A Universal Low Complexity Compression
Algorithm for Sparse Marked Graphs

Payam Delgosha
EECS Department
University of California, Berkeley
Berkeley, CA 94720
Email: pdelgosha@eecs.berkeley.edu

Abstract—Many modern applications involve accessing and
processing graphical data, i.e. data that is naturally indexed by
graphs. Examples come from internet graphs, social networks,
genomics and proteomics, and other sources. The typically large
size of such data motivates seeking efficient ways for its compres-
sion and decompression. The current compression methods are
usually tailored to specific models, or do not provide theoretical
guarantees. In this paper, we introduce a low—complexity lossless
compression algorithm for sparse marked graphs, i.e. graphical
data indexed by sparse graphs, which is capable of universally
achieving the optimal compression rate in a precisely defined
sense. In order to define universality, we employ the framework
of local weak convergence, which allows one to make sense
of a notion of stochastic processes for graphs. Moreover, we
investigate the performance of our algorithm through some
experimental results on both synthetic and real-world data.

I. INTRODUCTION

Nowadays, a large amount of data arises in a form that
is indexed by combinatorial structures, such as graphs, rather
than classical time series. Examples include data arising from
internet graphs, from social networks, and various kinds of
biological data. Such data typically needs to be mined for
practical reasons, for instance for inferring community mem-
bership in a social network, or in predicting whether two
proteins interact in a biological network. Typically, the size
of such graphical data is large, which argues for the need to
find efficient and close to optimal ways of compressing and
decompressing this data to store it for subsequent data mining.

The problem of graph compression has drawn a lot of
attention in different fields. The existing algorithms for com-
pressing internet graphs and social networks usually rely on
some properties specific to such graphs [1], [2], [3]. Moreover,
there has been some progress in finding best compression rates
assuming that the graphical data is being generated from a
statistical model [4], [5], [6], [7]. The key property distin-
guishing our approach from the existing ones is universality.
More precisely, we introduce a scheme which is capable of
compressing graphs which come from a certain “stochastic
process” without any prior knowledge of this process, yet is
able to achieve the optimal compression rate, in a precisely
defined sense. Additionally, in contrast to several earlier works,
we assume that the graphs are “marked” so that vertices

Venkat Anantharam
EECS Department
University of California, Berkeley
Berkeley, CA 94720
Email: ananth@eecs.berkeley.edu

connectivity structure of the graph. This is the key feature
which makes our approach applicable in modeling real-world
data indexed by graphs, which we call graphical data. We
focus in this paper on sparse marked graphs, the motivation
for this being that it is generally recognized that most real—
world graphs are sparse.

To make sense of the notion of a “stochastic process” for
sparse marked graphs, we employ the framework of local
weak convergence [8], [9], [10]. Moreover, we employ a
notion of entropy called the marked BC entropy [11], [12],
which serves as a counterpart of the Shannon entropy rate
for this framework, and governs the optimal compression
rate for graphical data on sparse graphs. The authors have
already introduced a universal compression scheme in [13]
which shows that this notion of entropy is indeed the optimal
information theoretic threshold of compression. The focus of
this paper is to provide a version of such a scheme which
is also computationally efficient. In [13], the encoder needs
to find the index of the input graph among all graphs which
have the same frequency of local structures as the input graph.
However, in this paper, we exploit the properties of the marked
BC entropy to partition the edges in the graph based on their
types, and encode each group separately, so as to obtain a
low—complexity compression scheme.

The structure of this paper is as follows. In Section II,
we introduce our notation. In Sections III and IV we briefly
introduce the local weak convergence framework and the
marked BC entropy, respectively. With this behind us, we
formally introduce the main properties of our compression
algorithm in Section V. In Section VI, we highlight the steps
of our algorithm. Finally, in Section VII, we describe some
experimental results on both synthetic and real-world data to
illustrate the value of our framework.

