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In the transitional mass range (~8–10 solar masses) between 
white dwarf formation and iron core-collapse supernovae, 
stars are expected to produce an electron-capture super-
nova. Theoretically, these progenitors are thought to be 
super-asymptotic giant branch stars with a degenerate 
O + Ne + Mg core, and electron capture onto Ne and Mg nuclei 
should initiate core collapse1–4. However, no supernovae have 
unequivocally been identified from an electron-capture origin, 
partly because of uncertainty in theoretical predictions. Here 
we present six indicators of electron-capture supernovae and 
show that supernova 2018zd is the only known supernova 
with strong evidence for or consistent with all six: progenitor 
identification, circumstellar material, chemical composition5–7, 
explosion energy, light curve and nucleosynthesis8–12. For 
supernova 2018zd, we infer a super-asymptotic giant branch 
progenitor based on the faint candidate in the pre-explosion 
images and the chemically enriched circumstellar material 
revealed by the early ultraviolet colours and flash spectros-
copy. The light-curve morphology and nebular emission lines 
can be explained by the low explosion energy and neutron-rich 
nucleosynthesis produced in an electron-capture supernova. 
This identification provides insights into the complex stellar 
evolution, supernova physics, cosmic nucleosynthesis and 
remnant populations in the transitional mass range.

On 2018 March 2.49 (ut dates are used throughout), we dis-
covered AT 2018zd13 at an unfiltered optical magnitude of 17.8 in 
the outskirts of NGC 2146 (redshift z = 0.002979 (ref. 14)), where 
pre-explosion Hubble Space Telescope (HST) and Spitzer Space 
Telescope images yield a faint progenitor candidate (Extended Data 
Figs. 1 and 2, and Methods). Combined with our pre-discovery 

detection at 18.1 mag on 2018 March 1.54, we estimate an explo-
sion epoch of 2018 March 1.4 ± 0.1 (~3 h before the first detection; 
Extended Data Fig. 3) and use it as a reference epoch for all phases. 
At 4.9 d post explosion, we classified AT 2018zd as a young type II 
(hydrogen rich) supernova (SN), designating it SN 2018zd15. Over 
time, SN 2018zd developed a plateau and broad Balmer-series P 
Cygni lines in the optical light curves and spectra (respectively), 
further classifying it as a type II-P (plateau) SN (Extended Data 
Figs. 3 and 4). The luminosity distance of NGC 2146 is uncertain, 
ranging from 11 Mpc to 18 Mpc in the literature16. Thus, we apply 
the standard candle method and adopt a distance of 9.6 ± 1.0 Mpc 
(Methods). Because of the wide distance range, we focus mainly on 
distance-independent measurements.

Unlike Fe core-collapse (CC) SN explosions of red super-
giant (RSG) stars, electron-capture (EC) SN explosions of 
super-asymptotic giant branch (SAGB) stars are robustly realized 
by first-principle simulations, facilitated by the steep density gra-
dient outside the degenerate core. Simulations consistently predict 
explosion energy (~2 × 1050 erg) and 56Ni yield (~3 × 10−3 M⊙, with 
an upper limit ≲10−2 M⊙) that are an order of magnitude lower than 
those observed for typical Fe CCSNe8,9,11, but are consistent within 
the lowest-mass Fe CCSNe (Supplementary Information). Despite 
the low explosion energy, the low mass and large radius of an SAGB 
star result in a light-curve morphology virtually identical to that of 
type II-P SNe, except for a larger drop (~4 mag) from the plateau to 
the radioactive decay tail, owing to the low 56Ni production10.

Among a sample of well-observed type II SN light curves17  
(Fig. 1), SN 2018zd fits in the type II-P morphology and shows 
the largest plateau drop (~3.8 mag). Even among a sample of 
low-luminosity type II-P SNe18 that often show larger plateau drops 
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Their final fate may vary from CC to thermonuclear ECSNe depend-
ing on the electron-capture rates and oxygen flame speed in the 
degenerate core27,28, resulting in different nucleosynthetic yields 
and galactic chemical evolution29. The CC ECSNe are expected to 
leave low mass, spin and kick-velocity neutron stars30, forming a 
low-mass peak (~1.25 M⊙) in neutron star mass distribution31 and 
low-eccentricity (~0.2) gravitational wave source population32. 
Therefore, using SN 2018zd as an ECSN template, future statistical 
studies with homogeneous samples from large surveys will be able to 
further reveal the evolution of SAGB progenitors and the influence 
of ECSNe on the kinetic and chemical composition of the Universe.

