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On the averaged Colmez conjecture

By Xinyi Yuan and Shou-Wu Zhang

Abstract

The Colmez conjecture is a formula expressing the Faltings height of

an abelian variety with complex multiplication in terms of some linear

combination of logarithmic derivatives of Artin L-functions. The aim of

this paper to prove an averaged version of the conjecture, which was also

proposed by Colmez.
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1. Introduction

1.1. Statements. First let us recall the definition of Faltings heights in-

troduced by Faltings [Fal83]. Let A be an abelian variety of dimension g

over a number field K, and let A be the relative identity component of the

Néron model of A over OK . Assume that A is semi-abelian. Denote by

Ω(A) = Lie(A)∨ the sheaf of invariant differential 1-forms on A. Let ω̄(A)

be a metrized line bundle over SpecOK , whose finite part is defined as

ω(A) := det Ω(A)

and whose metric ‖ · ‖v at each archimedean place v of K is given by

‖α‖2v :=
1

(2π)g

∫
Av(C)

|α ∧ ᾱ|, α ∈ ω(Av) = Γ(Av,Ω
g
Av

).

Then Faltings [Fal83, §3] defines a moduli-theoretic height h(A) by

h(A) :=
1

[K : Q]
d̂eg ω(A).

Since A is semi-abelian, this height is invariant under base change.
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Now let us state our main result as conjectured by Colmez. Let E be

a CM field of degree [E : Q] = 2g, with the maximal totally real subfield F

and a complex conjugation c : E → E. Let Φ ⊂ Hom(E,C) be a CM type,

i.e., a subset such that Φ ∩ Φc = ∅ and Φ ∪ Φc = Hom(E,C). Let AΦ be a

CM abelian variety over C of CM type (OE ,Φ). By the theory of complex

multiplication, there is a number field K in C such that AΦ is defined over K

and has a smooth and projective integral model A over OK . Colmez proved

that the height h(AΦ) depends only on the CM type Φ. Thus we may denote

this height by h(Φ).

Colmez gave a conjectural formula expressing the precise value of h(AΦ)

in terms of linear combinations of logarithmic derivatives of Artin L-functions

determined by Φ. See [Col93, Th. 0.3, Conj. 0.4]. When E/Q is abelian,

the conjecture was proved up to rational multiples of log 2 in the same paper,

and later the rational multiples were eliminated by Obus [Obu13]. When

[E : Q] = 4, the conjecture was essentially proved by Yang [Yan10], [Yan13].

The goal of this paper is to prove the following averaged formula for general

CM fields using techniques in the proof of the Gross–Zagier formula ([GZ86])

and its generalization ([YZZ13]).

Theorem 1.1. Let E/F be a CM extension, let η = ηE/F be the corre-

sponding quadratic character of A×F , and let dF (resp. dE/F ) be the absolute

discriminant of F (resp. the norm of the relative discriminant of E/F ). Then

1

2g

∑
Φ

h(Φ) = −1

2

L′f (0, η)

Lf (0, η)
− 1

4
log(dE/FdF ),

where Φ runs through the set of all CM types of E, and Lf (s, η) is the finite

part of the completed L-function L(s, η).

The averaged formula was explicitly stated in [Col93, p. 634] with some

typo. Note that we use a different normalization of the Faltings height.

Remark 1.2. Note that the above theorem can be reformulated as an arith-

metic expression for L′(0, η). This expression is analogous to the class number

formula

L(0, η) = 2a
H

w
,

where 2a, H, and w are respectively the ratios of regulators, class numbers,

and the number of roots of unity of the fields E and F .

Remark 1.3. When E is an imaginary quadratic, the Colmez conjecture

can be deduced from the Chowla–Selberg formula in [SC67]. Our method

(and also the method of Yang [Yan10], [Yan13]) thus gives a different proof

of the Chow–Selberg formula. Another very interesting geometric proof of

the Chowla–Selberg formula was discovered by Gross [Gro78]. He also made
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a conjecture with Deligne for the periods of motives with CM by an abelian

field. Anderson [And82] reformulated the conjecture of Deligne and Gross in

terms of the logarithmic derivatives of odd Dirichlet L-functions at s = 0. All

these predictions were only up to algebraic numbers. Colmez used the Faltings

height instead of just the archimedean periods to make the conjectures precise.

Remark 1.4. Andreatta, Goren, Howard and Madapusi-Pera [AGHMP18]

prove the averaged Colmez conjecture independently. Their proof uses integral

models of high-dimensional Shimura varieties and is based on the method of

Yang [Yan10], [Yan13].

Remark 1.5. By the recent work of Jacob Tsimerman [Tsi18], the theorem

implies the Andre–Oort conjecture for Siegel abelian varieties: Let X be a

Shimura variety of abelian type over C. Let Y ⊂ X be a closed subvariety

which contains a Zariski dense subset of special points of X . Then Y is a

special subvariety.

Theorem 1.1 is a direct consequence of Theorems 1.6 and 1.7 below. The

proof of each of the latter two theorems forms a part of this paper, so this

paper is naturally divided into two parts. Theorem 1.6 is proved in Part I;

Theorem 1.7 is proved in Part II.

1.2. Faltings heights. Part I (Sections 2–5) of this paper is devoted to

reducing Theorem 1.1 to a Gross–Zagier type formula on quaternionic Shimura

curves. In the following, for quaternionic Shimura curves, Hodge bundles and

CM points, we will use the terminology of [YZZ13, §§1.2, 1.3, 3.1]

Fix a CM extension E/F as above. Let B be a totally definite incoherent

quaternion algebra over A := AF . Assume that there is an embedding AE ↪→ B
over A, and fix one throughout this paper. For each open compact subgroup

U of B×f , we have a Shimura curve XU , which is a projective and smooth curve

over F . Let X be the projective limit of XU . Then X has a right action by

B×f with quotients X/U = XU .

The Shimura curves XU do not parametrize abelian varieties but can be

embedded into Shimura curves of PEL types over F̄ . We will construct integral

models XU following the work of Carayol [Car86] and Čerednik–Drinfeld [BC91]

and define the Hodge bundle LU (Theorem 4.7).

Assume that U =
∏
Uv is a maximal compact subgroup of B×f containing“O×E . Then XU has a canonical integral model XU over OF . Let L̄U be the

arithmetic Hodge bundle of XU , whose hermitian metric at an archimedean

place v is given by

‖dz‖v = 2 Im(z)

with respect to the usual complex uniformizations by coherent quaternion al-

gebras. See Section 4.2 for the constructions of XU and L̄U .
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Let PU ∈ XU (Eab) be the image of a point P ∈ XE× . It has a height

defined by

hL̄U (PU ) :=
1

[F (PU ) : F ]
d̂eg(L̄U |P̄U ),

where P̄U denotes the Zariski closure of the image of PU in XU . The first part

of our paper is to relate this height to the average of the Faltings heights of

CM abelian varieties.

Theorem 1.6. Let dB be the norm of the product of finite primes of OF
over which B is ramified. Assume that there is no finite place of F ramified in

both E and B. Then

1

2g

∑
Φ

h(Φ) =
1

2
hLU (PU )− 1

4
log(dBdF ).

We prove this theorem by several manipulations of heights, which are

sketched in the following.

Decomposition of Faltings heights. Let K ⊂ C be a number field contain-

ing the normal closure of E over Q such that any CM abelian variety by OE has

a smooth model over OK . Let A/K be a CM abelian variety of type (OE ,Φ)

and A/OK be the smooth projective integral model. Then we will decompose

the height h(Φ) into a sum of g terms indexed by τ ∈ Φ,

h(Φ, τ) =
1

2
d̂eg N̄ (A, τ),

where each N̄ (A, τ) is a hermitian line bundle over SpecOK . We will show that

this height depends only on the pair (Φ, τ) in Theorem 2.2 and then denote it

as h(Φ, τ). In Theorem 2.3, we obtain

h(Φ)−
∑
τ∈Φ

h(Φ, τ) = − 1

4[EΦ : Q]
log(dΦdΦc).

Here EΦ is the reflex field of (E,Φ) and dΦ, dΦc are certain absolute discrimi-

nants of Φ,Φc.

Let (Φ1,Φ2) be a nearby pair of CM types of E in the sense that |Φ1∩Φ2| =
g − 1. Let τi be the complement of Φ1 ∩ Φ2 in Φi for i = 1, 2. Define

h(Φ1,Φ2) =
1

2
(h(Φ1, τ1) + h(Φ2, τ2)).

We will show that h(Φ1,Φ2) does not depend on the choice of (Φ1,Φ2) and

that h(Φ1,Φ2) is equal to 1
2h(A0, τ) for any abelian variety A0 with an action

by OE and isogenous to AΦ1 × AΦ2 , where τ = τi|F . See Theorem 2.7. Thus

Theorem 1.6 is reduced to the following equality:

gh(A0, τ) = hLU (PU )− 1

2
log(dB).
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Assume that A is defined over the number field K containing F (PU ) and has

good reduction over OK . We will prove the above identity by constructing an

isomorphism of hermitian line bundles over SpecOK (cf. Proposition 5.7):

(1.2.1) N (A0, τ)
∼−→ (NU |PU )⊗OF (PU )

OK ,

where NU := L2
U (−dB) is a Q-bundle over XU .

Kodaira–Spencer isomorphisms. We will construct the isomorphism (1.2.1)

by applying Kodaira–Spencer maps for families of abelian varieties, Hodge

structures, and p-divisible groups parametrized by various Shimura curves.

These maps give relations “N = ω⊗2” between invariant differentials of these

objects and differentials of the base curves.

First of all, let (Φ1,Φ2) be a nearby pair of CM types of E. Let F ′ be

the reflex field of Φ1 + Φ2. Then there is a PEL-type Shimura curve X ′U ′ with

minimal level defined over F ′ parametrizing the quadruples (A, i, θ, κ) of an

abelian variety A, an action i of OE on A of type Φ1 + Φ2, a polarization

θ : A −→ At inducing complex conjugation on E, and a level structure κ :

OB
∼−→ “T (A). On X ′U ′ there is a point P ′U ′ representing an abelian variety A0

which is isogenous to AΦ1 × AΦ2 . By the Kodaira–Spencer map, there is an

isomorphism

N(A0, τ) ' ω⊗2
X′
U′ ,P

′
U′
.

We will prove an archiemdean Kodaira–Spencer isomorphism (Theorem 3.7)

in terms of hermitian structures using complex uniformization of X ′.

There are no natural maps between the Shimura curves XU and X ′U ′ over

the reflex fields, even though they have isomorphic connected components over

F̄ . We will construct another Shimura curve X ′′U ′′ with morphismsXU −→ X ′′U ′′
and X ′U ′ −→ X ′′U ′′ so that both points PU and P ′U ′ have the same image P ′′U ′′ .

This gives an isomorphism over K required in (1.2.1):

(1.2.2) N(A0, τ)
∼−→ NPU ⊗F (PU ) K.

This isomorphism is in fact an isometry at all archimdean places.

It remains to show that the isomorphism (1.2.2) extends to the isomor-

phism (1.2.1). We need only do this by working on every place of K. For each

prime ℘′ of F , there is a p-divisible group H ′′ on a certain infinite cover X ′′1,℘′
of X ′′U ′′ defined over K ′ := F ur

℘′ , the completion of the maximal unramified

extension of F℘′ . This group restricts to the p-divisible group H ′ := A[p∞]

on X ′1,℘′ , an infinite cover of X ′U ′ . On the other hand, on an infinite cover

X1,℘ of XU over K := F ur
℘ , where ℘ := ℘′|F , there is a p-divisible group H

independent of the choice of E. The groups H and H ′′ are related by the Tate

module of a p-divisible group I on Y . See Proposition 5.1.
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We will give a description for N1,℘ in terms of the deformation of H via

a Kodaira–Spencer isomorphism (Theorem 4.10). By Proposition 5.1, this

also gives a description of N1,℘ ⊗ OF ′ur
℘′

in term of the deformation of H′′

(Corollary 5.5) which is the required extension of the isomorphism (1.2.1) at

places over ℘′.

1.3. Quaternionic heights. Part II (Sections 6–9) of this paper is devoted

to the proof the following height formula on quaternionic Shimura curves. Let

U =
∏
v Uv be a maximal open compact subgroup of B×f containing the image

of “O×E =
∏
v O
×
Ev

.

Theorem 1.7. Assume that at least two places of F are ramified in B, and

that there is no non-archimedean place of F ramified in both E and B. Then

hL̄U (PU ) = −
L′f (0, η)

Lf (0, η)
+

1

2
log

dB
dE/F

.

Here dB = N(dB) is the absolute discriminant of B.

We prove this theorem by extending our method of proving the Gross–

Zagier formula in [YZZ13]. Recall that the Gross–Zagier formula is an iden-

tity between the derivative of an L-series of a Hilbert modular form and

the height of a CM point on a modular abelian variety. This formula is

proved by a comparison of the analytic kernel PrI ′(0, g, φ) and a geometric

kernel 2Z(g, (1, 1), φ) parametrized by a certain modified Schwartz function

φ ∈ S(B× A×). More precisely, we have proved that the difference

D(g, φ) = PrI ′(0, g, φ)− 2Z(g, (1, 1), φ), g ∈ GL2(AF )

is perpendicular to the relevant cusp forms.

The cancellation for the “main terms” of D(g, φ) eventually implies the

Gross–Zagier formula; however, the cancellation of the “degenerate terms”

imply Theorem 1.7. To retrieve information of these degenerate terms, we

need to compute this difference for a wider class of Schwartz functions φ than

those considered in [YZZ13]. In fact, [YZZ13] makes some assumptions on φ

so that the degenerate terms vanish automatically. In the following, we sketch

some new ingredients of the proof.

Derivative series. By the reduced norm q, the incoherent quaternion al-

gebra B is viewed as a quadratic space over A = AF . Then we have a mod-

ified space S(B × A×) of Schwartz functions with a Weil representation r by

GL2(A)×B××B×. For each φ ∈ S(B×A×) invariant under an open compact

subgroup U × U of B×f × B×f , we have a finite sum of products of the theta
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series and the Eisenstein series

I(s, g, φ)U =
∑

u∈µ2
U\F×

∑
γ∈P 1(F )\SL2(F )

δ(γg)s
∑
x1∈E

r(γg)φ(x1, u),

where µU = F× ∩ U , and P 1 is the upper triangular subgroup of SL2.

For the decomposition B = EA+EAj, this function is a linear combination

of the products θ(g, φ1)·E(s, g, φ2) of the theta series θ(g, φ1) for some coherent

Schwartz functions φ1 ∈ S(EA), and the Eisenstein series E(s, g, φ2) for some

incoherent Schwartz functions φ2 ∈ S(EAj). This implies that I(0, g, φ) = 0.

Let PrI ′(0, g, φ) be the holomorphic projection of the derivative at s = 0 of

I(s, g, φ).

In Theorem 7.2, we give a precise formula for PrI ′(0, g, φ) under some

assumptions of Schwartz functions, which particularly includes the following

term:

(1.3.1)

Ç
2
L′f (0, η)

Lf (0, η)
+ log |dE/FdF |

å ∑
µ2
U\F×

∑
y∈E×

φ(y, u).

Notice that this term was killed in [YZZ13] by some stronger assumption on

Schwartz functions.

Height series. For any φ ∈ S(B × A×) invariant under U × U , we have a

generating series of Hecke operators on the Shimura curve XU :

Z(g, φ)U = Z0(g, φ) + wU
∑
a∈F×

∑
x∈U\B×

f
/U

r(g)φ(x, aq(x)−1)Z(x)U ,

where wU = |µ2 ∩ U |, the constant term Z0(g, φ) is a linear combination of

Hodge classes on XU × XU , which can be neglected in this paper, and every

Z(x)U is a divisor of XU ×XU associated to the Hecke operator corresponding

to the double coset UxU . By [YZZ13, Th. 3.17], this series is absolutely

convergent and defines an automorphic form on g ∈ GL2(A) with coefficients

in Pic(XU ×XU )C.

Let P = PU be the CM point of XU as above, and let P ◦U ∈ Jac(XU ) be

the divisor of degree zero modified by the Hodge classes. Then we can form a

height series

Z(g, φ)U = 〈Z(g, φ)UP
◦
U , P

◦
U 〉NT,

where the right-hand side is the Neron–Tate height pairing.

In Theorem 8.6, we give a precise formula for Z(g, φ)U under some assump-

tion of Schwartz functions, which particularly includes the following term:

(1.3.2) − i0(P, P )

[O×E : O×F ]

∑
u∈µ2

U\F×

∑
y∈E×

r(g)φ(y, u),
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where i0(P, P ) is a modified arithmetic self-intersection number of the Zariski

closure P̄ on the integral model XU . Notice that this term was killed in [YZZ13]

by some stronger assumption on Schwartz functions.

Finally, Theorem 1.7 essentially follows from an identity between (1.3.1)

and (1.3.2). To get this identity, the idea is to use the theory of pseudo-theta

series in Section 6.2. There is already a basic concept of pseudo-theta series in

[YZZ13], but here we develop a more general theory to cover the degenerate

terms.

Pseudo-theta series. From the explicit formulas in Theorems 7.2 and 8.6,

the difference D(g, φ) is a finite sum of the so-called pseudo-theta series

A
(S)
φ′ (g) =

∑
u∈µ2\F×

∑
x∈V1\V0

φ′S(g, x, u)rV (g)φS(x, u), g ∈ GL2(A),

where

• S is a finite set of places of F including all archimedean places,

• µ ⊂ O×F is a subgroup of finite index,

• V0 ⊂ V1 ⊂ V is a filtration of totally positive definite quadratic spaces of F ,

• φS ∈ S(V (AS)× AS,×) is a Schwartz function outside S, and

• φ′S is a locally constant function on∏
v∈S

(GL2(Fv)× (V1 − V0)(Fv)× Fv)

with some extra smoothness or boundedness conditions.

Notice that a pseudo-theta series usually is not automorphic. But our key

Lemma 6.1 shows that if a sum of pseudo-theta series is automorphic, then we

can replace them by the difference θA,1 − θA,0 of the associated theta series

θA,1(g) =
∑

u∈µ2\F×

∑
x∈V1

rV1(g)φ′S(1, x, u)rV1(g)φS(x, u),

θA,0(g) =
∑

u∈µ2\F×

∑
x∈V0

rV0(g)φ′S(1, x, u)rV0(g)φS(x, u).

Since the weights of these theta series depend only on the dimensions of Vi,

there is a vanishing of some sums of theta series grouped in terms of dim Vi.

Combining Lemma 6.1 for D(g, φ) with some local computation gives the

following identity for the self-intersection of CM points P (Theorem 9.1):

1

[O×E : O×F ]
i0(P, P ) =

L′f (0, η)

Lf (0, η)
+

1

2
log(dE/F /dB).

This is essentially the desired identity between (1.3.1) and (1.3.2). Now The-

orem 1.7 follows the following arithmetic adjunction formula (Theorem 9.3):

1

[O×E : O×F ]
i0(P, P ) = −hLU (P ),

which will be proved by explicit local computations.
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Part 1. Faltings heights

The goal of this part is to prove Theorem 1.6. Throughout this part, we

fix a quadratic CM extension E/F .

2. Decomposition of Faltings heights

In this section, we will first decompose h(Φ) into a sum of components

h(Φ, τ) for each τ ∈ Φ. See Theorem 2.3. This is done by using a hermitian

pairing between Ω(AΦ) and Ω(AtΦ). Then we define the height h(Φ1,Φ2) for

a nearby pair (Φ1,Φ2) of CM types of E (in the sense that Φ1 ∩ Φ2 has g − 1

elements) as the average of two heights h(Φi, τi), where τi is the complement

of Φ1 ∩ Φ2 in Φi. We will end this section by showing that h(Φ1,Φ2) can be

computed by any abelian variety isogenous to the product of two CM abelian

varieties with CM types Φ1 and Φ2.

2.1. Hermitian pairings. Let A be a complex abelian variety with space

Ω(A) of holomorphic 1-forms. Then we define a metric on the complex line

ω(A) = det Ω(A) by

‖α‖2 =
1

(2π)g

∫
A(C)
|α ∧ ᾱ|.



ON THE AVERAGED COLMEZ CONJECTURE 543

In terms of Hodge theory, this norm is given by the following pairing between

detH1(A,C) and detH1(A,Z):

‖α‖2 =
1

(2π)g
|〈α ∧ ᾱ, eA〉|,

where eA is a basis of detH1(A,Z) = H2g(A,Z).

Let At be the dual abelian variety of A. Then we have a uniformization

At(C) = H1(A,OA)/H1(A, 2πiZ).

This induces the following canonical isomorphisms:

Ω(At)∨ = Lie(At) ' H1(A,OA) ' H0,1(A) = Ω̄(A).

Thus we have a perfect hermitian pairing

Ω(A)× Ω(At) −→ C.

The hermitian pairing is functorial in the sense that if φ : B −→ A is a

morphism of abelian varieties, then we have

(φ∗α, β) = (α, (φt)∗β), α ∈ Ω(A), β ∈ Ω(Bt).

Here φt : At −→ Bt denotes the dual morphism.

Taking determinants, this gives a hermitian norm ‖ · ‖ on ω(A) ⊗ ω(At).

Using this norm, we obtain the following product formula:

Lemma 2.1. For any α ∈ det Ω(A) and β ∈ det Ω(At),

‖α‖2 · ‖β‖2 = ‖α⊗ β‖2.

Proof. The direct sum of the pairing Ω(A)⊗Ω(At) −→ C and its complex

conjugate give a perfect hermitian pairing

H1(A,C)⊗H1(At,C) −→ C.

This pairing is dual to the canonical perfect pairing

H1(A,Z)⊗H1(At,Z) −→ 2πiZ

by the above uniformization of At. Taking determinants and using the Hodge

decomposition, we obtain the following isomorphism of lines:

ω(A)⊗ ω(A)⊗ ω(At)⊗ ω(At) ' C.

This isomorphism is dual to the isomorphism

detH2g(A,Z)⊗ detH2g(A
t,Z) −→ (2πi)2gZ.

Then we have

‖α‖2 · ‖β‖2 = (2π)−2g|〈α ∧ ᾱ, eA〉| · |〈β ∧ β̄, eAt〉|

= (2π)−2g|〈α⊗ β · α⊗ β, eA ⊗ eAt〉| = ‖α⊗ β‖2.

In the last step, we use the pairing (eA, eAt) = (2πi)2g. �
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Now we assume that A has a multiplication by an order of a number

field E. Then E is either totally real or CM. Let c be the CM involution on

E (which is trivial if E is totally real). Then for each embedding τ : E −→ C,

we have a projection E ⊗ C −→ C and a τ -eigencomponent space

W (A, τ) := Ω(A)⊗E⊗C,τ C.

The action of E on A induces an action of E on At. More precisely, for any

γ ∈ E corresponding to γ : A→ A, let γ act on At via γt : At → At, where the

latter is just the morphism compatible with the pull-back map γ∗ : Pic0(A)→
Pic0(A). Now we define W (At, τ) analogously. Then there are decompositions

Ω(A) =
⊕

τ :E−→C
W (A, τ), Ω(At) =

⊕
τ :E−→C

W (At, τ).

The above hermitian pairing between Ω(A) and Ω(At) is an orthogonal sum of

hermitian parings between W (A, τ) andW (At, τc) for each complex embedding

τ of E.

2.2. Decomposition of heights. Now we assume that A is defined over a

number field K ⊂ C with a semi-abelian relative identity component of the

Neron model A over OK , that A has actions by the ring of integers OE of a

field E, and that K contains the normal closure of E in Q̄. Then for each

embedding τ : E −→ K, we can define the τ -quotient OK-module

W(A, τ) := Ω(A)⊗OK⊗OE ,τ OK .

The action of E on A induces an action on At as above, so we define W(At, τ)

analogously. Define a line bundle over SpecOK by

N (A, τ) := detW(A, τ)⊗ detW(At, τc).

At each archimedean place v of K, there is a norm ‖ · ‖v on N (A, τ) defined as

above. Thus we have a metrized line bundle N (A, τ) := (N , ‖ · ‖). We define

the τ -part of the Faltings height:

h(A, τ) =
1

2[K : Q]
d̂eg(N (A, τ)).

Theorem 2.2. Assume that A has CM by OE with type Φ ⊂ Hom(E,K).

Then h(A, τ) depends only on the pair (Φ, τ).

Proof. Let B be another abelian variety with CM by OE of type Φ. After

a base change, we can assume that A and B are defined over K and have

everywhere good reduction over OK . We can also assume that there is a dual

pair of OE-isogenies over K:

f : A −→ B, f t : Bt −→ At.



ON THE AVERAGED COLMEZ CONJECTURE 545

These isogenies extend to integral models over OK :

f : A −→ B, f t : Bt −→ At.

They further induce nonzero morphisms of line bundles:

f∗ :W(B, τ) −→W(A, τ), f t∗ :W(At, τc) −→W(Bt, τc).

Thus we have a rational map of metrized line bundles:

ϕ : N (B, τ) −→ N (A, τ).

Computing the norm of this map gives

h(A, τ)− h(B, τ) = − 1

2[K : Q]

∑
p≤∞

∑
σ:K→Q̄p

log ‖ϕσ‖p.

Theorem 2.2 will follow from the identity∏
σ:K→Q̄p

‖ϕσ‖p = 1

for each place p of Q. Notice that this identity is compatible with base changes.

If p =∞, by the above functoriality of the hermitian pairing of invariant forms,

it is easy to see that ϕσ is an isometry.

It remains to study the product when p <∞. We will use the p-divisible

groups A[p∞] and B[p∞] over OK , and analogous space of differential forms.

For a place σ of K over a prime p, and an abelian variety X from A,At,B,Bt,
we have identities

Ω(X )σ = Ω(X [p∞])σ, W(X , τ)σ =W(X [p∞], τ)σ.

Thus we may view ϕσ as a morphism of line bundles induced from p-divisible

groups:

ϕσ : N (B[p∞], τ) −→ N (A[p∞], τ).

Notice that HomOE,p(A[p∞],B[p∞]) is a free module of rank 1 over OE,p.

Thus we have an isomorphism of p-divisible Zp ⊗OE-modules over OK :

ι : A[p∞] −→ B[p∞].

We can use this morphism to identify B[p∞] with A[p∞], and Bt[p∞] with

At[p∞]. In this way, f is an OE,p-endomorphism of A[p∞]. Since the Tate

module of this group at the generic fiber is a free OE,p-module of rank 1, f is

given by multiplication by an element α ∈ OE,p on A[p∞]. Taking the dual,

f t is given by ᾱ ∈ OE,p on At[p∞]. Thus ϕσ is given by the multiplication by

(α/ᾱ)σ on the group N (A[p∞], τ). It follows that∏
σ:K→Q̄p

‖ϕσ‖p =
∏

σ:K→Q̄p

|αστ |
|αστc|

=
∏

σ:K→Q̄p

|αστ |
|αcpστ |

= 1.
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Here cp is an element Gal(Q̄p/Qp) which induces the complex conjugation on

E via every embedding E −→ Q̄p. �

By Theorem 2.2, we can denote h(A, τ) by h(Φ, τ) if A has CM type

(OE ,Φ). In the following, we want to compute the difference:

h(Φ)−
∑
τ∈Φ

h(Φ, τ).

Let EΦ be the reflex field of Φ generated by all Φ-traces and t : E −→ EΦ be

the induced trace map. Then the action E on the EΦ-vector space EΦ ⊗Q E

gives a decomposition into a direct sum of E ⊗ EΦ-subspaces,

EΦ ⊗Q E = ‹EΦ ⊕ ‹EΦc ,

so that the traces of the actions of E are t and tc respectively. In particular,‹EΦ and ‹EΦc are two quotient algebras of EΦ ⊗Q E. Let RΦ denote the image

of OEΦ
⊗ OE in ‹EΦ. Denote by dΦ the relative discriminant of the extension

RΦ/OEΦ
, and denote by dΦ the norm of dΦ.

Theorem 2.3. h(Φ)−
∑
τ∈Φ

h(Φ, τ) = − 1

4[EΦ : Q]
log(dΦdΦc).

Proof. By definition, we have morphisms

φ : Ω(A) −→
⊕
τ∈Φ

W(A, τ), φt : Ω(At) −→
⊕
τ∈Φ

W(At, τc).

Thus we have elements

detφ ∈
(⊗
τ∈Φ

W(A, τ)

)
⊗ det Ω(A)−1,

detφt ∈
(⊗
τ∈Φ

W(At, τc)
)
⊗ det Ω(At)−1.

This gives a section of the line bundle:

` ∈
(⊗
τ∈Φ

N(A, τ)

)
⊗ (ω(A)⊗ ω(At))−1.

With metrics defined on these line bundles, we have an adelic metric on `. Now

we have an identity

h(Φ)−
∑
τ∈Φ

h(Φ, τ) =
1

2[K : Q]

∑
p≤∞

∑
σ:K→Q̄p

log ‖`σ‖p,

where

‖`σ‖p = ‖ detφσ‖p · ‖ detφtσ‖p.
By the above discussion, it is clear that ` has norm 1 at all archimedean places.

So we need only consider p <∞.
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As a Zp-algebra, OE,p is generated by one element x ∈ OE,p, which has a

minimal equation

P (t) =
∏

σ∈Hom(E,K)

(t− xσ) ∈ Zp[t], xσ ∈ K×p .

Write

PΦ(t) =
∏
τ∈Φ

(t− xτ ) ∈ EΦ,p[t], PΦc(t) =
∏
τ∈Φc

(t− xτ ) ∈ EΦ,p[t].

It is clear that RΦ,p = OEΦ,p[t]/PΦ(t). Thus the ideal dΦ,p of OEΦ,p is generated

by ∆(Φ)p =
∏
i<j(x

τi − xτj )2.

To study `σ, let us write Kσ for the completion of σ(K), Oσ for the ring

of p-adic integers in Kσ, and Aσ for the model of A over Oσ. Consider the

Hodge–de Rham filtration

(2.2.1) 0 −→ Ω(Aσ) −→ H1
dR(Aσ) −→ H1(Aσ, OAσ) −→ 0.

With respect to the action of OE , one has that H1
dR(Aσ) is free of rank 1 over

Oσ⊗OE . See [Col93, Lemma II. 1.2]. The other two terms are free Oσ-modules

under which OE acts with type Φ and Φc respectively.

Lemma 2.4. The above exact sequence of Oσ⊗OE-modules is isomorphic

to the following sequence:

(2.2.2) 0 −→ Oσ[t]

PΦ(t)

PΦc (t)−→ Oσ[t]

P (t)
−→ Oσ[t]

PΦc(t)
−→ 0.

