢(jy)| = |dy| = 1 by assumption, so the result to prove is exactly
o, (1,y,u) = 0. Recall that cg4, (1,y,u) is the derivative of

17Nv 2 & ns+n
Ji(sfl)zzv [ buly+ o )

o, ()
v 1—-Ny

We will make separate computations for

1/}1 = 1O§UXO;U7 ¢2 - 1 (O]Bv)2><o>< :

The results will be 0 for both functions. Make identifications E,j, ~ E, >~
F, ® F, as above.
Start with

P 1_ ns+n
clm(s):l( (S+1 ZN + /Dn wl(y+a:2,u)dx2.
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It is nonzero only if y € Op,, which we assume. For the integral, write xo =
(21,292) € F, ® F,. Then we have

(1_ + Z
ann
NU(SInO

'VOl{(Zl,ZQ) €0, ®O0FR, : 21220 €y, q(y) — 2122 € O;ﬂ}.

Cyy (s) =

If q(y) € py, in order for the volume to be nonzero, we have to have
2122 € O;U and n = 0. The summation has a single nonzero term equal to 1.
Then cy, (1,y,u) = 0.

If q(y) € O;ﬂ, we can neglect the term with n = 0, since a single term
does not change the derivative due to the double zero of the factor (1 — N, %)2.
Then the remaining terms give

WZ -vol{(21,2) € Op, & Op, : 2125 € pl}.

A similar summation has just been computed above, and the eventual result
is still ¢y, (1,9,u) = 0. (Note that d, = 1 in the current case.)
Now we treat
(1-N,

Gy (8) = 1 123 0 ZN an/ Yoy + x2,u)dxs

(1 Ny *) ns+n
- (51 ZN i

-vol{(zl,zg) ep,t@plzizmep?, qly) — 21z € Op. }-

Here we have assumed u € O}U and will assume y € w, 'O, in order to make
the situation nontrivial. It is similar to the case ;.

If ¢(y) € OF, , the summation has no nonzero term and thus cy, (1, y, u) =0.

If ¢(y) € py, the summation has a single nonzero term coming from n = 0.
Then ¢y, (1,y,u) = 0 again.

If q(y) € Op, , we can neglect the term with n = 0 again. The remaining
terms give

)

7‘9“ Z N, vol{(21, 20) € pyt @ py 2122 € P}

(1-
1—
_ (=N
-

N (S+1 ZN_"S+" N2 -vol{(21,25) € Op, ® Op, : 2125 € pi*?}.

Here we have used the substitution z; = w_lz’ . Then it is similar to the

computation above and still gives ¢y, (1,y,u)=0. This finishes the case v € Sy.
[l
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Remark 7.7. It is not surprising that some (complicated and un-wanted)
terms in the result of Lemma 7.4 appear in that of Lemma 7.6. In fact, it just
reflects that the identity

: / _ /
ig% Wa,v(ov 17 u) - W{J,U(O7 17 u)?

which fails due to convergence issues, actually holds for some pieces of the two
sides. Eventually we need these terms to cancel each other in order to get a
neat Proposition 9.2.

8. Height series

In this section, we study the intersection series of CM points, the main
geometric ingredient for proving Theorem 1.7. We will first review the con-
struction of the series Z(g, (t1,t2),¢) in [YZZ13]. Then we will compute this
series under some assumption of Schwartz functions. In particular, we will
obtain a term for the self-intersection of CM points which contributes a main
term for the identity in Theorem 1.7. In [YZZ13], this term was killed under
a stronger assumption of Schwartz functions.

8.1. Height series. Let F' be a totally real number field, and let B be
a totally definite incoherent quaternion algebra over F' with ramification set
Y. To avoid complication of cusps, we assume that |¥| > 1. For any open
compact subgroup U of IB%?, we have a Shimura curve Xy, which is a projective
and smooth curve over F. For any embedding 7 : F — C, it has the usual
uniformization

Xu(C) = B(r)*\b* x B} /U.
Here B(7) denotes the nearby quaternion algebra, i.e., the unique quaternion
algebra over F' with ramification set 3 \ {7}.

For any x € IB%?, we have a correspondence Z(z)y defined as the image of
the morphism

(rv, 0T, v 0 Te): Xu, — Xu x Xyp.

Here U, = U NaUz !, my,,u denotes the natural projection, and T, denotes
the right multiplication by z. In terms of the complex uniformization, the
push-forward action gives

Z@ 20— Y [z

yeUzU/U

Generating series. We first recall the generating series in [YZZ13, §3.4.5].
For any ¢ € S(B x A*) invariant under K = U x U, form a generating series

Z(gv¢)U = Zo(g, d))U + Z*(Q,¢)U, g e GLZ(A)a
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where

Zo(g,0)v=— > > Eo(e'u,r(9)9) Lia,

a€F[\AY [q(U) uepg, \F*

Z(g,O)v=wv Y, Y, r(@ex,aq(x)) Z(z)y.

a€F* zeU\B} /U

Here uy = F* NU, and wy = [{1,—-1} N U]J is equal to 1 or 2. We often
abbreviate

Z(gv¢)U7 Z0(9>¢)U7 Z*(gv¢)U
Z(9)v, Zo(9)u, Z«(9)u-

For our purpose on the height series, we will see that the constant term
Zv(g, ¢)u can be neglected in our consideration, since its contribution is always
ZETO.

THEOREM 8.1 ([YZZ13, Th. 3.17]). The series Z(g,$)u is absolutely con-
vergent and defines an automorphic form on g € GLa(A) with coefficients in
PiC(XU X XU)(C-

Height series. Let E/F be a totally imaginary quadratic extension, with
a fixed embedding Fy < B over A. In [YZZ13], we consider a CM point
P e XE” (E*P) on the limit of the Shimura curves. In this paper, we only
consider the point Py € Xy (E®) for fixed U. For a more precise description,
fixing an embedding 7 : F' — C, take Py = [20, 1]y based on the uniformization

Xu+(C) = B(r)*\b* x B} /U,

where 2y € h is the unique fixed point of E* in h via the action induced by
the embedding E < B(7). For simplicity, we write P for Py .

In terms of the uniformization, there are two sets of CM points in X (E2P)
for our purpose:

CU:{[Zo,t]U:tEEX(Af)}, CMU:{[Zo,,B]UZﬁEB;}.
It is easy to see canonical bijections
CU%EX\EX(Af)/(EX(Af)ﬂU), CMUgEX\B?/U.

We will abbreviate [zq, 5] as [B]u, [8] or just S.
For any ¢t € E*(A), denote by

[t] = [t]lu = [20. tflU

the CM point of Xy ,(C), viewed as an algebraic point of Xy;. Denote by

t° = [tly = [tlo = vs
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the degree-zero divisor on Xy, where § = {y; is the normalized Hodge class
of degree one on the connected component of [¢].
Recall from [YZZ13, §§3.5.1, 5.1.2] that we have a height series

Z(g, (t1,t2),0)u =(Z(g,d)u 17, to)NT, t1,t2 € E*(Af).

Here Z(g, ¢)u acts on t{ as correspondences, and the pairing is the Néron—Tate
height pairing
<-, '>NT : JU(F)(C X JU(F)(C — C
on the Jacobian variety Jy of Xy over F.
By linearity, Z(g, (t1,t2), ¢)r is an automorphic form in g € GLa(A). By
[YZZ13, Lemma 3.19], it is actually a cusp form. In particular, the constant
term Zy(g, ¢) of the generating function plays no role here.

Decomposition of the height series. By the theory of [YZZ13, §7.1], we are
going to decompose the height series into local pairings and some global terms.
We will use (possibly) different integral models to do the decomposition.

Assume that (B, E,U) satisfies the assumptions of Section 7.2 in the fol-
lowing. In particular, U is maximal at every place, and there is no non-
archimedean place of F' ramified in both E and B.

Let Xy be the integral model of Xy over Op introduced before Corol-
lary 4.6, and let £y be the arithmetic Hodge bundle introduced in Theorem 4.7.
We are going to use (Xy, L) to decompose the Neron—Tate height pairing.