Methods
Extinction. We obtained the Milky Way (MW) extinction33 of AV,MW = 0.258 mag 
via the NASA/Infrared Processing and Analysis Center (IPAC) Infrared Science 
Archive. We measure the total Na i D EW of each host and MW component using 
the MMT blue channel spectra (moderate resolution of 1.45 Å) taken 3.6–53.4 d 
after the explosion (Extended Data Fig. 4). Since the ratio of the total Na i D EW 
of the host to MW varies between 1.07 and 1.25, we estimate AV,host ≳ AV,MW. As a 
cross-check, we transform the gri magnitudes of SN 2018zd to VRI magnitudes34 
and compare the V − I colour to that of well-observed, low-extinction type II-P 
SNe 1999em35, 1999gi36 and 2017eaw37 by assuming AV,host = AV,MW for SN 2018zd. 
Since the V − I colour of SN 2018zd during the photospheric phase is consistent 
with the other SNe, we adopt a host extinction of AV,host = AV,MW and assume a 
reddening law38 with RV = 3.1. This extinction value is also consistent with the 
lower limit obtained from the spectropolarimetry (Supplementary Information). 
Increasing (or decreasing) the host extinction by more than 0.10 mag makes the 
V − I colour inconsistent with that of the other type II-P SNe. Thus, we adopt a host 
extinction uncertainty of ±0.10 mag.

Luminosity distance. We apply the expanding photosphere method (EPM)36,39 
and the standard candle method (SCM)40 using the measured Fe ii λ5169 velocities 
and transforming the gri to VRI magnitudes34, which yields 6.5 ± 0.7 Mpc and 
9.6 ± 1.0 Mpc, respectively. The EPM is best used at early times (≲30 d) when SN 
emission can be approximated as a diluted blackbody in free expansion39. However, 
the early emission from SN 2018zd is dominated by CSM interaction (Fig. 2 
and Extended Data Fig. 5), making the EPM unreliable. On the other hand, the 
SCM is based on the luminosity–velocity correlation41–43 at day 50 when the CSM 
interaction is negligible, which is well reproduced by our MESA + STELLA models 
(‘MESA + STELLA progenitor and light-curve models’ section and Extended Data 
Fig. 6). Thus, we favour the SCM over the EPM.

It has been suggested that NGC 2146 may be farther away than the SCM 
estimate. There is a claim of a preliminary tip of the red giant branch (TRGB) 
distance obtained from archival HST Wide Field Camera 3 IR channel (WFC3/
IR) data (programme GO-12206, principal investigator M. Westmoquette) that 
places the galaxy out at ~18 Mpc (ref. 16). We have independently reduced and 
analysed these same data and find that the single orbit of observations available 
(split between F110W and F160W) does not reach the necessary depths to make 
this conclusion. Even at the closer 10 Mpc distance, the archival data would not 
allow us to obtain a TRGB measurement owing to the short exposure times and 
intense levels of crowding. We also find that there are no archival HST optical data 
of sufficient depths to obtain a TRGB measurement.

Future SN-independent distance measurements (for example, Cepheids and 
TRGB with HST) will be necessary to verify the SCM estimate. We discuss the 
implications if the luminosity distance were larger than the SCM estimate in 
Supplementary Information.

HST and Spitzer progenitor detection and upper limits. We were able to locate 
astrometrically the site of SN 2018zd in existing pre-explosion HST archival 
images, specifically data obtained in bands F814W and F658N with the Advanced 
Camera for Surveys(ACS)/WFC instrument on 2004 April 10 (programme GO-
9788, principal investigator L. Ho, with total exposure times of 120 s and 700 s, 
respectively; the F814W image consists of a single exposure), as well as in F225W 
with WFC3/UVIS on 2013 March 7 (programme GO-13007, principal investigator 
L. Armus; total exposure time of 1,500 s). We identified a potential candidate 
progenitor precisely by obtaining images of the SN itself on 2019 May 19 in 
F555W and F814W with WFC3/UVIS, as part of programme GO-15151 (principal 
investigator S. Van Dyk). We were able to astrometrically register the 2019 F814W 
image mosaic to the 2004 one using 23 stars in common, with a root-mean-square 
uncertainty of 0.14 ACS/WFC pixel. Furthermore, in a similar fashion we were 
able to match precisely the SN image with the F658N and F225W images as well; 
however, the progenitor candidate was not detected in either of those bands. We 
show the pre- and post-explosion images in Extended Data Fig. 1.