Proof. First we want to show that (2.2.2) is an exact sequence. It is clear

that the sequence is exact at the first and the third term, and that it is exact

at the middle term after base change to Kσ. Thus the exactness at the middle

term is equivalent to the following statement: an element α ∈ Oσ[t] divisible by

PΦc(t) in Kσ[t] is divisible by PΦc(t) in Oσ[t]. This follows from the classical

Gauss’s lemma.

It remains to construct an isomorphism from (2.2.1) to (2.2.2). By the

above discussion, we can fix an isomorphism of the Oσ ⊗OE-module

ϕ : H1
dR(Aσ) −→ Oσ[t]

P (t)
.

We want to extend this isomorphism to an isomorphism from the exact se-

quence (2.2.1) to (2.2.2). It is clear that under the actions by OE , all terms

in the exact sequence (2.2.1) are torsion-free with the same CM types as cor-

responding terms in (2.2.2). It follows that ϕ induces an isomorphism from

(2.2.1) to (2.2.2). �

Corollary 2.5. There is an isomorphism of (Oσ ⊗OE)-modules

Ω(A)σ ' Oσ[t]/PΦ(t)

under which x acts as t.
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By this corollary, the evaluation t 7→ xτ gives an isomorphism Ωτ ' Oσ.

Thus we have the following model of φσ:

φσ : Oσ[t]/Φ(t) −→
⊕
τ∈Φ

Oσ, t 7−→ (xτ : τ ∈ Φ).

Notice that Oσ[t]/Φ has the the basis (1, t, . . . , tg−1), and
⊕

ΦOσ has a usual

basis e1, . . . , eg by choosing an ordering (τ1, . . . , τg). We have

(detφσ)(1 ∧ t ∧ t2 ∧ · · · ∧ tg−1) = ± det((tτj )i) · e1 ∧ · · · ∧ eg

=
»

∆(Φ)p · e1 ∧ · · · ∧ eg.

Thus finally, we have shown

‖ detφσ‖p = |∆(Φ)p|1/2.

Put everything together to obtain

h(Φ)−
∑
τ∈Φ

h(Φ, τ) =
1

4[K : Q]

∑
p<∞

∑
σ:K→Q̄p

log |∆(Φ)p ·∆(Φc)p|

=− 1

4[EΦ : Q]
log(dΦ · dΦc). �

By a nearby pair of CM types of E, we mean a pair (Φ1,Φ2) of CM types

of E such that Φ1 ∩ Φ2 has order g − 1. Let τi be the complement of Φ1 ∩ Φ2

in Φi for i = 1, 2. Define

h(Φ1,Φ2) :=
1

2
(h(Φ1, τ1) + h(Φ2, τ2)) .

Corollary 2.6. We have

1

2g

∑
Φ

h(Φ) =
1

2g−1

∑
(Φ1,Φ2)

h(Φ1,Φ2)− 1

4
log dF ,

where the second sum is over nonordered pairs of nearby CM types of E.

Proof. Take the average over all types Φ in Theorem 2.3 to obtain

1

2g

∑
Φ

h(Φ)− 1

2g

∑
Φ,τ

h(Φ, τ) =
1

4[K : Q]

∑
p<∞

∑
σ:K→Q̄p

1

2g

∑
Φ

log |∆(Φ)p ·∆(Φc)p|,

where the second sum is over pairs of CM type Φ ⊂ Hom(E, Q̄) and τ ∈ Φ.

For a fixed σ : K −→ Qp, the last sum on the right-hand side is a sum of

log |x1 − x2|2p over pairs x1, x2 of roots of Φ with x2 6= x1 and x2 6= xc1. Let

x1, x2, . . . , x2g be all roots of P (t) such that xci = xi+g. Then the last sum on

the right-hand side is a multiple of

log

∣∣∣∣∣
∏
i<j(xi − xj)2∏
i≤g(xi − xi+g)2

∣∣∣∣∣ = log

∣∣∣∣∣ dEdE/F

∣∣∣∣∣ = log |dF |2.



ON THE AVERAGED COLMEZ CONJECTURE 549

Since there are 2g−1 such terms, we have

1

[K : Q]

∑
σ:K→Q̄p

1

2g

∑
Φ

log |∆(Φ)p ·∆(Φc)p| = log |dF |p.

Thus we have

1

2g

∑
Φ

h(Φ)− 1

2g

∑
Φ,τ

h(Φ, τ) = −1

4
log |dF |.

Then it is easy to obtain the result. �

2.3. Some special abelian varieties. In this subsection, we fix a nearby

pair (Φ1,Φ2) of CM types of E. We want to compute the height h(Φ1,Φ2) by

a single abelian variety.

Theorem 2.7. Let A,A1, A2 be abelian varieties over a number field K

with endomorphisms by OE such that the following conditions hold :

(1) A1, A2 are CM-abelian varieties of type Φ1 and Φ2 respectively ;

(2) A is OE-isogenous to A1 ×A2.

Then

h(Φ1,Φ2) =
1

2
(h(A1, τ1) + h(A2, τ2)) =

1

2
h(A, τ),

where τi is the complement of Φ1 ∩ Φ2 in Φi, and τ is the place F under τi.

Here in the last equality, A is considered to have a multiplication by OF .

Proof. From an OE-isogeny A1 × A2 −→ A, we obtain an OE-morphism

i : A1 −→ A with a finite kernel. By Theorem 2.2, we may replace A1 by

the image of i to assume that i is an embedding. Now we have an isogeny

A2 −→ A/A1. Similarly, we may assume that A2 = A/A1. Thus we have a

dual pair of exact sequences of OE-abelian varieties:

0 −→ A1 −→ A −→ A2 −→ 0, 0 −→ At2 −→ At −→ At1 −→ 0.

After a base change, we may assume that A1 and A2 have good reductions

over OK . This implies that A also has good reduction over OK . Thus we have

a dual pair of exact sequences of their Neron models:

0 −→ A1 −→ A −→ A2 −→ 0, 0 −→ At2 −→ At −→ At1 −→ 0.

These exact sequences induce a dual pair of exact sequences of their invariant

differentials:

0 −→ Ω(A2) −→ Ω(A) −→ Ω(A1) −→ 0,

0 −→ Ω(At1) −→ Ω(At) −→ Ω(At2) −→ 0.
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Then we have the following exact sequences:

0 −→W(A2, τ2) −→W(A, τ) −→W(A1, τ1) −→ 0,

0 −→W(At1, τ2) −→W(At, τ) −→W(At2, τ1) −→ 0.

Taking determinants, we obtain

detW(A, τ) =W(A1, τ1)⊗W(A2, τ2), detW(At, τ) =W(At1, τ2)⊗W(At1, τ1).

It follows that we have a canonical isomorphism

N (A, τ) ' N (A1, τ1)⊗N (A2, τ2).

It is easy to show that this isomorphism is compatible with the metric defined

by Hodge theory at infinite places. Thus we have

h(A, τ) = h(A1, τ1) + h(A2, τ2). �

3. Shimura curve X ′

In this section, we study a Shimura curve of PEL type following Deligne

[Del71], Carayol [Car86], and Čerednik–Drinfeld [BC91], [Che76]. After re-

viewing the basic facts about the moduli problems, we will study in special

cases of the integral models over the ring of integers of the reflex field, and the

Kodaira–Spencer map over complex numbers.

3.1. Moduli interpretations. Recall that we have a totally real number

field F , a quadratic CM extension E/F , and a totally definite incoherent

quaternion algebra B over A = AF . We will consider one of the following

special cases later:

(1) E = F (
√
λ) with a λ ∈ Q as in Carayol [Car86];

(2) AE is embedded into B over A as in the introduction.

Let (Φ1,Φ2) be a nearby pair of CM types of E. Let τ be the place

of F missing in Φ1 ∩ Φ2, and let B be the quaternion algebra over F with

ramification set Σ(B) \ {τ}. We form a reductive group G′′ := B× ×F× E×,

the quotient of B× × E× by F× via the action a ◦ (b, e) = (ba−1, ae). Let B1

and E1 denote respectively the subgroups of B and E with norm 1. Then G′′

has the same derived subgroup G1 := B1 as G = B× with quotient isomorphic

to F× × E1 via the following map:

ν = (ν1, ν2) : G′′/G1 −→ F× × E1, (b, e) 7−→ (q(b)eē, e/ē).

Here q(b) denotes the reduced norm of b.

Define an algebraic group G′ over Q as a subgroup of G′′ by

G′(Q) =
¶
g ∈ G′′(Q) : ν1(g) ∈ Q×

©
.

Let h′ : C× −→ G′(R) be the complex structure which has a lifting to a

morphism h×hE to (B⊗R)××(E⊗R) as follows: the component to (B⊗R)× =
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G(R) is the same as h for defining quaternion Shimura curve as in Carayol

[Car86] (see also Section 4.1); the component to (E⊗R)×
Φ1∼−→ (C×)g is given by

hE : z 7−→ (1, z−1, . . . , z−1),

where the first component corresponds to the place over τ . The class of a

G′(R)-conjugacy class of h′ is identified with h± = C \ R by

ghg−1 7−→ g(i), g ∈ G′(R).

Thus we have Shimura curves over C indexed by open and compact sub-

groups U ′ of G′(“Q):

X ′U ′(C) = G′(Q)\h± ×G′(“Q)/U ′.

It is not difficult to show that the reflex field of h′ is the same as the reflex

field of Φ1 + Φ2. Let F ′ be the reflex field of h′. Then X ′U ′ is defined over F ′.

The following is a relation between F and F ′:

Proposition 3.1. Let Ψ denote Φ1∩Φ2, and let τ : F −→ C be the place

of F missing in Ψ|F . Then F ′ contains τ(F ).

Proof. By definition, Gal(C/F ′) consists of elements σ ∈ Aut(C) fixing

the weighted set Φ1 + Φ2. It is clear that

Φ1 + Φ2 = 2Ψ + τ1 + τ2,

with τi the complement of Ψ in Φi. Considering multiplicity, such a σ fixes

τ1 + τ2. In other words, it fixes τ(F ). �

Let X ′ be the projective limit of X ′U ′ for all X ′U ′ . Then X ′ is a scheme

over F ′ with a right action by G′(“Q) and a uniformization given by

X ′τ ′(C) = G′(Q)\h± ×G′(“Q).

See Carayol [Car86, §3.1].

Denote by G′′(Q)+ the subgroup of elements (b, e) in G′′(Q) = B××F×E×
such that q(b) ∈ F is totally positive. As in Carayol [Car86, §3.4], the curve

X ′ is equipped with a right action of the subgroup ‹G = G′′(Q)+ · G′(“Q) of

G′′(“Q) as follows: for any elements (g0, g1) ∈ G′′(Q)+ ×G′(“Q), define

[z, h] · (g0g1) = [g−1
0 z, g−1

0 hg0g1].

The subgroup of elements fixing every point on X ′ is given by the center

Z ′′(Q) ' E× of G′′(Q)+.

In the following, we want to describe the moduli problem associated to

X ′U ′ following Carayol [Car86, §2]. For this, we will work on the quaternion

algebra B′ = B ⊗F E over E. Let V ′ := B′ as a left B′-vector space. Fix an

invertible element γ′ ∈ B′ such that γ̄′ = −γ′ where b 7→ b̄ is the involution
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on B′ = B ⊗F E induced from the canonical involution on B and the complex

conjugation on E. Then we define a symplectic form on V ′ by

(3.1.1) ψ′(v, w) = trE/QtrB′/E(γ′vw̄).

Here trB′/E is the reduced trace on B′. This form induces an involution ∗ on

B′ by

(3.1.2) ψ′(`v, w) = ψ′(v, `∗w), `∗ = γ
′−1 ¯̀γ′.

The group G′ can be identified with the group of B′-linear symplectic simili-

tudes of (V ′, ψ′). More precisely, G′ is a subgroup of G′′ which can be identified

with the subgroup B× ·E× of B
′× which acts on V ′ = B′ by right multiplica-

tion.

The composition of h′ and the action of G′(R) on V ′R induce a Hodge

structure on V ′ of weights (−1, 0) and (0,−1). One can choose a γ such that

ψ′ induces a polarization of the Hodge structure (V ′, h′):

ψ′(x, xh′(i)−1) ≥ 0 ∀x ∈ V ′R.

By Deligne [Del71, §6], X ′U ′ represents the following functor FU ′ on the

category of F ′-schemes when U ′ is sufficiently small. For any F ′-scheme S,

FU ′(S) is the set of isomorphism classes of quadruples [A, ι, θ, κ], where

(1) A is an abelian scheme over S up to isogeny;

(2) ι : B′ −→ End0(A/S) is a homomorphism such that the induced action of

E on the OS-module Lie(A/S) has the trace given by

tr(`,Lie(A/S)) = t(trB′/E(`)) ∀` ∈ B′,

where t : E −→ F ′ is the trace map of Φ1 + Φ2;

(3) θ : A −→ At is a polarization whose Rosati involution on End0(A/S)

induces the involution ∗ of B′ over F ;

(4) κ : “V ′ × S −→ H1(A,“Q) is a U ′-orbit of similitudes of B′-skew hermitian

modules.

The group ‹G acts on the inverse system of FU ′ as follows:

[A, ι, θ, κ] · g = [A, ι, ν1(g)θ, κ · g].

3.2. Curves X ′ in case 1. Let p be a prime number, and let ℘′ be a prime

ideal of OE dividing p. We want to study the integral model of X ′U ′ over the

ring O(℘′) := OE [x−1 : x ∈ OE \ ℘′] in the case considered in Carayol [Car86,

§§2 and 5]; i.e., E = F (
√
λ) with λ a negative integer such that p is split in

Q(
√
λ). Fix a square root µ of λ in C which gives a CM type of E by

Φ1 : E = F ⊗Q Q(
√
λ) −→ F ⊗Q C ' Cg,

√
λ 7→ (µ, . . . , µ).

Let Φ2 be a nearby CM type of E which differs from Φ1 at the place over τ

of F . Then the reflex field of Φ1 + Φ2 is E.
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Using the isomorphism

Ep = Fp ⊕ Fp, λ 7−→ (µ,−µ),

we have an identification B′p = Bp×Bp so that the involution ∗ on B′ defined in

(3.1.2) induces an involution on Bp, still denoted by ∗, so that (a, b)∗ = (b∗, a∗).

In this way we may assume that OB′,p = O∗B,p ⊕OB,p. The form ψ′ induces a

perfect (Bp, ∗)-hermitian pairing ψp : Bp ×Bp −→ Qp as follows:

ψ′p((a, b), (c, d)) = ψp(a, d)− ψp(c, b).

The subgroup G′(Qp) of B
′×
p consists of elements (λb, b) with λ ∈ Q×p and

b ∈ B×p . We identify G′(Qp) ' Q×p ×B×p by this description.

Let OB′,p be an order of B′p stable under involution ` 7→ `∗, and let Λ′p be

an OB′,p- lattice of V ′p such that ψ′|Λ′p takes integral value and is perfect. Such

an order OB′,p and a lattice Λ′p can be constructed from a maximal order OB,p
of Bp by the following formulae:

OB′,p := O∗B,p ⊕OB,p, Λ′p := O∨B,p ⊕OB,p,

where

O∨B,p := {x ∈ Bp : ψp(x, y) ∈ Zp ∀y ∈ OB,p} .
The elements of G(Qp) fixing Λ′p form a maximal compact subgroup U ′p(1) :=

Z×p ×O×B,p.
Let ℘ be the prime of OF under ℘′. Write OF,p = O℘ + O℘ as a direct

sum of Zp-algebras. Then we have a decomposition

OE,p = OF,p ⊕OF,p = O℘ ⊕O℘ ⊕O℘ ⊕O℘.

For any OE,p-module M , there is a corresponding decomposition

M = M1℘ +M℘
1 +M2℘ +M℘

2 .

Let Z(p) = Zp ∩ Q be the localization of Z at p. Let OB′,(p) = OB′,p ∩ B′
be the Z(p)-lattice in B′.

For an open compact subgroup U ′p of G′(“Qp), define a moduli problem

F1,U ′p over O℘ as follows: for any O℘-scheme S, F1,U ′p(S) is the set of isomor-

phism classes of quadruple [A, ι, θ, κ], where

(1) A is an abelian scheme over S up to prime-to-p isogeny;

(2) ι : OB′,(p) −→ End(A/S)⊗Z(p) is a homomorphism such that the induced

action of OB′ on the OS-module Lie(A/S) has the following properties:

• Lie(A)2℘ is a special OB,℘-module in the sense that it is locally free

of rank 1 over OK ⊗OS for any unramified quadratic extension K of

O℘ embedded into OB,℘, and

• Lie(A)℘2 = 0;

(3) θ : A −→ At is a polarization whose Rosati involution on End(A/S)⊗Z(p)

induces the involution ∗ of OB′,p;
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(4) κ : “V p×S −→ H1(A,“Qp) a U ′p-orbit of similitudes of “OpB′-skew hermitian

modules.

Proposition 3.2. When U ′p is sufficiently small, the scheme F1,U ′p is

represented by a regular scheme X ′1,U ′p over O(℘′) with the following properties :

(1) for the embedding τ ′ : O(℘′) −→ C, the curve X1,U ′p(C) is isomorphic to

XU ′p(1)·U ′p(C), where U ′p(1) is the maximal open compact subgroup of B′×p
fixing Λ′p;

(2) if ℘ is split in B, then X ′1,U ′p is smooth over O℘;

(3) if ℘ is ramified in B, then X ′1,U ′p is a semistable relative Mumford curve in

the sense that every irreducible component in the special fiber is isomorphic

to P1.

Proof. Let OB′ be an OE-order of B′. Replacing OB′ by OB′∩O∗B′ , we may

assume that OB′ is stable under ∗. Let Λ′ be an OB′-lattice of B′ with localiza-

tion Λ′p. With Λ replaced by mΛ with an m prime to p, we may assume that ψ′

takes integral value on Λ′. Assume now that U ′p fixes Λ̂′p and fixes every point

in Λ′p/nΛ′p for some n ≥ 3 prime to p. It is easy to see that the above functor is

isomorphic to the following functor ‹FU ′p over O℘-schemes: for any O℘-scheme

S, ‹FU ′p(S) is the set of isomorphism classes of quadruple [A, ι, θ, κ] where

(1) A is an abelian scheme over S;

(2) ι : OB′ −→ End(A/S) is a homomorphism such that the induced action of

OB′ on the OS-module Lie(A/S) has the following properties:

• Lie(A)2℘ is a special OB,℘-module in the sense that it is locally free

of rank 1 over OK ⊗OS for any unramified quadratic extension K of

O℘ embedded into OB,℘, and

• Lie(A)℘2 = 0;

(3) θ : A −→ At is a polarization whose Rosati involution on End(A/S) in-

duces the involution ∗ of OB′ ;

(4) κ : Λ̂p×S −→ H1(A, Ẑp) is a U ′p-orbit of similitudes of “OB′-skew hermitian

modules.

Condition (4) implies that the relative dimension of A/S is 2g. Also the

degree of the polarization θ in (3) is d = [Λ′∨,Λ′], where Λ′∨ is the dual lattice

of Λ′. By Mumford theory, there is a fine moduli space M2g,d,n over Z(p) clas-

sifying the the triples of (A, θ, κn) of an abelian variety A of dimension 2g, and

a polarization θ of degree d, and a full level n structure κn. Thus we have a

morphism of functor F ′U ′p −→M2g,d,n. Now we can use the theory of Hilbert

schemes to prove the existence of a scheme X ′0,U ′p −→M2g,d,n to classify other

additional structures on the triple (A, θ, κn) required in the functor ‹F0,U ′p .
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The second statement is proved in Carayol [Car86, §5.4] in the case where

℘ is split in B and proved by Čerednik–Drinfeld (cf. [BC91, Che76]) in case

where ℘ is not split in B. �

Remark 3.3. Our moduli problem here is slightly different from the moduli

problem M2
0,H′ in Carayol [Car86, §5.2.2] in three points:

(1) we do not require that p is prime to the discriminant dB ⊂ OF of B;

(2) we allow A to have prime-to-p isogeny which is more flexible than [Car86];

(3) we do not input a level structure k℘p as in [Car86].

p-divisible groups. Let U ′ = U ′p(1) ·U ′p with U ′p sufficiently small so that

the functor FU ′ is representable by a universal family of abelian varieties:

AU ′ −→ XU ′ .

There is a Barsotti–Tate OB′,p-module AU ′ [p∞] on X ′U ′ for any sufficiently

small compact open subgroup U ′p of G′(“Q)p. With our assumption, this group

has a decomposition

AU ′ [p∞] = AU ′ [p∞]1 +AU ′ [p∞]2

= AU ′ [p∞]1℘ +AU ′ [p∞]℘1 +AU ′ [p∞]2℘ +AU ′ [p∞]℘2 .

We define

H′U ′ := AU ′ [p∞]2.

By part (2) in the definition of F1,U ′p , the ℘-part H′U ′,℘ is a special OB,℘-

module, and the prime-to-℘-part H′℘U ′ is an étale O℘B′-module.

It is clear that the generic fiber H ′U ′ = AU ′ [p
∞]2 of H′U ′ on X ′U ′ is dual to

AU ′ [p
∞]1 by the polarization; thus H ′U ′ determines the structure of AU ′ [p

∞].

Notice that H ′U ′ can be constructed without using abelian varieties:

H ′U ′ =
Ä
p−∞OB,p/OB,p ×X ′

ä
/U ′p(1)× U ′p,

where U ′p(1) ' Z×p × O×B,p acts on p−∞OB,p/OB,p by the right multiplication

of O×B,p (cf. [Car86, §2.5]).

Remark 3.4. Our p-divisible group H ′U ′ relates to the group E′∞ of [Car86,

§3.3] in the case OB,℘ 'M2(O℘) byÇ
1 0

0 0

å
·H ′U ′ [℘∞] = E′∞.

Level structure at p. For any ideal n of OF dividing a power of p, let U ′p(n)

denote the subgroup of B×p of the form Z×p ×(1+nOB,p)
×, and let X ′n,U ′p denote

X ′U ′p(n)×U ′p . Let H ′n,U ′p denote the pull-back of H ′1,U ′p = H ′U ′p(1)U ′p to X ′n,U ′p .
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Using the above description, the map Xn,U ′p −→ X1,U ′p defines a full level

n-structure on H ′n,U ′p , i.e., an isomorphism of OB,p-modules:

κp : n−1OB,p/OB,p −→ H ′n,U ′p [n].

When n is prime to dB, this level structure extends to the minimal model

X ′n,U ′p . More precisely, the scheme X ′n,U ′ represents a functor Fn,U ′p over F1,U ′p

to classify a pair of level structures κp = (κ℘, κ
℘
p ) so that κ℘p is a full level

structure on the étale sheaf H′℘n,U ′p [n], and κ℘ is a Drinfeld basis of H′n,U ′p,℘[n].

Integral models. In the above, we have interpreted X ′n,U ′p at a prime ℘

as the functor Fn,U ′p when n is prime to dB, and U ′p is sufficiently small

(independent of n). In the following, we want to extend such interpretation

to large U ′p. Fix a lattice Λ′ of B′ with a completion Λ′p. For any positive

integer N , let U ′(N) denote the subgroup of G′(“Q) consisting of elements which

stabilize Λ′ and induce the identity action on Λ′/NΛ′.

Proposition 3.5. Assume that U ′ is contained in U ′(N) as a normal

subgroup for some N ≥ 3 and prime to p. Then the functor Fn,U ′p is repre-

sented by the minimal regular model X ′n,U ′p over O℘.

Proof. First let us reduce the proposition to the case U ′ = U ′(N). In

fact if FU(N) is represented by AU ′(N) −→ X ′U ′(N), then Fn,U ′p is represented

by an X ′U ′(N)-scheme Yn,U ′p to classify a pair (κ℘, κ
℘) of a full Drinfeld level

structure κ℘ and an étale level structure κ℘. Thus it is clear that Yn,U ′p is

regular without any exceptional curve. Thus Yn,U ′p = Xn,U ′p .

Assume now U ′ = U(N). Let U ′p0 be a sufficiently small normal subgroup

of U ′(N)p so that F1,U ′p is representable by A1,U ′p0
−→ X1,Up0

. Then we have

an action of U(N) on this family. It suffices to show that U(N) acts freely

on X1,Up0
. Let γ ∈ U ′(N) fix a closed point x in X ′

1,U ′p0
. Let [A, ι, θ, κ] be the

quadruple corresponding to x. Replace A by some abelian variety prime to

p isogenous to A; we may assume that κp induces an isomorphism morphism

between Λ̂′p and “Tp(A). In this way, we have an automorphism ϕ of (A, θ) and

an u ∈ U ′p such that κ · γ · u = κ ◦ T(ϕ). Since γ ∈ G(N), it follows that ϕ

fixes all points in A[N ]. Thus ϕ = 1, and thus γ = u−1 ∈ U ′. �

Corollary 3.6. The integral models X ′n,U ′p , with n prime to dB and U ′p

contained in U ′(N) with N ≥ 3 and prime to p, form a projective system of

regular schemes over O℘. Moreover, the special fiber of each X ′n,U ′p above ℘ is

a smooth curve if ℘ - ndB , and a relative Mumford curve if ℘ | dB .

3.3. Curve X ′ in case 2. In this subsection, we assume that E is embedded

into B over F . Then we can write B = E+Ej, where j ∈ B× such that jx = x̄j
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for all x ∈ E. We can identify B′ = B⊗E with M2(E) by the following maps:

a⊗ b 7→
Ç
ab

āb

å
, j 7→

Ç
1

j2

å
.

It follows that V ′ = B′ is the sum of two copies of a subspace V over E. In

fact, we can take Vi = B with two conjugate left multiplications of E:

V ′
∼−→ V1 ⊕ V2 : b⊗ e 7−→ (eb, ēb).

The operator w = ( 1
1 ) switches two factors by (u, v) 7→ (jv, j−1u). We may

assume that γ′ = γ ⊗ 1 with γ ∈ E ⊗ 1 so that ψ′ is the sum of two copies of

a symplectic form ψ on Vi = B by

ψ(u, v) = trF/QtrB/F (γuv̄), u, v ∈ Vi = B.

The group G′ can be identified with the group of E-linear symplectic simili-

tudes of (V, ψ) by right action on V : (b, e)x = exb.

It follows that when U ′ is sufficiently small, X ′U ′ represents the following

functor F0
U ′ on the category of F ′-schemes. Here F ′ is the flex field as before.

For any F ′-scheme S, F ′0U ′(S) is the set of isomorphism classes of quadruples

[A, ι, θ, κ], where

(1) A is an abelian scheme over S up to isogeny;

(2) ι : E −→ End0(A/S) is a homomorphism such that the induced action of

E on the OS-module Lie(A/S) has the trace given by

tr(`,LieA) = t(`) ∀` ∈ E;

(3) θ : A −→ At is a polarization whose Rosati involution on End0(A/S)

induces the complex conjugation c of E over F ;

(4) κ : “V × S −→ H1(A,“Q) is a U ′-orbit of similitudes of skew hermitian

E-modules.

Let OB be a maximal order of B, and let Λ = OB be viewed as a lattice

in V . Assume that ψ takes integral value on Λ. Then F ′0U ′ is equivalent to the

following functor F ′U ′ . For any F ′-scheme S, F ′U ′(S) is the set of isomorphism

classes of quadruples [A, ι, θ, κ], where

(1) A is an abelian scheme over S;

(2) ι : OE −→ End(A/S) is a homomorphism such that the induced action of

OE on the OS-module Lie(A/S) has the trace given by

tr(`,LieA) = t(`) ∀` ∈ OE ;

(3) θ : A −→ At is a polarization whose Rosati involution on End(A/S) in-

duces the complex conjugation c of OE over OF ;

(4) κ : Λ̂ × S −→ H1(A, Ẑ) is a U ′-orbit of similitudes of skew hermitian

OE-modules.
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CM points. Again assume that E is embedded into B over F . Let T ′

(resp. “T ′) be the subgroup of G′ (resp. G′(“Q)) of elements (b, e) ∈ (E×)2 (resp.

(b, e) ∈ (“E×)2). Then the subscheme X ′T
′

of X ′ of points fixed by T ′ is a

principal homogenous space of “T ′. Moreover, each point P ′ ∈ X ′T ′ represents

an abelian variety AP ′ which is isogenous to a product AΦ1 × AΦ2 of CM

abelian varieties by OE with types Φ1,Φ2. In fact, in terms of above complex

uniformization, X ′T
′

is represented by pairs (z, t) with z the unique point on

h fixed by T , and t ∈ “T . Fix a point P ′ ∈ X ′T ′ .

Hodge–de Rham sequence. In the following, we want to study the Kodaira–

Spencer map. Assume that FU ′ is represented by a universal abelian variety

π : AU ′ −→ X ′U ′ . Then there is a local system HdR
1 (AU ′) of F ⊗OX′

U′
-modules

with an integrable connection ∇ and a Hodge filtration

0 −→ Ω(AtU ′) −→ HdR
1 (AU ′) −→ Ω(AU ′)

∨ −→ 0,

where Ω(AU ′) := π∗(ΩAU′/X
′
U′

) and Ω(AtU ′) := π∗(ΩAt
U′/X

′
U′

). This sequence

of vector bundles on X ′U ′ has an action by F by pulling back of cohomology

classes. Taking a quotient according to the morphism F ⊗ OX′
U′
−→ OX′

U′

given by sending (x⊗ y) 7→ τ(x)y, we have

0 −→ Ω(AtU ′)
τ −→ HdR

1 (AU ′)
τ −→ Ω(AU ′)

τ,∨ −→ 0.

For simplicity, let us introduce the following notation:

MU ′ := HdR
1 (AU ′)

τ , WU ′ := Ω(AU ′)
τ , W t

U ′ := W (AtU ′)
τ .

Then we have an exact sequence of vector bundles:

(3.3.1) 0 −→W t
U ′ −→MU ′ −→W∨U ′ −→ 0.

In terms of the complex uniformization, the bundle (MU ′ ,∇) and its fil-

tration can be described explicitly by representations of G′(Q) as follows. First

define the local system of R-vector spaces on X ′U ′,τ ′(C):

V := G(Q)\Vτ × h± ×G′(“Q)/U ′, Vτ := V ⊗F,τ R.

This system has a Hodge structure given by h±. This definition makes sense

since the stabilizer of G(Q) on every point of h±×G′(“Q)/U ′ is its center Z(Q)

which acts trivially on V . Then we have

MU ′ = V⊗R OX′
U′
, W t

U ′ = H0,−1(V), WU ′ = (MU ′/W
t
U ′)
∨.