II. NOTATION

Table I provides a list of our basic notation. A simple
marked graph is a simple graph such that every vertex car-
ries a mark coming from a fixed finite vertex mark set ©.
Moreover, every edge carries two marks, one towards each
of its endpoints, coming from a fixed and finite edge mark
set Z. For an edge (v,w) in a simple marked graph G, we

a0q 8etl gz tagy 32uBy2 dditi00adioporiEEBn on top of th@34denote the marks of this edge towards v and w bSER:2020))

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 21,2021 at 17:07:24 UTC from IEEE Xplore. Restrictions apply.

Notation Meaning
] {1,...,n}
log(.) logarithm in natural basis
{0,1}* the set of finite nonempty sequences of 0 and 1’s
nats(x) length of = € {0,1}" in nats: log 2xlength of z
© fixed finite set of vertex marks
= fixed finite set of edge marks
Ea(v,w) € Z; mark of edge (v,w) in G towards w
degq(v) degree of node v in G
v~ W edge exists between nodes v and w in G

TABLE I: List of basic notation

and £¢(v,w), respectively. The degree of a vertex v in G
is denoted by deg(v). We denote the existence of an edge
between two vertices v and w in a graph G by v ~¢g w.
All graphs in this paper are simple, hence we may drop the
qualifier “simple” when we discuss graphs.

III. THE FRAMEWORK OF LOCAL WEAK CONVERGENCE

We now briefly review the framework of local weak con-
vergence, which makes sense of the notion of a stochastic
processes for sparse marked graphs. The reader is referred to
[81, [9], [10] for more details.

Fix vertex and edge mark sets © and = and let G be a
marked graph together with a vertex o in G. Let [G, o] denote
the isomorphism class of the connected component of o in
G, rooted at o, where isomorphism is supposed to preserve
connectivity and the root as well as the vertex and edge marks.
Moreover, for h > 0, we let [G, o], be the isomorphism class
corresponding to the subgraph of G consisting of vertices with
distance at most A from o, rooted at o. Let G, denote the space
of isomorphism classes [G, o] of connected marked graphs on a
finite or countable vertex set, rooted at o, such that all degrees
in G are finite. For h > 0, let G” be the subset of G, consisting
of isomorphism classes of marked rooted graphs with depth
no more than h. For a probability measure y on G,, let deg ()
denote the expected degree at the root in p. For a finite marked
graph G, let U(G) denote the law of [G, o], where o is chosen
uniformly at random (u.a.r.) in G. We can think of U(G) as
the “empirical distribution” of GG. Moreover, for two adjacent
vertices v and w in G, let G[v,w] € = x G, be the pair
(€g(v,w), [G',w]), where G’ is the graph obtained from G
by removing the edge (v, w).

We can equip G. with a metric so that the distance between
two marked rooted graphs [G,o] and [G’,0'] is defined to
be 1/(1 + h.), where h, is the supremum over all h such
that [G, o], = [G’,0']n. If no such h exists, we define the
distance between [G, 0] and [G’, 0] to be 1. One can show
that G, equipped with this topology is a Polish space, i.e. it
is a complete and separable metric space [10]. We say that
a sequence of finite graphs G, converges to a probability
measure i on G, if U(G) converges weakly to p. Not all
probability measures on G, can show up as the limit of a
sequence of finite graphs. For this, a necessary stationarity
condition called “unimodularity” must hold for p [10].

235@unction, gi(bng, is such that g;’; o fhtii

Notation Meaning
[G, o] isomorphism class of G rooted at o
(G, o]n isomorphism class of G rooted at o up to depth h

G set of isomorphism classes [G, o]
Gh consisting of [G, 0] € G. with depth at most h

deg(p) average degree at the root for measure p on G,
U(G) law of [G, 0], o chosen u.a.r. in G
Glv, w] € = x G; the pair (éa(v,w), [G,w])
T. subset consisting of [T, o] € G., where T is a tree
Th subset consisting of [T, 0] € Gl where T is a tree
() marked BC entropy of probability measure z on G.

TABLE II: Summary of notation in Sections III and IV

Let 7, denote the subset of [T,0] € G, where [T,0] is
the isomorphism class of a marked rooted tree. Likewise, we
define 7,” to be the subset of G" consisting of isomorphism
classes of marked rooted trees.