Note that every point of CMy; is defined over a finite extension H of
F that is unramified above X(Bf). The composite of two such extensions
still satisfies the same property. By Corollary 4.6, the base change Xy 0,
is Q-factorial for such H. Then arithmetic intersection numbers of Arakelov
divisors are well defined on Xy o,,. Take the integral model Yy used in [YZZ13,
§7.2.1] to be Xy 0, (without any desingularization). We get a decomposition
of Z(g, (t1,t2))u by the process of [YZZ13, §7.2.2].

We do not know whether Ay is regular everywhere or smooth above any
prime of F' split in B. If both are true, then Ay o, is already regular, and the
decomposition here is the same as that in [YZZ13].

Vanishing of the pairing with Hodge class. Now we freely use the notation
of [YZZ13, §7.1-7.2]. For the height series, the linearity gives a decomposition

Z(g, (t1,t2))u = (Zu(g)ut1, t2) — (Zu(g)uts, &to)
- <Z*(9)U£t17t2> + <Z*(Q)U€t17§t2>-

Here Z.(9)u = Z«(g,¢)u, and the pairings on the right-hand side are arith-
metic intersection numbers in terms of admissible extensions, as introduced in

[YZZ13, §7.1.6].
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Now we resume the degeneracy assumption in (7.1), which mainly requires
that there is a set S consisting of two non-archimedean places of F split in F
and unramified over Q such that

r(9)pu(0,u) =0 Vg€ GLa(Fy), u€ FS, veSs.

By [YZZ13, Prop. 7.5], the assumption kills the last three terms on the right-
hand side and gives the simplification

Z(g, (t1,t2))u = (Z:(g)uts, t2).
As in [YZZ13, Prop. 7.5], we have a decomposition

Z(g, (t1,t2))v = —i(Z(g)ut1, t2) — j(Ze(g)ut1, ta)-

Here the i-part is essentially the arithmetic intersection number of horizontal
parts, and the j-part is the contribution from vertical parts.
Now we have a decomposition to local intersection numbers by

J(Zi(g)t1, t2) Z]U (9)t1,t2)log N,.

The sum is over all places of F, and we take the convention log N, = 1 if v is
real. Decomposing the local intersection number in terms of Galois orbits, we
further have

2t = Go(Zu (gt ta)dt.
U
Here the pairing j3 is introduced in [YZZ13, §7.1.7], and
Oy = BX\E*(A)/E* (Af) U
is a finite group and the integration is just the usual average over this finite
group.

Unlike the j-part, the decomposition of the i-part into local intersection
numbers is complicated due to the occurrence of self-intersections. We have to
isolate the self-intersections before the decomposition. Such a complication is
diminished by Assumption 5.3 in [YZZ13], but we cannot impose this assump-
tion here. In fact, the assumption kills all possible self-intersections, but the
purpose of this paper is to compute these self-intersections!

Self-intersection. The self-intersection in (Z.(g)t1,t2) comes from the mul-
tiplicity of [to]y in Z, ( )t1. By definition,

tl = wy Z Z tlx]

IS e xGB JU

Here r(g)p(z)q = r(9)d(z,a/q(x)). See also [YZZ13, §4.3.1] for this formula.
Note that [t1z] = [t2] as CM points on Xy if and only if z € t] ', EXU.
It follows that the coefficient of [to]y in Zi(g)t1 is equal to

wy Y Yoo r(@e@)a=wu Y > (9ot ey

a€F* gt Mo EXU/U a€F* yeEX /(EXNU)
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Note that puy = F* N U has finite index in E* NU. The above becomes

mz Y (g, (t,t2)e(y)a

a€EF* yeEX /uy

1
:m Z Z (g, (t1,t2))0(y, u).

ueu \F* yeE>

The last double sum already appeared in the derivative series and will continue
to appear in local heights. So, we introduce the notation

Q¢(ga (tlat2)> = Z Z g, tlatQ (y7u)

ue,u \F* yeE*

Finally, we can write

Qy(g, (t1,12))

(Z(9)t1,t2) = i(Z:(g)t1, t2)proper + =22 (t, Lo).
,L( (g) 1 2) Z( (g) 1 2)13 P [EX m lr . ]Z( 2 2)
Here (. ( )
14 104 »\9, 1,12
* t ’t roper - * t _—t bl t

is a proper intersection. The proper intersection has decompositions

i(Z*(g)t17 t2)proper = Z iv(Z* (g)tla 752)proper IOg Nva

v
Z’U(Z* (g)tla t2)proper _][C 117<Z* (g)ttlv ttQ)properdt-
U
We further have an identity i(t2,t2) = i(1,1) since [1] and [t] are Galois
conjugate CM points.

8.2. Local heights as pseudo-theta series. Now we are going to express the
local heights i5(Z«(g)t1,t2)proper and jz(Z«(g)t1,t2) in terms of multiplicity
functions on local models of the Shimura curve. The idea is similar to [YZZ13,
Ch. 8], with extra effort to take care of the self-intersections. Note that in
[YZZ13], self-intersections vanish due to a degeneracy assumption, which we
cannot put here.

Archimedean case. Let v be an archimedean place. Fix an identification
B(Af) =By, and write B = B(v). The formula is based on the uniformization

Xuw(C) = BY\b x B*(Ayf)/U.
Resume the notation in [YZZ13, §8.1]. In particular, we have the local
multiplicity function

ms(PY) = Qs(l - 2>‘(’7))a Y e Bi - E;<

Here

Qs(t) = /oo (t + Vi — 1coshu)7lis du

0
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is the Legendre function of the second kind. For any two distinct CM points
[B1]u, [B2lu € CMy, denote

9s(B1, B2) = > ms(v) 1u(By ' vBz2).

veuu\(BY —EX)

Then the local height has the expression

is(B1, B2) = limy_09s(S1, B2).-

Here lims_,o denotes the constant term at s = 0 of 9s((z1, B1), (22, B2)), which
converges for Re(s) > 0 and has meromorphic continuation to s = 0 with a
simple pole.

In [YZZ13], the formula works for distinct points [81]y and [B2]y. In this
paper, we extend it formally to any two points. Namely, for any (51, 52 € CMy,
we denote

9s(B1, B2) = > ms(y) 1u(By ' vB2)

veuu\(Bf —EX)
and define
is(B1, B2) = lims_09s(B1, B2).

With the extra new notation, we have the following result.

PROPOSITION 8.2. For any t1,t2 € Cy,

if) (t27 t2)

if;(Z*(ga ¢)t1a t2)pr0per = Mg]) (9, (tl,tQ)) - m

Qy(9, (t1,t2)),

where

Qu(g, (tr,t2)) = Y D (g, (tr, t2))o(y, ),

uepd \F* yeEx

MY (g, () =wy Y Timese >0 rlg, (b1, 1)) B(y)ama(y).

aelx yepu\(B3 —EX)

Proof. By definition,

Q¢(g7 (tlth))t ’ t2>

Z’T)(Z*(g)tl;t2)proper = i@(Z*(g)tlth) — 13 <[E>< AU - MU] 2

Here the first term on the right-hand side makes sense by the extended defi-
nition of iy to self-intersections. The rest of the proof is the same as [YZZ13,
Prop. 8.1]. O
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Supersingular case and superspecial case. Let v be a non-archimedean
place of F nonsplit in E. Let B = B(v) be the nearby quaternion algebra
over I'. We will write the local pairing i3 as a sum of pseudo-theta series
following the idea [YZZ13]. The situation is more complicated by the self-
intersections here. Note that v can be either split or nonsplit in B, but the
exposition here is the same (before going into explicit computations).

Recall from [YZZ13, Lemma 8.2] that for any two distinct CM points
[B1]u € CMy and [to]y € Cy, their local height is given by

iw(Biota) = > mlytaw, B, ) 1o ((B7)1t3).
yEpu\B*

Here the multiplicity function m is defined everywhere on
hu, = By X B /U,

except at the image of (1,1). It satisfies the symmetry m(b=1, 371) = m(b, B).