Kodaira–Spencer maps at archimedean places. Inserting the Gauss–Manin

connection to the sequence (3.3.1) gives a chain of morphisms:

W t
U ′ −→MU ′

∇−→MU ′ ⊗ ΩX′
U′
−→W∨U ′ ⊗ ΩX′

U′
.
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By Kodaira–Spencer, this induces an isomorphism of E ⊗F OX′-line bundles:

W t
U ′ −→W∨U ′ ⊗ ΩX′

U′
.

Taking determinants, this gives an isomorphism of OX′-line bundles:

KSU ′ : NU ′ −→ Ω⊗2
X′
U′
,

where NU ′ is a line bundle on X ′U ′ defined by

NU ′ := detWU ′ ⊗ detW t
U ′ .

In the remaining part of this subsection, we want to study the Kodaira–

Spencer isomorphism at a fixed place τ ′ of F ′. Here we put a metric on NU ′

by the Hodge theory as in Section 2.1, and we put a metric on ΩX′
U′

by the

following formula in terms of the complex unformization:

|dz| = 2y.

Theorem 3.7. The morphism KSU ′ is isometric.

Proof. The Kodaira–Spencer isomorphism induces a norm on ΩX′
U′

. We

want to give an explicit description of this metric as follows. First, let us give

an explicit formula for the Kodaira–Spencer map. Fix an isomorphism Bτ =

Vτ 'M2(R) and identify h± with the moduli space of Bτ -Hodge structures on

M2(R). It is equivalent to studying the Hodge structures on R2. In a concrete

matter, for each z ∈ h±, take a Hodge structure on L = R2 inducing a complex

structure given by isomorphisms

ϕz : L −→ C, (a, b) 7−→ a+ bz.

Then L0,−1 is given as kerϕz,C, so we have

L0,−1
z = Cez, L−1,0

z = Cez̄, ez := (−z, 1).

Thus the filtration of the de Rham homology has the following form:

0 −→ Cez −→ C2 −→ Cez̄ −→ 0.

Apply the Gauss–Manin connection to obtain

∇(ez) = (−1, 0)dz =
ēz − ez

2iy
dz.

It follows that under the Kodaira–Spencer map,

dz = 2iy
ez
ēz
, |dz| = 2y. �
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p-divisible groups. Assume that U ′ is sufficiently small so that X ′U ′ has a

universal abelian scheme AU ′ representing the functor FU ′ . Then we have a

p-divisible group
H ′U ′ := AU ′ [p

∞].

Notice that this p-divisible group can be constructed directly by the following

formula:
H ′U ′ = (Bp/OB,p ×X ′)/U ′,

where U ′ acts on Bp/Op via its projection to the subgroup O×B,p ×O×F,p O
×
E,p of

G(Qp) and the action

x(b, e) = exb, b ∈ Bp/OB,p, (b, e) ∈ O×B,p ×O
×
E,p.

Integral models. In this subsection we give some results about integral

models of X ′U ′ , AU ′ , and H ′U ′ , which can be proved in Section 5.2. The results

here will not be used in the rest of paper.

Assume that U ′ is sufficiently small as in the previous paragraph. A

natural question is to extend the universal family AU ′ → XU ′ to a flat family

AU ′ → XU ′ over OF ′ . The natural way is to extend the functor FU ′ over

schemes over OF ′ , which we do not know how to define. However, we can

extend this abelian scheme pointwise on XU ′ .

Proposition 3.8. Let L be a finite extension of F ′ and x′ ∈ XU ′(L)

a point which represents an abelian variety Ax′ over L. Then Ax′ has good

reduction Ax′ over OL.

By the works of Grothendieck [GRR72] and Raynaud [Ray74], it is suf-

ficient to extend p-divisible groups locally. We will prove this extension in

Proposition 5.2 using the Breuil–Kisin theory.

One consequence of this integral model is to give a hermitian integral

structure on N ′U ′,x′ at each point x ∈ X ′U ′(L) by N (A, τ). Using method in

Section 5.2, we can construct an integral model X ′U ′ of X ′U ′ over OF ′ and a line

bundle N ′U ′ such that

N (A, τ) = N ′U ′,x′
as integral structures on the Hodge bundle L2

x′ .

4. Shimura curve X

In this section, we study a quaternionic Shimura curves X over a totally

real field. We will first review some basic facts about the integral models

X studied in Carayol [Car86] at split primes, and Čerednik–Drinfeld [BC91],

[Che76] at nonsplit primes. Then we will construct integral models of the curve

X by a comparison with the curve X ′ in the last section. Finally we will study

the integral models of p-divisible groups H using the p-divisible groups H ′|X ′,
and study the local Kodaira–Spencer morphisms induced from the Hodge–de
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Rham filtration and the Gauss–Manin connections, following a deformation

theory of p-divisible groups H of Grothendieck–Messing [Ill85], [Mes72].

4.1. Shimura curve X . Let F be a totally real field and B a totally def-

inite incoherent quaternion algebra over A := AF as before. Then we have a

projective system of Shimura curves XU over F indexed by open and compact

subgroups U of Gf := B×f ; see [Car86], [YZZ13].

For any archimedean place τ of F , the curve XU,τ over C is defined by the

following Shimura data (G, h), where G = ResF/Q(B×) with B a quaternion

algebra over F with the ramification set Σ(B) \ {τ}, and h : C× −→ G(R) a

morphism as follows. Fix an isomorphism

G(R) = GL2(R)× (H×)g−1.

Then h brings z = x+ yi to[Ç
x y

−y x

å−1

, 1, . . . , 1

]
.

The class of G(R)-conjugacy class of h is identified with h± = C \ R by

ghg−1 7−→ g(i), g ∈ G(R).

Fix an isomorphism Bf ' “B which gives an isomorphism Gf ' G(“Q).

Then we have a uniformization

XU,τ (C) = G(Q)\h± ×G(“Q)/U.

This curve is compact if B 6= M2(Q) or equivalently Σ(B) is not a singlet. In

the following discussion we always assume that XU is compact; but the results

hold in general with taking care of cusps.

If F 6= Q, this curve does not parametrize abelian varieties, but its geo-

metric connected component can be embedded into Shimura curves of PEL

types over F̄ . In the following we want to review the work of Carayol [Car86]

on p-divisible groups on some integral model of XU with infinite level.

Let X denote the projective limit of XU . Then X has a right action

by G(“Q) = B×f . The maximal subgroup of B×f which acts trivially on X

is F×, the closure of Z(Q) = F× in B×f . Thus we can write XU = X/U with

U := U/(U ∩F×). When U is sufficiently small, U acts freely on X. If F 6= Q,

then F× 6= F×. This means that the intersection F× ∩U is nontrivial for any

open compact subgroup U of F×.

Fix a maximal order OB of Bf , and consider the projective system of

Shimura curves XU indexed by an open compact subgroup U of O×B . For each

positive integer N , let U(N) denote a compact subgroup of O×B of the form

U(N) := (1 +NOB)×.
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Proposition 4.1. If U is contained in U(N) for some N ≥ 3, then

g(XU ) ≥ 2.

Proof. This can be seen from the above complex uniformization. The

curve XU,τ is a disjoint union of quotients Xg := Γg\h, for g sits in a subset of

G(“Q) representing the double coset quotient G(Q)\G(“Q)/U , and

Γg = B×+ ∩ gUg−1 ⊂ B×+ ∩ (1 +NgOBg
−1)×.

Let Γg denote the quotient Γg/(Γg ∩ F×). We claim that Γg acts freely on h.

This claim will show that Xg has a (free) uniformization by h, and thus its

genus greater than 1.

Let γ ∈ Γg \ F× be an element fixing a point z ∈ h. Then the subfield

E := F (γ) of B generated by γ over F is a quadartic CM extension of F .

It is clear that γ ∈ O×E and γ − 1 ∈ NOE . Write ζ = γ/γ̄. Then ζ has

norm 1 at all places of E. Thus ζ is a root of unity with the property ζ − 1 ∈
NOE ∩ Q(ζ) ⊂ NZ[ζ]. It follows that Z[ζ]/NZ[ζ] = Z/NZ. On the other

hand, we know that Z[ζ]/NZ[ζ] is a free module over Z/NZ of rank equal to

degQ(ζ). It follows that ζ ∈ Q, or ζ = ±1. Since N ≥ 3, ζ = 1. It follows

that γ ∈ (1 +NOF )×. �

p-divisible groups. Let p be a prime, and fix a maximal order OB,p of

Bp containing OE,p. For any ideal n of OF dividing a power of p, let Up(n)

denote (1 + nOB,p)
×. Then we have a Shimura curve Xn := X/Up(n). Write

Up(1) = Up(OF ) = O×B,p for the maximal compact subgroup of B×p , and write

X1 = XUp(1). We define the p-divisible group Hn on Xn by

Hn = [Bp/OB,p ×X] /Up(n),

where Up(n) ⊂ O×B,p acts on Bp/OB,p by right multiplication. This definition

makes sense, since Up(1) acts freely on X. Moreover, for each n, its n-torsion

subgroup H1[n] can be descended to XUp(1)×Up for some open compact sub-

group Up of Bp,×f as follows:

HUp(1)×Up [n] =
î
n−1OB/OB ×X/(Up(n)× Up)

ó
/(Up(1)/Up(n)).

For this we need to find Up so that Up(1)/Up(n) acts freely on X/(Up(n)×Up).
The existence of such a Up can be proved in the same way as [Car86, Cor.

1.4.1.3].

Relation between X0 and X ′0. In the following sections we want to study

integral models of XU and HU by Carayol [Car86] by relating them to X ′U ′ and

H ′U ′ studied in Sections 3.1 and 3.2 for Shimura curves defined using imaginary

quadratic field E = F (
√
λ) with λ ∈ Q such that p is split in Q(

√
λ).

Let X0 be the identity connected component of X over F̄ (which was

denoted as M+ in [Car86, §4.1]), and let ∆ be the stabilizer of X0 in Ḡ =
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G(“Q)/Z(Q). Then ∆ is represented by the subgroup ∆ ⊂ G(“Q) = “B× con-

sisting of elements g with determinants q(g) ∈ F×+ . In other words, we have

∆ = ∆/Z(Q).

Similarly, let X ′0 be the identity connected component of X ′ over F̄ (which

was denoted as in M ′+ in [Car86, §4.1]), and let ∆
′

be the stabilizer of X ′0

in G
′

:= ‹G/Z ′′(Q). Then ∆
′

is represented by the subgroup ∆′ ⊂ G′′(“Q) =“E× ×
F̂×
“B× of elements (e, b) with norm (q(b)eē, e/ē) ∈ F×+ × E×1 in F×+ . In

other words, we have ∆
′
= ∆′/Z ′′(Q).

It is clear that the embedding G −→ G′′ induces an isomorphism ∆ ' ∆
′
.

Here is the first comparison result:

Proposition 4.2. There is an isomorphism X0 ' X ′0 with compatible

actions by ∆ ' ∆
′
.

Proof. Same as Carayol [Car86, Prop. 4.2.2]. �

For the second fundamental result, let p be a prime and let X0
1 and X ′01

be the quotients

X0
1 = X0/O1

B,p, X ′01 = X ′0/O1
B,p,

where O1
B,p is the subgroup of OB,p with norm 1. Then X0

1 and X ′01 are

defined over a maximal extension of F which is unramified over every place

of F dividing p. Let ℘ be a prime of OF over a prime p, and let F ur
℘ be the

completion of the maximal unramified extension of F℘. Then X0
1 (resp. X ′01 )

is the connected component of the limit X1 (resp. X ′1) of X1,Up (X ′1,U ′p) over

F ur
℘ . Let ∆0 denote the subgroup ∆ consisting of elements whose components

over p are in O×B,p. Define ∆′0 in the same way. Then X0
1 and X ′01 have actions

respectively by ∆0/O
1
B,p ⊂ ∆0/O

1
B,p.

Define the p-divisible groups on these schemes by

H|X0
1 =

Ä
Bp/OB,p ×X0

ä
/O1

B,p, H ′|X ′01 =
Ä
Bp/OB,p ×X ′0

ä
/O1

B,p.

These are also defined over F ur
℘ with natural actions by ∆0/O

1
B,p and ∆′0/O

1
B,p

respectively. Our second comparison result is as follows.

Proposition 4.3. There is an isomorphism of the p-divisible groups H|X0
1

and H ′|X ′01 with compatible action by ∆0/O
1
B,p ⊂ ∆0/O

1
B,p.

Proof. Same as Carayol [Car86, Prop. 4.4.3]. �

Here is a consequence of the above two comparison results:

Proposition 4.4. For any ideal n of OF dividing a power of p and prime

to dB , and any sufficiently small open compact Up ⊂ G(“Q) depending on n,

there is an open compact U ′p ⊂ G′(“Q) such that X0
n,Up is isomorphic to X ′0n,U ′p

over K .



564 XINYI YUAN and SHOU-WU ZHANG

Proof. Same as Carayol [Car86, Prop. 4.5.5]. �

4.2. Integral models and arithmetic Hodge bundles. The goal of this sub-

section is to introduce integral models XU of XU for any open compact sub-

group U =
∏
v Uv of B×f which is maximal at every prime ramified in B. Then

we introduce an arithmetic Hodge bundle LU on XU .

Integral models of Shimura curves. By Proposition 4.1, XU has a unique

minimal regular (projective and flat) model XU over OF when U ⊂ U(N)

for some N ≥ 3. We want to check if these integral models form a projective

system. More precisely, for any U1 ⊂ U2 ⊂ U(N), there is a morphism XU1 −→
XU2 and thus a rational map XU1 −→ XU2 . We want to check if this rational

map is actually a morphism. For this, we first check the regularity over a prime

℘ of OF dividing a prime p. Let K = F ur
℘ be the completion of the maximal

unramified extension of F℘. We will consider the open subgroups of O×B of the

form U = Up(n)Up, where Up(n) = (1 + nOB,℘)× for some ideal n dividing a

power of p, and Up is an open compact subgroup of O×Bp . Let Xn,Up denote

XUp(n)×Up .

Theorem 4.5. Consider the system of regular surfaces Xn,Up⊗O℘ indexed

by pairs (n, Up) with the following properties :

(1) n is prime to dB;

(2) Up ⊂ Up(N) := (1 +NOB℘)× for some N ≥ 3 and prime to p.

Then these surfaces form a projective system of curves over O℘. Moreover,

if ℘ - n, then each such curve Xn,Up ⊗ O℘ is smooth if ℘ is split in B and a

relative Mumford curve if ℘ is ramified in B.

Proof. By Proposition 4.4, Theorem 3.2 and Corollary 3.6, there is a sys-

tem of regular models X ′0n,U ′p of Xn,Up ' X ′n,U ′p (for Up sufficiently small over

O℘ depending on n) which is smooth if ℘ - n is split in B and a relative Mum-

ford curve if ℘ | dB. Under the condition of the theorem, these models must

be X1,Up by the uniqueness of the smooth models of curves with genus ≥ 2.

It remains to enlarge this system to all cases of Up satisfying the condition of

the theorem.

Let Xn be the projective limit of Xn,Up , which has generic fiber XK/Up(n).

Then Xn has an action by B× := (O×B,p · B
p,×
f )/O×(℘). For any open compact

subgroup Up, we can construct a normal integral model XU,K of XU,K by the

categorical quotient

XU,K = Xn/U = XU0,K/(U/U0),

where U0 is a sufficiently small normal subgroup of U . This model satisfies the

condition of the theorem if U := U/[(U ∩ F×)O×B,p] has a free action on Xn.
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Thus it suffices to show that U(N) acts freely on Xn for any N ≥ 3 prime

to p. Furthermore, we need only check this freeness on the identity connected

component X 0
1 ; i.e., ∆(N)0 := U(N) ∩∆0 acts freely on X 0

1 .

By our construction, the model X 0
1 is isomorphic to the identity connected

component X ′01 of the limit X ′0 of X ′1,U ′p constructed in Theorem 3.2 with

compatible action by ∆0 = ∆
′
0. Thus it suffices to show that ∆′0(N) :=

∆
′
0 ∩ ‹G(N) acts freely on X ′01 , where ‹G0(N) is the subgroup of elements of

G0 which fix OB′ and induce identity on OB′/NOB′ . Let δ ∈ ∆
′
0(N) fix a

point x on X 0
1 . We want to show that δ ∈ U ′p · F×. Let [A, ι, θ, κ] be the

object represented by x. There is an element ϕ ∈ End(A)⊗ Z(p), u ∈ U ′p such

that κ ◦ δ ◦ u = T(ϕ) ◦ κ. Replace δ by δ ◦ u; we may simply assume that

u = 1. The effect on the polarization gives an identity q(δ) = ϕ ◦ ϕ∗ ∈ F×+ . It

follows that q(δ) also fixes x and that δ/δ̄ fixes x too. Since δ/δ̄ ∈ U ′(N), by

Proposition 3.5, δ = δ̄. Thus δ ∈ O×F . �

Now we extend the definition of the integral model XU to any open com-

pact subgroup U =
∏
v Uv of B×f which is maximal at every prime ramified

in B. Let p be a prime number coprime to 2dB such that Up is maximal. De-

note U ′ = UpUp(p) with Up(p) = (1 + pOB,p)
×. Define XU to be the quotient

scheme

XU := XU ′
¿
U = XU ′

¿
(U/U ′) = XU ′

¿
(U/U

′
).

Here U := U/(U ∩F×) as before, so the stabilizer of U/U
′
at the generic point

of XU ′ is trivial. Note that U/U ′ is a finite group, so U/U
′

is also a finite

group. Then XU is a normal integral scheme, projective and flat over OF , and

the quotient map π : XU ′ → XU is finite of degree [U : U
′
]. By Theorem 4.5,

the definition does not depend on the choice of p. It recovers the minimal

regular model if U ⊂ U(N) for some N ≥ 3.

By construction as above, the morphism π : XU ′ −→ XU is flat at all

codimension one points but not necessarily at all points. Thus π∗OXU′ is not

necessarily a locally free sheaf over XU . But we can still define the norm map

Nπ : π∗OXU′ −→ OXU by

Nπ(f) :=
∏

u∈U/U ′
u∗f.

Using this norm map, for any line bundle L on XU ′ , we can define the

norm bundle Nπ(L) on XU as the line bundle locally generated by the symbols

Nπ(`), where ` are sections of π∗L, with relations for local sections f of π∗OXU′ :

Nπ(f`) = Nπ(f) ·Nπ(`).

It is clear that if M is a line bundle on XU , then we have

Nπ(π∗M) = deg π · M.



566 XINYI YUAN and SHOU-WU ZHANG

Corollary 4.6. Consider the system {XU}U of surfaces with U =
∏
v Uv

maximal at every prime ramified in B. Then this system is a projective system

of curves over OF extending the system {XU}U . Moreover, the following are

true:

(1) If U ⊂ U(N) for some N ≥ 3, then XU is smooth at any prime ℘ - dB such

that U℘ is maximal, and it is a relative Mumford curve at any prime ℘ | dB .

(2) Let XU be any element in the system. Let H be any finite extension of F

which is unramified above every finite prime v of F such that Bv is ramified

or Uv is not maximal. Then the base change XU ⊗OF OH is Q-factorial

in the sense that any Weil divisor of XU ⊗OF OH has a positive multiple

which is Cartier.

Proof. We already know (1) from Theorem 4.5. For (2), to illustrate the

idea, we first treat the case H = F . Let π : XU ′ → XU be a quotient map

in the construction of XU , where U ′ = UpUp(p) and Up(p) = (1 + pOB,p)
× are

as above. Let C be a prime divisor of XU . The schematic preimage π−1(C)

in XU ′ is locally defined by a single equation f ∈ OXU′ since XU ′ is regular.

Then the divisor (deg π) · C is locally defined by the image of f under the

norm map Nπ : π∗OXU′ → OXU . This proves the case H = K. In general, the

map XU ′ ⊗ OH → XU ⊗ OH is still a quotient map by the same finite group

U/U ′. By (1), XU ′ ⊗ OH [1/p] is regular. Then the same proof shows that

XU ⊗ OH [1/p] is Q-factorial. Take a different prime p′, and apply the same

argument. Then XU ⊗OH [1/p′] is also Q-factorial. This implies the result for

XU ⊗OH . �

For any ideal n of OF , let U(n) denote the compact group U(n) = (1 +

nOB)×. Let X (n) denote the integral model XU(n) over OF if n is coprime to dB.

In particular, we have an integral model X (1) := X (OF ) which is a normal,

projective, and flat scheme over OF , and every X (n) is the normalization of

X (1) in the projection X(n) −→ X(1).

In the modular curve case, X (1) ' P1
Z is regular. In general, it is not clear

if X (1) is regular. For the purpose of intersection theory, the property of being

Q-factorial is sufficient.

Arithmetic Hodge bundle. For any scheme S, denote the groupoid of line

bundles on S by Pic(S), and denote the group of isomorphism classes of line

bundles on S by Pic(S). Denote by Pic(S)Q the groupoid of Q-line bundles

on S. The objects of Pic(S)Q are of the form aL with a ∈ Q and L ∈ Pic(S).

The homomorphism of two such objects is defined to be

Isom(aL, bM) := lim−→
m

Isom(L⊗am,M⊗bm),
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where m runs through positive integers such that am and bm are both inte-

gers. The group of isomorphism classes of such Q-line bundles is isomorphic

to Pic(S)Q := Pic(S)⊗Q.

Similarly, we define the groupoid ‘Pic(S)Q of hermitian Q-line bundles on

an arithmetic variety S. We will usually write the tensor products of (hermit-

ian) line bundles additively.

In [YZZ13, §3.1.3], for each open compact subgroup U of Bf , the curve

XU has a Hodge bundle LU ∈ Pic(XU )Q. It is the Q-line bundle for holomor-

phic modular forms of weight two, and it is the canonical bundle modified by

ramification points. It is determined by the following two conditions:

(1) the system {LU}U is compatible with pull-back maps;

(2) if Ū acts freely on X, then LU = ωXU/F .

For general U , we have the following explicit formula:

LU = ωXU/F +
∑

Q∈XU (F )

(1− e−1
Q ) O(Q),

where the operation in Pic(XU )Q is written additively, and eQ is the ramifica-

tion index of the map X −→ XU .

Next, we want to extend the Hodge bundle LU to a hermitian Q-line

bundle LU over XU for U =
∏
v Uv maximal at every prime ramified in B.

Note that our definition is different from that of [YZZ13, §7.2.1] including the

normalization of the hermitian metric.

Theorem 4.7. There is a unique system {LU}U of hermitian Q-line bun-

dles LU on the arithmetic surface XU extending the system {LU}U , where

U =
∏
v Uv is maximal at every prime ramified in B, so that the following

conditions hold :

(1) The system {LU}U is invariant under the pull-back maps among differ-

ent U .

(2) If U is sufficiently small in the sense that U ⊂ U(N) for some N ≥ 3,

then there is a canonical isomorphism for any ℘ such that U℘ is maximal

LU ⊗O℘ = ωXU⊗O℘/O℘ .

Here the right-hand side denotes the relative dualizing sheaf.

(3) At an archimedean place, the metric is given by |dz| = 2y under the com-

plex uniformization.

Proof. The third property is simply a definition of metrics. So we only

need to consider the first two properties. To construct the system, by pull-

back, it suffices to construct the Q-line bundle LU for the maximal compact

subgroup U = O×Bf of B×f . Let π : XU ′ → XU be a quotient map in the

construction of XU . Then U ′ = UpUp(p) with Up(p) = (1 + pOB,p)
× for some
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prime p coprime to 2dB. Let ωp = ωXU′ [1/p]/OF [1/p] be the relative dualizing

sheaf of XU ′ away from p. Here we write XU ′ [1/p] = XU ′ ⊗ OF [1/p]. Then

the bundle Nπ(ωp) is a line bundle on XU [1/p] with restriction deg πLU on the

generic fiber XU . Then 1
deg(π)Nπ(ωp) already defines the restriction of LU to

XU [1/p]. To get the whole LU , take a different prime p′, and glue 1
deg(π)Nπ(ωp)

and 1
deg(π′)Nπ′(ω

p′) along XU [1/pp′]. This finishes the proof. �

For any ideal n of OF coprime to dB, we have written X (n) for XU(n). Here

U(n) = (1+nOB)×. Write (L(n),L(n),L(n)) for (LU(n),LU(n),LU(n)) similarly.

Remark 4.8. For an alternative approach of this paper, instead of defining

XU as the quotient scheme XU ′
¿

(U/U
′
), one may define it as the quotient stackî

XU ′
¿

(U/U
′
)
ó
. It is a regular Deligne–Mumford stack, proper and flat over OF .

The quotient scheme is just the coarse scheme of the quotient stack. Then one

may define LU to be the relative dualizing sheaf of the quotient stack.

4.3. Integral models of p-divisible groups. Let ℘ be a prime of OF divid-

ing p, let O℘ be the ring of integers in F℘, and let H = H℘ ×H℘ be the de-

composition according to the decomposition OF,p = O℘ ⊕O℘F,p of Zp-algebras.

When B℘ ' M2(F℘) is split, Carayol [Car86, §1.4.4] has defined a p-divisible

group E∞|M0 related to our H|X1 by the formula

M0/Up(1) = X1, E∞ =

Ç
1 0

0 0

å
H℘|M0 .

The treatment of all facts in Carayol [Car86] can be copied to H|X1 with some

little modifications. In the following, we want to use his method to study

integral model for H|X1.

Let K = F ur
℘ be the completion of the maximal unramified extension

of F℘, and let OK be its ring of integers.

Theorem 4.9. Let n be an ideal of OF prime to dB , and let Xn be the

projective limit of XUp(n)Up ⊗OK as Up varies. Then Hn has an integral model

Hn over Xn with the following properties :

(1) H℘ is étale over X1, and H℘ is a special formal OB,℘-module in the sense

that Lie(H℘) is a locally free sheaf over OX1,℘ ⊗ OK0 of rank 1 where K0

is an unramified quadratic extension of F℘ embedded into B℘;

(2) the formal completion “X1 along its special fiber over k̄ (k = OF /℘) is the

universal deformation space of Hk̄;

(3) for any n prime to dB and with decomposition n = ℘n · n′ with n′ prime

to ℘, the morphism Xn −→ X1 classifies pairs of a full level n′-structure

on on H℘1 and a Drinfeld level ℘n-structure on H1,℘.
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Proof. It suffices to prove the corresponding statement for the connected

component X0
n of Xn. By Proposition 4.4, H|X0

n is isomorphic to H ′|X ′0n .

Thus all of the conclusions of Theorem 4.9 follow from Theorem 3.5. See also

Carayol [Car86, §§6.4, 6.6, 7.2, 7.4, 9.5] and Čerednik–Drinfeld [BC91]. �

Let us define M℘ = D(H℘) to be the covariant Deudonné crystal [Ill85],

[Mes72], and W℘ = Lie(H)∨, Wt
℘ = Lie(Ht)∨, where Ht℘ is the Cartier dual of

H℘. Then we have an exact sequence

0 −→Wt
℘ −→M℘ −→W∨℘ −→ 0.

Applying the Gauss–Manin connection ∇ on M℘, we obtain the following

composition of morphisms:

Wt
℘ −→M℘

∇−→M℘ ⊗ ωX℘ −→W∨℘ ⊗ ωX℘ .

Taking determinants, we obtain a morphism

detWt
℘ −→ detW∨℘ ⊗ ω⊗2

X℘ .

In other words, we obtain a Kodaira–Spencer morphism of line bundles:

KS℘ : N℘ −→ ω⊗2
X℘ , N℘ := detWt

℘ ⊗ detW∨℘ .

Theorem 4.10. Let dB,℘ be the divisor on SpecOur
℘ corresponding to B℘.

Then KS℘ extends to an isomorphism of line bundles on X℘:

KS℘ : N℘
∼−→ ω⊗2

X℘(−dB,℘).

Proof. Let ( “X℘, “H℘) be the formal completion of the pair (X℘,H℘) along

its special fiber over the residue field k̄ := k(℘) of Our
℘ . Then ( “X℘, “H℘) is the

universal deformation of (X℘,k̄,H℘,k̄). By deformation theory of p-divisible

groups [Ill85] and [Mes72], we have an isomorphism

ω∨X℘
∼−→ HomOB℘ (Wt

℘,W∨℘ )

induced from the above composition of morphisms:

Wt
℘ −→M℘

∇−→M℘ ⊗ ωX℘ −→W∨℘ ⊗ ωX℘ .

Taking determinants, we obtain an embedding

ω−2
X℘ ⊂ N

∨
℘ .

If ℘ is split in B, then we can write OB,℘ = M2(O℘). Using idempotents

e1 = ( 1 0
0 0 ) and e2 = ( 0 0

0 1 ), we can write Ω(H0) (resp. Ω(Ht℘)) as a direct

sum of components Ω(H℘)i := eiΩ(H℘) (resp. Ω(Ht℘)i = eiΩ(Ht℘)). These two

components are isomorphic by the operator ( 0 1
1 0 ). Thus we have

Ω∨X℘ ' HomOv(Ω(Ht℘)i,Ω(H℘)i∨) = Ω(Ht℘)i∨ ⊗ Ω(H℘)i∨.
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This shows, in particular, that

ω2
X℘ = N℘.

Now assume that ℘ is nonsplit in F . Then M℘ is a free module over

OB,℘ ⊗ OX℘ . Let K be a unramified extension of F℘ in B℘. Then we have a

decomposition

OB,℘ = OK +OKj,

where j a uniformizer of OB,℘ such that jx = x̄j for all x ∈ OK . Making a

base change to OK , then we have a decomposition of Ω(H℘) to the direct sum

of the eigenspaces of OK according to the embedding OK −→ OXU,℘ and its

conjugate:

Ω(Ht℘) = L1 ⊕ L2, (resp. Ω(H℘)∨ = N1 ⊕N2).

The action of j has grade Z/2Z with j2 = π a uniformizer of O℘. Let j1 and

j2 be the restrictions of j on two components. Then j1 ◦ j2 = π. It follows

that for each point on X℘, exactly one of j1 or j2 is an isomorphism. Thus we

can assign a type i ∈ {1, 2} to Ω(H℘) if ji is an isomorphism. Notice that the

types of Ω(H℘) and Ω(Ht℘)∨ are opposite.

We claim that the condition j1 ◦ j2 = π implies the following identity:

πω2
X℘ = N℘.

To prove this claim, without loss of generality, we assume that L2 = jL1 and

N1 = jN2. Now an element α ∈ ΩX℘ corresponds a pair of morphism of line

bundles

φi : Li −→ Ni
compatible with action of j. It is clear that this morphism determines and is

determinated by φ1, and that φ2 = jφ1j
−1 always has image included into πN2.