IV. THE MARKED BC ENTROPY

In this section, we introduce our notion of entropy, which
is a generalization of the one introduced by Bordenave and
Caputo in [11] to the marked regime discussed above. We call
this notion the “marked BC entropy”. This generalization is
due to us, and the reader is referred to [12] for more details.

Let i be a probability measure on G,. For integer n and
vectors m(™ = (m"(z,2") : 2,2’ € E) and @ =
(W™ (9): 0 € ©), let G be the set of marked graphs

R
on the vertex set [n], with (") (#) many vertices with mark
0, and m™ (z,2’) = m{™(2/,x) many edges with mark
pair (z,z'). Moreover, for e > 0, let gg(L) 2o (11, €) be
the subset of “e—typical graphs”, i.e. the set of graphs G €
Qg()n) 2 such that dip(U(G),) < €, where dip denotes
the Lévy—Prokhorov distance [14] on probability measures on
G.. Roughly speaking, it can be shown that, if for z,2’ € =
2m(™) (z,2') /n is close to the expected number of the edges
connected to the root in y with mark pair (z,2z’) or (2, x)

and, for § € ©, u(™(#)/n is close to the probability of the
root in p having mark 6, then we have

| n
lim lim 7(log|g7(ﬁ()n) 20ny (1 €)= logn) =3(u),

el0 n—oo N

where m, = Y com™ (z,2) + 53, ez m™ (2,27 is
the total number of edges, and X(u) is a constant depending
only on p, possibly —oo, called the marked BC entropy of .

It can be shown [12] that the marked BC entropy X () does
not depend on the choice of vectors m(™ or @™, Moreover,
¥(u) = —oo if p is not unimodular, or the support of is not
contained in 7. Motivated by this, we restrict our analysis to
unimodular probability measures j on 7. Table II summarizes

the important notation in Sections III and IV.

V. PROBLEM STATEMENT AND MAIN RESULTS

Our compression algorithm has two positive integer param-
eters h and §. The encoding function, f}(&) , maps marked
graphs on the vertex set [n] to {0,1;*, and the decoding

(n) is the identity map,

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 21,2021 at 17:07:24 UTC from IEEE Xplore. Restrictions apply.

i.e. the compression scheme is lossless. We introduce such a
compression/decompression scheme which has two properties:
(1) it is universally optimal and (2) it is computationally
efficient. The following theorem summarizes these properties.
In Section VI, we highlight the steps of this algorithm.
Theorem 1: There exists a compression/decompression al-
gorithm as above, which has the following properties:

1) (Optimality) Assume a unimodular probability measure
p on T, with deg(u) € (0,00) is given such that
E, [degr (o) log degy(0)] < oo and ¥(p) > —oo. Assume
that a sequence G(™ of marked graphs is given such that
U(G™) = u and, with m(™ being the total number of
edges in G, we have m™) /n — deg(u)/2. Then, for
h>1and § > 1, with I(n, h,8) := (nats(f\") (G™)) —
m(™ logn)/n, we have

lim sup lim sup limsup i(n, h, §) < 3(w). (1)

h—o0 d— o0 n—o00
2) (Computational Complexity) Assuming that m(" =
O(n) and h, 6, |Z|, and |©] are all constants, the time
and memory complexities of the compression and decom-
pression algorithms are O(npolylog(n)).

Remark 1: One can also incorporate m™), h, d, |Z], and |©|
in the complexity bounds. However, to simplify the discussion,
we have only presented complexity bounds in terms of n.

Remark 2: As discussed in [13], a matching converse argu-
ment suggests that 3(u) is the best compression rate. Also,
as the leading term in the marked BC entropy is m(™ logn,
which scales as n logn, there is a computational lower bound
of Q(nlogn). Hence, our algorithm is computationally opti-
mal up to logarithmic factors.

VI. STEPS OF THE UNIVERSAL COMPRESSION
ALGORITHM

We now highlight the steps of our universal compression
algorithm. To simplify the discussion, we only present the
complexities in terms of n, the number of vertices, assuming
that m(™ = O(n), and &, h, |Z|, and |©| are constants.
For v € [n], let 91(,”) denote the mark of v in G, and let
dM = degaen (v). Also, let ’71(;7,11) < < vind)(n) denote
the list of neighbors of v. Algorithm 1 highlighisv the steps
of the compression algorithm discussed below. Also, Table III
summarizes the main notation in this section.