The summation is only well defined for 81|y # [t2]y. Otherwise, we can
find v € E* such that ,Bflfytg € U, and the term at « is not well defined.
Hence, we extend the definition to any two CM points [f1]y € CMy and
[tQ]U e Cy by

in(B1,ta) = 3 m(Ytaw, By ) 1o ((BY) 1 ty)

veuu\(BX—EXNB1Ut; ")

= Y mytee Bl ()M t3)
YERU\(BX —EX)
+ > m(ytzo, B, ) 1o ((B1) 7 '915)
vepu \(EX—p1Ut; ")
= Y myte Bl ((8) M t3)
YEpU\(BX—EX)
+ > m(ytaw, B, ) oe ((87) ' t5).
vepu \(EX—B1Unt; ")
The definition is equal to the previous one if [B1|y # [t2]y. In Lemma 9.4,
we will see that iz(t2,t2) can be realized as a proper intersection number via

pull-back to Xy for sufficiently small U’ with U], = U,,.
With the extended definition, our conclusion is as follows.

PROPOSITION 8.3. For any t1,t2 € Cy,
iﬁ(Z*(ga ¢)t1, t2)proper = M((;) (g, (tl, tg))

N 0 (01,12) ~ 04 (1),

[EXHU:/LU
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where

Q(z,(g, (tlth)) - Z Z t17t2 (ya u),

uep \Fx yeEx

Mf;’)(g, (t1,t2)) = Z > (g, (11 12)) 8" (Y5 1) M(g (b1 12)) b0 (U 1),

uEu \F*xyeB-E

Nq(sv)(gv<t17t2)): Z > (g, (t1,12))0" (y, u) 7t t2)ne(g)e, (v, w),

uEu \F*X yeEX

and
mg, (y,u) = > mly,x ou(z,uqly)/q(z)), (y,u) € (B, — Ey) x F,
x€BY /U,
ng, ()= > my,x ou(z,uq(y)/e(x), (y,u) € Ef x F).

ZEE(]B;,( 7yUu)/Uv

Proof. By the extended definition of i3, it suffices to prove
is(Z(g, O)t1, t2) = MY (g, (t1,12)) + NS (g, (1, 12)).
The left-hand side is equal to

oYY v Y mOta )l )

aEFX xe[B}(/U yeuy\(BX—EX)

DI

a€F* geB /U

Z m(yte, 2™ ) 1ge (27 yts).
yEuu\(EX —t12Unty ")
The first triple sum is converted to Mév) (g, (t1,t2)) as in [YZZ13, Prop. 8.4],
and the second triple sum is converted to N, (z()v)(g, (t1,t2)) similarly. O

Here we use the convention

T(t1, 22)00(g)g, (Y5 W) = Mgy, (t7 'yta, q(tity M u).

Note that in the above series, we write the dependence on (t1,¢2) in different
manners for mg, and ng,. This is because mg, (y, u) translates well under the
action of P(F,) x (E)S x EJ), but ng, (y,u) only translates well under the
action of P(Fy).

Ordinary case. Assume that v is a non-archimedean place of F' split in E.
Then B, is split because of the embedding F,, — B,. In this case, the treatment
of [YZZ13, §8.4] is not sufficient for our current purpose, so we write more
details here.
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Let v; and v be the two primes of E lying over v. Fix an identification
B, = Ma(F,) under which E, = (F B, ) Assume that 17 corresponds to the

ideal (F v 0) and vo corresponds to (0 Fv) of E,.
We will make use of results of [ZhaO1]. The reduction map of CM points
to ordinary points above 7y is given by

EX\IB%;/U — EX\(N(F,)\GL2(F,)) x IB%”‘]’CX/U.
The intersection multiplicity is a function
mp, : GLo(F,) /Uy, — Q

supported on N(F,)U, /U, explicitly as follows. If U, = (1+p}Op,)* for some
r >0, then [Zha0l, Lemma 5.5.1] gives

(1 b 1
mp, 1 - Ng_”(b)_l(Nv _ 1)

for b € F, with v(b) < r — 1. Note that the case v(b) > r corresponds to
self-intersection and is thus not well defined.

LEMMA 8.4. The local height pairing of two distinct CM points [51]y €
CMy and [to]u € Cy is given by

in, (Brte) = D mp,(t5" B Low (B 'ta).
YEUU\EX

Proof. Denote the right-hand side by iz, (51,%2)’. We first prove that
ip, (B1,t2) = iz (B1,t2)" if UY is sufficiently small. In that case, by the lo-
cal moduli of [ZhaO1], iz, (51,t2) is nonzero only if there is 79 € E* such that
YtsU? = BYUY and ty 'y, ' f1 € N(F,)U,. In this case, iy, (B1,t2) is equal to
M, (ty 175 *B1). Then it suffices to check that in the expression of iz, (81,t2)’,
the summation has only one nonzero term which is exactly given by v = 7.
In fact, assume that v € E* satisfies

ma, (t3 'y~ 1) 1yw (B Mta) # 0.

Write v = 4'99. Then the condition becomes

ma, (Y15 Mg B 1w (BT Motan) # 0.

It gives ¥~'N(F,)U, C N(F,)U, at v and 4" € U" outside v. The former
actually implies v’ € U,. Then we have v € U N E*. The condition that U is
sufficiently small implies that U N E* = py. In fact, [U N E* : py] is exactly
the ramification index of [to]y7. Hence, v = vy in py\E*. This proves the case
that U is sufficiently small.

Now we extend the result to general U. Let U’ = U,U" be an open
compact subgroup of B¢ with U’V C U" normal. Assume that U is sufficiently



614 XINYI YUAN and SHOU-WU ZHANG

small so that the lemma holds for X;;7. Consider the projection 7 : Xyv — Xyr.
By the projection formula, we have

in, ([B1]v, [tav) = iz, (7 ([B]), [t2]ur)-

To compute the right-hand side, we need to examine 7 : Xy — Xy more
carefully. By the right multiplication of U on Xy, it is easy to see that the
Galois group of Xy — Xy is isomorphic to U/(U’uy). Tt follows that

H(Blo) = Y, [Bulu = ! > Bl

weU /(U urr) n = ] wel U’
We can further change the summation to w € UY/U’. Then

in, ([B1u, [t2)v) =i, (7~ ([B1]v), [ta]ur)
- > in ([Brul, [talor)

[MU : :UJU’] wel /U’

1 1 1
:[ ] Z Z mp, (t5 l’Y 151)1U’”(U 151 1’)’752)
HO = B yegvjum yepg\ B
1 1 _
S — Z ma, (ty 1y B1) 1w (B Myta)

v = o] S
= Y maty 'y B (B ).
YEMU\EX

This finishes the general case. O

Just like the other cases, the above summation is only well defined for
[B1lu # [t2]u. But we extend the definition to any [f;1]y and [t2]y by

in, (B1,t2) = > my, (t 'y~ 1) 1ow (By 'yta)
yepu \(EX—p1Ut; ")
= > ma, (ty 7 B1) Low (By Myta).
yepu \(EX—B1Unt; ")
It is equal to the original pairing if [51]y # [t2]u.
If [51]u = [t2]u, then we can assume that 5, = t2. A simple calculation
taking advantage of the commutativity of E* simply gives

ipl(tg,tg) =0 V [tQ]U € CU.
So in this case, the definition does not give anything new.
The results hold for v by changing upper triangular matrices to lower tri-

angular matrices. For example, the intersection multiplicity mgy, : GLa(Fy) /U,
— Q is supported on N*(F,)U,/U, and given by

(1 B 1
mp, b 1 o Ng—v(b)—l(Nv _ 1)
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for b € F, with v(b) < r — 1. Then we also have a similar extension for

ifq (/317 t2)

Passing to v, we have
. 1. .
my = i(ml_/Q +my,), iy = 5(’5171 + iy ).

Now we have the following result.