Conversely, for any morphism φ2 divided by π, the above equation determines

a φ1. Our claim follows from this description of φ1 ⊗ φ2. �

Define a system of Q-line bundles N (n) on X (n) by

N (n) = L(n)⊗2(−dB).

Then Theorem 4.10 shows that for any prime ℘ of OF , this bundle has the

pulling back N℘ on X/(O×B,℘).

5. Shimura curve X ′′

In this section, we study the relation between Shimura curves X and X ′

in case 2: AE is embedded into B. For this, we need to consider another

Shimura curve X ′′ which includes both X and X ′. We will first study some

basic properties of X ′′, especially the p-divisible groups parametrized by X ′′,

and the construction of X ′′ using X and a Shimura variety Y of dimension 0.
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Then we construct an integral model X ′′ of X ′′ using the integral model X ,

and a p-divisible group H′′x′′ for each p-adic point x′′ of X ′′ using Breuil–Kisin’s

theory [Kis06], [Kis10]. We show that the deformations of the p-divisible group

H′′x′′ are given by deformations of Hx. Finally, we use all of the results in this

section to complete the proof of Theorem 1.6.

5.1. Shimura curve X ′′. Let (Φ1,Φ2) be a nearby pair of CM types of E,

and let F ′ be the reflex field of Φ1 + Φ2. In the following, we want to define a

Shimura curves X ′′ defined over F ′, depending on (Φ1,Φ2), and with an action

by the group

G′′ := B× ×A× A×E .
The stabilizer subgroup Z ′′ is generated by (1, x) with x ∈ E×, the closure of

E× in “E×. The scheme X ′′ includes X ′ as a union of connected components

via the embedding G′ −→ G′′.
At an archimedean place τ ′ of F ′ over a place τ of F , we define a reductive

group over Q as follows:

G′′ = B× ×F× E×,
where as before B is a quaternion algebra over F with ramification set Σ(B) \
{τ}. Then we have an embedding G′ −→ G′′. The Hodge structure h′ : C×
−→ G′(R) induces the Hodge structure h′′ : C× −→ G′′(R). The congugacy

class of h′′ is h±. It is easy to show that the reflex field of (G′′, h′′) is still F ′.

Thus for each open compact subgroup U of G′′(“Q) ' G′′f , we have a Shimura

curve X ′′U over F ′ with uniformization at τ ′ given by

X ′′U,τ ′(C) = G′′(Q)\h± ×G′′(“Q)/U.

Let X ′′ be the projective limit of X ′′U . Then X ′′ has a uniformization as follows:

X ′′τ ′(C) = G′′(Q)\h± ×G′′(“Q)/Z ′′.

The embedding G′ −→ G′′ defines an embedding i : X ′ −→ X ′′.

In the following, we want to study the relation between X and X ′′. First

let us start with a Shimura variety Y of dimension 0 defined by the group E×

with the Hodge structure on hΨ : C× −→ (E⊗R)× given by the composition of

C× −→ (C×)g, z 7−→ (1, z−1, . . . , z−1)

with the inverse of the isomorphism Φ1 : (E ⊗ R)× −→ (C×)g. Here the

component 1 corresponds to the unique element of Φ1 \ Φ2. Note that hΨ is

determined by Ψ = Φ1 ∩ Φ2. For any open compact subgroup J of “E×, we

have a Shimura variety YJ of dimension zero defined over F ′ (which includes

the reflex field of hΨ). This set has an action by “E×. In fact the set of its geo-

metric points is a homogenous space over E×\“E×/J . Let Y be the projective

limit of YJ . Then the set of geometric points of Y is a principal homogenous

space over E×\“E×, where E× is the closure of E× in “E×.
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At the archimedean place τ ′ of F ′ over a place τ of F as above, the product

(XU ×F YJ)τ ′ = XU,τ ×C YJ,τ ′

of Shimura varieties over C is defined by the reductive group B××E× and the

product of Hodge structures (G× E×, h× hΨ). We have a natural homomor-

phism of reductive groups:

B× × E× −→ G = B× ×F× E×,

which is compatible with the Hodge structures. Thus we have a surjective

morphism of Shimura curves over F ′:

f : XU ×F YJ −→ X ′′U ′′ ,

where U ′′ is the image of U × J . Taking limits, we obtain a morphism of

schemes over F ′:

X ×F Y −→ X ′′.

This morphism is compatible with the actions of Gf , “E×, and G′′f and induces

an isomorphism

f : (X ×F Y )/∆(“F×)
∼−→ X ′′,

where ∆ is the twisted diagonal map

∆ : “F× −→ “B× × “E×, z 7−→ (z, z−1).

The isomorphism property of f can be checked at the place τ ′ using uniformiza-

tions of X,Y,X ′′.

p-divisible groups. Fix a prime number p and a maximal order OB,p con-

taining OE,p. We want to study certain p-divisible groups parametrized by

X ′′U ′′ and YJ . Write Λp = OB,p as a left OB,p-module. For any idea n of OF
dividing a power of p, denote by U ′′p (n) the closed subgroup of G′′p fixing Λp
and acting trivially on Λp/nΛp. Write U ′′p (1) = U ′′p (OF ). Then we define

X ′′1 = X ′′/U ′′p (1), Y1 = Y/O×E,p.

With our previous definition of X1, we have an isomorphism

f1 : (X1 ×F Y1)/∆(“F×)
∼−→ X ′′1 .

Define the p-divisible groups on Y1 and X ′′1 by making quotients

H ′′ =
[
Bp/OB,p ×X ′′

]
/U ′′p (1), I = (Ep/OE,p × Y )/O×E,p.

Here U ′′p (1) (resp. O×E,p) acts on Bp/OB,p (resp. Ep/OE,p) on the right-hand

side as follows:

x · (b, e) = exb, x ∈ Bp/OB,p, (b, e) ∈ U ′′(1),(
resp. y · e = ey, y ∈ Ep/OE,p, e ∈ O×E,p

)
.
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These definitions make sense since U ′′(1) and O×E,p act freely on X ′′ and Y

respectively. These groups can be defined on finite levels as in the case of H

over X1. We sketch the case of H ′′ as follows. The group H ′′ is a direct limit of

finite subgroups H ′′[pn]. Each H ′′[pn] descends to a quotient X ′′/(U ′′(1)×U ′′p)
for some compact open subgroup U ′′p of (G′′)p by the formula

H ′′U ′′p (1)×Up [p
n] =

î
p−nΛp/Λp ×X ′′/(U ′′p (pn)× U ′′p)

ó
/(U ′′p (1)× U ′′p).

For this we need to find U ′′p so that U ′′p (1)/U ′′p (pn) acts freely on X ′′/(U ′′p (pn)

× U ′′p). This can be done by copying the argument in the proof of [Car86,

Cor. 1.4.1.3]. It is clear that H ′ = H ′′|X′ . The groups H, H ′′ and I are related

as follows.

Proposition 5.1. Let π1 and π2 be the projections of X1 ×F Y1 to the

two factors, and let T(H ′′), T(H), T(I) be the Tate modules of the correspond-

ing p-divisible groups. There is a canonical isomorphism of étale sheaves on

X1 ×F Y1:
f∗1 T(H ′′)

∼−→ π∗1T(H)⊗OE,p π
∗
2T(I).

Proof. By definitions, the Tate modules of these groups can be written as

follows:

T(H) = (OBp ×X)/U(1), T(H ′′) = (OBp ×X ′′)/U ′′(1),

T(I) = (OE,p × Y )/O×E,p. �

5.2. Integral models. Let ℘′ be a finite place of F ′ dividing p, and let ℘ be

a place of F under ℘′. Let F ′ur
℘′ be the completion of the maximal unramified

extension of F ′℘′ , which is a finite extension of F ur
℘ . For simplicity, we introduce

the following notation: K := F ur
℘ and K ′ := F ′ur

℘′ .

Consider the following schemes:

X1,℘ = X1 ⊗F K, X ′′1,℘′ = X ′1 ⊗F ′ K ′, Y1,℘′ := Y1 ⊗F ′ K ′.
Then we have an isomorphism

f℘′ : X1,℘ ×K Y1,℘′/∆(“F×)
∼−→ X ′′1,℘′ .

By construction, all geometric points of Y1 are defined over K ′. Thus Y1,℘′ is a

principal homogenous space of E×\“E×/O×E,p. In this way, the integral model

X1,℘ of X1,℘ and the model SpecOK′ of SpecK ′ induce an integral model X ′′1,℘′
for X ′′1,℘′ . This in turn induces an integral model X ′1,℘′ by the embedding

X ′1,℘′ −→ X ′′1,℘′ .

Notice that if ℘ does not divide dB, then X1,℘ is smooth over OK . It

follows that both X ′1,℘′ and X ′′1,℘′ are smooth over OK′ . If ℘ divides dB, then

X1,℘ is a regular and stable Mumford curve. It follows that X ′℘′ and X ′′℘′ are

both stable Mumford curves. Notice that they are not regular if ℘ is ramified

in F ′.
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Recall that we have defined a line bundle N1,℘ on X℘ extending ω2
X1,℘

.

This bundle induces bundles N ′1,℘′ and N ′′1,℘′ on X ′1,℘′ and X ′′1,℘′ respectively.

Now we would like to extend the groups I,H ′, H ′′ to integral models

I,H′,H′′ point-by-point using Breuil–Kisin’s classification of p-divisible group

[Kis06]: any crystalline representation of GK′ := Gal(K̄ ′/K ′) of Hodge–Tate

weights 0 or −1 arises from a p-divisible group over OK′ .

Proposition 5.2. Let L be a finite extension of K ′. For each point

y ∈ Y (L) (resp. x′ ∈ X ′(L), resp. x′′ ∈ X ′′(L)), the group Iy (resp. H ′x′ , H
′′
x′′)

over L extends uniquely to a p-divisible group over OL.

Proof. For I, recall that the action of GK′ on T(I) ' OE,p is given by

the reciprocity map for the type (E,Φ1 ∩ Φ2). Fix an isomorphism C ' Q̄p.

Then T(I) ×Qp Q̄p is a direct sum of one-dimensional spaces Vσ indexed by

σ ∈ Hom(E, Q̄p) = Hom(E,C). The action of GK′ on Vσ is trivial if σ /∈ Ψ;

otherwise it is given by the character

GK′ −→ Gab
F ′
℘′
' O×F ′

℘′
⊂ Q̄×p .

Thus T(I) is crystalline of weight −1 or 0.

For H ′′x′′ , let (x, y) be an L-point of X1×Y1 with image x′′ ∈ X ′′1 (L). Con-

sider the p-adic representation T(H ′′x′′). By Proposition 5.1, it is the product

T(Hx) × T(Iz). Both T(Iy) and T(Hx) are cryslalline since both Hx and Iy
extend to a p-divisible group over a ring of integers by Proposition 4.9 and the

above discussion. It follows that T(H ′′x′′) is crystalline. It also has weights 0

and −1. Thus by Breuil–Kisin [Kis06], H ′′x′′ extends to a p-divisible group H′′x′′
over OL.

The statement for H ′ is clear as it is the restriction of H ′′ on X ′′. �

Deformation theory. Let L be a finite extension of K ′, and let (x, y) be an

L-point of X1×Y1 with image x′′ ∈ X ′′1 (L). We have covariant Dieudonné mod-

ules D(H′′x′′) over OK , D(Hx) over OK′ , D(Iy) over OK′ and their filtrations:

0 −→ Ω(H′′tx′′) −→ D(H′′x′′) −→ Ω(H′′x′′)∨ −→ 0,

0 −→ Ω(Htx) −→ D(Hx) −→ Ω(Hx)∨ −→ 0,

0 −→ Ω(Ity) −→ D(Iy) −→ Ω(Iy)∨ −→ 0.

Proposition 5.3. There is a canonical isomorphism of filtered OE,p-

modules :

D(H′′x′′) ' D(Hx)⊗OE,p⊗OK D(Iy).

Proof. By Kisin [Kis10, Th. 1.4.2] for p 6= 2 and by Kim [Kim12], Lau

[Lau14], and Liu [Liu13] for p = 2, for a p-divisible group G over OL with L

a finite extension of the fraction field of W (k̄) (k := O℘/℘), the module D(G)
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with its filtration depends canonically on its Tate module T(G) as an object in

the category Repcriso
GL

of integral crystalline representations of GL := Gal(L̄/L).

More precisely, let S = W (k̄)[[u]] be the ring of power series over W (k̄) with

a surjective map S −→ OL by sending u to a uniformizer πL of L; then

D(G) = OL ⊗S ϕ
∗MT(G),

where M is a functor from Repcriso
GL

to certain category ModϕS of modules over

noncommutative ring S[ϕ], defined in [Kis10, Th. 1.2.1].

Applying this to divisible groups H′′x′′ , (Hx)OK′ , Iy over OL = OK′ , and

taking care of the isomorphism in the above proposition, we obtain a canonical

isomorphism of filtered OE,p-modules:

D(H′′x′′) ' D(Hx)⊗OE,p⊗OK D(Iy). �

Now we consider these p-divisible groups with actions by OF,p. Their

cohomology groups are modules over of the OK-algebra OF,p ⊗Zp OK . The

quotient OF,p −→ O℘ induces a quotient τ : OF,p ⊗Zp OK −→ OK . Use this τ

to take quotients of cohomology groups to obtain

0 −→W(H′′tx′′) −→M(H′′x′′) −→W(H′′x′′)∨ −→ 0,

0 −→W(Htx) −→M(Hx) −→W(Hx)∨ −→ 0,

0 −→W(Ity) −→M(Iy) −→W(Iy)∨ −→ 0.

Notice that W(Iy) = 0 and W(Ity) is a free module of rank 1 over OE,K :=

OE,℘ ⊗O℘ OK . Thus we have

Proposition 5.4. There are canonical isomorphisms

W(H′′tx′′) ' W(Htx)⊗OE,K W(Ity), W(H′′x′′) ' W(Hx)⊗OE,K W(Ity)∨.

We want to apply these facts to compute the universal deformation space

of H′′x′′ as p-divisible OE,p-module:

HomOE,p(Ω(Htx′′),Ω(Hx′′)∨) = HomOE,p(W(Htx′′),W(H′′x′′)∨)

= HomOE,℘(W(Htx),W(Hx)∨)⊗OK OK′

= HomOB,℘(W(Htx),W(Hx)∨)⊗OK′

= ω−1
X1,℘,x

⊗OK′

= ω−1
X ′′

1,℘′ ,x
′′ .

Here
(1) the first identity follows from a consideration of types under actions byOE,p,

(2) the second identity follows from the above proposition,

(3) the third identity follows from a precise computation,

(4) the fourth identity follows from the Kodaira–Spencer map on H, and

(5) the last one follows from the definition.
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This shows that the formal completion “X ′′1,x′′ of X ′′1,℘′ at x′′ is indeed the uni-

versal deformation of the p-divisible group H′′x′′ .
Taking determinants of the above isomorphism, we obtain the following

identity of two OK-lattices of the module ω−2
X′′

1,℘′ ,x
′′ :

Corollary 5.5. N ′′x′′ = detW(H′′x′′)⊗ detW(H′′tx′′).

5.3. Proof of Theorem 1.6. Let y ∈ Y be any fixed point. Then we have

an embedding X −→ X ′′. Recall that P ∈ XT (Q) is a fixed CM point by E.

Let P ′′ ∈ X ′′ be the image of (P, y). Then P ′′ is a point fixed by T ′′(Q).

Lemma 5.6. There is an embedding X ′ −→ X ′′ such that P ′′ is the image

of a P ′ in X ′ fixed by T ′(Q).

Proof. We fix one archimedean place τ ′ of F ′ over a place τ of F . This

gives a nearby quaternion algebra B = B(τ). We may assume that P is

represented by (z0, 1) ∈ h × G(“Q) with z0 ∈ h a fixed point by E× in the

following uniformization:

Xτ (C) ' G(Q)\h± ×G(“Q)/Z(Q).

Similarly, we may assume that y is represented by 1 ∈ “E×. Then

Yτ ′(C) = E×\“E×.
In this way, the image P ′′ of (P, y) in X ′′τ (C) is represented by (z0, 1) ∈ h ×
G′′(“Q):

X ′′τ ′ = G′′(Q)\h± ×G′′(“Q)/Z ′′(Q).

Thus P ′′ is the image of a point P ′ ∈ X ′T ′ . �

Recall that we have fixed a maximal order OB of Bf including O
Ê

, which

defines maximal compact subgroups U,U ′, U ′′ of G, G′ and G′′, curves XU ,

X ′U ′ , X
′′
U ′′ , and morphisms

XU −→ X ′′U ′′ , X ′U ′ −→ X ′′U ′′ .

The images of P, P ′, P ′′ define CM points PU , P
′
U ′ , P

′′
U ′′ , which are compatible

with the above morphisms.

By Corollary 2.6, it suffices to show that for each nearby pair (Φ1,Φ2) of

CM types of E,

g · h(Φ1,Φ2) =
1

2
hLU (PU )− 1

4
log(dB).

By Theorem 4.10, the right-hand side is 1
4hNU (PU ).

Let A0 be the corresponding abelian variety represented by P ′U ′ over some

finite extension K of F ′(P ′U ′). Then A0 is isogenous to the products of CM
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abelian varieties A1, A2 of CM types Φ1,Φ2. By Theorem 2.7,

h(Φ1,Φ2) =
1

2
h(A0, τ).

Thus we have reduced Theorem 1.6 to the identity

h(A0, τ) =
1

2g
hNU (PU ).

Since 1
ghNU (PU )= 1

[F (PU ):Q] d̂eg(NU |P̄U ), it suffices to prove the following result:

Proposition 5.7. There is an isomorphism of hermitian line bundles

over OK :

N (A0, τ) ' N PU ⊗OF (PU )
OK .

Proof. Notice that both sides have the restriction L⊗2
P ′′
U′′
⊗K on the generic

fiber of X ′. Thus two sides define two integral and hermitian structures on

L⊗2
P ′′ ⊗K. Also by Theorem 3.7, they have the same metric. Thus it suffices

to show that they define the same lattice at each finite place of K. Let v be a

finite place of K with residue characteristic p. Let Our
K,v be the completion of

the maximal unramified extension of OK,v. Then

Ω(A0)⊗Our
K,v ' Ω(A0[p∞])⊗Our

K,v.

By Corollary 5.5,

N (A0, τ)⊗Our
K,v = NP ′′

U′′
⊗Our

K,v = NPU ⊗O
ur
K,v.

This completes the proof of the proposition. �

Part 2. Quaternionic heights

The goal of this part is to prove Theorem 1.7. We use notation from our

previous work [YZZ13]. We will make a specific explanation when we come to

a setting different from that of [YZZ13].

6. Pseudo-theta series

In this section, we introduce the notion of pseudo-theta series, an impor-

tant concept used in the following sections. We will first recall the usual theta

series defined by Schwartz functions in [YZZ13]. Then we define a pseudo-theta

series, which looks like a theta series but is not automorphic. We will show

that it can be approximated by the difference of two theta series associated to

it. Finally, we will show that if a sum of pseudo-theta series is automorphic,

then these pseudo-theta series can be actually replaced by the difference of the

theta series associated to them, and we get some extra identities between these

theta series.
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6.1. Schwartz functions and theta series. We first recall the notion of

Schwartz functions and theta series in [YZZ13], which is a variant of the stan-

dard notions.

Let F be a totally real number field and A the adele ring of F . Let (V, q)

be a positive definite quadratic space over R. Let

S(V (A)× A×) = ⊗vS(V (Fv)× F×v )

be the space of Schwartz functions introduced in [YZZ13, §4.1]. We recall it

in the following.

If v is non-archimedean, then S(V (Fv)×F×v ) is the usual space of locally

constant and compactly supported functions.

If v is archimedean, then Fv = R, and then S(V (Fv) × R×) consists of

functions on V (Fv)× R× of the form

φv(x, u) = (P1(uq(x)) + sgn(u)P2(uq(x))) e−2π|u|q(x)

with polynomials Pi of complex coefficients. Here sgn(u) = u/|u| denotes the

sign of u ∈ R×. The standard Schwartz function φv ∈ S(V (Fv) × R×) is the

Gaussian function
φv(x, u) = e−2πuq(x) 1R+(u).

Here 1R+ is the characteristic function of the set R+ of positive real numbers.

In this paper, φ is always the standard Gaussian function at archimedean

places.

Assume that dimV is even in the following, which is always satisfied in

our application. In [YZZ13, §2.1.3], the Weil representation on the usual space

S(V (A)) is extended to an action of the similitude groups on S(V (A) × A×).

This gives a representation of GL2(A) × GO(V (A)) on S(V (A) × A×). This

extension is originally from Waldspurger [Wal85].

Take any φ ∈ S(V (A)× A×). There is the partial theta series

θ(g, u, φ) =
∑
x∈V

r(g)φ(x, u), g ∈ GL2(A), u ∈ A×.

If u ∈ F×, it is invariant under the left action of SL2(F ) on g. To get an

automorphic form on GL2(A), we need a summation on u.

There is an open compact subgroup K ⊂ GO(Af ) such that φf is invariant

under the action of K by the Weil representation. Denote µK = F×∩K. Then

µK is a subgroup of the unit group O×F and thus is a finitely generated abelian

group. Define a theta function by

θ(g, φ)K =
∑

u∈µ2
K\F×

θ(g, u, φ) =
∑

u∈µ2
K\F×

∑
x∈V

r(g)φ(x, u), g ∈ GL2(A).

The summation is well defined and absolutely convergent. The result θ(g, φ)K
is an automorphic form on g ∈ GL2(A), and θ(g, r(h)φ)K is an automorphic

form on (g, h) ∈ GL2(A) × GO(V (A)). Furthermore, if φ∞ is standard, then

θ(g, φ)K is holomorphic of parallel weight 1
2 dimV .
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By choosing fundamental domains, we can rewrite the sum as

θ(g, φ)K =
∑

u∈µ2
K\F×

r(g)φ(0, u) + wK
∑

(x,u)∈µK\((V−{0})×F×)

r(g)φ(x, u).

Here the natural action of µK on V × F× is just α ◦ (x, u) 7→ (αx, α−2u). The

summation over u is well defined since φ(αx, α−2u) = r(α−1)φ(x, u) = φ(x, u)

for any α ∈ µK . We have the factor wK = |{1,−1}∩K| ∈ {1, 2}. See [YZZ13,

§2.1.3] for more details.

6.2. Pseudo-theta series. Now we introduce pseudo-theta series. Let V

be a positive definite quadratic space over F , and let V0 ⊂ V1 ⊂ V be two

subspaces over F with induced quadratic forms. All spaces are assumed to be

even-dimensional. We allow V0 to be the empty set ∅, which is not a subspace

in the usual sense. Let S be a finite set of non-archimedean places of F ,

and let φS ∈ S(V (AS) × AS×) be a Schwartz function with standard infinite

components.

A pseudo-theta series is a series of the form

A
(S)
φ′ (g) =

∑
u∈µ2\F×

∑
x∈V1−V0

φ′S(g, x, u)rV (g)φS(x, u), g ∈ GL2(A).

We explain the notation as follows:

• The Weil representation rV is not attached to the space V1 but to the

space V ;

• φ′S(g, x, u) =
∏
v∈S φ

′
v(gv, xv, uv) as local product;

• For each v ∈ S, the function

φ′v : GL2(Fv)× (V1 − V0)(Fv)× F×v → C

is locally constant, and it is smooth in the sense that there is an open

compact subgroup Kv of GL2(Fv) such that

φ′v(gκ, x, u) = φ′v(g, x, u) ∀(g, x, u) ∈ GL2(Fv)× (V1−V0)(Fv)×F×v , κ ∈ Kv.

• µ is a subgroup of O×F with finite index such that φS(x, u) and φ′S(g, x, u)

are invariant under the action α : (x, u) 7→ (αx, α−2u) for any α ∈ µ. This

condition makes the summation well defined.

• For any v ∈ S and g ∈ GL2(Fv), the support of φ′v(g, ·, ·) in (V1−V0)(Fv)×
F×v is bounded. This condition makes the sum convergent.

The pseudo-theta series A(S) sitting on the triple V0 ⊂ V1 ⊂ V is called

nondegenerate if V1 = V and is called nontruncated if V0 is empty. It is called

nonsingular if for each v ∈ S, the local component φ′v(1, x, u) can be extended

to a Schwartz function on V1(Fv)× F×v .

Assume that A
(S)
φ′ is nonsingular. Then there are two usual theta series

associated to A(S). View φ′v(1, ·, ·) as a Schwartz function on V1(Fv)× F×v for
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each v ∈ S, and view φw as a Schwartz function on V1(Fw) × F×w for each

w /∈ S. Then the theta series

θA,1(g) =
∑

u∈µ2\F×

∑
x∈V1

rV1
(g)φ′S(1, x, u)rV1

(g)φS(x, u)

is called the outer theta series associated to A
(S)
φ′ . Note that the Weil represen-

tation rV1 is based on the quadratic space V1. Replacing the space V1 by V0,

we get the theta series

θA,0(g) =
∑

u∈µ2\F×

∑
x∈V0

rV0
(g)φ′S(1, x, u)rV0

(g)φS(x, u).

We call it the inner theta series associated to A
(S)
φ′ . We set θA,0 = 0 if V0 is

empty.

We introduce these theta series because the difference between θA,1 and

θA,0 somehow approximates A(S). It will be discussed as follows.

Approximation by induced theta series. We start with two invariants of

GL2(A) defined in terms of the Iwasawa decomposition. For g ∈ GL2(A), we

define δ(g) =
∏
v δv(gv) and ρ∞(g) =

∏
v|∞ ρv(gv). Here the local invariants

are defined as follows.

Denote by P the algebraic group over Q of upper triangular matrices. For

any place v, the character δv : P (Fv)→ R× defined by

δv :

Ç
a b

d

å
7−→

∣∣∣∣ad
∣∣∣∣ 12

extends to a function δv : GL2(Fv)→ R× by the Iwasawa decomposition.

If v is a real place, we define a function ρv : GL2(Fv)→ C by ρv(g) = eiθ if

g =

Ç
a b

d

åÇ
cos θ sin θ

− sin θ cos θ

å
is in the form of the Iwasawa decomposition, where we require a > 0 so that

the decomposition is unique.

Resume the notation from the last subsection. Now we consider the rela-

tion between the nonsingular pseudo-theta series A
(S)
φ′ and its associated theta

series θA,1 and θA,0.

We first consider the nontruncated case. Then V0 is empty, and

A
(S)
φ′ (g) =

∑
u∈µ2\F×

∑
x∈V1

φ′S(g, x, u)rV (g)φS(x, u).

Obviously we have A
(S)
φ′ (1) = θA,1(1), but of course we can get more.

A simple computation using the Iwasawa decomposition asserts that, if φw
is the standard Schwartz function on V (Fw) × F×w , then for any g ∈ GL2(Fv)
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and (x, u) ∈ V1(Fw)× F×w ,

rV (g)φw(x, u) =

δw(g)
d−d1

2 rV1
(g)φw(x, u) if w -∞,

ρw(g)
d−d1

2 δw(g)
d−d1

2 rV1
(g)φw(x, u) if w | ∞.

Here we write d = dimV and d1 = dimV1.

This result implies that

A
(S)
φ′ (g) = ρ∞(g)

d−d1
2 δ(g)

d−d1
2 θA,1(g) ∀ g ∈ 1S′GL2(AS

′
).

Here S′ is a finite set consisting non-archimedean places v such that v ∈ S or

φv is not standard.

Now we consider a general nonsingular pseudo-theta series

A
(S)
φ′ (g) =

∑
u∈µ2\F×

∑
x∈V1−V0

φ′S(g, x, u)rV (g)φS(x, u).

We have to compare it with the difference between the same theta series

θA,1(g) =
∑

u∈µ2\F×

∑
x∈V1

rV1
(g)φ′S(1, x, u)rV1

(g)φS(x, u)

and the nontruncated pseudo-theta series

B
(S)
φ′ (g) =

∑
u∈µ2\F×

∑
x∈V0

rV1
(g)φ′S(1, x, u)rV1

(g)φS(x, u).

Note that B(S) is just a part of θA,1, where summation is taken over the whole

V0 but the representation is taken over V1. By what we discussed above, we

should compare B(S) with the associated theta series

θB,0(g) =
∑

u∈µ2\F×

∑
x∈V0

rV0
(g)φ′S(1, x, u)rV0

(g)φS(x, u).

But this is exactly the same as θA,0. By the same argument, there exists a

finite set S′ of non-archimedean places such that

A
(S)
φ′ (g) = ρ∞(g)

d−d1
2 δ(g)

d−d1
2 (θA,1(g)−B(S)

φ′ (g)) ∀ g ∈ 1S′GL2(AS
′
),

B
(S)
φ′ (g) = ρ∞(g)

d1−d0
2 δ(g)

d1−d0
2 θA,0(g) ∀ g ∈ 1S′GL2(AS

′
).

Our conclusion is that for any g ∈ 1S′GL2(AS′),

(6.2.1) A
(S)
φ′ (g) = ρ∞(g)

d−d1
2 δ(g)

d−d1
2 θA,1(g)− ρ∞(g)

d−d0
2 δ(g)

d−d0
2 θA,0(g).

By the smoothness condition of pseudo-theta series, there exists an open com-

pact subgroup KS′ of GL2(FS′) such that the above identity is actually true

for any g ∈ KS′GL2(AS′).
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6.3. Key lemma. Now we can state our main result for this subject.

Lemma 6.1. Let {A(S`)
` }` be a finite set of nonsingular pseudo-theta series

sitting on vector spaces V`,0 ⊂ V`,1 ⊂ V`. Assume that the sum
∑
`A

(S`)
` (g) is

automorphic for g ∈ GL2(A). Then

(1)
∑
`

A
(S`)
` =

∑
`∈L0,1

θA`,1;

(2)
∑
`∈Lk,1

θA`,1 −
∑
`∈Lk,0

θA`,0 = 0 for all k ∈ Z>0.

Here Lk,1 is the set of ` such that dimV` − dimV`,1 = k, and Lk,0 is the set of

` such that dimV` − dimV`,0 = k. In particular, L0,1 is the set of ` such that

V`,1 = V`.

Proof. Denote f =
∑
`A

(S`)
` . In the equation f −∑`A

(S`)
` = 0, replace

each A
(S`)
` by its corresponding combinations of theta series on the right-hand

side of equation (6.2.1). After recollecting these theta series according to the

powers of ρ∞(g)δ(g), we end up with an equation of the following form:

n∑
k=0

ρ∞(g)kδ(g)kfk(g) = 0 ∀g ∈ KSGL2(AS).(6.3.1)

Here S is some finite set of non-archimedean places, KS is an open com-

pact subgroup of GL2(FS), and f0, f1, . . . , fn are some automorphic forms

on GL2(A) coming from combinations of f and theta series. In particular,

f0 = f −∑`∈L0,1
θA`,1. We will show that f0 = f1 = · · · = fn = 0 identically,

which is exactly the result of (1) and (2).

