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Abstract—Storage architectures ranging from minimum
bandwidth regenerating encoded distributed storage systems
to declustered-parity RAIDs can employ dense partial Steiner
systems to support fast reads, writes, and recovery of failed
storage units. To enhance performance, popularities of the
data items should be taken into account to make frequencies
of accesses to storage units as uniform as possible. A combina-
torial model ranks items by popularity and assigns data items
to elements in a dense partial Steiner system so that the sums
of ranks of the elements in each block are as equal as possible.
By developing necessary conditions in terms of independent
sets, we demonstrate that certain Steiner systems must have
a much larger difference between the largest and smallest
block sums than is dictated by an elementary lower bound. In
contrast, we also show that certain dense partial S(¢,¢+1,v)
designs can be labeled to realize the elementary lower bound.
Furthermore, we prove that for every admissible order v,
there is a Steiner triple system (S(2,3,v)) whose largest
difference in block sums is within an additive constant of
the lower bound.

A full version [1] of this paper is accessible at:
https://arxiv.org/abs/1906.12073.

I. INTRODUCTION

Distributed storage systems [2], [3], systems for batch
coding [4], and multiserver private information retrieval
systems [5] have each employed combinatorial designs for
data placement, so that elements of the design are associ-
ated with data items and blocks with storage units. In these
contexts, the most common types of designs employed are
t-designs and t-packings. A t-(v,k,\) packing is a pair
(X, B), where X, the point set, is a v-set and and B is
a collection of k-subsets (blocks) of X such that every t-
subset of X is contained in at most A blocks. The packing
is a t-(v, k, \) design when every t-subset of X is a subset
of exactly A blocks. A t-(v, k, 1) design is a Steiner system,
denoted by S(t, k,v). A 2-(v, 3, 1) design is a Steiner triple
system of order v, denoted by STS(v). When A =1, a t-
(v, k,1) packing is also referred to as a partial S(t,k,v)
or partial Steiner system.

When data items are of the same size, and data is
placed on storage units using a ¢-design, placement of data
is uniform across the storage units. Indeed in }f-(ul@)\)
design, every point appears in exactly r = )\(,jjf) blocks;
this is the replication number of the desiéﬁ% In order
to understand why Steiner systems can be employed in
data placement, we outline some examples. Large-scale
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loss of storage units, while not losing data. One solu-
tion is to replicate each data item and distribute these
replicas among multiple storage nodes; systems such as
the Hadoop Distributed File System and the Google File
System employ this strategy [6]. One can further mitigate
information loss by sensibly organizing the data. One
example is the exact Minimum Bandwidth Regenerating
(MBR) codes [2], consisting of two subcodes of which
one is a Steiner system.

Steiner systems also prove useful for applications need-
ing both high data availability and throughput, such as
transaction processing. The storage systems underlying
these applications require uninterrupted operation, satis-
fying user requests for data even in the event of disk
failure and repairing these failed disks, on-line, in parallel.
Continuous operation alone is not sufficient, because such
systems cannot afford to suffer significant loss of per-
formance during disk failures. Declustered-parity RAIDS
(DPRAIDs) are designed to satisfy these requirements [7]—
[9]. One can represent a DPRAID as a t-(v, k, \) design
(X, B), with X (|X| = v) being the set of disks in the
array, and B being the set of all parity stripes, each of size
k. Then each disk occurs in the same number c of parity
stripes, distributing the reconstruction effort evenly.

Although designs arise naturally in balancing data place-
ment, little attention has been paid to the relative popularity
of the data items. Dau and Milenkovic [10] formulate
a number of problems to address access balancing, by
labeling the points of the underlying design. In order to
introduce their problems and results, we present more
definitions and known results concerning designs.