ProOPOSITION 8.5. For any t1,t2 € Cy,

i5(Zx(9, @)1, t2)proper = ngv) (g, (t1,t2)),

where

Nd()v)(ga (tlatQ)): Z Z ga tlatQ ¢U(ya ) (t17t2)nr(g)¢v(yau)a

uepd \F* yeEX

and
1
N, (y, u) = B Z Go(yy, u) U7 (l’)
T E(N(Fy)Up—Uy) /Uy
1
+ 5 Z %(yxv, u) My, ($)

2 €(NH(Fy)Uy—Uy) /Uy

for any (y,u) € ES x FX.

Proof. Note that we have the extended intersection number iz (t2,t2) =

automatically. It suffices to check

i5(Z:(g, P)t1,t2) = N;U)(gy (t1,t2)).

The left-hand side is equal to

0

wo Y, Y, r(9)d(x)a > mp(ty ) e (27T Yy t).

a€F* zeB¥ /U yepT\(EX —t12Upt; ")

By 1yv(z7 't yte) = 1, we have ¥ € t7'4tUY; by v ¢ t12U,t; ', we have

Ty & tflythv. Thus it becomes

wy Y Y r(9)e"(t t2)a

a€F* yEpy\E*

Z r(g)¢v($v)a mf;(tgl’y_lt1$),

2o €(BY —t1 'ytally) /Uy



616 XINYI YUAN and SHOU-WU ZHANG

It remains to convert the last sum to the desired form, which is reduced to
similar results for v1 and vo. We have

Z T(g)gbv(xv)a 7 (t517_1t1x)

T €EBY —t7 ' yt2Uy) /Uy

- Z 7(9)Pv(2v)a My (tglv_ltlm)

To€(t] P yta N (Fo) Uy —t7] " yt2Us) /U

= Z T(9)¢v(tf17t2$v)a mg, ().
T E(N(Fy)Uy—Uy) /Uy
A similar result holds for vs. O

Decomposition of the height series. Finally, we end up with the following
summary.

THEOREM 8.6. Assume Assumption 7.1 holds. Then for any t1,t2 € Cy,

200 (1. 6)o == X (0gN)f Mg, (1t t12)ds

v nonsplit

- ZN t1,t2))log]\7 Z]v (b)tl,tg) long

vfoo vfoo

- [EiOSQU’t?LU]QMQ, (t1,t2)).

The right-hand side is explained in the following:

(1) the modified arithmetic self-intersection number

io(ta, ta) = i(ta,ta) — > iu(ta, t2) log Ny,

v

where the local term
iv(ta, t2) :][ in(tto, tty)dt
Cu

uses the extended definition of iy;
(2) the pseudo-theta series

Q¢(ga (tlatQ)) = Z Z g, tlatQ (y7u);

uEu \F* yeEX
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(3) for any place v nonsplit in E,

MY (g, (t1,12))
= Wy Z l,i;l/ls—>0 Z 7’(97 (t17t2))¢(y)am5(y)7 ’U|OO,

ackx yepu\(BS —EX)

Mf;’) (9, (t1,t2))
= Z Z g’ tl’ t2 (ya u) My (g,(t1,t2)) o (ya u)v v 'f 005

uepd \F* yeB-E

(4) for any non-archimedean v,
Nt = 30 3 w9 ()6 () it ), ()
u€p \F* yeEx

The only new information used above is the identity
N (at te2)) e = NG (g, (11, 12)
U

This follows from the invariance

NS (g, (¢, t2)) = N§(g, (1, 2)),
which in turn follows from the special situation that the summation only in-
volves y € E* in the definition of A/ (i()v)

8.3. Explicit local heights. Let (U, ®,jy,j») be as in Section 7.2. The
goal of this subsection is to compute mg, (y,u) and ng, (y,u) and to treat
Ju(Z«(g, d)t1,t2). The results are parallel to those in Section 7.3.

Local intersection numbers.

LEMMA 8.7.

(1) Let v be a non-archimedean place nonsplit in E. Then for any (y,u) €
(B(v)y — Ev) X F,
bo(y1,u)log, j, (v2) - 5(v(g(y2)) + 1), B, split, By, inert,
Mg, (Y, u) =4 du(y1, w) 1oy, j, (Y2) - 3 (v(q(y2)) + v(Dy)), By split, E, ramified,
o (Y1, w)1og, 5, (12) - 3v(a(y2)); B, nonsplit.

(2) Let v be a non-archimedean place of F. For any (y,u) € E) x E),

o (,0) = 60y, ) - 50(a(y).
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Proof. If v is nonsplit in E, by Proposition 8.3,

mg, (y,u) =Y m(y,x” oz, ug(y)/q(x)), (y,u) € (B, — By) x F,
z€BY /U,

ng, (y,u) = > m(y,z ") do(z,uq(y)/q(x)), (y,u) € ES x F)X.
z€(BY —yUy) /Uy

If v is nonsplit in F and split in B, then (1) is computed in [YZZ13,
Prop. 8.7], except that there is a mistake in the case that E, is wildly ramified
over F,,. The mistake came from [YZZ13, Lemma 8.6], which was in turn
caused by the wrong formula of [Zha0Ol, Lemma 5.5.2]. As a digression, we
remark that the mistake did not impact the main result of [YZZ13] because
the result in this case was not used in the book elsewhere.

The correct version of [YZZ13, Lemma 8.6] is as follows. The multiplicity
function is m(b, 8) # 0 only if ¢(b)q(8) € O . In this case, assume that
B € ESh.GLy(OF,). Then

S(w(A(b)) + 1) if c =0, E,/F, is unramified,

b.8) $(DyA(b)) if c =0, E,/F, is ramified,
m(b, B) =
N}=¢(N, +1)7! if ¢ > 0, E,/F, is unramified,
%Nv_c if ¢ >0, E,/F, is ramified.

Only the second case is different, and it can be verified by going back to the
canonical lifting of Gross [Gro86]. Then it is easy to have the correct formula
(1) of the current case.

If v is nonsplit in £ and split in B, then (2) can be verified by the same
method as in [YZZ13, Prop. 8.7], where the only difference is that

n¢v (y7 u) = Z m(y_l’ hC)V01(E’;( hCGL2(0Fv) N M2(0Fv)n)
c=1

is a sum omitting ¢ = 0.
If v is inert in F and nonsplit in B, then by Lemma 8.8,

m(y,57) = 20O i 10, gy @) 10(0(a(x)/a(0)))

It follows that

0, (3,0) = 30OW) U 120, ) @)
> Lo(v(g(z)/q(v))do(x, ug(y)/q(x)).

Note that B /U, = Z. It is easy to get (1). For (2), since the conditions
x ¢ yU, and 1p(v(q(x)/q(y))) are contradictory, we get ng, (y,u) = 0.
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If v is split in E, in the setting of Proposition 8.5,
1

ng, (y,u) = 5 > Go(yTv, u) My, (2)
Ty €(N(Fy)—N(OF,))/N(OF,)
1
. )3 Bolyor ) M 2).

2o €(N*(Fu)=N*(Or,))/N*(OF,)

We first consider the case v ¢ S. Then ¢, is the standard characteristic
function. Write y = (“ ;). The summations are nonzero only if a,d € O, and
u € Of, , which we assume. For the first sum, write z,, = (1 ¢). Then we need
ab € OF,. Eventually, the first sum becomes

3 _ et = p™)/Or |
be(a—10p, —Or,)/OF, NN, -1 o NN, - 1)

~

1 v(a

= v(a).
Similarly, the second sum equals v(d). Then

o, (r0) = 5 (v(a) + () = S0(av))

This finishes the proof for v ¢ Ss. If v € So, the computation is similar, and
we will get everywhere 0. U

Multiplicity function: the superspecial case. Let v be non-archimedean
place nonsplit in B and inert in F. Recall that the multiplicity function m is
defined on

bu, = B(v)) X px BY /Uy,

Note that we have assumed that U, is maximal. The following result does not
need any restriction on U".