A. Definition of Edge Types

Let (") C = x T~ be the set of all (,[T,0]) € = x
T~ such that degy(0) < & and degy(v) < § for v # o.
Moreover, for x € Z, let x, be fictitious distinct elements
not present in F@h) and define FOh) = F@:.h) {*z :
x € E}. Note that x, for € = are auxiliary objects, and
are not of the form of a pair of a mark and a rooted tree.
For a marked graph G, we denote the universal cover of G
rooted at v by UC,(G). The mark component of (z, [T, 0]) €
Fh) is defined to be x, and the mark component of x, is

Notation

Meaning

d™ and 6™

e
Fom

*; for x € =
F&h)

degree of v and mark of v, resp.

ith neighbor of v

elements in = X ﬁh’l with bounded degrees
auxiliary element not present in F ()
FOM U x, : 2 € B}

UC,(G) universal cover of G rooted at v
£ (v, w) (UC,(G™))[w, v]n—1
£ (v, w) 6" (0, w) i (2) holds, x¢_ () (w,u) O-LW.
i3 (v, w) (3 (v, w), B3 (w,)
Coi integer representing fg:g (v, 71(;;))

) set of star vertices
Dy (v) [~g v U3 (v,w) = (L)

TABLE III: Summary of notation in Sections VI

Algorithm 1 Compression algorithm

1: Find (¢, : v € [n],4 € [d"]), TMark and TlsStar
2: for 1 <v <ndo

3: Yp <0

4 for 1 <i <d™ do

5: (a,b) < ¢y

6: if TIsStar(a) =1 or TlIsStar(b) = 1 then
7: Yp — 1

8 end if

9: end for

10: end for

> encode V*(")
> encode star edges

11: Encode ¢ = (y, : v € [n])
12: for (z,2') e Ex = do
13: for v € V™ do

14: for 1 <i < d” do

15: (a,b) < ¢y

16: if 7" > v then

17: if TlsStar(a) = 1 and TIsStar(b) = 1 then
18: Y Eaom (17, 0), ¥ Egim (0,75Y)
19: if y =2 and ' = 2’ then

20: Write a single bit with value 1

21: Write ’y,l(:? to the output

22: end if

23: end if

24: end if

25: end for

26: Write O to the output > we are done with v
27: end for

28: end for

29: Encode (65, D™ (v)) for 1 <v <n
30: Find partition graphs (GE@ (4, 1) € S(Sn))
31: for (t,t') € E(S") do

> vertex types

32: Find integer representation of Gg?
33: Write this representation to the output
34: end for

defined to be z. For adjacent vertices v and w in G, wa3s1

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 21,2021 at 17:07:24 UTC from IEEE Xplore. Restrictions apply.

define tgn)(v,w): (UC,(G))[w, v],_1. Moreover, define

fg:g(v, w) to be té)(v, w) if the following conditions hold:

t;n)(w,v) € Foh),
degam (w) < 6.

tgln) (v,w) € FOh)

(2
degqm ('U) <6,

Otherwise, let fg%(v, W) :=*¢_ . (w,v)- Note that the last two
conditions in (2) automatically follow from the first two condi-
tions when h > 1. However, this is not true when h = 1. Note
that, by definition, f;:fg(v, w) € FOM We define the “type”

of an edge (v,w) as ¥} (v, w) = (I} (v, w), &) (w, v)).

B. Finding Edge Types

Next, we find w,(fg(v, w) for adjacent vertices v and w in
G™)_ Tt can be shown that this can be done using a message
passing algorithm, which returns an array ¢ = (c,,; : v €
[n],i € [d(n)]) where ¢, ; = (a,b) is a pair of integers, such
that a represents tgL) (0,4 /), and b represents tgln) (%(}nl),).
In addition to this, the algorithm returns two arrays TMark and
TlsStar such that, for an integer a, with t € F &) being the
element in F(*") corresponding to a, TMark(a) is the mark
component of ¢, and TlIsStar(a) is 1 if ¢ is of the form %, for
some = € =, and 0 otherwise. It can be shown that the time and
memory complexities of this algorithm are O(npolylog(n)).