Although storage systems handle “hot” (frequently ac-
cessed) and “cold” (infrequently accessed) data categories
differently, typically they do not take the long-term popu-
larity of the data items within each category into account,
which may result in unbalanced access frequencies to the
storage units. Access balancing can be achieved in part
by selecting an appropriate packing or design, and by
appropriate association of data items with elements of the
packing or design. Dau and Milenkovic [10] propose a
combinatorial model that ranks data items by popularity,
and then strives to ensure that the sums of the ranks
of the data elements in each block are not too small,
not too large, or not too different from block to block.
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bounds on various block sums, and provide a small but
important improvement in the lower bound on the smallest
possible difference among the block sums in a Steiner
triple system. In Section III we establish a close connection
between such block sums and the size of a maximum
independent set of elements in the packing or design. For
certain designs, this connection can be used to show that,
no matter how data items are associated with the elements
of the design, the block sums must be far from the values
dictated by the elementary bounds from Section II. Indeed,
in order to approach the elementary bounds, one must
select designs or packings with very specific properties;
we pursue this in Section IV. Our results indicate the need
to find specific S(t,k,v) designs, or at least ‘dense’ t-
(v, k,1) packings, to match the elementary bounds more
closely. In Section V, we explore a construction of ¢-
(v,t+1,1) packings that asymptotically match the bounds
and contain almost the same number of blocks as the full
Steiner system S(¢,t + 1,v). Completion of the dense -
(v,t + 1,1) packings to a Steiner system S(t,t + 1,v)
appears problematic for general ¢; doing so without dra-
matically changing the block sums appears to be even more
challenging. Nevertheless, in Section VI, we pursue this
to establish, for every admissible order v, the existence
of a Steiner triple system of order v whose difference in
block sums is at most an additive constant more than the
elementary lower bound.

II. POINT LABELINGS AND BLOCK SUMS

Let D (V,B) be a t-(v,k,\) packing. A point
labeling of D is a bijection rk : V — {0,...,v — 1};
our interpretation is that rk maps an element to its rank
by popularity. The reverse rk of a point labeling rk has
rk(4) v — 1 — rk(i) for each ¢ € {0,...,v — 1};
the reversal of a point-labeled packing is one having the
reverse of the point labeling. With respect to a specific
point labeling rk, define sum(B,rk) =" 5 rk(z) when
B € B. Then define

MinSum(D, rk) =
MaxSum(D, rk) =
DiffSum(D, rk) =
RatioSum(D, rk) =

min(sum(B,rk) : B € B);
max(sum(B,rk) : B € B);
MaxSum(D, rk) — MinSum(D, rk);
MaxSum(D, rk) /MinSum(D, rk).

Following [10], one primary objective is to choose point
labelings to maximize the MinSum and/or to minimize one
of the other three. Each of these metrics is concerned with
the worst case; to treat the average case, Yu et al. [11]
study the minimum variance of the point sums. Access
balancing is concerned primarily with minimizing the
DiffSum or RatioSum; because of the similarity between
these two entities we often focus on the DiffSum. Let Rp
denote the set of all point labelings of D. Noting that
MaxSum(D, rk) = k(v — 1) — MinSum(D, rk), we define

MinSum(D) = max(MinSum(D, rk) : rk € Rp);

MaxSum(D) = k(v — 1) — MinSum(D);

DiffSum(D) = min(DiffSum(D, rk) : rk € Rp);
RatioSum(D) = min(RatioSum(D, rk) : rk € Rp).

If the storage system dictates the data layout and data
items have the same size, we are free to permute the data

items; this is captured by the selection of the point labeling
rk. If we are also free to choose the ¢-(v,k,1) packing
that underlies the data layout, we may select a packing to
improve the sum metrics defined. In order to capture this,
let Dy i, »,» denote the set of all t-(v, k, 1) packings having
exactly b blocks. Then define

MinSum(¢, k, v, b) = max(MinSum(D) : D € Dt k. 0p);

MaxSum(t, k,v,b) = k(v — 1) — MinSum(¢, k, v, b);

DiffSum(t, k, v, b) = min(DiffSum(D) : D € Dy v.p);
RatioSum(t, k,v,b) = min(RatioSum(D) : D € D¢ k. 5)-

When b = % the packing is a Steiner system S(¢, k, v);

t
in these cases we omit b from the notation to get
MinSum(t, k, v) and similarly for all other entities.

Theorem 1. [10]
MinSum(t, k,v) < %(U( —t4+1)+k(t—2)
MaxSum(t, k,v) > 5(v(k+t—1) — kt);
DiffSum(t, k,v) > (v —k)(t — 1);
RatioSum(t, k, v) > Uk
When D is an S(t,t + 1,v), MinSum(D) < (v — 1) +
(5), MaxSum(D) > t(v — 1) — (3), leFSum(D) > (t—
1)(v—t—1), and RatioSum(D) > RatioSum(t,t+1,v) >

t(v—1)—(3)
@=1+(;)
When in addition t = 2 (D is a Steiner triple system), the

stronger bounds DiffSum(D) > v and RatioSum(D) > 2
hold.