LEMMA 8.8. For any (v, B) € B(v); X gx B, we have m(v, 3) # 0 only

v v

if (7)q(B) € Of, and v € E - (1 + Op,@yjy). In this case,

1

m(y,8) = 50(\)).

Here A(7y) = q(72)/q(), where v = 1 + 72 is the decomposition according to
BU = Ev + Evjv-

Instead of deformation theory, our proof directly uses the theorem of p-adic
uniformization of Cerednik [Che76]. See also [BC91].

Write B = B(v) for simplicity. Denote by F}" the completion of the
maximal unramified extension of F,, and by C,, the completion of the algebraic
closure of F,. The p-adic uniformization in terms of rigid-analytic space is

Xi' xp, Iy = B*\(Q xp, F}") x B} /U.
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Here 2 is the Drinfe’ld (rigid-analytic) upper half plane over F,, which gives
Q(C,) = C, — F,. The group B;f = GLy(F),) acts on by the fractional linear
transformation, and on B, /U, = Z via translation by v o ¢ = v o det.

To study the intersection multiplicity, we need the integral version of
the uniformization. The uniformization theory also gives a canonical integral
model Q of Q. It is a formal scheme over O F, obtained from successive blowing-
up of rational points on the special fiber of Pp,, constructed by Deligne. The
uniformization takes the form

)/C‘\U XSPfOFU SpfOqur = BX\(Q XSpfon SpfOFéxr) X B;/U

Here Ay is the canonical integral model over O, which is semistable at v, and
j,’\U denotes the formal completion along the special fiber above v.

The special fiber of ﬁ, or equivalently the underlying topological space
of ﬁ, is a union of P!’s indexed by scalar equivalence classes of Op,-lattices
of F2. Then its irreducible components are indexed by

GLo(F,)/F,)GL2(Op,).
It follows that the irreducible components of the special fiber of Xy above v
are indexed by
B*\(GLy(F,)/F)GLy(Op,)) x IB%;/U.
Consider the set
CMy = E*\B*(Ay)/U = B*\(B* xpx B} /U,) x B*(A%})/U".
The natural embedding CMy — Xi7(C,) is given by the embedding

B* Xpx BX JUy — QX Z, (v, 8) — (v20,v(q(7)a(B))),

where zp € Q(E,) is the unique point in Q(C,) fixed by E;. Thus the CM
points on ) are given by

b, = {(,8) € BY X BX /U, : v(a(7)a(B)) = 0}
As U, is maximal, the class of (v, 8) in b, is determined by . Thus bz, can
be identified with

Then we have a multiplicity function m on B /E; such that

m(y, 8) = m(v)lo(v(q(v)q(B))), v € B, BeB,”.

The problem is reduced to compute m(+y), which is the intersection number of
zp with yzg on the special fiber.

The intersection number is on X$pf Op, SPf Opur. Since the irreducible
components of its special fiber are indexed by GLa(F,)/F,GL2(Op, ), we see
that m(y) is nonzero only if v lies in GLy(Fy)/F,; GL2(OpF,). Then we can
assume that v € GL2(Op, ), since the center acts trivially on zo.
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By the assumption, zg and 2y reduce to the same irreducible component
on the special fiber of Q X $pf O, OPf Oppr. Remove the other irreducible com-
ponents of Q XSpfOp, SPf Opur. We obtain a formal scheme, which is just the
formal completion of P} —— P!(k,) along the special fiber. Here k, denotes
the residue field of Op,, and the k,-points on the special fiber are removed.
Now the problem is elementary: zy and yzy are points of IP’IOFur, and the goal
is to find their intersection number on the special fiber. We further replace
IP’loFgr by PloEv, which does not change the intersection number.

The point z9 € P1(Og,) corresponds to an Op, -linear isomorphism £ :
012% — Op,, which is determined by 2y up to Ogv—action. Then ~zy corre-
sponds to the isomorphism £y o~ : O%ﬂ — Opg,. We need to find the maximal
integer n such that £y and £yo+~ reduce to the same point in P(Og, /p?). Iden-
tify B, with F2 by fg, so that Ms(F,) acts on E,. The action is compatible
with the embedding £ < B(v) which we specify at the very beginning because
2o is the fixed point of E). Then the problem becomes finding the maximal
integer m such that the image of v in GL2(Op, /p}}) actually lies in (Og, /p})*.

Write v = a + bj, according to the orthogonal decomposition Ms(F,) =
E, + E,j,. Here q(j,) € O}X;v by assumption. Some Ogv—multiple of j, acts on
E, by the nontrivial element of Gal(E,/F,). Hence, m(vy) # 0 only if a € O,
and b € p,Og,. In that case, m(y) = v(b).

Go back to an arbitrary v € GLo(F,). We have m(y) # 0 only if v €
E) - (14 Og,wyjy)- In that case, m(y) = v(A(y))/2.

The j-part. If v is a non-archimedean place of F' split in B, then we have
the j-part j,(Z«(g,¢)t1,t2) = 0 automatically. This is a trivial consequence
of the fact that the special fiber of Xy at v is a disjoint union of irreducible
curves. For the fact, in the construction of Xy before Corollary 4.6, we can
take the prime p to be coprime to v; then Ay is smooth at v. The special
fiber of Xy at v is a disjoint union of irreducible curves, and the quotient Xy
has the same property since it is also a quotient of the underlying topological
space.

In the following, assume that v is a non-archimedean place nonsplit in B
and inert in E. Note that U, is maximal and ¢, = IO[;UX o - It is proved

that the j-part j,(Z«(g)t1,t2) is a nonsingular pseudo-theta series in [YZZ13]
under [YZZ13, Assumption 5.3]. The result is also true in the current situation.
Recall that

jv(Z*(g)tlat2) :][C ja(Z*(g)ttl,ttQ)dt.

The integration is a finite sum, so it suffices to prove the same result for
J5(Z(9)t1, t2).



622 XINYI YUAN and SHOU-WU ZHANG

LEMMA 8.9. Let v be a non-archimedean place nonsplit in B and inert
in E. The j-part j5(Z.(g, ¢)uti, t2) is a nonsingular pseudo-theta series of the

form
S Y r(96° ) L, (v.u).

u€p? \F* yeB(v)—{0}

Proof. Resume the notation of Lemma 8.8. As above, denote by F" the
completion of the maximal unramified extension of F;,. As all CM points
of CMy are defined over F, the intersection number jz(Z.(g)t1,t2) can be
computed on the integral model Xy o pur- By the definition in [YZZ13, §7.1.7],

Ju(Z(g)t1, t2) = Zu(g)t1 - Vi,
Here Z,(g)t; is the Zariski closure in XUoFur, and Vi, is a vertical divisor
on Xy,0ur, i-€., a linear combination of irreducible components in the special

fibers of Xy,0,. Which gives the é—admissible arithmetic extension of ts.
We still use the p-adic uniformization

5('\[] XSPfOFU SpfOF;)Jr = BX\(Q XSPfOFU SpfOan) X B?/U

Here B = B(v) as before. The map from /'/\«;U XspfOp, SPf Opyr to its set of
connected components is exactly the natural composition

B*\(Q xspt oy, SPf Opyr) x BY /U — BX\BY /U —5 FY\AT /q(U).

For the case to = 1, write Vi = Y; a;W;, where {W;}; is the set of ir-
reducible components of the special fiber of A7 Opur lying in the same con-
nected component as 1. Let W be an irreducible component of the special

fiber of Q Xspf Op, SPf Opur lifting W;.  Note that the choice of T/VZ is not

unique, bu/‘E we fix such choice. Write V = >-i aiWi, viewed as a vertical

divisor of Q Xgpro,, Spf Opwr. The vertical divisor (V,1) = 3 ai(W;, 1) of

(ﬁ XSpf O, SPf Opur) X IB%}T /U is a lifting of the vertical divisor Vi = >, a;W;
For general t € AT, the vertical divisor (V,t2) = 3=; a;(Wj, t2) of

(ﬁ XSpf Op, Spf OF;Ju) X IB;;

is a lifting of the vertical divisor V;,. In fact, by the projection formula, it
suffices to verify that the intersection numbers of (V| t5) with any B*-invariant
vertical divisors of (Q X$pt O, SPf Opur) X B; /U are the expected ones. But
these intersection numbers are given by the corresponding ones from the case
to = 1.