It suffices to show fk(g0) = 0 for all g0 ∈ GL2(ASf ), since GL2(F )GL2(ASf )

is dense in GL2(A). Fix g0 ∈ GL2(ASf ). For any g ∈ GL2(F ) ∩KSGL2(AS),

we have
n∑
k=0

ρ∞(gg0)kδ(gg0)kfk(gg0) = 0,

and thus
n∑
k=0

ρ∞(g)kδ(gg0)kfk(g0) = 0

by the modularity.

These are viewed as linear equations of f0(g0), f1(g0), . . . , fn(g0). To show

that the solutions are zero, we only need to find many g to get plenty of

independent equations. We first find some special g to simplify the equation.

The intersection KSGL2(AS) ∩ g0GL2(“OF )g−1
0 is still an open compact

subgroup of GL2(A). For any g ∈ GL2(F ) ∩ (KSGL2(AS) ∩ g0GL2(“OF )g−1
0 ),

we have

gg0 = g0 · g−1
0 gg0 ∈ g0GL2(“OF ).
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Then δf (gg0) = δf (g0), and our linear equation simplifies as

n∑
k=0

ρ∞(g)kδ∞(g)kδf (g0)kfk(g0) = 0.

To be more explicit, consider gN =
(

1
N 1

)
for any N ∈ Z. Then we know

that gN ∈ GL2(F ) ∩ (KSGL2(AS) ∩ g0GL2(“OF )g−1
0 ) when N is divisible by

enough integers. Explicit computation gives

ρ∞(gN )δ∞(gN ) = (1 + iN)−n,

where n = [F : Q]. Then we have

n∑
k=0

(1 + iN)−nkδf (g0)kfk(g0) = 0.

Any n + 1 different values of N imply that all fk(g0) = 0 by Van der Mond’s

determinant. �

7. Derivative series

The goal of this section is to study the holomorphic projection of the

derivative of some mixed Eisenstein–theta series. We will first review the

construction of the series PrI ′(0, g, φ) treated in [YZZ13, Ch. 6], the ana-

lytic ingredient for proving Theorem 1.7. Then we compute the series under

some assumptions of Schwartz functions. The final formula contains a term

L′(0, η)/L(0, η), which is a main ingredient of our main theorem in the paper.

In [YZZ13], this constant terms was killed under some stronger assumptions

of Schwartz functions.

7.1. Derivative series. Let F be a totally real field, and let E be a totally

imaginary quadratic extension of F . Denote by A the ring of adeles of F . Let

B be a totally definite incoherent quaternion algebra over A = AF with an

embedding EA → B of A-algebras.

Fix a Schwartz function φ ∈ S(B × A×) invariant under U × U for some

open compact subgroup U of B×f . Start with the mixed theta-Eisenstein series

I(s, g, φ)U =
∑

u∈µ2
U\F×

∑
γ∈P 1(F )\SL2(F )

δ(γg)s
∑
x1∈E

r(γg)φ(x1, u).

It was first introduced in [YZZ13, §5.1.1].

The derivative series PrI ′(0, g, φ) is the holomorphic projection of the

derivative I ′(0, g, φ) of I(s, g, φ). It has a decomposition into local components

as follows.
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Eisenstein series of weight one. To illustrate the idea, we first assume

that φ = φ1 ⊗ φ2 as in [YZZ13, §6.1]. Then

I(s, g, φ)U =
∑

u∈µ2
U\F×

θ(g, u, φ1) E(s, g, u, φ2),

where for any g∈GL2(A), the theta series and the Eisenstein series are given by

θ(g, u, φ1) =
∑
x1∈E

r(g)φ1(x1, u),

E(s, g, u, φ2) =
∑

γ∈P 1(F )\SL2(F )

δ(γg)sr(γg)φ2(0, u).

The Eisenstein series has the standard Fourier expansion

E(s, g, u, φ2) = δ(g)sr(g)φ2(0, u) +
∑
a∈F

Wa(s, g, u, φ2).

Here the Whittaker function for a ∈ F, u ∈ F× is given by

Wa(s, g, u, φ2) =

∫
A
δ(wn(b)g)s r(wn(b)g)φ2(0, u)ψ(−ab)db.

We also have the constant term

E0(s, g, u, φ2) = δ(g)sr(g)φ2(0, u) +W0(s, g, u).

For each place v of F , we also introduce the local Whittaker function for

a ∈ Fv, u ∈ F×v by

Wa,v(s, g, u, φ2,v) =

∫
Fv

δ(wn(b)g)s r(wn(b)g)φ2,v(0, u)ψv(−ab)db.

For a ∈ F×v , denote

W ◦a,v(s, g, u) = γ−1
u,vWa,v(s, g, u),

where γu,v is the Weil index of (Evjv, uq). Normalize the intertwining part by

W ◦0,v(s, g, u, φ2,v) = γ−1
u,v

L(s+ 1, ηv)

L(s, ηv)
|Dv|−

1
2 |dv|−

1
2W0,v(s, g, u, φ2,v).

In the following we will suppress the dependence of the series on φ, φ1, φ2

and U .

Decomposition of nonconstant part. It is easy to have a decomposition

E′(0, g, u, φ2) = E′0(0, g, u, φ2)−
∑
v

∑
a∈F×

Wa,v
′(0, g, u, φ2)W v

a (0, g, u, φ2),

according to where the derivative is taken in the Fourier expansion. This

gives a decomposition of I ′(0, g). Eventually, [YZZ13, §6.1.2] converts the
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decomposition into

I ′(0, g) = −
∑

v nonsplit

I ′(0, g)(v) +
∑

u∈µ2
U\F×

θ(g, u)E′0(0, g, u),

where for any place v nonsplit in E,

I ′(0, g, φ)(v) = 2

∫
CU

K(v)
φ (g, (t, t))dt.

Here
CU = E×\E×(Af )/E×(Af ) ∩ U

is a finite group and the integration is just the usual average over this finite

group. The series

K(v)
φ (g, (t1, t2)) =

∑
u∈µ2

U\F×

∑
y∈B(v)−E

kr(t1,t2)φv(g, y, u)r(g, (t1, t2))φv(y, u)

is a pseudo-theta series. In the case φv = φ1,v ⊗ φ2,v under the orthogonal

decomposition, it is given by

kφv(g, y, u) =
L(1, ηv)

vol(E1
v)
r(g)φ1,v(y1, u)W ◦uq(y2),v

′(0, g, u, φ2,v), y2 6= 0.

Here kφv(g, y, u) is linear in φv, and the result extends by linearity to general

φ (which are not of the form φ1 ⊗ φ2).

In [YZZ13], Assumption 5.3 was put to kill the minor term E′0(0, g, u). In

this paper, however, we will not impose this assumption, since E′0(0, g, u) gives

terms matching the Faltings height from the arithmetic side. In the following,

we give a little computation about it.

Decomposition of the constant term. Now we treat the derivative of the

constant term

E0(s, g, u, φ2) = δ(g)sr(g)φ2(0, u) +W0(s, g, u).

It was actually computed in the proof of [YZZ13, Prop. 6.7] (before applying

the degeneracy assumption).

In fact, by definition,

W0(s, g, u) = − L(s, η)

L(s+ 1, η)
W ◦0 (s, g, u)

∏
v

|Dv|
1
2 |dv|

1
2

= − L(s, η)/L(0, η)

L(s+ 1, η)/L(1, η)

∏
v

W ◦0,v(s, g, u).

We take the normalization W ◦0,v(s, g, u) because

W ◦0,v(0, g, u) = r(g)φ2,v(0, u)

for all v, and
W ◦0,v(s, g, u) = δv(g)−sr(g)φ2,v(0, u)

for almost all v. See [YZZ13, Prop. 6.1].
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So the expression gives the analytic continuation of W0(s, g, u). Taking

derivative from it, we obtain

W ′0(0, g, u) = − d

ds
|s=0

Ç
log

L(s, η)

L(s+ 1, η)

å
r(g)φ2(0, u)

−
∑
v

W ◦0,v
′(0, g, u)r(g)φv2(0, u).

In summary, we have

I ′(0, g, φ) = −
∑

v nonsplit

I ′(0, g, φ)(v)− c0

∑
u∈µ2

U\F×

∑
y∈E

r(g)φ(y, u)

−
∑
v

∑
u∈µ2

U\F×

∑
y∈E

cφv(g, y, u) r(g)φv(y, u)

+ 2 log δ(g)
∑

u∈µ2
K\F×,y∈E

r(g)φ(y, u),

where we have the constant

c0 =
d

ds
|s=0

Ç
log

L(s, η)

L(s+ 1, η)

å
,

and

cφv(g, y, u) = rE(g)φ1,v(y, u)W ◦0,v
′(0, g, u) + log δ(gv)r(g)φv(y, u).

The term

I ′(0, g, φ)(v) = 2

∫
CU

K(v)
φ (g, (t, t))dt

is as before. Both sums over v have only finitely many nonzero terms.

By the functional equation

L(1− s, η) = |dE/dF |s−
1
2L(s, η),

we obtain

c0 = 2
L′(0, η)

L(0, η)
+ log |dE/dF |.

Note that here L(s, η) is the completed L-function with gamma factors.

The decomposition holds for φ = φ1 ⊗ φ2, but it extends to any φ ∈
S(B×A×) by linearity. In other words, kφv(g, y, u) and cφv(g, y, u) are defined

by linearity. We will see that we can actually have coherent integral expressions

for them.
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Holomorphic projection. As in [YZZ13, §§6.4, 6.5], we are going to con-

sider the holomorphic projection of I ′(0, g, φ).

Denote by A(GL2(A), ω) the space of automorphic forms of central char-

acter ω and by A(2)
0 (GL2(A), ω) the subspace of holomorphic cusp forms of

parallel weight two. The holomorphic projection operator

Pr : A(GL2(A), ω) −→ A(2)
0 (GL2(A), ω)

is just the orthogonal projection with respect to the Petersson inner product.

Consider the action of the center A× on I ′(0, g, φ) by

z : I ′(0, g, φ) 7−→ I ′(0, zg, φ).

The action factorizes though the finite group F×\A×f /U ∩ A×f . It follows that

we can decompose I ′(0, g, φ) into a finite sum according to characters of this

finite group. In other words,

I ′(0, g, φ) =
∑
ω

I ′(0, g, φ)ω, I ′(0, g, φ)ω ∈ A(GL2(A), ω),

where the direct sum is over the finite group of characters ω : F×\A×f /U ∩A
×
f

→ C×. Hence, the holomorphic projection PrI ′(0, g, φ) is still a well-defined

holomorphic cusp form of parallel weight two in g ∈ GL2(A).

We can apply the formula in [YZZ13, Prop. 6.12] to compute PrI ′(0, g, φ).

Note that the formula takes the same form in all central characters, and thus

can be applied directly to PrI ′(0, g, φ), if it satisfies the growth condition of

the proposition. For the growth condition, we make the following assumption.

Assumption 7.1. Fix a set S2 consisting of two non-archimedean places

of F which are split in E and unramified over Q. Assume that for each v ∈ S2,

the open compact subgroup Uv is maximal, and

r(g)φv(0, u) = 0 ∀ g ∈ GL2(Fv), u ∈ F×v .

This assumption is exactly [YZZ13, Assumption 5.4]. Under the assump-

tion, PrI ′(0, g, φ) satisfies the growth condition of the formula for holomorphic

projection. The proof is similar to that in [YZZ13, Prop. 6.14]. Alternatively,

one can expression I ′(0, g, φ) as a finite sum of I ′(0, g, χ, φ) for different χ.

Finally, we have the following conclusion:
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Theorem 7.2. Assume that φ is standard at infinity and that Assump-

tion 7.1 holds. Then

PrI ′(0, g, φ)U = −
∑
v|∞

I ′(0, g, φ)(v)−
∑

v-∞ nonsplit

I ′(0, g, φ)(v)

− c1

∑
u∈µ2

U\F×

∑
y∈E×

r(g)φ(y, u)

−
∑
v-∞

∑
u∈µ2

U\F×

∑
y∈E×

cφv(g, y, u) r(g)φv(y, u)

+
∑

u∈µ2
U\F×

∑
y∈E×

(2 log δf (gf ) + log |uq(y)|f ) r(g)φ(y, u).

The right-hand side is explained in the following :

(1) For any archimedean v,

I ′(0, g, φ)(v) = 2

∫
CU

K(v)
φ (g, (t, t))dt,

K(v)
φ (g, (t1, t2)) = wU

∑
a∈F×

l̃ims→0

∑
y∈µU\(B(v)×+−E×)

r(g, (t1, t2))φ(y)a kv,s(y),

kv,s(y) =
Γ(s+ 1)

2(4π)s

∫ ∞
1

1

t(1− λ(y)t)s+1
dt,

where λ(y) = q(y2)/q(y) is viewed as an element of Fv .

(2) For any non-archimedean v which is nonsplit in E,

I ′(0, g, φ)(v) = 2

∫
CU

K(v)
φ (g, (t, t))dt,

K(v)
φ (g, (t1, t2)) =

∑
u∈µ2

U\F×

∑
y∈B(v)−E

kr(t1,t2)φv(g, y, u)r(g, (t1, t2))φv(y, u),

kφv(g, y, u) =
L(1, ηv)

vol(E1
v)
r(g)φ1,v(y1, u)W ◦uq(y2),v

′(0, g, u, φ2,v), y2 6= 0.

Here the last identity holds under the relation φv = φ1,v ⊗ φ2,v , and the

definition extends by linearity to general φv .

(3) We have the constant

c1 = 2
L′f (0, η)

Lf (0, η)
+ log |dE/dF |.

(4) Under the relation φv = φ1,v ⊗ φ2,v ,

cφv(g, y, u) = rE(g)φ1,v(y, u)W ◦0,v
′(0, g, u) + log δ(gv)r(g)φv(y, u).

The definition extends by linearity to general φv .
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Proof. Apply the formula of [YZZ13, Prop. 6.12] to each term of

I ′(0, g, φ) = −
∑

v nonsplit

I ′(0, g, φ)(v)− c0

∑
u∈µ2

U\F×

∑
y∈E

r(g)φ(y, u)

−
∑
v

∑
u∈µ2

U\F×

∑
y∈E

cφv(g, y, u) r(g)φv(y, u)

+ 2 log δ(g)
∑

u∈µ2
K\F×

∑
y∈E

r(g)φ(y, u).

Denote by Pr′ the image of each term. Note that the holomorphic projection

of I ′(0, g, φ)(v) is already computed in [YZZ13, Prop. 6.15]. Furthermore, if v

is real, we have cφv(g, y, u) = 0 by Lemma 7.6.

Note that Pr′ does not change I ′(0, g, φ)(v) for non-archimedean v since

it is already holomorphic of parallel weight two at infinite. Similarly, we have

Pr′

Ö ∑
u∈µ2

U\F×

∑
y∈E

r(g)φ(y, u)

è
=

∑
u∈µ2

U\F×

∑
y∈E×

r(g)φ(y, u),

Pr′

Ö ∑
u∈µ2

U\F×

∑
y∈E

cφv(g, y, u)r(gv)φv(y, u)

è
=

∑
u∈µ2

U\F×

∑
y∈E×

cφv(g, y, u)r(gv)φv(y, u), v -∞.

The only changes are to remove the contributions of y = 0, because the results

do not have constant terms.

It remains to take care of

log δ(g)
∑

u∈µ2
U\F×

∑
y∈E×

r(g)φ(y, u) =
1

wU
log δ(g)

∑
(y,u)∈µU\(E××F×)

r(g)φ(y, u).

Here µU = F× ∩ U , and wU = |{1,−1} ∩ U | is equal to 1 or 2. The identity

holds as in the case of usual theta series. Its first Fourier coefficient is just

1

wU

∑
(y,u)∈µU\(E××F×)1

log δ(g)r(g)φ(y, u).

Write

log δ(g)r(g)φ(y, u) = log δ(gf )r(g)φ(y, u) + log δ(g∞)W (2)(g∞) · r(gf )φf (y, u).

Then Pr′ does not change the first sum of the right-hand side since it is holo-

morphic of weight two at infinity, but it changes log δ(g∞)W (2)(g∞) in the
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second sum to some multiple c2 W
(2)(g∞) = c2 r(g)φ∞(y, u), where c2 is some

constant to be determined. As a consequence,

Pr′

Ö
log δ(g)

∑
u∈µ2

U\F×

∑
y∈E

r(g)φ(y, u)

è
=

1

wU

∑
a∈F×

∑
(y,u)∈µU\(E××F×)1

log δf (d∗(a)gf )r(d∗(a)g)φ(y, u)

+ c2
1

wU

∑
a∈F×

∑
(y,u)∈µU\(E××F×)1

r(d∗(a)g)φ(y, u)

=
∑

u∈µ2
U\F×

∑
y∈E×

(log δ(gf ) + log |uq(y)|
1
2
f )r(g)φ(y, u)

+ c2

∑
u∈µ2

U\F×

∑
y∈E×

r(g)φ(y, u).

As for the constant, we have

c2

[F : Q]
= 4π lim

s→0

∫
Fv,+

yse−2πy (log y
1
2 )ye−2πy dy

y

= 2π

∫ ∞
0

e−4πy log ydy = −1

2
(γ + log 4π).

Here γ is Euler’s constant. Then we have the combined constant

c1 = c0 − 2mc2 = 2
L′(0, η)

L(0, η)
+ log |dE/dF |+ (γ + log 4π)m.

Here we have m = [F : Q]. The gamma factor

L∞(s, η) =

Å
π−

s+1
2 Γ(

s+ 1

2
)

ãm
gives

L′∞(0, η)

L∞(0, η)
= −1

2
m(γ + log 4π).

Thus

c1 = 2
L′f (0, η)

Lf (0, η)
+ log |dE/dF |. �

7.2. Choice of the Schwartz function. To make further explicit local com-

putations, we need to specify the Schwartz function.

Start with the setup of Theorem 1.7. Let F be a totally real field, and let

E be a totally imaginary quadratic extension of F . Let B be a totally definite

incoherent quaternion algebra over A = AF with an embedding EA → B of

A-algebras. Let U =
∏
v-∞ Uv be a maximal open compact subgroup of B×f
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containing (the image of) “O×E =
∏
v-∞O

×
Ev

. As in Theorem 1.7, assume that

there is no non-archimedean place of F ramified in E and B simultaneously.

Note that we have already assumed that Uv is maximal at any v -∞. De-

note by OBv the OFv -subalgebra of Bv generated by Uv. Then OBv is a maximal

order of Bv, and Uv = O×Bv is the group of invertible elements. Furthermore,

the inclusion O×Ev ⊂ Uv induces OEv ⊂ OBv .

As for the Schwartz function φ = ⊗vφv, we make the following choices:

(1) If v is archimedean, set φv be the standard Gaussian.

(2) If v is non-archimedean, nonsplit in E and split in B, set φv to be the

standard characteristic function 1OBv×O
×
Fv

.

(3) If v is nonsplit in B, set φv to be 1O×Bv×O
×
Fv

(instead of 1OBv×O
×
Fv

).

(4) There is a set S2 consisting of two (non-archimedean) places of F split in

E and unramified over Q such that

φv = 1O×Bv×O
×
Fv

− 1

1 +Nv +N2
v

1$−1
v (OBv )2×O×Fv

∀v ∈ S2.

Here $v denotes a uniformizer of OFv , and

(OBv)2 = {x ∈ OBv : v(q(x)) = 2}.

(5) If v is split in E and v /∈ S2, set φv to be the standard characteristic

function 1OBv ⊗ 1O×Fv
.

By definition, φ is invariant under both the left action and the right action

of U .

Note that (4) seems least natural in the choices. However, it is made to

meet Assumption 7.1. In fact, as in the proof of [YZZ13, Prop. 5.15], any

function of the form

Lφ0 − deg(L)φ0, φ0 ∈ S(Bv × F×v ), L ∈ C∞c (B1
vO
×
Bv)

satisfies the assumption. The choice of (4) comes from φ0 = 1O×Bv
⊗ 1O×Fv

and

L = 1(OBv )2
. It is classical that deg((OBv)2) = |(OBv)2/O

×
Bv | = 1 +Nv +N2

v .

For any v -∞, fix an element jv ∈ OBv orthogonal to Ev such that v(q(jv))

is nonnegative and minimal, i.e., v(q(jv)) ∈ {0, 1}, and such that v(q(jv)) = 1 if

and only if Bv is nonsplit (and thus Ev/Fv is inert by assumption). We check

the existence of jv in the following.

If v is nonsplit in B (and inert in E), then OBv is the unique maximal

order of Bv. It is easy to see the existence of jv. We have v(q(jv)) = 1 and an

orthogonal decomposition OBv = OEv +OEv jv.

If v is split in B, start with an isomorphism OBv → M2(OFv). By this

isomorphism, OBv acts on M = O2
Fv

, and thus the subalgebra OEv also acts

on M . Fix a nonzero element m0 ∈ M . We have an isomorphism OEv → M

of OFv -modules by t 7→ t ◦m0. Thus it induces an OFv -linear action of OBv
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on OEv , which is compatible with the multiplication action of OEv on itself.

Set jv ∈ OBv to be the unique element which acts on OEv as the nontrivial

element of Gal(Ev/Fv). Then j2v = 1 and jvtjv = t̄ for any t ∈ OEv . It follows

that jv is orthogonal to Ev, and q(jv) = −1 satisfies the requirement.

For any non-archimedean place v nonsplit in E, let B(v) be the nearby

quaternion algebra. Fix an embedding E → B(v) and isomorphisms B(v)v′ '
Bv′ for any v′ 6= v, which are assumed to be compatible with the embedding

EA → B. At v, we also take an element jv ∈ B(v)v orthogonal to Ev, such

that v(q(jv)) is nonnegative and minimal as above. We remark that this set

{jv′ : v′ 6= v} ∪ {jv} is not required to be the localizations of a single element

of B(v).

Lemma 7.3. Let v be a non-archimedean place of F and Dv ⊂ OFv be the

relative discriminant of Ev/Fv . Then in the above setting,

DvOBv ⊂ OEv +OEv jv ⊂ OBv .

Furthermore, OBv = OEv +OEv jv if and only if v is unramified in E.

Proof. This is classical. Assume that v is split in B, since the nonsplit

case is easy. For any (full) lattice M of Bv, the discriminant dM is the fraction

ideal of Fv generated by det(tr(xix̄j)), where x1, . . . , x4 is an OFv -basis of M .

In particular, if M ′ ⊂M is a sub-lattice, then [dM : dM ′ ] = [M : M ′]2. Direct

computation gives dOBv = 1 and dOEv+OEv jv
= D2

v . The statement follows.

�

7.3. Explicit local derivatives. Let (U, φ, jv, jv) be as in Section 7.2. The

goal of this subsection is to compute kφv(1, y, u) and cφv(1, y, u). The compu-

tations are quite involved, though the result are not so complicated eventually.

The readers may skip this subsection for the first time and come back when

the results are used in the comparison with the height series.

Throughout this subsection, v is non-archimedean. For y ∈ B(v)v, write

y = y1 + y2 with respect to the orthogonal decomposition B(v)v = Ev +Evjv.

By Lemma 7.3, if v /∈ S2 and v is unramified in E, we have a decomposition

φv = φ1,v⊗φ2,v with φ2,v = 1OEv jv×O
×
Fv

. Here φ1,v = 1OEv×O
×
Fv

if v is split in B
and φ1,v = 1O×Ev×O

×
Fv

if v is nonsplit in B.

All Haar measures are normalized as in [YZZ13, §1.6], unless otherwise

described.

Derivative of Whittaker function I.

Lemma 7.4.

(1) Let v be a non-archimedean place inert in E. Then the difference

kφv(1, y, u)− φv(y1, u) · 1OEv jv(y2) · 1

2
(v(q(y2)/q(jv)) + 1) logNv
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extends to a Schwartz function on B(v)v×F×v whose restriction to Ev×F×v
is equal to

φv(y, u) · |dvq(jv)| − 1

(1 +N−1
v )(1−Nv)

logNv.

(2) Let v be a non-archimedean place ramified in E. Then the difference

kφv(1, y, u)− φv(y1, u) · 1OEv jv(y2) · 1

2
(v(q(y2)) + 1) logNv

extends to a Schwartz function on B(v)v×F×v whose restriction to Ev×F×v
is equal to

φv(y, u) ·
Ç
|dv| − 1

2(1−Nv)
+

1

2
(v(Dv)− 1)

å
logNv +

1

2
αv(y, u),

where

αv(y, u) =
logNv

|Dv|
1
2

· 1D−1
v OEv−OEv

(y)

v(dv)−1∑
n=0

Nn
v

∫
Dn

φv(y + x2, u)dx2.

The result allows more ramifications of v in E or B than its counterpart

in [YZZ13, Cor. 6.8(1)]. The computation follows a similar strategy, but it is

more complicated due to these ramifications.

Recall that if φv = φ1,v ⊗ φ2,v, then

kφv(1, y, u) =
L(1, ηv)

vol(E1
v)
φ1,v(y1, u)W ◦uq(y2),v

′(0, 1, u, φ2,v).

Here vol(E1
v) is given in [YZZ13, §1.6.2]. By [YZZ13, Prop. 6.10],

W ◦a,v(s, 1, u, φ2,v) = |dv|
1
2 (1−N−sv )

∞∑
n=0

N−ns+nv

∫
Dn(a)

φ2,v(x2, u)dx2,

where

Dn(a) = {x2 ∈ Evjv : uq(x2)− a ∈ pnvd−1
v },

and dx2 is the self-dual measure for (Evjv, uq), which gives vol(OEv jv) =

|Dv|
1
2 |dvuq(jv)|. In the following, we will always denote a = uq(y2) for sim-

plicity.

We can also obtain a coherent expression of kφv(1, y, u) which does not

require φv to be of the form φ1,v ⊗ φ2,v. In fact, in the case φv = φ1,v ⊗ φ2,v
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(and v is nonsplit in E), the above gives

kφv(1, y, u) =
L(1, ηv)

vol(E1
v)
φ1,v(y1, u)

· d
ds
|s=0

(
|dv|

1
2 (1−N−sv )

∞∑
n=0

N−ns+nv

∫
Dn(a)

φ2,v(x2, u)dx2

)

=
L(1, ηv)

vol(E1
v)

· d
ds
|s=0

(
|dv|

1
2 (1−N−sv )

∞∑
n=0

N−ns+nv

∫
Dn(a)

φv(y1 + x2, u)dx2

)
.

The last expression is actually valid for any φv. It is nonzero only if u ∈ O×Fv ,
which we will always assume in the following.

The computation relies on a detailed description of Dn(a). For example,

we will see that Dn(a) is empty if n is sufficiently large, so the summation

for kφv(1, y, u) has only finitely many nonzero terms. Then the derivative

commutes with the sum.

In the following lemma, v is a non-archimedean place nonsplit in E. Con-

sider

Dn(a) = {x2 ∈ Evjv : uq(x2)− a ∈ pnvd−1
v }, u ∈ O×Fv , a ∈ uq(E

×
v jv)

and

Dn = {x2 ∈ Evjv : uq(x2) ∈ pnvd−1
v }, u ∈ O×Fv .

Lemma 7.5.

(1) If v is inert in E, then

Dn(a) =

Dn if n ≤ v(adv),

∅ if n > v(adv).

(2) If v is ramified in E, then

Dn(a) =

Dn if n ≤ v(adv),

∅ if n > v(adv) + v(Dv)− 1.

If v(adv) < n ≤ v(adv) + v(Dv)− 1, then

vol(Dn(a)) = |Dv|
1
2 · |dv| · |a|v ·Nv(adv)−n

v .

Here the volume is taken with respect to the self-dual measure for (Evjv, uq),

which gives vol(OEv jv) = |Dv|
1
2 |dv|.

Proof. The key property is that a is not represented by (Evjv, uq), since

it is represented by (Evjv, uq).
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We first consider (1), so v is inert in E. Then v(a) 6= v(uq(x2)) for any

x2 ∈ Evjv since a is not represented by (Evjv, uq). It follows that

v(uq(x2)− a) = min{v(a), v(uq(x2))}.

The result follows.

Now we consider (2), so v is ramified in E. If n ≤ v(adv), the result is

trivial. Assume that n > v(adv) in the following. Let ev be the smallest integer

such that 1 + pevv ⊂ q(E×v ). By the class field theory, we have ev = v(Dv).

The condition x2 ∈ Dn(a) gives

a−1uq(x2) ∈ 1 + pn−v(adv)
v .

By a = uq(y2) with y2 ∈ E×v jv, the condition becomes

q(x2)/q(y2) ∈ 1 + pn−v(adv)
v .

Note that q(E×v jv) and q(E×v jv) are exactly the two cosets of F×v under the

subgroup q(E×v ) of index 2. Then q(x2)/q(y2) always lies in the nonidentity

coset. Hence, Dn(a) is empty if n− v(adv) ≥ ev by the definition of ev.

It remains to compute vol(Dn(a)) for v(adv) < n ≤ v(adv) + ev − 1.

Write m = n − v(adv), which satisfies 1 ≤ m ≤ ev − 1. The above condition

on x2 is just a−1uq(x2) ∈ (1 + pmv ). We need to consider the intersection

(1 + pmv ) ∩ a−1uq(E×v jv). By the definition of ev, we see that (1 + pmv ) is

not completely contained in either q(E×v jv) or q(E×v jv). Thus (1 + pmv ) is

partitioned into two cosets q(E×v jv) ∩ (1 + pmv ) and q(E×v jv) ∩ (1 + pmv ). In

particular, (1 + pmv ) ∩ a−1uq(E×v jv) is one of the cosets. Therefore,

vol((1 + pmv ) ∩ a−1uq(E×v jv), d
×x) =

1

2
vol(1 + pmv , d

×x)

=
vol(O×Fv , d

×x)

2(Nv − 1)Nm−1
v

=
|dv|

1
2

2(Nv − 1)Nm−1
v

.

Here the volumes are under the multiplicative measure d×x = ζFv(1)|x|−1
v dx,

but we will convert it back to dx. Similar measures dx and d×x are defined on

Ev as in [YZZ13, §§1.6.1–1.6.2]. Both measures are transferred to Evjv by the

identification Evjv → Ev sending jv to 1. The induced measure dx on Evjv is

compatible with the self-dual measure with respect to the quadratic form uq.