We extracted photometry from all of the HST images using the package 
Dolphot44. We found that Dolphot detected and measured a source at the position 
of the progenitor candidate with mF814W = 25.05 ± 0.15 mag. Unfortunately, as noted 

above, the F814W pre-explosion observation consisted of only a single exposure, 
so it was not possible for the standard STScI pipeline to reject cosmic-ray hits in 
the usual way, while constructing an image mosaic from the single frame, as would 
normally be the case for two or more dithered exposures. In addition, we note that 
the flux measurement with Dolphot may be affected by the presence of cosmic-ray 
hits in the image at or around the progenitor site. Nevertheless, the values of both 
the Dolphot output parameters ‘object type’ (1) and ‘sharpness’ (−0.013) appear to 
point to the source being stellar-like.

To determine whether the peak pixel seen at the candidate location is indeed 
merely a cosmic-ray hit or is the actual peak of a stellar point-spread function, we 
employ a deep-learning model (C.X. et al., manuscript in preparation) based on 
the results from DeepCR45. We find that no pixels in the vicinity of the candidate 
progenitor have a model score higher than 5.1 × 10−5. If we use this score as a 
threshold, the model has a completeness of 99.93% based on the test data taken 
with the same instrument. We therefore conclude that progenitor candidate is 
a real point-spread function with >3σ confidence. If the object was not actually 
detected, we find that the upper limit at 3σ to detection in F814W is >26.3 mag.

Inserting and recovering an artificial star of varying brightness at the exact SN 
position with Dolphot in both F225W and F658N led to estimates of the upper 
limits to detection (at 3σ) of >23.6 mag and >24.1 mag, respectively. In addition, 
note that we measured a brightness of the SN itself in the 2019 HST observations of 
mF555W = 21.53 ± 0.01 mag and mF814W = 20.33 ± 0.01 mag.

The SN site also can be found in pre-explosion Spitzer data both from the 
cryogenic and so-called warm (post-cryogenic) missions, from 3.6 μm to 24 μm. 
The data are from observations with the Infrared Array Camera (IRAC46) in 
channels 1 (3.6 μm) and 2 (4.5 μm; the SN site sits in a gap of spatial coverage in 
channels 3 and 4 at 5.8 μm and 8 μm, respectively) on 2004 March 8 (programme 
59, principal investigator G. Rieke) and on 2007 October 16 (programme 40410, 
principal investigator G. Rieke) in channels 2 and 4; from observations with the 
Multiband Imaging Photometer for Spitzer (MIPS47) at 24 μm on 2004 March 16 
(programme 59, principal investigator G. Rieke; the sensitivity and resolution of 
the data at 70 μm and 160 μm are not sufficient to hope to detect the progenitor 
and were not considered further); and from observations with IRAC in channels 
1 and 2 on 2011 November 15 (programme 80089, principal investigator D. 
Sanders). We show the 2011 November 15 IRAC observation in channel 1 in 
Extended Data Fig. 1.

Observations with IRAC of the SN itself were obtained on 2019 January 
24 (programme 14098, principal investigator O. Fox); however, we did not 
analyse these data, other than to extract an absolute position for the SN of 
α = 6 h 18 min 03.43 s, δ =78° 22′ 01.4″ (J2000; ±0.3″ in each coordinate). Using 
MOPEX48, we constructed mosaics from all of the useful pre-SN imaging data, 
and with APEX within MOPEX49 we inserted into the images an artificial star of 
varying brightness at this absolute position. From this, we estimated upper limits to 
detection of the progenitor (at 3σ) of >19.0 mag and >18.1 mag in channels 1 and 
2 (respectively) from the 2004 March 8 data; >18.1 mag and >14.5 mag in channels 
2 and 4 (respectively) from 2007 October 16; and >19.0 mag and >18.4 mag in 
channels 1 and 2 (respectively) from 2011 November 15 (we have assumed the 
zeropoints from the IRAC Instrument Handbook). We also estimated >10.2 mag at 
24 μm from the 2004 March 16 observation (we have assumed the zeropoint from 
the MIPS Instrument Handbook).

