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In the transitional mass range (~8-10 solar masses) between
white dwarf formation and iron core-collapse supernovae,
stars are expected to produce an electron-capture super-
nova. Theoretically, these progenitors are thought to be
super-asymptotic giant branch stars with a degenerate
O + Ne + Mg core, and electron capture onto Ne and Mg nuclei
should initiate core collapse’*. However, no supernovae have
unequivocally been identified from an electron-capture origin,
partly because of uncertainty in theoretical predictions. Here
we present six indicators of electron-capture supernovae and
show that supernova 2018zd is the only known supernova
with strong evidence for or consistent with all six: progenitor
identification, circumstellar material, chemical composition®”,
explosion energy, light curve and nucleosynthesis®'%. For
supernova 2018zd, we infer a super-asymptotic giant branch
progenitor based on the faint candidate in the pre-explosion
images and the chemically enriched circumstellar material
revealed by the early ultraviolet colours and flash spectros-
copy. The light-curve morphology and nebular emission lines
can be explained by the low explosion energy and neutron-rich
nucleosynthesis produced in an electron-capture supernova.
This identification provides insights into the complex stellar
evolution, supernova physics, cosmic nucleosynthesis and
remnant populations in the transitional mass range.

On 2018 March 2.49 (uT dates are used throughout), we dis-
covered AT 2018zd" at an unfiltered optical magnitude of 17.8 in
the outskirts of NGC 2146 (redshift z=0.002979 (ref. '*)), where
pre-explosion Hubble Space Telescope (HST) and Spitzer Space
Telescope images yield a faint progenitor candidate (Extended Data
Figs. 1 and 2, and Methods). Combined with our pre-discovery

detection at 18.1 mag on 2018 March 1.54, we estimate an explo-
sion epoch of 2018 March 1.4+0.1 (~3h before the first detection;
Extended Data Fig. 3) and use it as a reference epoch for all phases.
At 4.9d post explosion, we classified AT 2018zd as a young type II
(hydrogen rich) supernova (SN), designating it SN2018zd". Over
time, SN 2018zd developed a plateau and broad Balmer-series P
Cygni lines in the optical light curves and spectra (respectively),
further classifying it as a type II-P (plateau) SN (Extended Data
Figs. 3 and 4). The luminosity distance of NGC 2146 is uncertain,
ranging from 11 Mpc to 18 Mpc in the literature'®. Thus, we apply
the standard candle method and adopt a distance of 9.6 + 1.0 Mpc
(Methods). Because of the wide distance range, we focus mainly on
distance-independent measurements.

Unlike Fe core-collapse (CC) SN explosions of red super-
giant (RSG) stars, electron-capture (EC) SN explosions of
super-asymptotic giant branch (SAGB) stars are robustly realized
by first-principle simulations, facilitated by the steep density gra-
dient outside the degenerate core. Simulations consistently predict
explosion energy (~2X10*erg) and **Ni yield (~3x 107 M, with
an upper limit $1072M,,) that are an order of magnitude lower than
those observed for typical Fe CCSNe®*', but are consistent within
the lowest-mass Fe CCSNe (Supplementary Information). Despite
the low explosion energy, the low mass and large radius of an SAGB
star result in a light-curve morphology virtually identical to that of
type II-P SNe, except for a larger drop (~4 mag) from the plateau to
the radioactive decay tail, owing to the low **Ni production'’.

Among a sample of well-observed type II SN light curves'’
(Fig. 1), SN2018zd fits in the type II-P morphology and shows
the largest plateau drop (~3.8mag). Even among a sample of
low-luminosity type II-P SNe'® that often show larger plateau drops
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Fig. 1| Normalized pseudobolometric light curves. a, Comparison of the normalized pseudobolometric (UBVRI; Supplementary Information) light curve

of SN 2018zd with a well-observed type Il SN sample"” (transparent lines), including archetypal SN 1999em, low-luminosity SN 2005cs and early-flash SN
2013fs, along with low-luminosity and early-flash SN 2016bkv’”. b, Comparison of the normalized pseudobolometric (BVRI) light curve of SN 2018zd with

a low-luminosity type II-P SN sample™, including SNe 1999eu and 20060v with the largest plateau drops ever (to our knowledge). Error bars denote 1o
uncertainties. Because of the distance uncertainty of SN 2018zd, we normalize each light curve to day 50 and make the comparisons distance independent.
SN 2018zd shows the largest plateau drop and is comparable to that of SNe 1999eu and 20060y, indicating an intrinsically low *Ni production.
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Fig. 2 | UV-colour light curves. a,b, Comparison of the UV colours of SN 2018zd with the sample as in Fig. 1a. The panels show Swift UVW2 — V (a) and
Swift and ground-based U — V colour evolution (b). Note the pronounced sharp blueward colour evolution of SN 2018zd over the first ~5d, shown in

the insets, suggesting a possible delayed shock breakout through dense CSM. ¢, Comparison of the U— V colour of SN 2018zd with our MESA + STELLA
CSM models (Methods and Extended Data Fig. 6) assuming a typical constant wind velocity of 20 km s~ (Fig. 3), colour-coded by the mass-loss rate. To
reproduce the observed early blueward evolution, M 2 0.01 Mg yr—for the last ~10 yr before the explosion is required. The observed flash-spectroscopy
epochs (Fig. 3) are marked by the vertical dashed lines and are consistent with the blueward colour evolution. Error bars denote 16 uncertainties.