C. Encoding Star Vertices and Star Edges

We call an edge (v, w) with type (%, *,) for some z, 2’ €
E a “star edge”. We call a vertex v € [n] a “star vertex” if it
has at least one star edge connected to it. Let Vin) denote the
set of star vertices in G(™), At this point, we encode V,E") and
the star edges in G("). Note that by definition, both endpoints
of a star edge are in VE"). See Algorithm 1 for the details.

D. Encoding Vertex Types

For 1 < v < n, define D™ (v) := (Dt(?() tt'e}"‘gh)
so that for ¢, € FOM, D) = [{w ~gom v wh 5(1} w) =
(t,t')}|. We define the “type of a vertex v € [n] to be the
pair (Hf,n),D()(v)). Next, we encode vertex types, i.e. the
sequence (65, D) (v)) 1 v € [n]).

E. Encoding Partition Graphs

Our next step is to encode those edges which are not star
edges. In order to do so, we partition such edges based on their
types. This will result in a number of unmarked graphs which
will be encoded separately. More precisely, let £ denote
the set of all edge types (t,t') € F&P) x F(&h) such that
,(L”g(v w) = (t,t") for some edge (v w). For each (¢,t) €
£ we form the partition graph Gt - which is an unmarked
graph defined as follows. First, assume that ¢ # ¢'. In this
case, GE@ is a bipartite graph, where those vertices v in G(™)
with at least one edge with type (t,t’) appear as left nodes
in Gt 1. Likewise, each vertex in G(™) which has at least one
edge with type (t',t) appears as a right node in Gt - A node
can appear both as a left node and as a right node. Then,
every edge (v,w) in G with w(")(

as an edge in G t, connecting the left node corresponding to
v to the right node corresponding to w. Now, consider the
case t = t'. In this case, Gg? is a simple graph, where each
node in G(™ with at least one edge with type (t,t) appears
as a node in GET;) and each edge (v,w) in G such that
,(L"g (v,w) = (t,t) appears as an edge in GIE / connecting the
node corresponding to v to the node corresponding to w.

At this point, we encode each partition graph GE? for
(t,t' € £0). Note that for (t,t') € E™, t £ ¢, Gg?i can be
obtained from Gg?i by switching left and right nodes. Hence,

in order to avoid redundancy, we define €(<") in a certain way
so that only one of the pairs (¢,¢') and (#',t) appears in it.
Note that each edge in G™) which is not a star edge appears
in exactly one of the partition graphs (GEZ, () e € (n))
Hence, the decoder can reconstruct the original graph G™ by
decoding partition graphs and putting them together.

Recall from Section VI-D that the decoder has access to
vertex types. Therefore, it can determine the number of edges
of each type connected to each vertex. Hence, the decoder
knows the degrees of the nodes in each partition graph. To
encode each partition graph, roughly speaking, we find its
index among all graphs with the same degree sequence, when
such graphs are sorted with respect to the lexicographic order
of their adjacency matrix. It can be shown that this index has a
closed form, and there is an efficient algorithm for computing
it, such that the time and memory complexities of encoding
and decoding each partition graph are O(npolylog(n)).

VII. EXPERIMENTAL RESULTS

In this section we discuss the performance of our algorithm.

A. Synthetic data

We generate a random graph G(™) on n vertices as follows.
At each vertex v € [n] we generate a Poisson random variable
d,, with mean 3 and connect v to d,, many vertices chosen u.a.r.
from [n] \ {v}. If v connects to w and w also connects to v,
we treat this as a single edge between v and w. We also add
independent vertex marks for each vertex with © = {1,2},
and two independent edge marks in each direction for each
edge with = = {1,2}. It can be seen that the local weak
limit of this model is a Poisson Galton—Watson tree with mean
degree 6 and independent vertex and edge marks. Since the
limit distribution is completely characterized by the depth 1
neighborhood distribution at the root, we choose h = 1, and
run the algorithm with different values of . See Figure 1
for the behavior of ,, := (nats(f,gfl(;)(G(”))) —m(™ logn)/n,
where m(™) is the number of edges in G, As we see, for
large values of d, [,, converges to the marked BC entropy of
the limit as n gets large, which is consistent with Theorem 1.