For any point 8 € CMy, the projection formula gives

B-Vig= > (7‘120-‘7)1%(Q(W)Q(tz)/q(ﬂ))lm(t517‘1ﬁ)-
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Here 2y € ﬁ(OFblr) is the unique fixed section of E, and the intersection
(v 120 - V) is taken on XSpf O, SPf Opur.
Hence, as in all the previous cases of local heights, we have

Zgty - Vi =wu Y Y,

a€F* zeB /U

> 07tz Vg (aMalta)/a(tio)lus (' o)
yEpy \B*
=wy Y. Y ()"t )
a€EF* yepy \BX
>> r(@)eu(@)a(v 20 V)igx (alty Mt2)fa(x))
x€BY /U,

= Z Z tl,tQ ¢U(’y7 ) (t17t2)l7‘(9)¢v(’77u)7

ueu \Fx veB*

where

lo, (vu) = > dolx,ug(v)/q(x))1, 5 (a(@)/a(7) (Yl V).

z€BY /U,

Here we have used (t5 'y~ 1tz - V) = (v L2 - V), which is explained as fol-
lows. In fact, t1z9 = 29 by definition. For t9, since the intersection number is
invariant under the action of B, we have (t5 'y 'z - V)= (v '2-t2V). But
then t,V = V since ty € FXGLy(Op, ) fixes every irreducible component of the
special fiber of Q XSpf Op, OPf Opur.

Hence, the intersection number jz(Z.(g)t1,t2) is a pseudo-theta series. It
remains to prove that the function

l¢v(77 ) N
= Z du(,ua(v)/a(@)1ox (a(2)/a(v) (720 V), (v,u) € By x Ff

extends to a Schwartz function of B, x F,¢. The function is locally constant
on B} x F), and we need to prove that its support is actually compactly
supported in B x F*. In order for the contribution of z € B} /U, to the
summation to be nonzero, we need

v €Oy, ug(y)/q(x) €O, q)/q(y) € OF,.
It follows that
lou(30) = (7720 V) Lo (a(1) 1oy (1),

In particular, it is already compactly supported in u.
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To get extra information on ~, go back to the uniformization. Note that
the irreducible components of the special fiber of Q2 xgprop, Spf Opwr are in-
dexed by

GLy(Fy)/F; GL2(Op, ).
Denote by ;F;*GLy(Op,) the coset representing the component W; of V =
S a;Wi. Then we simply have
7_120 V= ZailaiFvXGIQ(OFU)(’y_l)'
i
Combining with ¢(v) € Of, , we conclude that the support of v in Iy, (1,7, u)
is the union of finitely many cosets of GL2(Op,). This finishes the proof. [

Remark 8.10. As we can see from the proof, the result holds under the
more general condition that ¢,(0,u) = 0. This condition is weaker than
[YZZ13, Assumption 5.3].

9. Quaternionic height

In this section, we will combine results in the last two sections to prove
Theorem 1.7. We will prove a formula for the modified self-intersection ig(1,1)
by applying Lemma 6.1(2) to the difference

D(g,¢) =PrI'(0,9,¢)v —2Z(g,(1,1))u.

Then we will connect ig(1,1) to the height of CM points defined by arithmetic
Hodge bundles by proving an adjunction formula.

9.1. Derivative series vs. height series. Let (F,E,B,U, ¢) be as in Sec-
tion 7.2. By comparing the height series and the derivative series, we will
show a formula of the modified self-intersection

io(P,P) =ip(1,1) =i(1,1) = > iy(1,1)log N,

Here i(1,1) represents the horizontal arithmetic intersection of the CM point
[1]y € Cy with itself, while the local term

iu(1,1) :][C io(t, )t

uses the extended definition of i5(¢,¢) introduced in Section 8.2 case by case.
The following is the main theorem of this section.

1 Ly(0,m) 1 dp/F
THEOREM 9.1. ——o(P,P) = ——— + =1 .
[og:o;]“)( )= Lo T2 Og( ds )

The theorem is already very close to Theorem 1.7. The bridge between
these two theorems is the arithmetic adjunction formula in Theorem 9.3.
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The comparison. Let (B,U, ¢) be as in Section 7.2. Go back to
D(Q? gb) = PT‘I,(O,g, ¢)U - 2Z(ga (17 1))U
By Theorem 7.2,

PrI(0, 9, 8)u }:gf K yat— S0 2L kP, 0)dt

v|oo vfoo nonsplit Cu

+ )Y (2logds(gy) + logug(y)ls) r(g)(y, u)

uep? \Fx yeEX

=3 > D colgy,u)r(9)9° (y,u)

vfoo uep? \F* yeE*
—c1Q2(9)

Here

dp
+ log —
U] 8 dr

and

Q)= > > r(9ely,u

ueu%]\FX yEEX

By Theorem 8.6,
20.0.0.00)0 == 3 (ogN) f M (g. (0.0t

v nonsplit
- ZN (g9,(1,1))log N,, — ZJU g,0)ul,1)log N,
vfoo vfoo

— Zio(1,1) (o).

Here we write e = [O}; : O] for simplicity. We already know j,(Z.(g, ¢)v1,1)

= 0 only if v is nonsplit in B.
Group the terms in the difference as follows:

=23 f T 10) ~ Mg, ()l
v]oo
-2y (K$ (g, (8,1) = M (g, (¢,1)) log N, )d
vfoo nonsplit Cu
+2 > ju(Zi(g,)ul,1)log N,
UEEf

>0 > de(g:y,u) (9)9" (y, )

vioo uepu? \F* yeEX

+ (%io(l, 1) — Cl) Qy(9)-
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Here,

d¢v (.97 Y, U) = 2n¢>v (97 Y, U) 1Og N’U - C¢>v(g7 Y, U)
+ (21log d(g) + log |ug(y)|v)r(9) P (v, u)
V g € GLo(Fy), (y,u) € Ef x E)S, wvfoo.

The key term for us is the coefficient of Q4(g).

Every term in the expression of D(g, ¢) is a pseudo-theta series, and each

summation over v is just a finite sum. In fact, we have the following itemized

result:

(1)

If v|oo, then
K (g, (t,) — MY (g, (8,1)) = 0.
This follows from [YZZ13, Prop. 8.1]. In the following cases, we assume

that v is non-archimedean.
If v is nonsplit in F, then

kg, (1,y,u) —mg, (y,u)log N,

extends to a Schwartz function on B(v), x F,*. Furthermore, for all but
finitely many such v,

kg, (9,y,u) — My (g)by (y,u)log N, =0
identically, and thus

K3 (9. (t.4) = MP (g, (1)) = 0.

The second statement is just [YZZ13, Prop. 8.8]. The first statement is a
consequence of Lemmas 7.4 and 8.7.
For any v { oo, the function

dg, (1,y,u) = 2ng, (1, y,u) log Ny — ¢4, (1,y,u) + log [ug(y)] ¢v(y,w)
extends to a Schwartz function on E, x F). Furthermore, for all but
finitely many v,

d¢v (97 Y, ’U,) =0
identically. The first statement is a consequence of Lemmas 7.6 and 8.7.
From them, we see that dg,(1,y,u) = 0 for all but finitely many v. The
vanishing result extends to dg, (g, y,u) by considering Iwasawa decompo-
sitions as in [YZZ13, Prop. 8.8].
For any v nonsplit in B, the j-part j,(Z.(g,¢)vl,1) is a nonsingular
pseudo-theta series of the form

Z Z lo, (9,9, w)r(9)d" (y,u).
uep? \F* yeB(v)—{0}

This is Lemma 8.9.
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With these results, every term on the right-hand side of D(g,¢) is a
nonsingular pseudo-theta series. Therefore, we are finally ready to apply
Lemma 6.1(2).