than other type II subclasses (Fig. 1), SN2018zd is comparable to
SNe 1999eu and 20060v with the largest drops ever observed, indi-
cating an intrinsically low **Ni production. For SNe 1999eu and
20060v, the lack of additional data prevents the investigations of

decline rate of SN2018zd is consistent with the **Co heating rate,
and an estimated **Ni mass is (8.6+0.5) X 10~* M, at the assumed
luminosity distance of 9.6 Mpc (Extended Data Fig. 3). This is larger
than the canonical **Ni yield for ECSNe, but still within the upper

other ECSN indicators; the light curves alone cannot be conclusive
evidence (see Methods for the light-curve degeneracy). The tail

limit (see also Supplementary Information for the effect of distance
uncertainty).
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Fig. 3 | Flash spectral time series. a, Comparison of the flash spectral time series of SN 2018zd with that of well-sampled type II-P SNe 2013fs*

and 2016bkv’’, and type IIb (mostly stripped H-rich envelope) SN 2013cu’®. SN 2018zd exhibits the persistent flash features (39 d), while most

of the flash features in the other SNe disappear within ~5d after the explosion. b-d, Comparison of the flash spectral time series at three different
zoomed-in wavelength regions of SN 2018zd with the scaled and resampled flash spectral models of solar-abundance (X,;=0.70, X,,.=0.28,
Xc=3.02%1073, Xy =118 X103, X5 =9.63 x1073) and He-rich (X;=0.18, X;;,=0.80, X-=5.58 x 1075, X;=8.17 x 1073, X,=1.312x10*) atmospheres with
Mmod =3 x 1073 Mg yr—"and v,,4=150 km s (the densest CSM with the finest temperature grid spacing)?2. The temperatures are constrained to

be within ~20,000K (at 3.6 d) to 30,000K (at 4.9-5.8d) from the MESA + STELLA UV-colour models (Fig. 2). The observed features are expected to

be narrower and stronger if resolved, as pyps/Prmod = (Mobs/vobs)/(Mmod/vmod) = 25 with Mobs = 0.01 Mg yr~'from the UV colours and assuming
Vops=20km s~ (the wind P Cygni components of SN 2018zd are not resolved, only giving an upper limit v, < 76.3km s™" from the highest spectral resolution
of Ci1 45696 at 3.6 d). On the basis of the model comparisons, the line ratios of Niv/H8>1(b) and Hel/HB > 1 (c), the transition from Ciito Civ (d) and
the lack of Onand Ov lines (¢, d) observed in SN 2018zd suggest He-, C- and N-rich, but O-poor CSM composition.

“As SAGB stars are thought to have mass-loss rates
(M ~ 10~* M yr—') a few orders of magnitude higher than those
of RSG stars of similar initial mass®, the circumstellar material
(CSM) density is expected to be a few orders of magnitude higher,
as it scales as pgy ¢ M/Vying, assuming constant wind mass loss
with similar SAGB and RSG wind velocities" v,;,.. Compared with
RSG stars, the CSM composition of SAGB stars can be He-, C-
and N-rich, but O-poor, depending on the efficiency of the SAGB
dredge-up and dredge-out that bring the partial H- and He-burning
products to the stellar surface®”.