Therefore,

vol(Dn(a), d×x) = vol(E1
v)·vol((1+pmv )∩a−1uq(E×v jv), d

×x) =
|Dv|

1
2 |dv|

(Nv − 1)Nm−1
v

.

The additive volume is just

vol(Dn(a), dx) =
|a|v
ζEv(1)

vol(Dn(a), d×x) =
|a|v · |Dv|

1
2 · |dv|

Nm
v

. �
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Derivative of Whittaker function II. The goal of this subsection is to prove

Lemma 7.4.

Proof of Lemma 7.4. We first consider (1), so we assume that v is inert

in E. We will take advantage of the decomposition φv = φ1,v ⊗ φ2,v, which

simplifies the computation slightly. It amounts to computing the derivative of

W ◦a,v(s, 1, u) = |dv|
1
2 (1−N−sv )

∞∑
n=0

N−ns+nv

∫
Dn(a)

φ2,v(x2, u)dx2.

Note that we always write a = uq(y2). By Lemma 7.5,

W ◦a,v
′(0, 1, u) = |dv|

1
2 logNv

v(adv)∑
n=0

Nn
v

∫
Dn

φ2,v(x2, u)dx2.

It is nonzero only if v(a) ≥ −v(dv).

We first consider the case −v(dv) ≤ v(a) < 0. In this case, we always have

OEv jv ⊂ Dn for all 0 ≤ n ≤ v(adv). It follows that

W ◦a,v
′(0, 1, u) = |dv|

1
2 logNv

v(adv)∑
n=0

Nn
v vol(OEv jv)

= |dv|
1
2 |q(jv)|

|dv| −Nv|a|−1

1−Nv
logNv.

Note that this part does not affect the behavior as a→ 0.

Now we assume that v(a) ≥ 0 (still for part (1)). If n < v(dvq(jv)), then

OEv jv ⊂ Dn; if n ≥ v(dvq(jv)), then Dn ⊂ OEv jv. It follows that

W ◦a,v
′(0, 1, u)

= |dv|
1
2 logNv

Ñ
v(dvq(jv))−1∑

n=0

Nn
v vol(OEv jv) +

v(adv)∑
n=v(dvq(jv))

Nn
v vol(Dn)

é
= |dv|

1
2 logNv

Ñ
|dvq(jv)| − 1

1−Nv
+

v(adv)∑
n=v(dvq(jv))

Nn
v vol(Dn)

é
.

Note that

Dn = p
[
n−v(dvq(jv))+1

2
]

v OEv jv,

so

Nn
v vol(Dn) = N

n−v(dvq(jv))−2[
n−v(dvq(jv))+1

2
]

v =

1 if 2 | (n− v(dvq(jv)),

N−1
v if 2 - (n− v(dvq(jv)).
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Since v(q(jv)) and v(a) always have different parities in this inert case, we have

kφv(1, y, u) =
logNv

1 +N−1
v

Ç
|dvq(jv)| − 1

1−Nv
+
v(q(y2))− v(q(jv)) + 1

2
(1 +N−1

v )

å
.

This finishes the proof of (1).

Now we prove (2), so v is ramified in E. We need to compute

kφv(1, y, u) =
1

2|Dv|
1
2

· d
ds
|s=0

(
(1−N−sv )

∞∑
n=0

N−ns+nv

∫
Dn(a)

φv(y1 + x2, u)dx2

)
.

We first use Lemma 7.5 to write

kφv(1, y, u) =
logNv

2|Dv|
1
2

v(adv)+v(Dv)−1∑
n=0

Nn
v

∫
Dn(a)

φv(y1 + x2, u)dx2.

It is zero if v(a) is too small, so kφv(1, y, u) is compactly supported.

In this ramified case, the first complication is that kφv(1, y, u) can be

nonzero for some y1 /∈ OEv . Write

kφv(1, y, u) = kφv(1, y, u) · 1OEv (y1) + kφv(1, y, u) · 1Ev−OEv (y1).

We first treat the second term on the right-hand side, so we assume that

y1 ∈ Ev −OEv .
We claim that kφv(1, y, u) · 1Ev−OEv (y1) is naturally a Schwartz function

on B(v)v×F×v . In fact, by Lemma 7.3, in order to make φv(y1 +x2, u) nonzero

in the formula of kφv(1, y, u), we have

y1 ∈ D−1
v OEv −OEv , x2 ∈ D−1

v OEv jv −OEv jv.
Then both v(q(y1)) and v(q(x2)) are bounded from above and below. Consider

the behavior when a = uq(y2) approaches 0. By Lemma 7.5, x2 ∈ Dn(a) only if

n ≤ v(q(x2)) + v(dv) + v(Dv)− 1 ≤ v(dvD
3
v)− 1.

The second bound is independent of a. Hence, if v(a) is sufficiently large, then

Dn(a) = Dn is independent of a. So kφv(1, y, u) · 1Ev−OEv (y1) is a Schwartz

function on B(v)v × F×v .

For the restriction to Ev × F×v , set y2 → 0. The above discussion already

gives

kφv(1, y1, u) · 1Ev−OEv (y1)(7.3.1)

=
logNv

2|Dv|
1
2

· 1Ev−OEv (y1)

v(dvD3
v)−1∑

n=0

Nn
v

∫
Dn

φv(y1 + x2, u)dx2.

We can further change the bounds of n in the summation from [0, v(dvD
3
v)−1]

to [0, v(dv)], because x2 ∈ Dn implies

n ≤ v(dv) + v(q(x2)) ≤ v(dv).

Then the expression is exactly the function 1
2αv in the lemma.
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It remains to treat kφv(1, y, u) · 1OEv (y1). Assume that y1 ∈ OEv . Then

kφv(1, y, u) =
logNv

2|Dv|
1
2

v(adv)+v(Dv)−1∑
n=0

Nn
v vol(Dn(a) ∩OEv jv).

The sum is nonzero only if v(a) ≥ −v(dv) − v(Dv) + 1. The behavior of

kφv(1, y, u) when −v(dv) − v(Dv) + 1 ≤ v(a) < 0 does affect our final result.

So we assume that v(a) ≥ 0 in the following.

The computation is similar to the inert case. Recall that vol(OEv jv) =

|Dv|
1
2 |dv| and

Dn(a) = {x2 ∈ Evjv : uq(x2)− a ∈ pnvd−1
v }.

Split the summation as

∞∑
n=0

=

v(dv)−1∑
n=0

+

v(adv)∑
n=v(dv)

+

v(adv)+v(Dv)−1∑
n=v(adv)+1

.

The first sum gives

logNv

2|Dv|
1
2

v(dv)−1∑
n=0

Nn
v vol(OEv jv) =

|dv| − 1

2(1−Nv)
logNv.(7.3.2)

The second sum gives

logNv

2|Dv|
1
2

v(adv)∑
n=v(dv)

Nn
v vol(Dn) =

logNv

2|Dv|
1
2

v(adv)∑
n=v(dv)

Nn
v ·N−(n−v(dv))

v |Dv|
1
2 |dv|

(7.3.3)

=
1

2
(v(a) + 1) logNv.

By Lemma 7.5, the third sum gives

logNv

2|Dv|
1
2

v(adv)+v(Dv)−1∑
n=v(adv)+1

Nn
v vol(Dn)(7.3.4)

=
logNv

2|Dv|
1
2

v(adv)+v(Dv)−1∑
n=v(adv)+1

Nn
v · |Dv|

1
2 · |dv| · |a|v ·Nv(adv)−n

v

=
1

2
(v(Dv)− 1) logNv.

Combining equations (7.3.1)–(7.3.4), we obtain the result for ramified v. The

proof of Lemma 7.4 is complete. �
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Derivative of intertwining operator. Recall that if φv = φ1,v ⊗ φ2,v for a

place v, then

cφv(g, y, u) = φ1,v(y, u)W ◦0,v
′(0, g, u, φ2,v) + log δ(gv)r(g)φv(y, u),

where the normalization is

W ◦0,v(s, g, u, φ2,v) = γ−1
u,v|Dv|−

1
2 |dv|−

1
2
L(s+ 1, ηv)

L(s, ηv)
W0,v(s, g, u, φ2,v).

Lemma 7.6.

(1) For any archimedean place v,

cφv(g, y, u) = 0, g ∈ GL2(R), (y, u) ∈ Ev × F×v .

(2) For any non-archimedean place v and any (y, u) ∈ Ev × F×v ,

cφv(1, y, u) = φv(y, u) · log |dvq(jv)|

+


φv(y, u) · 2(|dvq(jv)| − 1)

(1 +N−1
v )(1−Nv)

logNv if Ev/Fv inert,

φv(y, u) · |dvq(jv)| − 1

1−Nv
logNv + αv(y, u) if Ev/Fv ramified,

0 if Ev/Fv split.

Here

αv(y, u) =
logNv

|Dv|
1
2

· 1D−1
v OEv−OEv

(y)

v(dv)−1∑
n=0

Nn
v

∫
Dn

φv(y + x2, u)dx2

as in Lemma 7.4.

Proof. If v is archimedean, it suffices to check that

W ◦0,v(s, g, u) = δ(g)−sr(g)φ2,v(0, u), g ∈ GL2(Fv).

The behaviors of the intertwining operator W ◦0,v(s, g, u) under the left action

of P (R) and the right action of SO(2,R) are the same as those of

δ(g)−sr(g)φ2,v(0, u).

It follows that two sides are equal up to a constant possibly depending on s.

To determine the constant, it suffices to check W ◦0,v(s, 1, u) = 1. By a change

of variable, we can assume that u = 1. At the end of the proof of [YZZ13,

Prop. 2.11], there is a formula for W0,v(s, 1, u) in terms of gamma functions,

which implies the result we need here.

Assume that v is non-archimedean in the following. The proof is similar

to that of Lemma 7.4. We first introduce some formulas for cφv(1, y, u). Note

that the statement of [YZZ13, Prop. 6.10(1)] is only correct for a ∈ F×v due to
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the different normalizing factor defining W ◦0,v(0, 1, u, φ2,v). However, its proof

actually gives

W0,v(s, 1, u, φ2,v) = γu,v|dv|
1
2 (1−N−sv )

∞∑
n=0

N−ns+nv

∫
Dn

φ2,v(x2, u)dux2,

where

Dn = {x2 ∈ Evjv : uq2(x2) ∈ pnvd−1
v }

and the measure dux2 gives vol(OEv jv) = |Dv|
1
2 |dvuq(jv)|. Putting these to-

gether, we have

cφv(1, y, u) = φ1,v(y, u)

· d
ds
|s=0

(
|Dv|−

1
2
L(s+ 1, ηv)

L(s, ηv)
(1−N−sv )

∞∑
n=0

N−ns+nv

∫
Dn

φ2,v(x2, u)dux2

)

=
d

ds
|s=0

(
|Dv|−

1
2
L(s+ 1, ηv)

L(s, ηv)
(1−N−sv )

∞∑
n=0

N−ns+nv

∫
Dn

φv(y + x2, u)dux2

)
.

The last expression actually works for any φv (not necessarily of the form

φ1,v ⊗ φ2,v).

For convenience, denote

c̃φv(s) = |Dv|−
1
2
L(s+ 1, ηv)

L(s, ηv)
(1−N−sv )

∞∑
n=0

N−ns+nv

∫
Dn

φv(y + x2, u)dux2,

so that

cφv(1, y, u) = c̃′φv(0).

Note that c̃φv(s) or cφv(1, y, u) is nonzero only if u ∈ O×Fv , which we assume in

the following. We will check the lemma case by case.

First, assume that v is inert in E. Then φv = φ1,v ⊗ φ2,v with φ2,v =

1OEv jv×O
×
Fv

, and

cφv(1, y, u) = φ1,v(y, u)W ◦0,v
′(0, 1, u).

Split the sum in

W0,v(s, 1, u) = γu,v|dv|
1
2 (1−N−sv )

∞∑
n=0

N−ns+nv

∫
Dn

φ2,v(x2, u)dx2
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into two parts: n < v(dvq(jv)) and n ≥ v(dvq(jv)). Denote n = m+ v(dvq(jv))

in the second case, and note Dm+v(dvq(jv)) = p
[m+1

2
]

v OEv jv. We have

W0,v(s, 1, u)

= γu,v|dv|
1
2 (1−N−sv )

Ñ
v(dvq(jv))−1∑

n=0

N−n(s−1)
v vol(OEv jv)

+
∞∑
m=0

N−(m+v(dvq(jv)))(s−1)
v vol(Dm+v(dvq(jv)))

)

= γu,v|dv|
1
2 |Dv|

1
2 (1−N−sv )

(
|dvq(jv)| − |dvq(jv)|s

1−N−(s−1)
v

+ |dvq(jv)|s
1 +N

−(s+1)
v

1−N−2s
v

)
.

Then

W ◦0,v(s, 1, u) = (1−N−sv )
1 +N−sv

1 +N
−(s+1)
v

|dvq(jv)| − |dvq(jv)|s

1−N−(s−1)
v

+ |dvq(jv)|s.

We get

W ◦0,v
′(0, 1, u) = log |dvq(jv)|+

2(|dvq(jv)| − 1)

(1 +N−1
v )(1−Nv)

logNv.

This finishes the inert case.

Second, assume that v is ramified in E. Consider

c̃φv(s) = |Dv|−
1
2 (1−N−sv )

∞∑
n=0

N−ns+nv

∫
Dn

φv(y + x2, u)dx2.

As in the proof of Lemma 7.4, the first complication of this ramified case is

that c̃φv(s) can be nonzero for some y /∈ OEv , but it can be treated similarly.

In fact, assume that y /∈ OEv and c̃φv(s) 6= 0. In order to make φv(y+x2, u)

nonzero in the formula of c̃φv(s), we have

y ∈ D−1
v OEv −OEv , x2 ∈ D−1

v OEv jv −OEv jv.

Then x2 ∈ Dn gives

n ≤ v(q(x2)) + v(dv) ≤ v(dv).

Then the summation for c̃φv(s) is a finite sum. We have

cφv(1, y, u) = c̃′φv(0) = |Dv|−
1
2 (logNv)

v(dv)∑
n=0

Nn
v

∫
Dn

φv(y + x2, u)dx2.

This is exactly the function αv in the lemma.

Now we assume that y ∈ OEv . Then

c̃φv(s) = |Dv|−
1
2 (1−N−sv )

∞∑
n=0

N−ns+nv vol(Dn ∩OEv jv).
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The computation is similar to the inert case. Split the sum into two parts:

n < v(dv) and n ≥ v(dv). Denote n = m+ v(dv) in the second case, and note

Dm+v(dv) = p
m
2
v OEv jv. We have

c̃φv(s) = |Dv|−
1
2 (1−N−sv )

Ñ
v(dv)−1∑
n=0

N−n(s−1)
v vol(OEv jv)

+
∞∑
m=0

N−(m+v(dv))(s−1)
v vol(Dm+v(dv))

)

= (1−N−sv )
|dv| − |dv|s

1−N−(s−1)
v

+ |dv|s.

Thus

cφv(1, y, u) = c̃′φv(0) = log |dv|+
|dv| − 1

1−Nv
logNv.

Third, consider the case that Ev/Fv is split and v /∈ S2. Then |q(jv)| =

|Dv| = 1 and we use it to relieve the notational burden. We compute

cφv(1, y, u) = φ1,v(y, u)W ◦0,v
′(0, 1, u).

As before, split the sum into n < v(dv) and n ≥ v(dv), and write n = m+v(dv)

in the second case. We have

W0,v(s, 1, u) = γu,v|dv|
1
2 (1−N−sv )

(
|dv| − |dv|s

1−N−(s−1)
v

+ |dv|s

·
∞∑
m=0

N−m(s−1)
v

vol(Dm+v(dv) ∩OEv jv)
vol(OEv jv)

)
.

Identify Ev = Fv ⊕ Fv and OEv = OFv ⊕OFv . For simplicity, we identify Evjv
with Ev by sending jv to 1. Then

Dm+v(dv) ∩OEv = {(z1, z2) ∈ OFv ⊕OFv : z1z2 ∈ pmv }
= OEv − {(z1, z2) ∈ OFv ⊕OFv : v(z1) + v(z2) ≤ m− 1}.

Thus

vol(Dm+v(dv) ∩OEv) = vol(OEv)−
m−1∑
k=0

vol($k
vO
×
Fv

)vol(OFv − pm−kv )

= vol(OEv)− vol(OEv)
m−1∑
k=0

N−kv (1−N−1
v )(1−N−(m−k)

v )

= vol(OEv)(N
−m
v + (1−N−1

v )mN−mv ).
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Therefore,

W0,v(s, 1, u) = γu,v|dv|
1
2 (1−N−sv )

(
|dv| − |dv|s

1−N−(s−1)
v

+ |dv|s
∞∑
m=0

N−m(s−1)
v (N−mv

+ (1−N−1
v )mN−mv )

)

= γu,v|dv|
1
2 (1−N−sv )

(
|dv| − |dv|s

1−N−(s−1)
v

+ |dv|s
1−N−(s+1)

v

(1−N−sv )2

)
.

Hence,

W ◦0,v(s, 1, u) = γ−1
u,v

1−N−sv
1−N−(s+1)

v

|dv|−
1
2W0,v(s, 1, u)

=
(1−N−sv )2

1−N−(s+1)
v

|dv| − |dv|s

1−N−(s−1)
v

+ |dv|s.

The first term has a double zero and no contribution to the derivative, so

W ◦0,v
′(0, 1, u) = log |dv|.

This finishes the case that Ev/Fv is split and v /∈ S2.

Fourth, we treat the case v ∈ S2, which is the last case. Then v is split

in E, and

φv = 1O×Bv×O
×
Fv

− 1

1 +Nv +N2
v

1$−1
v (OBv )2×O×Fv

.

Note that |q(jv)| = |dv| = 1 by assumption, so the result to prove is exactly

cφv(1, y, u) = 0. Recall that cφv(1, y, u) is the derivative of

c̃φv(s) =
(1−N−sv )2

1−N−(s+1)
v

∞∑
n=0

N−ns+nv

∫
Dn

φv(y + x2, u)dx2.

We will make separate computations for

ψ1 = 1O×Bv×O
×
Fv

, ψ2 = 1$−1
v (OBv )2×O×Fv

.

The results will be 0 for both functions. Make identifications Evjv ' Ev '
Fv ⊕ Fv as above.

Start with

c̃ψ1(s) =
(1−N−sv )2

1−N−(s+1)
v

∞∑
n=0

N−ns+nv

∫
Dn

ψ1(y + x2, u)dx2.
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It is nonzero only if y ∈ OEv , which we assume. For the integral, write x2 =

(z1, z2) ∈ Fv ⊕ Fv. Then we have

c̃ψ1(s) =
(1−N−sv )2

1−N−(s+1)
v

∞∑
n=0

N−ns+nv

· vol{(z1, z2) ∈ OFv ⊕OFv : z1z2 ∈ pnv , q(y)− z1z2 ∈ O×Fv}.

If q(y) ∈ pv, in order for the volume to be nonzero, we have to have

z1z2 ∈ O×Fv and n = 0. The summation has a single nonzero term equal to 1.

Then cψ1(1, y, u) = 0.

If q(y) ∈ O×Fv , we can neglect the term with n = 0, since a single term

does not change the derivative due to the double zero of the factor (1−N−sv )2.

Then the remaining terms give

(1−N−sv )2

1−N−(s+1)
v

∞∑
n=1

N−ns+nv · vol{(z1, z2) ∈ OFv ⊕OFv : z1z2 ∈ pnv}.

A similar summation has just been computed above, and the eventual result

is still cψ1(1, y, u) = 0. (Note that dv = 1 in the current case.)

Now we treat

c̃ψ2(s) =
(1−N−sv )2

1−N−(s+1)
v

∞∑
n=0

N−ns+nv

∫
Dn

ψ2(y + x2, u)dx2

=
(1−N−sv )2

1−N−(s+1)
v

∞∑
n=0

N−ns+nv

· vol{(z1, z2) ∈ p−1
v ⊕ p−1

v : z1z2 ∈ pnv , q(y)− z1z2 ∈ O×Fv}.

Here we have assumed u ∈ O×Fv and will assume y ∈ $−1
v OEv in order to make

the situation nontrivial. It is similar to the case ψ1.

If q(y) /∈OFv , the summation has no nonzero term and thus cψ1(1, y, u)=0.

If q(y) ∈ pv, the summation has a single nonzero term coming from n = 0.

Then cψ1(1, y, u) = 0 again.

If q(y) ∈ O×Fv , we can neglect the term with n = 0 again. The remaining

terms give

(1−N−sv )2

1−N−(s+1)
v

∞∑
n=1

N−ns+nv · vol{(z1, z2) ∈ p−1
v ⊕ p−1

v : z1z2 ∈ pnv}

=
(1−N−sv )2

1−N−(s+1)
v

∞∑
n=1

N−ns+nv ·N2
v · vol{(z′1, z′2) ∈ OFv ⊕OFv : z′1z

′
2 ∈ pn+2

v }.

Here we have used the substitution zi = $−1
v z′i. Then it is similar to the

computation above and still gives cψ1(1, y, u)=0. This finishes the case v ∈S2.

�



ON THE AVERAGED COLMEZ CONJECTURE 605

Remark 7.7. It is not surprising that some (complicated and un-wanted)

terms in the result of Lemma 7.4 appear in that of Lemma 7.6. In fact, it just

reflects that the identity

lim
a→0

W ′a,v(0, 1, u) = W ′0,v(0, 1, u),

which fails due to convergence issues, actually holds for some pieces of the two

sides. Eventually we need these terms to cancel each other in order to get a

neat Proposition 9.2.

8. Height series

In this section, we study the intersection series of CM points, the main

geometric ingredient for proving Theorem 1.7. We will first review the con-

struction of the series Z(g, (t1, t2), φ) in [YZZ13]. Then we will compute this

series under some assumption of Schwartz functions. In particular, we will

obtain a term for the self-intersection of CM points which contributes a main

term for the identity in Theorem 1.7. In [YZZ13], this term was killed under

a stronger assumption of Schwartz functions.

8.1. Height series. Let F be a totally real number field, and let B be

a totally definite incoherent quaternion algebra over F with ramification set

Σ. To avoid complication of cusps, we assume that |Σ| > 1. For any open

compact subgroup U of B×f , we have a Shimura curve XU , which is a projective

and smooth curve over F . For any embedding τ : F ↪→ C, it has the usual

uniformization

XU,τ (C) = B(τ)×\h± × B×f /U.

Here B(τ) denotes the nearby quaternion algebra, i.e., the unique quaternion

algebra over F with ramification set Σ \ {τ}.
For any x ∈ B×f , we have a correspondence Z(x)U defined as the image of

the morphism

(πUx,U , πUx,U ◦ Tx) : XUx −→ XU ×XU .

Here Ux = U ∩ xUx−1, πUx,U denotes the natural projection, and Tx denotes

the right multiplication by x. In terms of the complex uniformization, the

push-forward action gives

Z(x)U : [z, β]U 7−→
∑

y∈UxU/U
[z, βy]U .

Generating series. We first recall the generating series in [YZZ13, §3.4.5].

For any φ ∈ S(B× A×) invariant under K = U × U , form a generating series

Z(g, φ)U = Z0(g, φ)U + Z∗(g, φ)U , g ∈ GL2(A),
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where

Z0(g, φ)U =−
∑

α∈F×+ \A
×
f
/q(U)

∑
u∈µ2

U\F×
E0(α−1u, r(g)φ) LK,α,

Z∗(g, φ)U =wU
∑
a∈F×

∑
x∈U\B×

f
/U

r(g)φ(x, aq(x)−1) Z(x)U .

Here µU = F× ∩ U , and wU = |{1,−1} ∩ U | is equal to 1 or 2. We often

abbreviate

Z(g, φ)U , Z0(g, φ)U , Z∗(g, φ)U

as

Z(g)U , Z0(g)U , Z∗(g)U .

For our purpose on the height series, we will see that the constant term

Z0(g, φ)U can be neglected in our consideration, since its contribution is always

zero.

Theorem 8.1 ([YZZ13, Th. 3.17]). The series Z(g, φ)U is absolutely con-

vergent and defines an automorphic form on g ∈ GL2(A) with coefficients in

Pic(XU ×XU )C.

Height series. Let E/F be a totally imaginary quadratic extension, with

a fixed embedding EA ↪→ B over A. In [YZZ13], we consider a CM point

P ∈ XE×(Eab) on the limit of the Shimura curves. In this paper, we only

consider the point PU ∈ XU (Eab) for fixed U . For a more precise description,

fixing an embedding τ : F ↪→ C, take PU = [z0, 1]U based on the uniformization

XU,τ (C) = B(τ)×\h± × B×f /U,

where z0 ∈ h is the unique fixed point of E× in h via the action induced by

the embedding E ↪→ B(τ). For simplicity, we write P for PU .

In terms of the uniformization, there are two sets of CM points in XU (Eab)

for our purpose:

CU = {[z0, t]U : t ∈ E×(Af )}, CMU = {[z0, β]U : β ∈ B×f }.

It is easy to see canonical bijections

CU ∼= E×\E×(Af )/(E×(Af ) ∩ U), CMU
∼= E×\B×f /U.

We will abbreviate [z0, β]U as [β]U , [β] or just β.

For any t ∈ E×(A), denote by

[t] = [t]U = [z0, tf ]U

the CM point of XU,τ (C), viewed as an algebraic point of XU . Denote by

t◦ = [t]◦U = [t]U − ξU,t
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the degree-zero divisor on XU , where ξt = ξU,t is the normalized Hodge class

of degree one on the connected component of [t]U .

Recall from [YZZ13, §§3.5.1, 5.1.2] that we have a height series

Z(g, (t1, t2), φ)U = 〈Z(g, φ)U t◦1, t
◦
2〉NT, t1, t2 ∈ E×(Af ).

Here Z(g, φ)U acts on t◦1 as correspondences, and the pairing is the Néron–Tate

height pairing

〈·, ·〉NT : JU (F )C × JU (F )C −→ C

on the Jacobian variety JU of XU over F .

By linearity, Z(g, (t1, t2), φ)U is an automorphic form in g ∈ GL2(A). By

[YZZ13, Lemma 3.19], it is actually a cusp form. In particular, the constant

term Z0(g, φ) of the generating function plays no role here.

Decomposition of the height series. By the theory of [YZZ13, §7.1], we are

going to decompose the height series into local pairings and some global terms.

We will use (possibly) different integral models to do the decomposition.

Assume that (B, E, U) satisfies the assumptions of Section 7.2 in the fol-

lowing. In particular, U is maximal at every place, and there is no non-

archimedean place of F ramified in both E and B.

Let XU be the integral model of XU over OF introduced before Corol-

lary 4.6, and let LU be the arithmetic Hodge bundle introduced in Theorem 4.7.

We are going to use (XU ,LU ) to decompose the Neron–Tate height pairing.

Note that every point of CMU is defined over a finite extension H of

F that is unramified above Σ(Bf ). The composite of two such extensions

still satisfies the same property. By Corollary 4.6, the base change XU,OH
is Q-factorial for such H. Then arithmetic intersection numbers of Arakelov

divisors are well defined on XU,OH . Take the integral model YU used in [YZZ13,

§7.2.1] to be XU,OH (without any desingularization). We get a decomposition

of Z(g, (t1, t2))U by the process of [YZZ13, §7.2.2].

We do not know whether XU is regular everywhere or smooth above any

prime of F split in B. If both are true, then XU,OH is already regular, and the

decomposition here is the same as that in [YZZ13].

Vanishing of the pairing with Hodge class. Now we freely use the notation

of [YZZ13, §7.1-7.2]. For the height series, the linearity gives a decomposition

Z(g, (t1, t2))U = 〈Z∗(g)U t1, t2〉 − 〈Z∗(g)U t1, ξt2〉
− 〈Z∗(g)Uξt1 , t2〉+ 〈Z∗(g)Uξt1 , ξt2〉.

Here Z∗(g)U = Z∗(g, φ)U , and the pairings on the right-hand side are arith-

metic intersection numbers in terms of admissible extensions, as introduced in

[YZZ13, §7.1.6].
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Now we resume the degeneracy assumption in (7.1), which mainly requires

that there is a set S2 consisting of two non-archimedean places of F split in E

and unramified over Q such that

r(g)φv(0, u) = 0 ∀ g ∈ GL2(Fv), u ∈ F×v , v ∈ S2.

By [YZZ13, Prop. 7.5], the assumption kills the last three terms on the right-

hand side and gives the simplification

Z(g, (t1, t2))U = 〈Z∗(g)U t1, t2〉.

As in [YZZ13, Prop. 7.5], we have a decomposition

Z(g, (t1, t2))U = −i(Z∗(g)U t1, t2)− j(Z∗(g)U t1, t2).

Here the i-part is essentially the arithmetic intersection number of horizontal

parts, and the j-part is the contribution from vertical parts.

Now we have a decomposition to local intersection numbers by

j(Z∗(g)t1, t2) =
∑
v

jv(Z∗(g)t1, t2) logNv.

The sum is over all places of F , and we take the convention logNv = 1 if v is

real. Decomposing the local intersection number in terms of Galois orbits, we

further have
jv(Z∗(g)t1, t2) =

∫
CU

jv̄(Z∗(g)tt1, tt2)dt.

Here the pairing jv̄ is introduced in [YZZ13, §7.1.7], and

CU = E×\E×(Af )/E×(Af ) ∩ U
is a finite group and the integration is just the usual average over this finite

group.

Unlike the j-part, the decomposition of the i-part into local intersection

numbers is complicated due to the occurrence of self-intersections. We have to

isolate the self-intersections before the decomposition. Such a complication is

diminished by Assumption 5.3 in [YZZ13], but we cannot impose this assump-

tion here. In fact, the assumption kills all possible self-intersections, but the

purpose of this paper is to compute these self-intersections!

Self-intersection. The self-intersection in 〈Z∗(g)t1, t2〉 comes from the mul-

tiplicity of [t2]U in Z∗(g)t1. By definition,

Z∗(g)t1 = wU
∑
a∈F×

∑
x∈B×

f
/U

r(g)φ(x)a[t1x].

Here r(g)φ(x)a = r(g)φ(x, a/q(x)). See also [YZZ13, §4.3.1] for this formula.

Note that [t1x] = [t2] as CM points on XU if and only if x ∈ t−1
1 t2E

×U .