We show the resulting spectral energy distribution (SED), or limits thereon, 
for the SN 2018zd progenitor in Extended Data Fig. 2. The distance (9.6 ± 1.0 Mpc) 
and extinction (AV = 0.52 ± 0.10 mag) to the SN were adopted (‘Luminosity 
distance’ and ‘Extinction’ sections), assuming that the latter also applied to the 
progenitor as well. We have further assumed a reddening law38 with RV = 3.1 and 
extended it into the mid-infrared50. For comparison, we also show single-star 
SAGB and RSG (with respective initial masses Minit = 8 M⊙ and 15 M⊙) models 
from BPASS v2.251 with metallicities Z = 0.020 (solar) and Z = 0.010 (subsolar; 
as discussed in Supplementary Information, the SN site metallicity is probably 
subsolar). We have further included for comparison the observed SED for the 
candidate SAGB star MSX SMC 055 (IRAS 00483−7347)52 as well as the SED for 
the progenitor of the low-luminosity type II-P SN 2005cs53,54.

We note that the SEDs for the BPASS RSG models with Minit = 15 M⊙ are 
probably not realistic, since they are merely bare photospheres, whereas we would 
expect such a star to possess a dusty CSM, as was the case for the progenitor of SN 
2017eaw37. The same could also potentially be said for the SAGB models, given 
the dusty nature of MSX SMC 055. Again, these BPASS model SEDs are bare 
photospheres and do not include CSM, for the presence of which we have strong 
evidence (given here) in the case of the SN 2018zd progenitor; this merits further 
development of the SED models including the effect of dusty CSM.

It is difficult to infer much about the nature of the SN 2018zd progenitor, based 
on a probable detection in one band and upper limits in the others. However, its 
inferred SED does appear to be less consistent with that of an Minit ≳ 8 M⊙ RSG star, 
as well as the SN 2005cs progenitor, and more consistent with a potentially dusty 
SAGB star, such as MSX SMC 055. If there were circumstellar dust around the SN 
2018zd progenitor, it was destroyed as the SN shock progressed through.

We should revisit this site either with HST or the James Webb Space Telescope 
in a bandpass similar to F814W, when the SN has sufficiently faded, to confirm 
that the candidate object was indeed the progenitor. Again, we cannot entirely 
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rule out that the source detected in the pre-SN image at the precise SN position is 
not related to a cosmic-ray hit; however, all of the indications suggest that this is 
a real detected star, which should have vanished when the SN site is observed at a 
sufficiently late time.

MESA + STELLA progenitor and light-curve models. Recent work43,55–57 has 
highlighted the non-uniqueness of bolometric light-curve modelling for extracting 
explosion characteristics (ejecta mass Mej, explosion energy Eexp and progenitor 
radius R) from plateau features (in particular, luminosity at day 50, L50, and plateau 
duration, tp) without an independent prior on one of Mej, Eexp or R. Owing to the 
presumed presence of dense CSM and its potential influence on the early light 
curves and velocities, shock-cooling modelling and early expansion velocities 
cannot simply lift this degeneracy.

To allow light-curve analysis to be agnostic to the progenitor mass, three 
different explosion models were created with equally good by-eye matches to the 
bolometric light curve and expansion-velocity data on the plateau. The progenitor 
models were selected from a pre-existing grid58 of MESA59,60 RSG progenitor 
models with expected ejecta masses and radii within the family of explosions 
consistent with the L50, tp and MNi of SN 2018zd (Extended Data Fig. 6; see 
Supplementary Information for the model details).