Theorem 1 provides bounds on the metrics across all
Steiner systems S(¢, k,v) and all point labelings of them.
In previous work, the focus has been on the MinSum
(or equivalently, by reversal, the MaxSum). Dau and
Milenkovic [10] use the Bose [12] and Skolem [13], [14]
constructions of Steiner triple systems to establish the
existence of an STS(v) D with MinSum(D) = v, the
largest possible by Theorem 1 (Brummond [15] establishes
a similar result for Kirkman triple systems). They accom-
plish this by specifying a particular point labeling that
meets the MinSum bound, but unfortunately the labeling
chosen yields a MaxSum near %v, a DiffSum near %v,
and a RatioSum near %, far from the bounds of 2v, v,
and 2, respectively. The reversal of this labeling yields a
MinSum far from optimal, the same DiffSum, and a larger
RatioSum.

One might hope to improve the DiffSum and RatioSum
by choosing a different labeling or by choosing a different
Steiner system S(¢,k,v). In Section III, we show that
certain S(t,k,v)s cannot meet any of the bounds in
Theorem 1.

A. Improved bounds for STSs

There is an STS(7) with MinSum = 6 and MaxSum =
13 with blocks 016, 024, 035, 123, 145, 256, and 346
(here we write abc for {a, b, c}). There is an STS(9) with
MinSum = 9 and MaxSum = 18 with blocks 018, 027,
036, 045, 126, 135, 147, 234, 258, 378, 468, and 567.
However, these are the only two Steiner triple systems
with DiffSum = v, and indeed the only STS(v) with

S@hatioSum = 2 is the STS(9).
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Theorem 2. Let D be a Steiner triple system of order
v > 13. Then DiffSum(D) > v+1 and RatioSum(D) > 2.

Proof. See the full version [1]. [ |

III. INDEPENDENT SETS

Let D = (V, B) be a t-(v, k, \) packing. An independent
set in D is a subset X C V such that there is no B € B
with B C X. An independent set X is maximal if there
is no independent set Y with X C Y, and maximum if
there is no independent set Y such that |Y| > |X|. The
independence number of D, denoted (D), is the size of
a maximum independent set. There is a close connection
between the independence number of a packing and the
quality of any of its labelings.

Lemma 1. A t-(v, k, \) packing D has MinSum at most
ka(D) — (;) MaxSum at least k(v — 1 — a(D)) + (g)
and DiffSum at least k(v + k — 2 — 2a(D)).

Proof. 1t suffices to prove the statement for MinSum. No
matter how D is given a point labeling, on elements with
ranks in {0,...,a(D)}, there is a block. The sum of this
block is at most Zle(a(D) —(i—1)). [ |

Corollary 1. Meeting the bound on MinSum in Theorem
1 for a t-(v, k, 1) packing D requires that

vk—t+1) k+t-—3
2k + 2 '

For example, Corollary 1 states that a necessary condi-
tion for a partial Steiner triple system D to have MinSum
equal to v is that a(D) > ¥ 4 1.

We refine this bound by using a second disjoint indepen-
dent set. Suppose that a t-(v, k, \) packing D contains two
disjoint independent sets of sizes «yp and dp, respectively,
with yp > dp; two disjoint independent sets form an
independent pair. Set

a(D) >

vp =min (yp, W5 4 B g

0p =min 5D,M + kH — 1) .
Two independent sets form a maximum independent pair
when v}, + 87, is as large as possible.

Lemma 2. A t-(v,k,\) packing D with a maximum
independent pair of sizes (yp,dp) has DiffSum ar least
k(v+k—2—=40p —7p).