It follows that the coefficient of [t2]U in Z∗(g)t1 is equal to

wU
∑
a∈F×

∑
x∈t−1

1 t2E×U/U

r(g)φ(x)a =wU
∑
a∈F×

∑
y∈E×/(E×∩U)

r(g)φ(t−1
1 t2y)a.
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Note that µU = F× ∩ U has finite index in E× ∩ U . The above becomes
wU

[E× ∩ U : µU ]

∑
a∈F×

∑
y∈E×/µU

r(g, (t1, t2))φ(y)a

=
1

[E× ∩ U : µU ]

∑
u∈µ2

U\F×

∑
y∈E×

r(g, (t1, t2))φ(y, u).

The last double sum already appeared in the derivative series and will continue

to appear in local heights. So, we introduce the notation

Ωφ(g, (t1, t2)) =
∑

u∈µ2
U\F×

∑
y∈E×

r(g, (t1, t2))φ(y, u).

Finally, we can write

i(Z∗(g)t1, t2) = i(Z∗(g)t1, t2)proper +
Ωφ(g, (t1, t2))

[E× ∩ U : µU ]
i(t2, t2).

Here

i(Z∗(g)t1, t2)proper = i

Ç
Z∗(g)t1 −

Ωφ(g, (t1, t2))

[E× ∩ U : µU ]
t2, t2

å
is a proper intersection. The proper intersection has decompositions

i(Z∗(g)t1, t2)proper =
∑
v

iv(Z∗(g)t1, t2)proper logNv,

iv(Z∗(g)t1, t2)proper =

∫
CU

iv̄(Z∗(g)tt1, tt2)properdt.

We further have an identity i(t2, t2) = i(1, 1) since [1] and [t] are Galois

conjugate CM points.

8.2. Local heights as pseudo-theta series. Now we are going to express the

local heights iv̄(Z∗(g)t1, t2)proper and jv̄(Z∗(g)t1, t2) in terms of multiplicity

functions on local models of the Shimura curve. The idea is similar to [YZZ13,

Ch. 8], with extra effort to take care of the self-intersections. Note that in

[YZZ13], self-intersections vanish due to a degeneracy assumption, which we

cannot put here.

Archimedean case. Let v be an archimedean place. Fix an identification

B(Af ) = Bf , and write B = B(v). The formula is based on the uniformization

XU,v(C) = B×+\h×B×(Af )/U.

Resume the notation in [YZZ13, §8.1]. In particular, we have the local

multiplicity function

ms(γ) = Qs(1− 2λ(γ)), γ ∈ B×v − E×v .

Here

Qs(t) =

∫ ∞
0

Ä
t+

√
t2 − 1 coshu

ä−1−s
du
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is the Legendre function of the second kind. For any two distinct CM points

[β1]U , [β2]U ∈ CMU , denote

gs(β1, β2) =
∑

γ∈µU\(B×+−E×)

ms(γ) 1U (β−1
1 γβ2).

Then the local height has the expression

iv̄(β1, β2) = l̃ims→0gs(β1, β2).

Here l̃ims→0 denotes the constant term at s = 0 of gs((z1, β1), (z2, β2)), which

converges for Re(s) > 0 and has meromorphic continuation to s = 0 with a

simple pole.

In [YZZ13], the formula works for distinct points [β1]U and [β2]U . In this

paper, we extend it formally to any two points. Namely, for any β1, β2 ∈ CMU ,

we denote

gs(β1, β2) =
∑

γ∈µU\(B×+−E×)

ms(γ) 1U (β−1
1 γβ2)

and define

iv̄(β1, β2) = l̃ims→0gs(β1, β2).

With the extra new notation, we have the following result.

Proposition 8.2. For any t1, t2 ∈ CU ,

iv̄(Z∗(g, φ)t1, t2)proper =M(v)
φ (g, (t1, t2))− iv̄(t2, t2)

[E× ∩ U : µU ]
Ωφ(g, (t1, t2)),

where

Ωφ(g, (t1, t2)) =
∑

u∈µ2
U\F×

∑
y∈E×

r(g, (t1, t2))φ(y, u),

M(v)
φ (g, (t1, t2)) =wU

∑
a∈F×

l̃ims→0

∑
y∈µU\(B×+−E×)

r(g, (t1, t2))φ(y)ams(y).

Proof. By definition,

iv̄(Z∗(g)t1, t2)proper = iv̄(Z∗(g)t1, t2)− iv̄
Ç

Ωφ(g, (t1, t2))

[E× ∩ U : µU ]
t2, t2

å
.

Here the first term on the right-hand side makes sense by the extended defi-

nition of iv̄ to self-intersections. The rest of the proof is the same as [YZZ13,

Prop. 8.1]. �
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Supersingular case and superspecial case. Let v be a non-archimedean

place of F nonsplit in E. Let B = B(v) be the nearby quaternion algebra

over F . We will write the local pairing iv̄ as a sum of pseudo-theta series

following the idea [YZZ13]. The situation is more complicated by the self-

intersections here. Note that v can be either split or nonsplit in B, but the

exposition here is the same (before going into explicit computations).

Recall from [YZZ13, Lemma 8.2] that for any two distinct CM points

[β1]U ∈ CMU and [t2]U ∈ CU , their local height is given by

iv̄(β1, t2) =
∑

γ∈µU\B×
m(γt2,v, β

−1
1v )1Uv((β

v
1)−1γtv2).

Here the multiplicity function m is defined everywhere on

hUv = B×v ×E×v B×v /Uv

except at the image of (1, 1). It satisfies the symmetry m(b−1, β−1) = m(b, β).

The summation is only well defined for [β1]U 6= [t2]U . Otherwise, we can

find γ ∈ E× such that β−1
1 γt2 ∈ U , and the term at γ is not well defined.

Hence, we extend the definition to any two CM points [β1]U ∈ CMU and

[t2]U ∈ CU by

iv̄(β1, t2) =
∑

γ∈µU\(B×−E×∩β1Ut
−1
2 )

m(γt2v, β
−1
1v )1Uv((β

v
1)−1γtv2)

=
∑

γ∈µU\(B×−E×)

m(γt2v, β
−1
1v )1Uv((β

v
1)−1γtv2)

+
∑

γ∈µU\(E×−β1Ut
−1
2 )

m(γt2v, β
−1
1v )1Uv((β

v
1)−1γtv2)

=
∑

γ∈µU\(B×−E×)

m(γt2v, β
−1
1v )1Uv((β

v
1)−1γtv2)

+
∑

γ∈µU\(E×−β1Uvt
−1
2 )

m(γt2v, β
−1
1v )1Uv((β

v
1)−1γtv2).

The definition is equal to the previous one if [β1]U 6= [t2]U . In Lemma 9.4,

we will see that iv̄(t2, t2) can be realized as a proper intersection number via

pull-back to XU ′ for sufficiently small U ′ with U ′v = Uv.

With the extended definition, our conclusion is as follows.

Proposition 8.3. For any t1, t2 ∈ CU ,

iv̄(Z∗(g, φ)t1, t2)proper =M(v)
φ (g, (t1, t2))

+N (v)
φ (g, (t1, t2))− iv̄(t2, t2)

[E× ∩ U : µU ]
Ωφ(g, (t1, t2)),
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where

Ωφ(g, (t1, t2)) =
∑

u∈µ2
U\F×

∑
y∈E×

r(g, (t1, t2))φ(y, u),

M(v)
φ (g, (t1, t2)) =

∑
u∈µ2

U\F×

∑
y∈B−E

r(g, (t1, t2))φv(y, u) mr(g,(t1,t2))φv(y, u),

N (v)
φ (g, (t1, t2)) =

∑
u∈µ2

U\F×

∑
y∈E×

r(g, (t1, t2))φv(y, u) r(t1, t2)nr(g)φv(y, u),

and

mφv(y, u) =
∑

x∈B×v /Uv

m(y, x−1)φv(x, uq(y)/q(x)), (y, u) ∈ (Bv − Ev)× F×v ,

nφv(y, u) =
∑

x∈(B×v −yUv)/Uv

m(y, x−1)φv(x, uq(y)/q(x)), (y, u) ∈ E×v × F×v .

Proof. By the extended definition of iv̄, it suffices to prove

iv̄(Z∗(g, φ)t1, t2) =M(v)
φ (g, (t1, t2)) +N (v)

φ (g, (t1, t2)).

The left-hand side is equal to

wU
∑
a∈F×

∑
x∈B×

f
/U

r(g)φ(x)a
∑

γ∈µU\(B×−E×)

m(γt2, x
−1t−1

1 )1Uv(x
−1t−1

1 γt2)

+ wU
∑
a∈F×

∑
x∈B×

f
/U

r(g)φ(x)a

·
∑

γ∈µU\(E×−t1xUvt−1
2 )

m(γt2, x
−1t−1

1 )1Uv(x
−1t−1

1 γt2).

The first triple sum is converted to M(v)
φ (g, (t1, t2)) as in [YZZ13, Prop. 8.4],

and the second triple sum is converted to N (v)
φ (g, (t1, t2)) similarly. �

Here we use the convention

r(t1, t2)nr(g)φv(y, u) = nr(g)φv(t
−1
1 yt2, q(t1t

−1
2 )u).

Note that in the above series, we write the dependence on (t1, t2) in different

manners for mφv and nφv . This is because mφv(y, u) translates well under the

action of P (Fv) × (E×v × E×v ), but nφv(y, u) only translates well under the

action of P (Fv).

Ordinary case. Assume that v is a non-archimedean place of F split in E.

Then Bv is split because of the embedding Ev → Bv. In this case, the treatment

of [YZZ13, §8.4] is not sufficient for our current purpose, so we write more

details here.
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Let ν1 and ν2 be the two primes of E lying over v. Fix an identification

Bv ∼= M2(Fv) under which Ev =
Ä
Fv

Fv

ä
. Assume that ν1 corresponds to the

ideal
Ä
Fv

0

ä
and ν2 corresponds to

Ä
0
Fv

ä
of Ev.

We will make use of results of [Zha01]. The reduction map of CM points

to ordinary points above ν̄1 is given by

E×\B×f /U −→ E×\(N(Fv)\GL2(Fv))× Bv×f /U.

The intersection multiplicity is a function

mν̄1 : GL2(Fv)/Uv −→ Q

supported on N(Fv)Uv/Uv explicitly as follows. If Uv = (1+prvOBv)
× for some

r ≥ 0, then [Zha01, Lemma 5.5.1] gives

mν̄1

Ç
1 b

1

å
=

1

N
r−v(b)−1
v (Nv − 1)

for b ∈ Fv with v(b) ≤ r − 1. Note that the case v(b) ≥ r corresponds to

self-intersection and is thus not well defined.

Lemma 8.4. The local height pairing of two distinct CM points [β1]U ∈
CMU and [t2]U ∈ CU is given by

iν̄1(β1, t2) =
∑

γ∈µU\E×
mν̄1(t−1

2 γ−1β1)1Uv(β
−1
1 γt2).

Proof. Denote the right-hand side by iν̄1(β1, t2)′. We first prove that

iν̄1(β1, t2) = iν̄1(β1, t2)′ if Uv is sufficiently small. In that case, by the lo-

cal moduli of [Zha01], iν̄1(β1, t2) is nonzero only if there is γ0 ∈ E× such that

γ0t
v
2U

v = βv1U
v and t−1

2 γ−1
0 β1 ∈ N(Fv)Uv. In this case, iν̄1(β1, t2) is equal to

mν̄1(t−1
2 γ−1

0 β1). Then it suffices to check that in the expression of iν̄1(β1, t2)′,

the summation has only one nonzero term which is exactly given by γ = γ0.

In fact, assume that γ ∈ E× satisfies

mν̄1(t−1
2 γ−1β1)1Uv(β

−1
1 γt2) 6= 0.

Write γ = γ′γ0. Then the condition becomes

mν̄1(γ′−1t−1
2 γ−1

0 β1)1Uv(β
−1
1 γ0t2γ

′) 6= 0.

It gives γ′−1N(Fv)Uv ⊂ N(Fv)Uv at v and γ′ ∈ Uv outside v. The former

actually implies γ′ ∈ Uv. Then we have γ′ ∈ U ∩E×. The condition that U is

sufficiently small implies that U ∩ E× = µU . In fact, [U ∩ E× : µU ] is exactly

the ramification index of [t2]U . Hence, γ = γ0 in µU\E×. This proves the case

that U is sufficiently small.

Now we extend the result to general U . Let U ′ = UvU
′v be an open

compact subgroup of Bf with U ′v ⊂ Uv normal. Assume that U ′v is sufficiently
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small so that the lemma holds for XU ′ . Consider the projection π : XU ′ → XU .

By the projection formula, we have

iν̄1([β1]U , [t2]U ) = iν̄1(π−1([β1]U ), [t2]U ′).

To compute the right-hand side, we need to examine π : XU ′ → XU more

carefully. By the right multiplication of U on XU ′ , it is easy to see that the

Galois group of XU ′ → XU is isomorphic to U/(U ′µU ). It follows that

π−1([β1]U ) =
∑

u∈U/(U ′µU )

[β1u]U ′ =
1

[µU : µU ′ ]

∑
u∈U/U ′

[β1u]U ′ .

We can further change the summation to u ∈ Uv/U ′v. Then

iν̄1([β1]U , [t2]U ) = iν̄1(π−1([β1]U ), [t2]U ′)

=
1

[µU : µU ′ ]

∑
u∈U/U ′

iν̄1([β1u]U ′ , [t2]U ′)

=
1

[µU : µU ′ ]

∑
u∈Uv/U ′v

∑
γ∈µU′\E×

mν̄1(t−1
2 γ−1β1)1U ′v(u

−1β−1
1 γt2)

=
1

[µU : µU ′ ]

∑
γ∈µU′\E×

mν̄1(t−1
2 γ−1β1)1Uv(β

−1
1 γt2)

=
∑

γ∈µU\E×
mν̄1(t−1

2 γ−1β1)1Uv(β
−1
1 γt2).

This finishes the general case. �

Just like the other cases, the above summation is only well defined for

[β1]U 6= [t2]U . But we extend the definition to any [β1]U and [t2]U by

iν̄1(β1, t2) =
∑

γ∈µU\(E×−β1Ut
−1
2 )

mν̄1(t−1
2 γ−1β1)1Uv(β

−1
1 γt2)

=
∑

γ∈µU\(E×−β1Uvt
−1
2 )

mν̄1(t−1
2 γ−1β1)1Uv(β

−1
1 γt2).

It is equal to the original pairing if [β1]U 6= [t2]U .

If [β1]U = [t2]U , then we can assume that β1 = t2. A simple calculation

taking advantage of the commutativity of E× simply gives

iν̄1(t2, t2) = 0 ∀ [t2]U ∈ CU .

So in this case, the definition does not give anything new.

The results hold for ν2 by changing upper triangular matrices to lower tri-

angular matrices. For example, the intersection multiplicity mν̄2 : GL2(Fv)/Uv
−→ Q is supported on N t(Fv)Uv/Uv and given by

mν̄1

Ç
1

b 1

å
=

1

N
r−v(b)−1
v (Nv − 1)
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for b ∈ Fv with v(b) ≤ r − 1. Then we also have a similar extension for

iν̄1(β1, t2).

Passing to v̄, we have

mv̄ =
1

2
(mν̄2 +mν̄2), iv̄ =

1

2
(iν̄1 + iν̄2).

Now we have the following result.

Proposition 8.5. For any t1, t2 ∈ CU ,

iv̄(Z∗(g, φ)t1, t2)proper = N (v)
φ (g, (t1, t2)),

where

N (v)
φ (g, (t1, t2)) =

∑
u∈µ2

U\F×

∑
y∈E×

r(g, (t1, t2))φv(y, u) r(t1, t2)nr(g)φv(y, u),

and

nφv(y, u) =
1

2

∑
xv∈(N(Fv)Uv−Uv)/Uv

φv(yxv, u) mν̄1(x)

+
1

2

∑
xv∈(N t(Fv)Uv−Uv)/Uv

φv(yxv, u) mν̄2(x)

for any (y, u) ∈ E×v × F×v .

Proof. Note that we have the extended intersection number iv̄(t2, t2) = 0

automatically. It suffices to check

iv̄(Z∗(g, φ)t1, t2) = N (v)
φ (g, (t1, t2)).

The left-hand side is equal to

wU
∑
a∈F×

∑
x∈B×

f
/U

r(g)φ(x)a
∑

γ∈µU\(E×−t1xUvt−1
2 )

mv̄(t
−1
2 γ−1t1x)1Uv(x

−1t−1
1 γt2).

By 1Uv(x
−1t−1

1 γt2) = 1, we have xv ∈ t−1
1 γt2U

v; by γ /∈ t1xUvt
−1
2 , we have

xv /∈ t−1
1 γt2Uv. Thus it becomes

wU
∑
a∈F×

∑
γ∈µU\E×

r(g)φv(t−1
1 γt2)a

·
∑

xv∈(B×v −t−1
1 γt2Uv)/Uv

r(g)φv(xv)a mv̄(t
−1
2 γ−1t1x).



616 XINYI YUAN and SHOU-WU ZHANG

It remains to convert the last sum to the desired form, which is reduced to

similar results for ν1 and ν2. We have

∑
xv∈(B×v −t−1

1 γt2Uv)/Uv

r(g)φv(xv)a mν̄1(t−1
2 γ−1t1x)

=
∑

xv∈(t−1
1 γt2N(Fv)Uv−t−1

1 γt2Uv)/Uv

r(g)φv(xv)a mν̄1(t−1
2 γ−1t1x)

=
∑

xv∈(N(Fv)Uv−Uv)/Uv

r(g)φv(t
−1
1 γt2xv)a mν̄1(x).

A similar result holds for ν2. �

Decomposition of the height series. Finally, we end up with the following

summary.

Theorem 8.6. Assume Assumption 7.1 holds. Then for any t1, t2 ∈ CU ,

Z(g, (t1, t2), φ))U =−
∑

v nonsplit

(logNv)

∫
CU

M(v)
φ (g, (tt1, tt2))dt

−
∑
v-∞
N (v)
φ (g, (t1, t2)) logNv −

∑
v-∞

jv(Z∗(g, φ)t1, t2) logNv

− i0(t2, t2)

[E× ∩ U : µU ]
Ωφ(g, (t1, t2)).

The right-hand side is explained in the following :

(1) the modified arithmetic self-intersection number

i0(t2, t2) = i(t2, t2)−
∑
v

iv(t2, t2) logNv,

where the local term

iv(t2, t2) =

∫
CU

iv̄(tt2, tt2)dt

uses the extended definition of iv̄ ;

(2) the pseudo-theta series

Ωφ(g, (t1, t2)) =
∑

u∈µ2
U\F×

∑
y∈E×

r(g, (t1, t2))φ(y, u);
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(3) for any place v nonsplit in E,

M(v)
φ (g, (t1, t2))

= wU
∑
a∈F×

l̃ims→0

∑
y∈µU\(B×+−E×)

r(g, (t1, t2))φ(y)ams(y), v|∞,

M(v)
φ (g, (t1, t2))

=
∑

u∈µ2
U\F×

∑
y∈B−E

r(g, (t1, t2))φv(y, u) mr(g,(t1,t2))φv(y, u), v -∞;

(4) for any non-archimedean v,

N (v)
φ (g, (t1, t2)) =

∑
u∈µ2

U\F×

∑
y∈E×

r(g, (t1, t2))φv(y, u) r(t1, t2)nr(g)φv(y, u).

The only new information used above is the identity∫
CU

N (v)
φ (g, (tt1, tt2))dt = N (v)

φ (g, (t1, t2)).

This follows from the invariance

N (v)
φ (g, (tt1, tt2)) = N (v)

φ (g, (t1, t2)),

which in turn follows from the special situation that the summation only in-

volves y ∈ E× in the definition of N (v)
φ .

8.3. Explicit local heights. Let (U, φ, jv, jv) be as in Section 7.2. The

goal of this subsection is to compute mφv(y, u) and nφv(y, u) and to treat

jv(Z∗(g, φ)t1, t2). The results are parallel to those in Section 7.3.

Local intersection numbers.

Lemma 8.7.

(1) Let v be a non-archimedean place nonsplit in E. Then for any (y, u) ∈
(B(v)v − Ev)× F×v ,

mφv(y, u)=


φv(y1, u)1OEv jv(y2) · 1

2(v(q(y2)) + 1), Bv split, Ev inert,

φv(y1, u)1OEv jv(y2) · 1
2(v(q(y2)) + v(Dv)), Bv split, Ev ramified,

φv(y1, u)1OEv jv(y2) · 1
2v(q(y2)), Bv nonsplit.

(2) Let v be a non-archimedean place of F . For any (y, u) ∈ E×v × F×v ,

nφv(y, u) = φv(y, u) · 1

2
v(q(y)).
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Proof. If v is nonsplit in E, by Proposition 8.3,

mφv(y, u) =
∑

x∈B×v /Uv

m(y, x−1)φv(x, uq(y)/q(x)), (y, u) ∈ (Bv − Ev)× F×v ,

nφv(y, u) =
∑

x∈(B×v −yUv)/Uv

m(y, x−1)φv(x, uq(y)/q(x)), (y, u) ∈ E×v × F×v .

If v is nonsplit in E and split in B, then (1) is computed in [YZZ13,

Prop. 8.7], except that there is a mistake in the case that Ev is wildly ramified

over Fv. The mistake came from [YZZ13, Lemma 8.6], which was in turn

caused by the wrong formula of [Zha01, Lemma 5.5.2]. As a digression, we

remark that the mistake did not impact the main result of [YZZ13] because

the result in this case was not used in the book elsewhere.

The correct version of [YZZ13, Lemma 8.6] is as follows. The multiplicity

function is m(b, β) 6= 0 only if q(b)q(β) ∈ O×Fv . In this case, assume that

β ∈ E×v hcGL2(OFv). Then

m(b, β) =



1
2(v(λ(b)) + 1) if c = 0, Ev/Fv is unramified,
1
2v(Dvλ(b)) if c = 0, Ev/Fv is ramified,

N1−c
v (Nv + 1)−1 if c > 0, Ev/Fv is unramified,

1
2N
−c
v if c > 0, Ev/Fv is ramified.

Only the second case is different, and it can be verified by going back to the

canonical lifting of Gross [Gro86]. Then it is easy to have the correct formula

(1) of the current case.

If v is nonsplit in E and split in B, then (2) can be verified by the same

method as in [YZZ13, Prop. 8.7], where the only difference is that

nφv(y, u) =
∞∑
c=1

m(y−1, hc)vol(E×v hcGL2(OFv) ∩M2(OFv)n)

is a sum omitting c = 0.

If v is inert in E and nonsplit in B, then by Lemma 8.8,

m(y, x−1) =
1

2
v(λ(y)) 1E×v (1+OEv$vjv)(y)10(v(q(x)/q(y))).

It follows that

mφv(y, u) =
1

2
v(λ(y)) 1E×v (1+OEv$vjv)(y)

·
∑

x∈B×v /Uv

10(v(q(x)/q(y)))φv(x, uq(y)/q(x)).

Note that B×v /Uv ∼= Z. It is easy to get (1). For (2), since the conditions

x /∈ yUv and 10(v(q(x)/q(y))) are contradictory, we get nφv(y, u) = 0.
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If v is split in E, in the setting of Proposition 8.5,

nφv(y, u) =
1

2

∑
xv∈(N(Fv)−N(OFv ))/N(OFv )

φv(yxv, u) mν̄1(x)

+
1

2

∑
xv∈(N t(Fv)−N t(OFv ))/N t(OFv )

φv(yxv, u) mν̄2(x).

We first consider the case v /∈ S2. Then φv is the standard characteristic

function. Write y = ( a d ). The summations are nonzero only if a, d ∈ OFv and

u ∈ O×Fv , which we assume. For the first sum, write xv =
(

1 b
1

)
. Then we need

ab ∈ OFv . Eventually, the first sum becomes

∑
b∈(a−1OFv−OFv )/OFv

1

N
−v(b)−1
v (Nv − 1)

=

v(a)∑
i=1

|(p−iv − p−i+1
v )/OFv |

N i−1
v (Nv − 1)

= v(a).

Similarly, the second sum equals v(d). Then

nφv(y, u) =
1

2
(v(a) + v(d)) =

1

2
v(q(y)).

This finishes the proof for v /∈ S2. If v ∈ S2, the computation is similar, and

we will get everywhere 0. �

Multiplicity function : the superspecial case. Let v be non-archimedean

place nonsplit in B and inert in E. Recall that the multiplicity function m is

defined on

hUv = B(v)×v ×E×v B×v /Uv.

Note that we have assumed that Uv is maximal. The following result does not

need any restriction on Uv.

Lemma 8.8. For any (γ, β) ∈ B(v)×v ×E×v B×v , we have m(γ, β) 6= 0 only

if q(γ)q(β) ∈ O×Fv and γ ∈ E×v · (1 +OEv$vjv). In this case,

m(γ, β) =
1

2
v(λ(γ)).

Here λ(γ) = q(γ2)/q(γ), where γ = γ1 + γ2 is the decomposition according to

Bv = Ev + Evjv .

Instead of deformation theory, our proof directly uses the theorem of p-adic

uniformization of Čerednik [Che76]. See also [BC91].

Write B = B(v) for simplicity. Denote by F ur
v the completion of the

maximal unramified extension of Fv and by Cv the completion of the algebraic

closure of Fv. The p-adic uniformization in terms of rigid-analytic space is

Xan
U ×Fv F ur

v = B×\(Ω×Fv F ur
v )× B×f /U.
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Here Ω is the Drinfe′ld (rigid-analytic) upper half plane over Fv, which gives

Ω(Cv) = Cv−Fv. The group B×v
∼= GL2(Fv) acts on Ω by the fractional linear

transformation, and on B×v /Uv ∼= Z via translation by v ◦ q = v ◦ det.

To study the intersection multiplicity, we need the integral version of

the uniformization. The uniformization theory also gives a canonical integral

model “Ω of Ω. It is a formal scheme over OFv obtained from successive blowing-

up of rational points on the special fiber of POFv constructed by Deligne. The

uniformization takes the form“XU ×Spf OFv
Spf OFur

v
= B×\(“Ω×Spf OFv

Spf OFur
v

)× B×f /U.

Here XU is the canonical integral model over OF , which is semistable at v, and“XU denotes the formal completion along the special fiber above v.

The special fiber of “Ω, or equivalently the underlying topological space

of “Ω, is a union of P1’s indexed by scalar equivalence classes of OFv -lattices

of F 2
v . Then its irreducible components are indexed by

GL2(Fv)/F
×
v GL2(OFv).

It follows that the irreducible components of the special fiber of XU above v

are indexed by

B×\(GL2(Fv)/F
×
v GL2(OFv))× B×f /U.

Consider the set

CMU = E×\B×(Af )/U = B×\(B× ×E× B×v /Uv)×B×(Avf )/Uv.

The natural embedding CMU → XU (Cv) is given by the embedding

B× ×E× B×v /Uv −→ Ω× Z, (γ, β) 7−→ (γz0, v(q(γ)q(β))),

where z0 ∈ Ω(Ev) is the unique point in Ω(Cv) fixed by E×v . Thus the CM

points on Ω are given by

h◦Uv =
¶

(γ, β) ∈ B×v ×E×v B×v /Uv : v(q(γ)q(β)) = 0
©
.

As Uv is maximal, the class of (γ, β) in h◦Uv is determined by γ. Thus h◦Uv can

be identified with

B×v /E
×
v = B×v z0.

Then we have a multiplicity function m on B×v /E
×
v such that

m(γ, β) = m(γ)10(v(q(γ)q(β))), γ ∈ B×v , β ∈ Bv×.

The problem is reduced to compute m(γ), which is the intersection number of

z0 with γz0 on the special fiber.

The intersection number is on “Ω ×Spf OFv
Spf OFur

v
. Since the irreducible

components of its special fiber are indexed by GL2(Fv)/F
×
v GL2(OFv), we see

that m(γ) is nonzero only if γ lies in GL2(Fv)/F
×
v GL2(OFv). Then we can

assume that γ ∈ GL2(OFv), since the center acts trivially on z0.



ON THE AVERAGED COLMEZ CONJECTURE 621

By the assumption, z0 and γz0 reduce to the same irreducible component

on the special fiber of “Ω×Spf OFv
Spf OFur

v
. Remove the other irreducible com-

ponents of “Ω×Spf OFv
Spf OFur

v
. We obtain a formal scheme, which is just the

formal completion of P1
OFur

v
− P1(kv) along the special fiber. Here kv denotes

the residue field of OFv , and the kv-points on the special fiber are removed.

Now the problem is elementary: z0 and γz0 are points of P1
OFur

v
, and the goal

is to find their intersection number on the special fiber. We further replace

P1
OFur

v
by P1

OEv
, which does not change the intersection number.

The point z0 ∈ P1(OEv) corresponds to an OFv -linear isomorphism `0 :

O2
Fv
→ OEv , which is determined by z0 up to O×Ev -action. Then γz0 corre-

sponds to the isomorphism `0 ◦ γ : O2
Fv
→ OEv . We need to find the maximal

integer n such that `0 and `0 ◦γ reduce to the same point in P1(OEv/p
n
v ). Iden-

tify Ev with F 2
v by `0, so that M2(Fv) acts on Ev. The action is compatible

with the embedding E ↪→ B(v) which we specify at the very beginning because

z0 is the fixed point of E×v . Then the problem becomes finding the maximal

integer m such that the image of γ in GL2(OFv/p
n
v ) actually lies in (OEv/p

n
v )×.

Write γ = a + bjv according to the orthogonal decomposition M2(Fv) =

Ev +Evjv. Here q(jv) ∈ O×Fv by assumption. Some O×Ev -multiple of jv acts on

Ev by the nontrivial element of Gal(Ev/Fv). Hence, m(γ) 6= 0 only if a ∈ O×Ev
and b ∈ pvOEv . In that case, m(γ) = v(b).

Go back to an arbitrary γ ∈ GL2(Fv). We have m(γ) 6= 0 only if γ ∈
E×v · (1 +OEv$vjv). In that case, m(γ) = v(λ(γ))/2.

The j-part. If v is a non-archimedean place of F split in B, then we have

the j-part jv(Z∗(g, φ)t1, t2) = 0 automatically. This is a trivial consequence

of the fact that the special fiber of XU at v is a disjoint union of irreducible

curves. For the fact, in the construction of XU before Corollary 4.6, we can

take the prime p to be coprime to v; then XU ′ is smooth at v. The special

fiber of XU ′ at v is a disjoint union of irreducible curves, and the quotient XU
has the same property since it is also a quotient of the underlying topological

space.

In the following, assume that v is a non-archimedean place nonsplit in B
and inert in E. Note that Uv is maximal and φv = 1O×Bv×O

×
Fv

. It is proved

that the j-part jv(Z∗(g)t1, t2) is a nonsingular pseudo-theta series in [YZZ13]

under [YZZ13, Assumption 5.3]. The result is also true in the current situation.