B. Locally tree-like data

Recall from Theorem 1 that our theoretical guarantee holds
when the limit y is supported on 7. Motivated by this, we test
our algorithm on the following two real-world locally tree—like

w) = (t,t") appear335@atasets collected from [15]. We also compare the compression

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 21,2021 at 17:07:24 UTC from IEEE Xplore. Restrictions apply.

Dataset [3] best BPL [relative%] (h,d) encode/decode best 20% BPL [relative%] (h,d) encode/decode

(BPL) time (sec) time (sec)
roadnet-CA 10.58 5.93 [+44%] (4,2) 15.75/58.2 10.25 [+3%] (4,20) 20.24/94.4
roadnet-PA 10.07 5.94 [+41%] (3.,2) 7.4/28.9 9.80 [+2.7%] (2,10) 9.8/46.5

TABLE IV: Comparing the compression ratios of our algorithm with those in [3] for road networks. In the third column, our
best ratio together with the relative improvement over [3] are given. In the fourth column, the corresponding encoding/decoding
times in seconds are given. As we can see, for both datasets, § in the best cases is small. Motivated by Figure 1, one explanation
can be that we are not yet in the asymptotic regime. In order to address this, in the fifth and the sixth columns, we report the
best ratio of our algorithm as well as encoding/decoding times assuming that § is chosen so that at most 20% of the edges
are allowed to be star edges. As we can see, even in this case, our compression ratios are better compared to those in [3].

Dataset 2] best BPL [relative%] (h,0) encode/decode best 40% BPL [relative%] (h,d) encode/decode

(BPL) time (sec) time (sec)
dblp-2010 6.78 5.23 [23%] (4,2) 2.25/7.62 7.13 [-5.16%] (1,10) 2.53/12.1
amazon-2008 9.12 8.31 [9%] (4,2) 6.42/20.57 11.1 [-21.7%] (1,15) 13.1/76.2
hollywood-2009 5.14 4.67 [9%] (4,2) 33.67/41.88 5.22 [-1.6%] (2,200) 71.1/157.57
ljournal-2008 10.90 8.73 [20%] (4.,2) 74.76/210.54 10.77 [1.2%] (1,100) 611.7/515

TABLE V: Comparison for social networks. The structure of this table is similar to that of Table IV.

——0=2
20 §=5 r
—— =10
—— =20
15 —— BC Entropy |
£
£
~ 104 B

T
102 10° 10* 10° 10° 107
n (number of vertices)

Fig. 1: Synthetic data results. Note that for large J the
asymptotic performance converges to the actual BC entropy.

results with the ones reported in [3], which, to the best of our

knowledge, are the best results for these datasets.

e roadnet-CA: the graph of the road network of California,
consisting of 1,965,206 vertices and 5,533,214 edges.

o roadnet-PA: the graph of the road network of Pennsylvania,
consisting of 1,088,092 vertices and 3,083,796 edges.

Following the convention in the literature, we report the

compression ratios in bits per link (BPL). Table IV compares

the best compression ratios of our algorithm, which, as we can

see, are more than 40% better than the ones in [3].

C. Social networks

We consider the following social network datasets available
on the Laboratory of Web Algorithms (http://law.di.unimi.it).

e dblp-2010: an undirected simple graph consisting of 326,186

a scientist, and two vertices are connected if they have a

joint article.

o hollywood-2009: a simple undirected graph, consisting of
1,139,905 vertices and 113,891,327 edges, where each ver-
tex represents an actor, and two vertices are connected if the
corresponding actors have appeared in a movie together.

e amazon-2008: a simple undirected graph, consisting of
735,323 vertices and 5,158,388 edges, describing similarity
among books as reported by the Amazon store.

o ljournal-2008: collected by [16], based on the social web-
site LiveJournal started in 1999, this dataset consists of
5,363,260 vertices and 79,023,142 edges.