Proof. See the full version [1]. [ |

Corollary 2. Meeting the bound on DiffSum in Theorem 1
for a t-(v, k, 1) packing D requires that D have a indepen-
dent pair of sizes (7“]“5,2“) 4R o(k—t+1) 2,i+1) + B 1),

The independent pair in Corollary 2 does not require
that either be maximum, nor that their combined size be as
large as possible. For a Steiner triple system, for example,
Corollary 2 asks only for two disjoint independent sets,
each of size at least % + 1, for a combined size of 27” + 2.
Applying the 2v+ 1 construction [16] twice to an STS(v),
we form an STS(4v + 3) having a maximum independent
pair of sizes (2v+ 2, v+ 1); although the combined size is

to the smallest DiffSum because the second largest of the
pair is too small.

Corollary 2 gives a necessary condition, not a sufficient
one. Nevertheless, some bounds can be stated.

Lemma 3. When a t-(v, k, 1) packing D has two disjoint
independent sets of sizes o and B, there is a point labeling
with MinSum(D) > o + (g) and (for the same labeling)
MaxSum(D) < k(v—1) — 8 —1— (%), so DiffSum(D) <
kE(v—k)—B—a—1

Proof. Any point labeling assigning labels {0, ..., —1}
to the points of the independent set of size a, labels {v —
B,...,v — 1} to the points of the independent set of size
B, and labels {«,...,v — 8 — 1} to the remaining points,
meets the stated bounds. |

Labeling for access balancing must focus on Steiner
triple systems, and on ¢-(v,k,1) packings in general,
having large sizes in maximum independent pairs. This
choice is important, because not all such systems have even
a single large independent set, as we explain next.

IV. SMALL MAXIMUM INDEPENDENT SETS

Can one choose an arbitrary ¢-(v, k, 1) packing, and by
cleverly choosing a point labeling optimize one or more
of the sum metrics? If not, how far from the bound of
Theorem 1 can the best point labeling be? In order to
discuss these questions, define

Qmin(t, k,v) =min{a(D) : D is a t-(v, k, 1) packing},
ar . (t, k,v) =min{a(D) : D is an S(t, k,v)}.
When an S(t, k,v) exists, amin(t, k,v) < o, (¢ k,v).

Erd6s and Hajnal [17] establish that v, (2,3,v) >
L\/%J, indeed a simple greedy algorithm produces an
independent set of this size. Spencer [18] establishes that
Qmin(2,3,0) > ¢ vy2/y/v —1, a small improvement
on the Erdés-Hajnal result. State-of-the-art lower bounds
[19]-[22] all differ only by constant factors, and all rely
heavily on a theorem about “uncrowded” hypergraphs from
[23]. This leads to the lower bound stated next; the upper
bound is established using the Lovdsz Local Lemma.

Theorem 3. [24], [25] For fixed k and t, there are
absolute constants ¢ and d for which

cv%(log v)ﬁ < min(t, k,v) < dv%(log v)ﬁ.

Phelps and Rodl [26] establish that the bounds of
Theorem 3 apply to Steiner triple systems, not just partial
ones; that is, cvvlnv < af,,.(2,3,v) < dvvlnv for
absolute constants ¢ and d. Grable, Phelps and Rodl [27]
establish similar statements when ¢ € {2,3} for all k& > ¢.
Combining Lemma 1 and the results in [26], [27], some
Steiner triple systems only have point labelings far from
the bounds of Theorem 1:

Theorem 4. For infinitely many orders v, there exists
an STS(v) D with MinSum(D) < 3c¢vvlnv — 3 and
MaxSum(D) > 3v—3cvvInw, and hence DiffSum(D) >
3v — 6cvvlnv + 3.

We must focus on specific Steiner systems or packings,

over % of the size of the STS, such a pair could not lead 56Bwe are to obtain sum metrics at or near the basic bounds.
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V. DENSE t-(v,t + 1, 1) PACKINGS

We establish next that one can obtain metrics close to
the optimal when & = ¢ + 1 for packings that contain
all but a vanishingly small fraction of the blocks of an
S(t,t+1,v) as v — oo. The independent set requirements
indicate that we must have a maximum independent pair
having large sizes. To accomplish this, we partition all
(t + 1)-subsets of Z, according to their sum modulo v,
and choose one class of the partition to form the blocks
of the packing. The basic strategy dates back at least
a century to Bussey [28], and perhaps earlier. This is
not a mere theoretical curiosity, because declustered-parity
RAIDs need not have their loads perfectly balanced [7].