The explosion energies for each model were then chosen and adjusted to match 
the light curve of SN 2018zd with the respective progenitor model radii using the 
degeneracy relations43

log (E
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500
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log (M
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(1)

where E51 = Eexp/1051 erg, M10 = Mej/10 M⊙, MNi is in units of M⊙, Lp,42 = L50/1042 erg s−1, 
tp,2 = tp/100 d, and R500 = R/500 R⊙. Plugging in L50 = 8.6 × 1041 erg s−1 from the 
bolometric light curve at day 50, tp = 125.4 d determined by fitting the drop from 
the plateau17, and observed MNi = 0.0086 M⊙, these relations describe the possible 
explosion parameter space (Extended Data Fig. 6). They are intended for Ni-rich 
(MNi > 0.03 M⊙) type II-P SNe of RSG progenitors with no fallback, but nonetheless 
provide a heuristic estimate for the degeneracy between explosion energy, 
progenitor radius and ejected mass.

This degeneracy motivates the set of progenitor models and explosion energies 
that we use to reproduce the light-curve properties, and reveals low recovered 
Eexp that overlaps substantially with the expected parameter space of ECSNe. 
The mapping between Mej recovered for Fe CCSNe and ECSNe is less robust, as 
differences in mixing extent and H/He abundances could account for differences in 
the recovered Mej from explosions of different stellar progenitors42,43,61. As seen in 
Extended Data Fig. 6, even though SN 2018zd is not particularly dim, low-energy 
explosions of radially extended progenitors can match the plateau luminosity. A 
slightly lower-Mej progenitor with a radius of 1,400 R⊙, for example, could even 
produce this luminosity with an explosion energy of ~1.5 × 1050 erg.

The explosions were carried out using MESA until near shock breakout. The 
models were then handed off to STELLA62–64 to produce synthetic bolometric 
light curves and expansion velocities (Extended Data Fig. 6; see Supplementary 
Information for the modelling details). We see good agreement between all 
three models and observations (varying by at least 50% in Mej, Eexp and R), with 
deviations at early times that can be attributed to the extended stellar atmosphere 
and potential interaction with the circumstellar environment.

To account for the early deviations, we affix a wind-density profile with 
ρ
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wind

/4πr

2

v

wind

, where r is the radial extent, Ṁ
wind

 is a constant 
wind mass-loss rate, and vwind is the wind velocity for time twind (that is, 
M
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= Ṁ

wind

t
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), onto the MESA model at handoff to STELLA. We construct a 
grid of CSM models by varying the following parameters:
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and twind = {1, 3, 10, 30} yr for each MESA model, assuming a typical wind 
velocity19 vwind = 20 km s−1. Then we perform χ2 fitting on the observed bolometric 
light curve over the full temporal evolution and find the best-fit parameters 
Ṁ

wind

= 0.01M⊙ yr

−1 and twind = 10 yr.
Remarkably, the best-fit parameters are the same for all three degenerate 

models, and also reproduce the early blueward UV-colour evolution (Extended 
Data Fig. 6). Thus, we choose model M8.3_R1035_E0.23 (Supplementary 
Information) as being representative and present it for the UV-colour plot in Fig. 
2. In addition to matching the early-time luminosity excess, a dense wind profile 
suppresses the early photospheric and Fe line velocities20. The kink seen in the 
modelled Fe line velocity with Sobolev optical depth τSob = 1 in the STELLA models 
can be attributed to numerics at the boundary between the CSM profile and the 
surface of the stellar ejecta (Extended Data Fig. 6). Overall, the models still yield 
general agreement between the calculated velocity evolution and the data.

We note that at 3–10 d after the explosion, the blackbody temperatures 
(~20,000–25,000 K) may be underestimated (Supplementary Information), which 
could affect the luminosity around the peak, and so the CSM models as well. For 
the flash spectral model comparisons in Fig. 3, we use a conservative temperature 
constraint of ~20,000–30,000 K.

The rate of ECSNe. Among other previously suggested ECSN candidates 
(Supplementary Information and Extended Data Fig. 7), type IIn-P SNe share 
similar properties to SN 2018zd. Thus, the type IIn-P SN rate may be related to 
the ECSN rate. As there is no rate estimation for type IIn-P SNe in the literature 
to our knowledge, we put a rough lower limit using publicly announced type IIn 
SNe on the Weizmann Interactive Supernova Data Repository (WISeREP)65 and/
or the Transient Name Server (TNS) by cross-checking with the literature and 
the Open Supernova Catalog66, and also cross-correlating the public spectra to 
SN spectral libraries Superfit67 and SNID68 when available. There are 528 objects 
classified as type IIn SNe on WISeREP and/or TNS (as of 2020 March 11). We 
exclude 73 objects as misclassified early-flash type II SNe, type Ia-CSM SNe, type 
Ibn SNe, SN imposters or active galactic nuclei. Although 241 objects do not have 
enough public and/or published spectra and/or light curves to secure the type IIn 
classifications and/or to be identified as type IIn-P SNe, we include them in the 
further analysis so as not to overestimate the lower limit when taking a number 
ratio of type IIn-P to type IIn SNe (see below and Supplementary Fig. 1).