We compare our compression ratios to those reported in [2],
which are the best in the literature to the best of our knowl-
edge. Note that (a) the above datasets are not locally tree-like
and our theoretical optimality guarantee of Theorem 1 does
not hold for them, and (b) the compression method in [2] is
tailored for social networks, whereas our method is universal.
Nonetheless, as suggested by Table V, our compression ratio
is comparable in most cases, and is even better in some cases.

VIII. CONCLUSION

We introduced a computationally efficient lossless compres-
sion algorithm for sparse marked graphs which is universally
optimal. We investigated the performance of our algorithm
through synthetic and real-world data.

ACKNOWLEDGMENTS

The authors acknowledge support from the NSF grants
ECCS-1343398, CNS-1527846, CCF-1618145, CCF-
1901004, the NSF Science & Technology Center grant
CCF-0939370 (Science of Information), and the William and
Flora Hewlett Foundation supported Center for Long Term

vertices and 1,615,400 edges, where each vertex representg35€ybersecurity at Berkeley.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 21,2021 at 17:07:24 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] P. Boldi and S. Vigna, “The webgraph framework i: compression
techniques,” in Proceedings of the 13th international conference on
World Wide Web. ACM, 2004, pp. 595-602.

[2] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propaga-
tion: A multiresolution coordinate-free ordering for compressing social
networks,” in Proceedings of the 20th international conference on World
wide web. ACM, 2011, pp. 587-596.

[3] P. Liakos, K. Papakonstantinopoulou, and M. Sioutis, ‘“Pushing the
envelope in graph compression,” in Proceedings of the 23rd ACM
International Conference on Conference on Information and Knowledge
Management. ACM, 2014, pp. 1549-1558.

[4] Y. Choi and W. Szpankowski, “Compression of graphical structures:
Fundamental limits, algorithms, and experiments,” IEEE Transactions
on Information Theory, vol. 58, no. 2, pp. 620-638, 2012.

[5] D. J. Aldous and N. Ross, “Entropy of some models of sparse random
graphs with vertex-names,” Probability in the Engineering and Informa-
tional Sciences, vol. 28, no. 02, pp. 145-168, 2014.

[6] E. Abbe, “Graph compression: The effect of clusters,” in 2016 54th An-
nual Allerton Conference on Communication, Control, and Computing
(Allerton). 1EEE, 2016, pp. 1-8.

[7]1 T. Luczak, A. Magner, and W. Szpankowski, “Structural information and
compression of scale-free graphs,” Urbana, vol. 51, p. 618015, 2017.

[8] I. Benjamini and O. Schramm, “Recurrence of distributional limits of
finite planar graphs,” Electron. J. Probab., vol. 6, pp. no. 23, 13 pp.
(electronic), 2001. [Online]. Available: http://dx.doi.org/10.1214/EJP.v6-
96

[91 D. Aldous and J. M. Steele, “The objective method: probabilistic
combinatorial optimization and local weak convergence,” in Probability
on discrete structures. Springer, 2004, pp. 1-72.

[10] D. Aldous and R. Lyons, “Processes on unimodular random networks,”
Electron. J. Probab, vol. 12, no. 54, pp. 1454-1508, 2007.

[11] C. Bordenave and P. Caputo, “Large deviations of empirical neighbor-
hood distribution in sparse random graphs,” Probability Theory and
Related Fields, vol. 163, no. 1-2, pp. 149-222, 2015.

[12] P. Delgosha and V. Anantharam, “A notion of entropy for stochastic
processes on marked rooted graphs,” arXiv preprint arXiv:1908.00964,
2019.

[13] ——, “Universal lossless compression of graphical data,” in 2017 IEEE
International Symposium on Information Theory (ISIT). 1EEE, 2017,
pp. 1578-1582.

[14] P. Billingsley, Convergence of probability measures. John Wiley &
Sons, 2013.

[15] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[16] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi,
and P. Raghavan, “On compressing social networks in: Proc. of 15th
conference on knowledge discovery and data mining (kdd09),” 2009.

2354

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 21,2021 at 17:07:24 UTC from IEEE Xplore. Restrictions apply.