Theorem 5. Let t and v be integers with v > (tJ§2) + (tgl)
so that v and t 4 1 are relatively prime. For each of the

following statements, there exists a t-(v,t + 1,1) packing

() _ ;t((f)) blocks.

(1) MinSum(D) = v+ ¢ and MaxSum(D) = tv + ¢
whenever —(t;Q) +1<0o< (tgl).

2) MinSum(D) =v+ ("}!) — L.
(3) MaxSum(D) = tv — (tJ2r2) + 1
(4) DiffSum(D) = (t — 1)w.
(5) RatioSum(D) = - 2)—1

o (1
Proof. Partition all (¢t + 1)-subsets of Z, into v classes
{Bs : 0 < 0 < v} by placing set S = {x1,..., 2441} in
class B, if and only if o = ¥/* 1z, (mod v). Because for
any t-subset T' of Z, and each o with 0 < o < v there is
a unique element s for which 0 = s + X crz (mod v),
each B, is a t — (v,t + 1, 1) packing. The verification is
completed in the full version [1] of the paper. |

D on elements 7., having

The packings so produced contain large independent
sets. For example, when o = 0, {0,..., | ;77 ]} forms an
independent set. Theorem 5 yields packings that are dense
in the following sense. When an S(¢,t+1,v) exists, it has

v

% blocks; the packings considered have a “T’t fraction

of this number. Hence for fixed ¢ the fraction of ¢-sets
left uncovered by the packing approaches 0 as v — oco.
Moreover, the bounds established for dense ¢-(v,t + 1,1)
packings on MinSum and MaxSum match the values
from Theorem 1 (which are best for Steiner systems). On
the other hand, as v — oo and ¢ is fixed, the ratio of
DiffSum of the packing to the bound approaches 1, and the
RatioSum approaches its bound of ¢ — 1. By generalizing
to partial systems, Theorem 5 applies to all parameters that
are large enough, whether or not an S(¢,¢ + 1,v) exists.
Although Theorem 5 establishes a DiffSum of (¢t — 1)v
for certain dense ¢-(v,t + 1, 1) packings, this may not be
the best possible, as Theorem 1 ensures only that (v —
k)(t — 1) is a lower bound on the DiffSum. Theorem 6
gives evidence that the bound may not be the best possible,
by producing a packing that achieves a smaller DiffSum
than that of Theorem 5 when ¢ = 3, but is nearly as dense.

Theorem 6. When v > 18 is even, there is a 3-(v,4,1)
b4 (3) blocks, having MinSum(D) = v+

v—1 (4

packing D with

Proof. See the full version [1]. |

VI. SUMS AND STEINER TRIPLE SYSTEMS

For the intended applications in storage systems, it
remains desirable to employ a Steiner system, rather than a
dense packing, when possible. In what follows, we extend
Theorem 5 to produce Steiner triple systems in which the
sum metrics are close to optimal.

Building on the construction in Theorem 5,
Schreiber [29] and Wilson [30] demonstrate that for
certain values of v, the packing can be completed to an
STS(v). To treat the labeling and block sums, we employ
a technical lemma, whose easy proof is in the full version

[1].

Lemma 4. Ler n = 1,5 (mod 6). Every pair in {{a,b} :
a,b € Zn \ {0},a = —2b (mod n)} has (n+1)/2 <
a+b<(n—1)/2+n.

Now we examine the block sums in the Schreiber-
Wilson result. (In [29], [30], the ST'S(v) is constructed,
but the point labelling is not.)

Theorem 7. Suppose that v = 1,3 ( mod 6) and for every
prime p dividing v — 2, the order of —2 mod p is singly
even. Then there is an STS(v), D, with MinSum(D) > v—
2, MaxSum(D) < 2v+ 2, and hence DiffSum(D) < v+4
and RatioSum(D) < 2442,

Proof. The proof, given in the full version [1], parallels
that of Theorem 8. |

Unlike the point labelings in [10], the labeling for
the Schreiber-Wilson construction in Theorem 7 need not
achieve the largest MinSum or smallest MaxSum. Never-
theless it yields a substantial improvement with respect to
the DiffSum and RatioSum, within an additive constant
of the best bound possible for the DiffSum. Unfortunately,
Theorem 7 requires that the order of —2 mod p be singly
even, and so applies to an infinite set of orders but not all
admissible ones. We remedy this next, using a result from
[31], but obtaining slightly weaker bounds.