To identify type IIn-P SN candidates from the 455 objects, we apply two 
light-curve criteria based on the known type IIn-P SN characteristics: (1) the V, r/R 
or i/I-band decline of less than 2 mag in the first 50 d after the explosion; and (2) 
the V, r/R or i/I-band drop of more than 2 mag in 30 d within 100–150 d after the 
explosion. This yields four type IIn-P SN candidates: SNe 2005cl (z = 0.025878)69, 
2005db (z = 0.015124)69, 2006bo (z = 0.0153)70 and 2011A (z = 0.008916)71. In 
addition, there are three known type IIn-P SNe: 1994W (z = 0.004116)72, 2009kn 
(z = 0.015798)73 and 2011ht (z = 0.003646)74 (Supplementary Fig. 1).

To compare with the volume-limited (≤60 Mpc) Lick Observatory Supernova 
Search (LOSS) sample75, we apply the same distance cut, leaving 42 type IIn SNe 
(17 and 25 with sufficient and insufficient data, respectively) and 3 type IIn-P 
SNe (SNe 1994W, 2011A and 2011ht). As these SNe were discovered by different 
surveys with different strategies, we have no handle on the incompleteness (but 
also see Supplementary Fig. 1). Thus, we neglect the incompleteness and take the 
number ratio of type IIn-P to type IIn SNe within 60 Mpc multiplied by the LOSS 
type IIn SN rate75, 3/42 × 8.8% = 0.63% of all CCSNe, as a rough lower limit of the 
type IIn-P SN rate.

The identification of SN 2018zd-like SNe from type II-P SNe (48.2% of 
all CCSNe) requires not only the light-curve morphology, but also the early 
UV colours and the flash and nebular spectroscopy, all of which combined are 
rarely available on WISeREP, TNS and/or the Open Supernova Catalog. This 
current sample limitation may indicate that many SN 2018zd-like SNe have been 
overlooked as normal type II-P SNe. Given the limitation, we simply take the 
lowest possible limit of >0% with the one identification of SN 2018zd as an ECSN.

By combining the estimated type IIn-P and SN 2018zd-like lower limits, we 
obtain a type IIn-P + SN 2018zd-like lower limit of >0.6% of all CCSNe. From 
the nucleosynthetic point of view, ECSNe are expected to constitute ≲8.5% of all 
CCSNe76. With the above estimates, the ECSN rate can be roughly constrained 
within 0.6–8.5% of all CCSNe, which corresponds to a narrow SAGB progenitor 
mass window of ΔMSAGB ≈ 0.06–0.69 M⊙ assuming maximum and minimum 
SAGB masses of 9.25 M⊙ and 9.25 M⊙ − ΔMSAGB (respectively) at solar metallicity5 
(Extended Data Fig. 8). We note that the type IIn-P and SN 2018zd-like rates are 
probably metallicity dependent (as is the SAGB mass window), but we defer more 
detailed analysis with a homogeneous sample in the future when one becomes 
publicly available.

Data availability
The data that support the plots within this paper and other findings of this study 
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ac.il/), or from the corresponding author upon reasonable request.
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Extended Data Fig. 1 | The host galaxy and post- and pre-explosion images of SN 2018zd. a, Las Cumbres 2 m BVgr-composite image of SN 2018zd and 

the host starburst galaxy NGC 2146 (Supplementary Information), courtesy of Peter Iláš. At the assumed luminosity distance of 9.6 Mpc, 1’ corresponds to 

2.8 kpc. SN 2018zd is on a tidal stream which was likely ejected during a galaxy merger event. b, Portion of an HST WFC3/UVIS F814W mosaic obtained 

on 2019 May 19, 443.7 d after the explosion of SN 2018zd (indicated by the tick marks). c, Portion of an HST ACS/WFC F814W mosaic from 2004 April 