Recall that

jv(Z∗(g)t1, t2) =

∫
CU

jv̄(Z∗(g)tt1, tt2)dt.

The integration is a finite sum, so it suffices to prove the same result for

jv̄(Z∗(g)t1, t2).
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Lemma 8.9. Let v be a non-archimedean place nonsplit in B and inert

in E. The j-part jv̄(Z∗(g, φ)U t1, t2) is a nonsingular pseudo-theta series of the

form ∑
u∈µ2

U\F×

∑
y∈B(v)−{0}

r(g)φv(y, u) lr(g)φv(y, u).

Proof. Resume the notation of Lemma 8.8. As above, denote by F ur
v the

completion of the maximal unramified extension of Fv. As all CM points

of CMU are defined over F ur
v , the intersection number jv(Z∗(g)t1, t2) can be

computed on the integral model XU,OFur
v

. By the definition in [YZZ13, §7.1.7],

jv(Z∗(g)t1, t2) = Z∗(g)t1 · Vt2 .

Here Z∗(g)t1 is the Zariski closure in XU,OFur
v

, and Vt2 is a vertical divisor

on XU,OFur
v

, i.e., a linear combination of irreducible components in the special

fibers of XU,OFur
v

which gives the ξ̂-admissible arithmetic extension of t2.

We still use the p-adic uniformization“XU ×Spf OFv
Spf OFur

v
= B×\(“Ω×Spf OFv

Spf OFur
v

)× B×f /U.

Here B = B(v) as before. The map from “XU ×Spf OFv
Spf OFur

v
to its set of

connected components is exactly the natural composition

B×\(“Ω×Spf OFv
Spf OFur

v
)× B×f /U −→ B×\B×f /U

q−→ F×+ \A×f /q(U).

For the case t2 = 1, write V1 =
∑
i aiWi, where {Wi}i is the set of ir-

reducible components of the special fiber of XU,OFur
v

lying in the same con-

nected component as 1. Let W̃i be an irreducible component of the special

fiber of “Ω ×Spf OFv
Spf OFur

v
lifting Wi. Note that the choice of W̃i is not

unique, but we fix such choice. Write ‹V =
∑
i aiW̃i, viewed as a vertical

divisor of “Ω ×Spf OFv
Spf OFur

v
. The vertical divisor (‹V , 1) =

∑
i ai(W̃i, 1) of

(“Ω×Spf OFv
Spf OFur

v
)× B×f /U is a lifting of the vertical divisor V1 =

∑
i aiWi.

For general t2 ∈ A×f , the vertical divisor (‹V , t2) =
∑
i ai(W̃i, t2) of

(“Ω×Spf OFv
Spf OFur

v
)× B×f

is a lifting of the vertical divisor Vt2 . In fact, by the projection formula, it

suffices to verify that the intersection numbers of (‹V , t2) with any B×-invariant

vertical divisors of (“Ω ×Spf OFv
Spf OFur

v
) × B×f /U are the expected ones. But

these intersection numbers are given by the corresponding ones from the case

t2 = 1.

For any point β ∈ CMU , the projection formula gives

β · Vt2 =
∑

γ∈µU\B×
(γ−1z0 · ‹V )1O×Fv

(q(γ)q(t2)/q(β))1Uv(t
−1
2 γ−1β).
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Here z0 ∈ “Ω(OFur
v

) is the unique fixed section of E×v , and the intersection

(γ−1z0 · ‹V ) is taken on “Ω×Spf OFv
Spf OFur

v
.

Hence, as in all the previous cases of local heights, we have

Z∗(g)t1 · Vt2 = wU
∑
a∈F×

∑
x∈B×

f
/U

r(g)φ(x)a

·
∑

γ∈µU\B×
(γ−1z0 · ‹V )1O×Fv

(q(γ)q(t2)/q(t1x))1Uv(t
−1
2 γ−1t1x)

= wU
∑
a∈F×

∑
γ∈µU\B×

r(g)φv(t−1
1 γt2)a

·
∑

x∈B×v /Uv

r(g)φv(x)a(γ
−1z0 · ‹V )1O×Fv

(q(t−1
1 γt2)/q(x))

=
∑

u∈µ2
U\F×

∑
γ∈B×

r(g, (t1, t2))φv(γ, u) r(t1, t2)lr(g)φv(γ, u),

where

lφv(γ, u) =
∑

x∈B×v /Uv

φv(x, uq(γ)/q(x))1O×Fv
(q(x)/q(γ)) (γ−1z0 · ‹V ).

Here we have used (t−1
2 γ−1t1z0 · ‹V ) = (γ−1z0 · ‹V ), which is explained as fol-

lows. In fact, t1z0 = z0 by definition. For t2, since the intersection number is

invariant under the action of B×v , we have (t−1
2 γ−1z0 · ‹V ) = (γ−1z0 · t2‹V ). But

then t2‹V = ‹V since t2 ∈ F×v GL2(OFv) fixes every irreducible component of the

special fiber of “Ω×Spf OFv
Spf OFur

v
.

Hence, the intersection number jv(Z∗(g)t1, t2) is a pseudo-theta series. It

remains to prove that the function

lφv(γ, u)

=
∑

x∈B×v /Uv

φv(x, uq(γ)/q(x))1O×Fv
(q(x)/q(γ)) (γ−1z0 · ‹V ), (γ, u) ∈ B×v × F×v

extends to a Schwartz function of Bv × F×v . The function is locally constant

on B×v × F×v , and we need to prove that its support is actually compactly

supported in B×v × F×v . In order for the contribution of x ∈ B×v /Uv to the

summation to be nonzero, we need

x ∈ O×Bv , uq(γ)/q(x) ∈ O×Fv , q(x)/q(γ) ∈ O×Fv .

It follows that

lφv(γ, u) = (γ−1z0 · ‹V ) · 1O×Fv
(q(γ)) · 1O×Fv

(u).

In particular, it is already compactly supported in u.
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To get extra information on γ, go back to the uniformization. Note that

the irreducible components of the special fiber of “Ω ×Spf OFv
Spf OFur

v
are in-

dexed by

GL2(Fv)/F
×
v GL2(OFv).

Denote by αiF
×
v GL2(OFv) the coset representing the component Wi of ‹V =∑

i aiWi. Then we simply have

γ−1z0 · ‹V =
∑
i

ai1αiF×v GL2(OFv )(γ
−1).

Combining with q(γ) ∈ O×Fv , we conclude that the support of γ in lφv(1, γ, u)

is the union of finitely many cosets of GL2(OFv). This finishes the proof. �

Remark 8.10. As we can see from the proof, the result holds under the

more general condition that φv(0, u) = 0. This condition is weaker than

[YZZ13, Assumption 5.3].

9. Quaternionic height

In this section, we will combine results in the last two sections to prove

Theorem 1.7. We will prove a formula for the modified self-intersection i0(1, 1)

by applying Lemma 6.1(2) to the difference

D(g, φ) = PrI ′(0, g, φ)U − 2Z(g, (1, 1))U .

Then we will connect i0(1, 1) to the height of CM points defined by arithmetic

Hodge bundles by proving an adjunction formula.

9.1. Derivative series vs. height series. Let (F,E,B, U, φ) be as in Sec-

tion 7.2. By comparing the height series and the derivative series, we will

show a formula of the modified self-intersection

i0(P, P ) = i0(1, 1) = i(1, 1)−
∑
v

iv(1, 1) logNv.

Here i(1, 1) represents the horizontal arithmetic intersection of the CM point

[1]U ∈ CU with itself, while the local term

iv(1, 1) =

∫
CU

iv̄(t, t)dt

uses the extended definition of iv̄(t, t) introduced in Section 8.2 case by case.

The following is the main theorem of this section.

Theorem 9.1.
1

[O×E : O×F ]
i0(P, P ) =

L′f (0, η)

Lf (0, η)
+

1

2
log

Ç
dE/F
dB

å
.

The theorem is already very close to Theorem 1.7. The bridge between

these two theorems is the arithmetic adjunction formula in Theorem 9.3.
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The comparison. Let (B, U, φ) be as in Section 7.2. Go back to

D(g, φ) = PrI ′(0, g, φ)U − 2Z(g, (1, 1))U .

By Theorem 7.2,

PrI ′(0, g, φ)U =−
∑
v|∞

2

∫
CU

K(v)
φ (g, (t, t))dt−

∑
v-∞ nonsplit

2

∫
CU

K(v)
φ (g, (t, t))dt

+
∑

u∈µ2
U\F×

∑
y∈E×

(2 log δf (gf ) + log |uq(y)|f ) r(g)φ(y, u)

−
∑
v-∞

∑
u∈µ2

U\F×

∑
y∈E×

cφv(g, y, u) r(g)φv(y, u)

− c1Ωφ(g).

Here

c1 = 2
L′f (0, η)

Lf (0, η)
+ log

dE
dF

and

Ωφ(g) =
∑

u∈µ2
U\F×

∑
y∈E×

r(g)φ(y, u).

By Theorem 8.6,

Z(g, (1, 1), φ))U =−
∑

v nonsplit

(logNv)

∫
CU

M(v)
φ (g, (t, t))dt

−
∑
v-∞
N (v)
φ (g, (1, 1)) logNv −

∑
v-∞

jv(Z∗(g, φ)U1, 1) logNv

− 1

e
i0(1, 1) Ωφ(g).

Here we write e = [O×E : O×F ] for simplicity. We already know jv(Z∗(g, φ)U1, 1)

6= 0 only if v is nonsplit in B.

Group the terms in the difference as follows:

D(g, φ) = −2
∑
v|∞

∫
CU

(K(v)
φ (g, (t, t))−M(v)

φ (g, (t, t)))dt

− 2
∑

v-∞ nonsplit

∫
CU

(K(v)
φ (g, (t, t))−M(v)

φ (g, (t, t)) logNv)dt

+ 2
∑
v∈Σf

jv(Z∗(g, φ)U1, 1) logNv

+
∑
v-∞

∑
u∈µ2

U\F×

∑
y∈E×

dφv(g, y, u) r(g)φv(y, u)

+

Å
2

e
i0(1, 1)− c1

ã
Ωφ(g).
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Here,

dφv(g, y, u) = 2nφv(g, y, u) logNv − cφv(g, y, u)

+ (2 log δ(g) + log |uq(y)|v)r(g)φv(y, u)

∀ g ∈ GL2(Fv), (y, u) ∈ E×v × F×v , v -∞.

The key term for us is the coefficient of Ωφ(g).

Every term in the expression of D(g, φ) is a pseudo-theta series, and each

summation over v is just a finite sum. In fact, we have the following itemized

result:

(1) If v|∞, then

K(v)
φ (g, (t, t))−M(v)

φ (g, (t, t)) = 0.

This follows from [YZZ13, Prop. 8.1]. In the following cases, we assume

that v is non-archimedean.

(2) If v is nonsplit in E, then

kφv(1, y, u)−mφv(y, u) logNv

extends to a Schwartz function on B(v)v × F×v . Furthermore, for all but

finitely many such v,

kφv(g, y, u)−mr(g)φv(y, u) logNv = 0

identically, and thus

K(v)
φ (g, (t, t))−M(v)

φ (g, (t, t)) = 0.

The second statement is just [YZZ13, Prop. 8.8]. The first statement is a

consequence of Lemmas 7.4 and 8.7.

(3) For any v -∞, the function

dφv(1, y, u) = 2nφv(1, y, u) logNv − cφv(1, y, u) + log |uq(y)|v φv(y, u)

extends to a Schwartz function on Ev × F×v . Furthermore, for all but

finitely many v,

dφv(g, y, u) = 0

identically. The first statement is a consequence of Lemmas 7.6 and 8.7.

From them, we see that dφv(1, y, u) = 0 for all but finitely many v. The

vanishing result extends to dφv(g, y, u) by considering Iwasawa decompo-

sitions as in [YZZ13, Prop. 8.8].

(4) For any v nonsplit in B, the j-part jv(Z∗(g, φ)U1, 1) is a nonsingular

pseudo-theta series of the form∑
u∈µ2

U\F×

∑
y∈B(v)−{0}

lφv(g, y, u)r(g)φv(y, u).

This is Lemma 8.9.
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With these results, every term on the right-hand side of D(g, φ) is a

nonsingular pseudo-theta series. Therefore, we are finally ready to apply

Lemma 6.1(2).

The outer theta series associated to the pseudo-theta series

Ωφ(g) =
∑

u∈µ2
U\F×

∑
y∈E×

r(g)φ(y, u)

is exactly the weight-one theta series

θΩ,1(g) =
∑

u∈µ2
U\F×

∑
y∈E

rE(g)φ(y, u).

By Lemma 6.1(2), there is a unique identity including this theta series, and

we are going to write down this identity explicitly. This identity will be a sum

of theta series of weight one. We look at the contribution of every term in the

expression.

The contribution of

K(v)
φ (g, (t, t))−M(v)

φ (g, (t, t)) logNv

to the weight-one identity comes from its inner theta series∑
u∈µ2

U\F×

∑
y∈E

rE(g)φv(y, u) rE(g)(kφv(1, y, u)−mφv(y, u) logNv).

This sum does not change after averaging on CU . The term jv(Z∗(g, φ)U1, 1)

does not contribute to the identity we want. The term∑
u∈µ2

U\F×

∑
y∈E×

dφv(g, y, u) r(g)φv(y, u)

contributes by its outer theta series∑
u∈µ2

U\F×

∑
y∈E

rE(g)φv(y, u) rE(g)dφv(1, y, u).

Hence, we obtain the following identity:

0 = 2
∑

v-∞ nonsplit

∑
u∈µ2

U\F×

∑
y∈E

rE(g)φv(y, u) rE(g)(kφv(1, y, u)

−mφv(y, u) logNv) +
∑
v-∞

∑
u∈µ2

U\F×

∑
y∈E

rE(g)φv(y, u) rE(g)dφv(1, y, u)

+

Å
2

e
i0(1, 1)− c1

ã ∑
u∈µ2

U\F×

∑
y∈E

rE(g)φ(y, u).

Now we need the following explicit local results.

Proposition 9.2. Let v be a non-archimedean place and (y, u)∈Ev×F×v .

(1) If v is nonsplit in E, then

2kφv(1, y, u)− 2mφv(y, u) logNv + dφv(1, y, u) = − log |dvq(jv)|vφv(y, u).
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(2) If v is split in E, then

dφv(1, y, u) = − log |dvq(jv)|vφv(y, u).

Proof. Recall that

dφv(1, y, u) = 2nφv(1, y, u) logNv − cφv(1, y, u) + log |uq(y)|v φv(y, u).

The proposition is just a combination of Lemmas 7.4, 7.6 and 8.7. �

Therefore, the identity gives exactly

0 =

Ñ∑
v-∞
− log |dvq(jv)|v +

2

e
i0(1, 1)− c1

é ∑
u∈µ2

U\F×

∑
y∈E

rE(g)φ(y, u),

which is just

0 =

Å
log |dFdB|+

2

e
i0(1, 1)− c1

ã
θΩ,1(g).

We claim that θΩ,1(g) is not identically zero. Then we get

log |dFdB|+
2

e
i0(1, 1)− c1 = 0,

which proves Theorem 9.1.

It remains to check that the theta series

θΩ,1(g) =
∑

u∈µ2
U\F×

∑
y∈E

rE(g)φ(y, u)

is not identically zero. It suffices to check that the constant term∑
u∈µ2

U\F×
rE(g)φ(0, u)

is not identically zero. For that, assume that for v ∈ Σf or v ∈ S2,

gv =

Ç
1

−1

å
,

and gv = 1 at any other place v. By local computation, rE(g)φ(0, 1) > 0

and rE(g)φ(0, u) ≥ 0 for all u ∈ F×. Then the (finite) sum over u is strictly

positive. This shows that the theta series is nonzero.

9.2. Arithmetic Adjunction Formula. Now we are going to relate

i0(P, P ) = i0(1, 1) = i(1, 1)−
∑
v

iv(1, 1) logNv

to the Faltings height. Here iv(1, 1) = 0 if v is split in E. It is essentially an

arithmetic adjunction formula. The main result of this subsection is
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Theorem 9.3 (Arithmetic adjunction formula).

1

[O×E : O×F ]
i0(P, P ) = −hLU (P ).

This theorem and Theorem 9.1 imply Theorem 1.7. The goal of this

subsection is to prove Theorem 9.3.

Denote by H the Hilbert class field of E. Then P = [1]U is defined over H,

and we view it as a rational point of XU,H . By assumption, E is unramified

at any v ∈ Σf . By Corollary 4.6, XU,OH is Q-factorial. We will consider

arithmetic intersections over XU,OH . We will suppress the symbol U from the

subscripts. For example, XU,OH is written as XOH .

Denote by P the Zariski closure of P in XOH . Then we have an arithmetic

divisor

P̄ = (P, gP ),

where the Green function gP = {gP,w}w:H→C is the admissible Green func-

tion as in [YZZ13, §7.1.5]. Denote by O(P̄) the corresponding hermitian line

bundle. By definition,

i(1, 1) =
1

[H : F ]
〈P̄,P〉 =

1

[H : F ]
d̂eg(O(P̄)|P).

Denote by L̄OH the base change of the arithmetic Hodge class L̄U = L̄
from X to XOH . It follows that

hω̂(1) =
1

[H : F ]
d̂eg(L̄OH |P).

So the goal is to prove

1

e
d̂eg(O(P̄)|P) + d̂eg(L̄OH |P) = [H : F ]

1

e

∑
v

iv(1, 1) logNv.

Here we denote e = [O×E : O×F ] for simplicity, which is also the ramification

index eP of P . Rewriting the right-hand side according to places w of H, the

equality becomes

d̂eg
(
M̄|P

)
=

1

e

∑
w

iw(1, 1) logNw.

Here

M̄ = L̄OH ⊗O(e−1P̄)

is a hermitian Q-line bundle on XOH .

Denote by M and M the finite part and the generic fiber of M̄. We first

claim that there is canonical isomorphism

ResP : M |P −→ H.
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In fact, by definition,

L = ωX/F ⊗
⊗

Q∈X(F )

OX((1− e−1
Q )Q).

Then

M = LH ⊗O(e−1P ) = ωXOH /OH
⊗O(P )⊗

⊗
Q∈X(F ), Q 6=P

OX((1− e−1
Q )Q).

It follows that we have canonical isomorphisms

M |P −→ (ωXOH /OH
⊗O(P ))|P −→ H.

Here the second map is just the residue map

du

u
⊗ 1P 7−→ 1,

where u is any local coordinate of P in XH , and 1P denotes the section 1 of

O(P ). The map does not depend on the choice of u.

By the residue map ResP : M |P → H, we have an induced hermitian line

bundle N̄ = (N , ‖ · ‖) on Spec(OH). Here N denotes the image of M|P in H,

which is a fractional ideal of H, and the metric on N is determined by

‖1‖w =

∥∥∥∥duu ⊗ 1P

∥∥∥∥
w

(P ), w : H → C.

Then we have

d̂eg
(
M̄|P

)
= d̂eg(N̄ ) = −

∑
w:H→C

log ‖1‖w +
∑
w-∞

dimkw(Nw/OHw) logNw.

Here the second summation is over all non-archimedean places w of H, kw
denotes the residue field of w, and dimkw(Nw/OHw) means − dimkw(OHw/Nw)

if Nw is contained in OHw . However, we will see that Nw always contains OHw .

The theorem is reduced to the local identities

− log ‖1‖w =
1

e
iw(P, P ), w : H → C

and

dimkw(Nw/OHw) =
1

e
iw(P, P ), w -∞.

We will see that the ideas in the different cases are very similar even though

the reductions are completely different.
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Archimedean case. We first check the local identity for the archimedean

case, so w is an embedding H → C. It restricts to an embedding v : F → C.

We have a uniformization

Xv(C) = B×+\h×B×(Af )/U.

Here B = B(v) is the nearby quaternion algebra. Under the uniformization,

the point P is represented by (z0, t) for some t ∈ E×(Af ). The metric ‖ · ‖w of

O(P̄) is given by

− log ‖1P ‖w([z, β]) = iv̄([z, β], [z0, t])

for any other point [z, β] ∈ Xv(C) not equal to [z0, t]. Here we recall from

[YZZ13, §8.1] that

iv̄([z, β], [z0, t]) = l̃ims→0

∑
γ∈µU\B×+

ms(z0, γz)1U (t−1γβ),

where

ms(z0, z) = Qs

Ç
1 +

|z − z0|2

2Im(z0)Im(z)

å
.

Consider the covering map

π : h×B×(Af )/U −→ Xv(C).

Here the left-hand side is just a countable disjoint union of h. Denote by P̃ the

point (z0, t) in this space, which is a lifting of P = [z0, t]. By the construction of

the Hodge bundle, π∗L is canonically isomorphic to the sheaf Ω1 of holomorphic

1-forms on h×B×(Af )/U . As a consequence, we have canonical isomorphisms

(M |P )⊗wC −→ (π∗M)|P̃ = (π∗LH⊗π∗O(e−1P ))|P̃ −→ (Ω1⊗O(P̃ ))|P̃ −→ C.

Here the last map is a residue map again, and the whole composition is exactly

the base change to C of the original residue map ResP : M |P → H.

Let Q̃ = (z1, t) be a point of h × B×(Af )/U , and let Q = [z1, t] be its

image in the quotient Xv(C). Consider the behavior as z1 approaches z0,

which also means Q̃ → P̃ or Q → P in the complex topology. Let z be the

usual coordinate of h ⊂ C, so that z − z0 gives a local coordinate at P̃ in

h×B×(Af )/U . Then the second residue map gives

‖1‖w = lim
Q̃→P̃

Å∥∥∥∥ dz

z − z0

∥∥∥∥
Pet

(Q̃) · ‖1P (Q)‖
1
e

ã
.

Recall that the Petersson metric gives∥∥∥∥ dz

z − z0

∥∥∥∥
Pet

(Q̃) =
2 Im(z1)

|z1 − z0|
.
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On the other hand, the Green function is

− log ‖1P ‖w(Q)

= iv̄([z1, t], [z0, t])

= l̃ims→0

∑
γ∈µU\B×+

ms(z0, γz1)1U (t−1γt)

= e ·m0(z0, z1) + l̃ims→0

∑
γ∈µU\(B×+−E×)

ms(z0, γz1)1U (t−1γt).

The definition has been extended to self-intersection as

iv̄([z0, t], [z0, t]) = l̃ims→0

∑
γ∈µU\(B×+−E×)

ms(z0, γz0)1U (t−1γt).

Hence,

− log ‖1‖w = lim
z1→z0

Ç
m0(z0, z1)− log

2 Im(z1)

|z1 − z0|

å
+

1

e
iv̄(P, P ).

It remains to check that the limit on the right-hand side is exactly zero.

Note that

m0(z0, z1) = Q0

Ç
1 +

|z1 − z0|2

2Im(z0)Im(z1)

å
.

By [GZ86, II, (2.6)],

Q0(t) =
1

t+ 1
F (1, 1, 2,

2

t+ 1
) =

1

2
log

t+ 1

t− 1
.

It follows that

m0(z0, z1)− log
2 Im(z1)

|z1 − z0|
=

1

2
log

Ç
1 +

|z1 − z0|2

4Im(z0)Im(z1)

å
− 1

2
log

Im(z1)

Im(z0)
,

which converges to 0 as z1 → z0. This finishes the archimedean case.

Non-archimedean case. Let w be a non-archimedean place of H. Let v

be the restriction of w to F . To prove the arithmetic adjunction formula,

the key is the following geometric interpretation of the extended intersection

iw(P, P ) = iv̄(P, P ). For convenience, denote by R = OHur
w

the integer ring of

the completion Hur
w of the maximal unramified extension of Hw.

Lemma 9.4. Let U ′ = UvU
′v be an open compact subgroup of Bf with

U ′v ⊂ Uv normal. Consider the projection π : XU ′,R → XU,R. Denote by P ′ an

irreducible component of the divisor π−1PR on XU ′,R. If U ′v is small enough,

then

iw(P, P ) = 〈π−1PR − eP ′, P ′〉.
Here the pairing denotes the intersection multiplicity on the special fiber of

XU ′,R.
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In the lemma, the morphism π is étale, so P ′ must be a section of XU ′,R
over R. The ramification index of P is e. Then the multiplicity of P ′ in

π−1P is e if U ′v is small enough, so the intersection in the lemma is a proper

intersection. The lemma can be viewed as a modified projection formula. We

will prove it later, but let us first use it to finish the proof of the arithmetic

adjunction formula.

Recall that it is reduced to the local identity

dimkw(Nw/OHw) =
1

e
iw(P, P ).

Here N denotes the image of M|P under the residue map

ResP : M |P −→ H

As in the archimedean case, we will have a different interpretation of the

residue map. Let π : XU ′,R → XU,R and P ′ be as in the lemma. Denote by

P ′ the generic fiber of P ′. By the definition of the Hodge bundle, we have

canonical isomorphisms

π∗LU,Hur
w
−→ ωXU′,Hur

w
/Hur

w
, π∗LU,R −→ ωXU′,R/R.

Thus we have canonical isomorphisms

(M |P )⊗H Hur
w −→ (π∗LU,Hur

w
⊗ π∗O(e−1P ))|P ′

−→ (ωXU′,Hur
w
/Hur

w
⊗O(P ′))|P ′ −→ Hur

w .

Here the last map is a residue map again, and the whole composition is exactly

the base change to Hur
w of the original residue map ResP : M |P → H.

The computation is to track the change of integral structures of the com-

position. The composition has the integral version

(M|P)⊗OH R // (π∗LU,R ⊗ π∗O(e−1P))|P ′ // (ωXU′,R/R ⊗O(P ′))|P ′ // R.

The first arrow is an isomorphism by definition, and the last arrow is an isomor-

phism by the adjunction formula on XU ′,R. The dashed arrow in the middle

may only be a well-defined map after base change to Hur
w , but we write it

this way to track the change of the integral structure. Thus dimkw(Nw/OHw)

is equal to the dimension of the quotient of two sides of the dashed arrow.

Tensoring with (π∗LU,R|P ′)⊗(−1), the dashed arrow becomes

π∗O(e−1P)|P ′ // O(P ′)|P ′ .

Tensoring with π∗O(−e−1P)|P ′ , it further becomes

OP ′ // O(P ′ − e−1π∗P)|P ′ .
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Note that e−1π∗P − P ′ is an effective divisor. The real map should be the

inverse direction

O(P ′ − e−1π∗P)|P ′ −→ OP ′ .
The image of the last map is the restriction of the ideal sheaf of e−1π∗P − P ′
to P ′, so the cokernel of the map has dimension exactly equal to the intersection

number

〈O(e−1π∗P − P ′, P ′〉.
Hence,

dimkw(Nw/OHw) = 〈O(e−1π∗P − P ′, P ′〉.
By Lemma 9.4, it further equals

1

e
iw(P, P ).

This finishes the proof of the adjunction formula.

Proof of the lemma. Here we prove Lemma 9.4. Let U ′ = UvU
′v be as in

the lemma. Recall that if v is nonsplit in E, then

iv̄([1]U ′ , [1]U ′) =
∑

γ∈µU′\(B×−E×∩U ′)
m(γ, 1)1U ′v(γ).

Here B = B(v), and the multiplicity function m : B×v ×E×v B×v /Uv → Q takes

the same form for U and U ′. The key is the following result.

Lemma 9.5. If v is nonsplit in E, then iv̄([1]U ′ , [1]U ′) = 0 if U ′v is small

enough.

Proof. Note that m(γ, 1), as a function in γ, is supported on an open

compact subgroup Wv of B×v . In fact, by q(γ) ∈ O×Fv , we can take Wv = O×Bv if

v is nonsplit in B, and Wv still exists if v is split in B by Lemma 8.8. Then γ

contributes to the summation only if γ ∈ B× ∩W . Here we write W = WvU
′v

as a open compact subgroup of B×(Af ). Since B is totally definite, µW has

finite index in B× ∩W . Let S be set of representatives of the nontrivial cosets

of B× ∩ W/µW . Shrinking U ′v if necessary, we can keep µW invariant, but

make S ∩ U ′v empty. Hence, we end up with B× ∩W = µW . It follows that

B×∩W ⊂ E×∩U ′. Then the sum for iv̄([1]U ′ , [1]U ′) has no nonzero terms. �

Now we prove Lemma 9.4. By the right multiplication of U on XU ′ , it is

easy to see that the Galois group of XU ′ → XU is isomorphic to U/(U ′µU ). It

follows that

π−1(P ) = π−1([1]U ) =
∑

β∈U/(U ′µU )

[β]U ′ =
1

[µU : µU ′ ]

∑
β∈U/U ′

[β]U ′ .

Denote P ′ = [1]U ′ . We can assume that P ′ is the Zariski closure of P ′ since

the intersection multiplicity in the lemma does not depend on the choice of
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P ′ by the action of the Galois group of XU ′ → XU . Assume that U ′ satisfies

Lemma 9.5; i.e., iv̄(P
′, P ′) = 0. Then

〈π−1P − eP ′, P ′〉 = iv̄(π
−1P − eP ′, P ′) = iv̄(π

−1P, P ′).

It is reduced to check

iv̄(π
−1P, P ′) = iv̄(P, P ).

Here both sides use our extended definitions. It is straightforward by the

expression of π−1(P ) above.

We first assume that v is nonsplit in E. Recall that for any β ∈ B×f ,

iv̄([β]U ′ , [1]U ′) =
∑

γ∈µU′\(B×−E×∩βvUv)

m(γ, β−1
v )1U ′v((β

v)−1γ).

Then

iv̄(π
−1P, P ′) =

1

[µU : µU ′ ]

∑
β∈U/U ′

iv̄([β]U ′ , [1]U ′)

=
1

[µU : µU ′ ]

∑
β∈Uv/U ′v

∑
γ∈µU′\(B×−E×∩Uv)

m(γ, 1)1U ′v(β
−1γ)

=
1

[µU : µU ′ ]

∑
γ∈µU′\(B×−E×∩Uv)

m(γ, 1)1Uv(γ)

= iv̄(P, P ).

This finishes the nonsplit case.

It remains to treat the case that v is split in E. In this case, Lemma 9.5 is

automatic, since iv̄(P
′, P ′) = 0 is actually true for any U ′. The proof is similar

to the nonsplit case by the formula

iv̄([β]U ′ , [1]U ′) =
∑

γ∈µU′\(E×−βvUv)

mv̄(γ
−1β)1Uv(β

−1γ).

It is also similar to the second half of the proof of Lemma 8.4. An interesting

consequence is that both sides of Lemma 9.4 are 0.
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