Theorem 8. Whenever v = 1,3 (mod 6), there is an
STS(v), D, with MinSum(D) > v — 5, MaxSum(D) <
20 + 2, and hence DiffSum(D) < wv 4+ 7 and
RatioSum(D) < 2242,

Proof. Let n = v — 2. Using the proof of Theorem 5,
construct a 2-(v, 3, 1) packing By on Z,_o (points v — 2
and v — 1 appear in no triples). Remove element 0 as well
as all triples {{0,z,v —2 -2z} : 1 < 2z < (v —3)/2}
to form Dy. Let & be the set of pairs on Z,_5 \ {0} not
covered by a triple of Dy. Each pair in &, has sum between
(v—1)/2 and (v —3)/2+ v — 2 by Lemma 4. The pairs
in & form a 3-regular graph G on Z,_» \ {0}. By [31,
Lemma 9], G can be partitioned into three 1-factors, F7,
F5, and F3.

To form the STS(v) on Z, with block set C, we employ
the mapping ¢ : Z,—2 \ {0} — Z, \ {(v —3)/2,(v —
1)/2, (v +1)/2} defined by ¢(z) =2 —1 when 1 <z <
(v—3)/2 and Y(x) = x+2 when (v—1)/2 <z <v—2.

2, MaxSum(D) = 3@3—6, and hence DiffSum(D) = 2v—8. S&%hen C is formed as follows.
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(1) When {z,y,z} € Dy, place {¢)(z),¥(y),¥(2)} in
C;

(2) For i =1,2,3, when {x,y} € F;, place {(v —5+
2i)/2,9(x),¢(y)} in C:

(3) Place {(v—13)/2,(v—1)/2,(v+1)/2} in C.
Triples of By have sum v — 2 or 2v — 4, so triples of type
(1) in C have sum between v — 5 and v — 2, or between
2v — 1 and 2v 4 2. By Lemma 4, a pair {z,y} € & has
(v=1)/2<z+4y < (v—1)/2+ (v—3). Applying 1, we
have (v—1)/2— 2 < ¥() +¥(y) < (v—1)/2+ (v+1).
Hence each triple of type (2) in C has sum at least v—4 and
at most 2v + 1. The block of type (3) has sum 243, W

Although the bounds are slightly weaker, Theorem 8
applies to all admissible orders for Steiner triple systems.
In conjunction with Theorem 2, for all v = 1,3 (mod 6)
with v > 13 one has v + 1 < DiffSum(2,3,v) < v+ 7
and 2 + % < RatioSum(2,3,v) < 2 + % Based on
computations described in the full version [1], it appears
plausible that DiffSum(2, 3, v) = v+1 when v > 13. It also
appears plausible that RatioSum(2,3,v) € {2+ 2,2+ 2}
for every v # 9, but there is insufficient data to speculate
on when it takes the larger value and when the smaller.

VII. CONCLUDING REMARKS

Because Theorem 5 achieves a DiffSum of (¢t — 1)v
for dense t-(v,t+ 1, 1) packings, one might hope that this
difference can be realized for S(¢,t+1,v) Steiner systems.
However, Theorem 2 establishes that this does not happen
when ¢ = 2 unless v € {7,9}, although Theorem 8 is
within an additive constant. The situation when ¢t = 3
appears to be quite different. There is an S(3, 4, 8) having
MinSum 10 and MaxSum 18. Adapting the construction
in [32], [33], one can produce an S(3,4,v) with MinSum
v+2, MaxSum 3v—6, and hence DiffSum 2v—8 whenever
v is a power of 2. In these cases, the upper bound on
the MinSum and the lower bound on the MaxSum from
Theorem 1 are met simultaneously. We do not expect this
to happen for all orders, because the smallest DiffSum for
an S(3,4,v) when v € {10,14} appears to arise from
systems with MinSum v + 1 and MaxSum 3v — 5. It
may happen that for every admissible v, an S(3,4,v) with
DiffSum strictly smaller than 2v exists. If so, completing
the packing from Theorem 5 could not yield the smallest
DiffSum. Nevertheless, the structure of independent sets
must underlie appropriate constructions.
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