10; the SN site is similarly indicated by tick marks. This mosaic consists of a single exposure, so to remove a number of cosmic-ray hits in the image, 

we use a masked mean filter to smooth any pixels that have a score of 0.001 or higher from our deep-learning model (Methods). The pixels associated 

with the progenitor candidate had scores < 4 × 10−5, so are not affected. d, Same as panel (c), but with F658N on the same epoch. e, Portion of a Spitzer 

IRAC 3.6 μm mosaic obtained on 2011 November 15, with the SN site again indicated by tick marks. All panels (b)–(e) are shown to the same scale and 

orientation, with north up and east to the left. The progenitor candidate is identified only in the single HST ACS/WFC F814W image (c).
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Extended Data Fig. 2 | SN progenitor and SAGB candidate SEDs. The SED for the SN 2018zd progenitor candidate resulting from pre-explosion HST 

and Spitzer archival data (Methods; black solid circles). For comparison we show model SEDs from BPASS v2.251 for SAGB stars (in the initial mass 

range Minit = 6 − 8 M⊙ with bolometric luminosities L ≈ 105 L⊙ in the last model timestep; navy curves) and RSG stars at Minit = 8 M⊙ (purple curves) and 

Minit = 15 M⊙ (orange curves), at metallicities Z = 0.02 (solar; short-dashed line) and Z = 0.01 (subsolar; long-dashed line). The SEDs of the BPASS models 

are extrapolated into the mid-infrared via MARCS79 model stellar atmospheres of similar temperatures as the last BPASS model timesteps, deriving 

synthetic photometry from those atmosphere models using the bandpass throughputs provided in the Spitzer IRAC and MIPS Instrument Handbooks. Also 

shown for comparison are the SEDs for the SAGB candidate MSX SMC 055 (assuming Galactic foreground extinction and adjusted to a Small Magellanic 

Cloud distance modulus of μ = 18.90 mag from the Extragalactic Distance Database80; red open pentagons52) and for the progenitor of the low-luminosity 

Type II-P SN 2005cs (assuming the total reddening from the two studies53,54 and adjusted to a recent accurate distance for M5181; blue open squares53, 

green open diamonds54). The luminosity of the HST ACS/WFC F814W detection of the SN 2018zd progenitor candidate lies between MSX SMC 055 and 

the SN 2005cs progenitor.
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Extended Data Fig. 3 | Multiband light curve of SN 2018zd. a, Multiband light curve of SN 2018zd focusing on the early rise. A quadratic function 

F

1

(t− t

0

)2 is fitted to the unfiltered optical Itagaki and the first three Noguchi points to estimate an explosion epoch t0 = MJD 58178.4 ± 0.1 

(Supplementary Information). The observed flash-spectroscopy epochs (Extended Data Fig. 4) are marked by the vertical dashed lines. Note the sharper 

rise in the Swift UVW2 than in the V and unfiltered photometry during the flash-spectroscopy epochs. b, Multiband light curve of SN 2018zd up to the 56Co 

decay tail. The data gap is due to the Sun constraint. Error bars denote 1σ uncertainties and are sometimes smaller than the marker size. The light-curve 

shape resembles that of a typical Type II-P SN. Comparing the luminosity on the tail to that of SN 1987A82, we estimate a 56Ni mass of (8.6 ± 0.5) × 10−3 M⊙ 

at the assumed luminosity distance of 9.6 Mpc.
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Extended Data Fig. 4 | optical spectral time series of SN 2018zd. The flash features (for example, He II, C III, and C IV) persist up to > 8.8 d and disappear 

before 16.8 d. Then the broad Balmer-series P Cygni lines appear, typical of the photospheric phase of a Type II-P SN. After ~ 200 d, the nebular emission 

lines (for example, Hα, [Ca II], and [Ni II]) dominate over the relatively flat continuum.
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Extended Data Fig. 5 | Expansion velocities as a function of time. Comparison of the unnormalised (a, b, c) and normalized (to day 50; d, e, f) Hα, 

Hβ, and Fe II λ5169 expansion velocities of SN 2018zd (Supplementary Information) with a Type II SN sample83 (transparent lines), including archetypal 