The outer theta series associated to the pseudo-theta series

Qlg)= > > rl9)oy,u)
uep \F* yeE>
is exactly the weight-one theta series
boi(g) = > > re(9)éy,u
uep \F* yekE

By Lemma 6.1(2), there is a unique identity including this theta series, and
we are going to write down this identity explicitly. This identity will be a sum
of theta series of weight one. We look at the contribution of every term in the
expression.

The contribution of

K3 (g, (t:8) = M (g, (t,1)) log N,
to the weight-one identity comes from its inner theta series

Z Z TE ¢v Y, u (g)(k¢u(1’ Y, u) - My, (ya u) log Nv)

uepZ \F* yek

This sum does not change after averaging on Cy. The term j,(Z.(g,¢)u1,1)
does not contribute to the identity we want. The term

Z Z de, (9,y,u) 7(9)0" (y,u)

uepd \F* yeEx

contributes by its outer theta series

Z > re(9)8”(y,u) re(g)ds, (1, y,u).

uep? \F* yeE

Hence, we obtain the following identity:

0= 2 Z Z Z TE va y,u (g)(kd)v(l’%u)

vfoo nonsplit uep? \F* yeE

—mg,(y,u)log No) + > Y > rp(9)e’ (v, u) re(9)ds, (1,y,u)

vfoo uE,u,?j\FX yeE
G -a) XX reee,u
uepH\F* yek
Now we need the following explicit local results.
PROPOSITION 9.2. Let v be a non-archimedean place and (y,u) € E, < F*.
(1) If v is nonsplit in E, then

2k¢u (17 Y, u) - 2m¢u (y’ ’LL) log Ny, + dd)u (1a Y, ’LL) = - log |va(J'v)\v¢u(y7 u)
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(2) If v is split in E, then
dg, (1, y,u) = —log|dvq(iv) lvo(y, u).
Proof. Recall that
dg, (1,9, u) = 2ng, (1, y,u)log Ny — ¢4, (1,y,u) +log lug(y)ls ¢u(y,u),

The proposition is just a combination of Lemmas 7.4, 7.6 and 8.7. U

Therefore, the identity gives exactly

o_(Z—logrdvqomwiz’ou,l)—cl) > 2 re@)dyw),

vfoo uepd \F* yek&

which is just
2,
0 = (logldrds| + ~io(1,1) = 1) B, (g).
We claim that 0q 1(g) is not identically zero. Then we get

2.
log ’dFdIB‘ + gZo(l, 1) —c =0,

which proves Theorem 9.1.
It remains to check that the theta series

0or(g)= > D re(9)é(y,u)
uepd \F* yek
is not identically zero. It suffices to check that the constant term
Z TE (g)¢(0a u)
ugpd \F*

is not identically zero. For that, assume that for v € Xy or v € Sy,

(1)

and g, = 1 at any other place v. By local computation, rg(g)¢(0,1) > 0
and rp(g)¢(0,u) > 0 for all w € F*. Then the (finite) sum over w is strictly
positive. This shows that the theta series is nonzero.

9.2. Arithmetic Adjunction Formula. Now we are going to relate
io(P, P) =1ip(1,1) = i(1,1) — Ziv(la 1)log N,
v

to the Faltings height. Here i,(1,1) = 0 if v is split in E. It is essentially an
arithmetic adjunction formula. The main result of this subsection is
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THEOREM 9.3 (Arithmetic adjunction formula).

1

This theorem and Theorem 9.1 imply Theorem 1.7. The goal of this
subsection is to prove Theorem 9.3.

Denote by H the Hilbert class field of E. Then P = [1]y is defined over H,
and we view it as a rational point of Xy . By assumption, F is unramified
at any v € Xy. By Corollary 4.6, Xy, is Q-factorial. We will consider
arithmetic intersections over Xy p,,. We will suppress the symbol U from the

io(P, P) = —hg, (P).

subscripts. For example, X0, is written as Xo,,.
Denote by P the Zariski closure of P in Xp,,. Then we have an arithmetic
divisor

P = (P,gp),

where the Green function gp = {gpw}w:H—c is the admissible Green func-
tion as in [YZZ13, §7.1.5]. Denote by O(P) the corresponding hermitian line
bundle. By definition,

1 _

1.1) = g P P) = G ee(O(Pl)

1
[H : F]
Denote by Lo, the base change of the arithmetic Hodge class Ly = £
from X to Xp,,. It follows that

ho(1) = ———deg(Loy |p).

1
[H : F]
So the goal is to prove

1-— _ — 1 .
~deg(O(P)|p) +deg(Loy |p) = [H : F1- Y in(1,1) log N

Here we denote e = [Of : Of] for simplicity, which is also the ramification
index ep of P. Rewriting the right-hand side according to places w of H, the
equality becomes

deg (Mlp) = Zzw (1,1)log Ny.

Here
M= Lo, ® 0@ 'P)
is a hermitian Q-line bundle on Xp,,.

Denote by M and M the finite part and the generic fiber of M. We first
claim that there is canonical isomorphism

ReSp:M|p—)H.
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In fact, by definition,

L=wyr® @ Ox((1-e,")Q).
QEX(F)

Then

M=LgeO( 'P)=wxy, 10, 2O0P)® Q@  Ox((1-e5"Q).

QeX(F), Q#P

It follows that we have canonical isomorphisms
M|p — (wx,,, 0, ® O(P))|p — H.

Here the second map is just the residue map

d
M 1p s 1,
u

where u is any local coordinate of P in Xz, and 1p denotes the section 1 of
O(P). The map does not depend on the choice of u.
By the residue map Resp : M|p — H, we have an induced hermitian line

bundle N = (N, || - ||) on Spec(Op). Here N denotes the image of M|p in H,
which is a fractional ideal of H, and the metric on N is determined by

d
o= [Z o1 (P, wimoc
Then we have
deg (M|p) = deg(N) = — Y log|[1]l + Y dimy, (N/On,,)log No.
w:H—=C wloo

Here the second summation is over all non-archimedean places w of H, ki,

denotes the residue field of w, and dimy,, (N,,/Opg,, ) means — dimg,, (Op,, /Nuw)

if Ny, is contained in Op,,. However, we will see that N,, always contains Oy, .
The theorem is reduced to the local identities

1
—log||1]jw = giw(P, P), w:H—=C
and
1

We will see that the ideas in the different cases are very similar even though
the reductions are completely different.
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Archimedean case. We first check the local identity for the archimedean
case, so w is an embedding H — C. It restricts to an embedding v : F' — C.
We have a uniformization

X,(€) = BX\b x B (A)/U.

Here B = B(v) is the nearby quaternion algebra. Under the uniformization,
the point P is represented by (zo,t) for some t € E*(A¢). The metric || - ||, of
O(P) is given by

—log ”1PHw([Za ﬂ]) = iﬁ([zv ﬁ]v [Z07tD

for any other point [z, 5] € X,(C) not equal to [z9,t]. Here we recall from
[YZZ13, §8.1] that

7;17([27/8]7 [Z07t]) = Eﬂ/ls—m Z ms(20772)1U(t_176)7
vepu\B

where
B |z — 20’2
ms(20,2) = Qs <1 + 21m(ZO)Im(Z)> .

Consider the covering map
m:hx BX(Ay)/U — X,(C).

Here the left-hand side is just a countable disjoint union of §. Denote by P the
point (zp, t) in this space, which is a lifting of P = [z, t]. By the construction of
the Hodge bundle, 7* L is canonically isomorphic to the sheaf Q! of holomorphic
1-forms on h x B*(Af)/U. As a consequence, we have canonical isomorphisms

(M|p)®yC — (7" M)| 5 = (Tr*LH®7r*(9(e_1P))\15 — (Q1®O(P))|p — C.

Here the last map is a residue map again, and the whole composition is exactly
the base change to C of the original residue map Resp : M|p — H.

Let Q = (z1,t) be a point of h x B*(A;)/U, and let Q = [21,t] be its
image in the quotient X,(C). Consider the behavior as z; approaches z,
which also means Q — P or (Q — P in the complex topology. Let z be the
usual coordinate of h C C, so that z — zg gives a local coordinate at P in
h x B*(Af)/U. Then the second residue map gives

dz
Z— 20

1= lim ( @ 1p(@Q)F).

Q—P

Pet
Recall that the Petersson metric gives

dz
Z— 20

AN 2 Im(zl)

Pet B |Zl —20"
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On the other hand, the Green function is
—log||I1plw(@)
== iﬁ([zlv t]? [207 t])
=limeyo Y. ms(z0,720) 1o (t L)
yepu\BS
= ¢ mo(20, 21) + lim,— > mi(20,721) 10 (t~ 1),
vepu\(Bf —E*)
The definition has been extended to self-intersection as
i5([20, 1], [20, t]) = lim,0 > mis(20,720) 10 (t~ ' yt).
yeuu \(BY —EX)
Hence,

1
-+ giﬁ(‘P’ P)

21u(2))

It remains to check that the limit on the right-hand side is exactly zero.

Note that )
Z1 — &
mo(Z(),Zl) = Q() <1 + |10’> .

2Im(zp)Im(z1)
By [GZ86, 11, (2.6)],

1 2 1 t+1
t)=——F(1,1,2, ——) = — log ——.
Qo() fr1 (777t+1) 20gt—1
It follows that
2Im(z) 1 |21 — 202 1. Im(z)
—log 22— 7 1+ ———F— |3
mo(zo,21) — log 21— 20| 2 08 ( + 4Im(z0)Im(z1) 2 % Im(20)’

which converges to 0 as z; — zg. This finishes the archimedean case.

Non-archimedean case. Let w be a non-archimedean place of H. Let v
be the restriction of w to F. To prove the arithmetic adjunction formula,
the key is the following geometric interpretation of the extended intersection
iw(P, P) = i3(P, P). For convenience, denote by R = Opur the integer ring of
the completion H})' of the maximal unramified extension of H,,.

LEMMA 9.4. Let U' = U,U" be an open compact subgroup of By with
U™ C UY normal. Consider the projection 7 : Xy p — Xy,r. Denote by P’ an
irreducible component of the divisor 7 Pr on Xy g If U is small enough,
then
iw(P,P) = (n"'"Pr —€eP’, P').
Here the pairing denotes the intersection multiplicity on the special fiber of
XU’,R-
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In the lemma, the morphism 7 is étale, so P’ must be a section of Xy g
over R. The ramification index of P is e. Then the multiplicity of P’ in
7P is e if U’ is small enough, so the intersection in the lemma is a proper
intersection. The lemma can be viewed as a modified projection formula. We
will prove it later, but let us first use it to finish the proof of the arithmetic
adjunction formula.

Recall that it is reduced to the local identity

. 1.
dimy,, (Ny/Om,,) = gzw(P, P).
Here N denotes the image of M|p under the residue map
ReSp : M‘p — H

As in the archimedean case, we will have a different interpretation of the
residue map. Let 7 : Ayr p — Ay r and P’ be as in the lemma. Denote by
P’ the generic fiber of P’. By the definition of the Hodge bundle, we have
canonical isomorphisms

" Ly, grar — WXy rur/HY " Lyr — WXy /R
Thus we have canonical isomorphisms
(M]p) @5 HE — (7" Lo © 70" P))
(s ety © O(P)) o — L.

Here the last map is a residue map again, and the whole composition is exactly
the base change to H." of the original residue map Resp : M|p — H.

The computation is to track the change of integral structures of the com-
position. The composition has the integral version

(Mlp) ®oy R — (1" Lur @ 7 O0(e™'P))lpr -+ (W, o/ @ O(P'))lpr — R.

The first arrow is an isomorphism by definition, and the last arrow is an isomor-
phism by the adjunction formula on Ay g. The dashed arrow in the middle
may only be a well-defined map after base change to H,', but we write it
this way to track the change of the integral structure. Thus dimg,, (N,/Om,,)
is equal to the dimension of the quotient of two sides of the dashed arrow.
Tensoring with (7*Ly gl )21, the dashed arrow becomes

T O(e” ' P)lpr -+ O(P')|pr.
Tensoring with 7*O(—e~1P)|ps, it further becomes

O'p/ - > O(P/ — 6_177*7))‘7)/,
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Note that e '7*P — P’ is an effective divisor. The real map should be the
inverse direction
O(Pl — 6717['*7D)|7D/ — Op/.
The image of the last map is the restriction of the ideal sheaf of e~ '7*P — P’
to P’, so the cokernel of the map has dimension exactly equal to the intersection
number
(O(e tn*p —P', P.
Hence,
dimy,, (Nw/Om,) = (O(e '7*P — P', P').
By Lemma 9.4, it further equals

1.
EZTU(P? P)
This finishes the proof of the adjunction formula.

Proof of the lemma. Here we prove Lemma 9.4. Let U’ = U,U" be as in
the lemma. Recall that if v is nonsplit in F, then

ig([yr, ) = > m (7, 1)1y (7).
Yepy \(BX—EXNU’)
Here B = B(v), and the multiplicity function m : By X px B} /U, — Q takes
the same form for U and U’. The key is the following result.

LEMMA 9.5. If v is nonsplit in E, then iz([1]y, [1]g7) =0 if U™ is small
enough.

Proof. Note that m(v,1), as a function in 7, is supported on an open
compact subgroup W, of B)*. In fact, by q(v) € Op, , we can take W, = Op, 'if
v is nonsplit in B, and W, still exists if v is split in B by Lemma 8.8. Then ~
contributes to the summation only if v € B* N W. Here we write W = W, U""
as a open compact subgroup of B*(Ay¢). Since B is totally definite, ppy has
finite index in B* NW. Let S be set of representatives of the nontrivial cosets
of B* N W/uw. Shrinking U™ if necessary, we can keep up invariant, but
make S N U™ empty. Hence, we end up with B* N W = puy. It follows that
B*NW C EXNU’. Then the sum for iz([1]y, [1]y+) has no nonzero terms. O

Now we prove Lemma 9.4. By the right multiplication of U on Xy, it is
easy to see that the Galois group of Xy» — Xy is isomorphic to U/(U'uy). Tt
follows that

_ _ 1
™ 1(P) =T 1([1]U) = Z [/B]U' = 7[ - ,] Z [B]U"
BEU/ (U ) HU = RO geuyur
Denote P’ = [1]y». We can assume that P’ is the Zariski closure of P’ since
the intersection multiplicity in the lemma does not depend on the choice of
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P’ by the action of the Galois group of X — Xp. Assume that U’ satisfies
Lemma 9.5; i.e., iz(P’, P’) = 0. Then

(7P —eP', P') =ig(n P —eP', P') = iz(n ' P, P').
It is reduced to check
ig(m 1P, P') = iz(P, P).
Here both sides use our extended definitions. It is straightforward by the

expression of 771(P) above.
We first assume that v is nonsplit in E. Recall that for any 8 € B,

is([Blor, (o) = > m(7y, By N luw ((B°) 1)
Ve \(BX—EXMB,U.)
Then
1

v = por] g S50

- ¥ > m(y, D)lym(57')

[ho + o] BEU® /U vEpy \(B* —E*NUy)

SN - > m(v, 1)1y (v)

[MU : NU/] YELY \(BX —EXNUy)
=iz(P, P).

is(m P, P') = i([Blv, (o)

This finishes the nonsplit case.

It remains to treat the case that v is split in F. In this case, Lemma 9.5 is
automatic, since iz(P’, P') = 0 is actually true for any U’. The proof is similar
to the nonsplit case by the formula

is([Blur, [Hur) = > my(y~ ' B) 1y (87 1).

YEu \(EX —ByUsy)

It is also similar to the second half of the proof of Lemma 8.4. An interesting
consequence is that both sides of Lemma 9.4 are 0.
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