SN 1999em, along with low-luminosity SN 2005cs84, early-flash SN 2013fs21, and low-luminosity and early-flash SN 2016bkv77,85. Error bars denote 1σ 

uncertainties and are sometimes smaller than the marker size. Note the pronounced early Hα and Hβ rises and the relatively flat velocity evolution (up 

to ~ 30 d) of SN 2018zd, indicating shock propagation inside the dense, optically-thick CSM.
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Extended Data Fig. 6 | MESA+STELLA progenitor and degenerate light-curve models. a, b, Ejecta mass Mej and explosion energy E
exp

 inferred from 

Eq. (1) (Methods) as a function of progenitor radius R consistent with the bolometric light curve of SN 2018zd at the assumed luminosity distance of 

9.6 ± 1.0 Mpc, along with the properties of the three degenerate explosion models. The blue and red shaded regions show explosion parameters expected 

for ECSNe6,7,10 and typical of Fe CCSNe86, respectively. c, d, Three degenerate MESA+STELLA explosion models providing good fits to the light curve and 

velocities inferred from the Fe II λ5169 line during the plateau phase. Models are labelled by M[M
ej,⊙]_R[R⊙]_E[E

exp,51

]. Error bars denote 1σ uncertainties. 

Note the observed early-time excess luminosity and suppressed velocity of SN 2018zd. This light-curve degeneracy highlights the inability to distinguish 

ECSNe from Fe CCSNe solely based on their light curves, suggesting that many ECSNe might have been overlooked owing to the lack of additional 

observations. e, f, Same as panels (c, d), but adding a dense wind profile (Ṁ
wind

= 0.01 M⊙ yr−1, vwind = 20 km s−1, and twind = 10 yr) to the three degenerate 

MESA models before handoff to STELLA. g, Comparison of the UV-colour models with the same wind CSM parameters as in panels (e, f). Error bars 

denote 1σ uncertainties. All three models with the same wind CSM parameters are able to reproduce the early-time luminosity excess and blueward 

UV-colour evolution almost identically, suggesting the insensitivity of a particular model choice. Despite a possible artificial velocity kink when the Fe 

line-forming region transitions from the CSM to the stellar ejecta, the velocity evolution with the early suppression is also reproduced.
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Extended Data Fig. 7 | ECSN candidate checklist. Check marks, check+question marks, and cross marks (respectively) indicate observations consistent, 

perhaps consistent, and inconsistent with theoretical expectations. Dashed lines indicate the lack of observational constraints, and lone question marks 

indicate unknowns (Supplementary Information). For SN 2018zd, we identify a faint progenitor candidate that may be consistent with an SAGB star 

(Extended Data Figs. 1 & 2), and the explosion energy is consistent within the light-curve degeneracy (Extended Data Fig. 6).
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Extended Data Fig. 8 | ECSN rate estimators. Comparison of the ECSN rate estimates: ‘SAGB’ is the SAGB mass window from stellar evolutionary 

calculations at solar metallicity5; ‘IIn’ is the observed Type IIn SN rate from a volume-limited (≤60 Mpc) sample75; ‘IIn-P+2018zd’ is a rough lower limit of 

the Type IIn-P SN rate within 60 Mpc combined with SN 2018zd (Methods); ‘ILRT’ is a rough estimate from ILRTs within 30 Mpc87; ‘NS’ is an estimated 

rate from the bimodality in the neutron star mass distribution31 assuming that the low-mass and high-mass peaks originate from ECSNe and Fe CCSNe, 

respectively; and ‘86Kr’ is an upper limit from the ECSN nucleosynthesis calculation76 assuming that ECSNe are the dominant production source of 86Kr. The 

conversion between the fraction of all CCSNe and the SAGB mass window is performed assuming the Salpeter initial mass function with lower and upper 

CCSN mass limits of 7.5 M⊙ and 120 M⊙ (respectively) and maximum and minimum SAGB masses of 9.25 M⊙ and 9.25 M⊙ − ΔMSAGB (respectively) at solar 

metallicity5. The grey vertical dotted line is where the minimum SAGB mass equals the assumed lower CCSN mass limit of 7.5 M⊙. The grey shaded region 

shows a rough ECSN rate constraint by the IIn-P+2018zd lower limit and the nucleosynthesis upper limit.
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