In a sample of type II SN ultraviolet (UV) colours", SN 2018zd
stands out, reaching the minimum in U— V colour (that is, becom-
ing bluer until) ~5d after the explosion (Fig. 2), which suggests a
possible delayed shock breakout through dense CSM. In such a
case, a photosphere initially forms inside the unshocked optically
thick CSM*; this provides an additional power source leading to
the bluer colour when the shock front is propagating through the
CSM (see Extended Data Fig. 5 for the same effect on the photo-
spheric velocity). Our MESA +STELLA CSM light-curve models
(Methods and Extended Data Fig. 6) show that M ~ 0.01 M, yr '
for the last ~10yr before the explosion is required to reproduce the
early-time U— V colour of SN 2018zd, assuming a typical constant'’
Viina =20 km s~ (Fig. 2). Since the estimated mass loss is a few orders
of magnitude greater than that expected from SAGB or RSG winds,
it is probably dominated by eruptive events.
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Consistent with the possible delayed shock breakout seen in the
early UV colour, SN 2018zd exhibits unusually persistent (29d)
flash features, reaching the highest ionization states at ~5d after
the explosion (Fig. 3). The strengths of flash features depend on the
photospheric temperature, CSM density and CSM abundance®**.
We constrain the photospheric temperature and CSM density of SN
2018zd by the MESA +STELLA UV-colour models. Then we use
emission-line intensity ratios as diagnostics of CSM abundance by
comparing with the flash spectral models of solar-abundance and
He-rich atmospheres™ (Fig. 3; note that the line ratios are not well
reproduced by either solar-abundance or He-rich models alone®,
and a mixture of both with higher density needs to be modelled for a
more detailed abundance analysis). On the basis of the model com-
parisons, we estimate He-, C- and N-rich, but O-poor CSM mass
fractions of X;;,~0.3-0.8, X, ~3 %1073, Xy~8x10~% and X,~ 107,
which is more consistent with an SAGB than an RSG atmosphere®”’.

Since the core composition and explosion nucleosynthesis are
different from Fe CCSNe (but see Supplementary Information for
some caveats on the low-mass end), ECSNe are expected to show
distinct nebular spectral features: stronger Ni than Fe lines due to
a more stable **Ni yield than radioactive *Ni (a parent nuclide of
*Fe) from the innermost neutron-rich ejecta (electron fraction
Y, $0.49)'""% weak O, Mg and Fe lines owing to the thin (~0.01 M)
O+ C shell, which is further burned to Fe-group elements®’; and
weak C lines because of the efficient dredge-up/out reducing most
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Fig. 4 | Nebular spectral time series. a-¢, Comparison of the nebular spectral time series at three different epochs of SN 2018zd with the scaled (by

*Ni mass and phase) and resampled 9 M, Fe CCSN and ‘approximate ECSN’ (excluding the He-core composition from the Fe CCSN) models'”. The large
number of narrow lines at <5,500 A and strong Ca lines in the models are known issues. The weak [Ni] lines in the models are from the primordial Ni
(solar abundance), as Ni nucleosynthesis is not taken into account. In ascending order of wavelength, note the weak Mgi] 14571, Mgi] 215180 + Fe1 45180,
[01]145577, Fe115950, [01]1 146300, 6364 + Fe 116364, 0147774, Fei cluster 7,900-8,500 A, [C1] 48727, [C1] 29100 and [C1] 19850, as well as the low
line ratio of [O1] 146300, 6364/[Cai] 447291, 7323 <1 observed in SN 2018zd. He 1 17065 is weaker in the approximate ECSN model than in the observed
spectra; the emission from the dredged-up/out elements (for example, He and N) in the H-rich envelope may be underestimated by the model. d-f,
Simultaneous Gaussian fits to He1 47065, [Fen] 47155, [Fe 1] A7172, [Can] 47291, [Can] 47323, [Nin] 417378, [Fe 1] 47388, [Nii] 47412 and [Fe 1] A7452 at
three different epochs (Supplementary Information). Note the stronger [Nin] 47378 (the blue shaded region) than [Fe] 47155 (the pink shaded region),
yielding [Nin]/[Fen]=1.3-1.6. The weak C, O, Mg and Fe lines combined with the strong Ni lines observed in SN 2018zd are consistent with the ECSN

chemical composition and nucleosynthesis.

of the He-rich layer before the explosion®” (N lines are hard to be
constrained in type II-P SNe, as [N11] 116548, 6583 are hidden by
strong Ha). For low-mass progenitors ($12 M), a low line ratio of
[O1]/[Cam] is expected owing to the low O-core mass™*.

True nebular spectral models of ECSNe are difficult to produce,
but they can be approximated by removing the He core from an Fe
CCSN simulation. Here we use such a model", which we call the
‘approximate ECSN’ model. Comparison of the nebular spectra of
SN 2018zd with the 9 M, models'” favours the approximate ECSN
model over the Fe CCSN model, especially through the weak C,
O, Mg and Fe lines (Fig. 4). In addition, the low line ratio of [O1]
146300, 6364/[Car1r] 117291, 7323 <1 observed in SN 2018zd indi-
cates a low-mass progenitor.

Although quantitative analysis to derive the masses of Ni and
Fe requires detailed radiative-transfer simulations, we can obtain a
rough estimate of the line ratio expected from ECSNe. For normal
Fe CCSNe where Ni and Fe are dominantly produced in the same
layer, [Fe1r] overwhelms [Ni1r] in the emission from the innermost
region”. In ECSN models'!, however, there is a layer of Ni-rich
(neutron-rich) material, emitting predominantly [Ni1], inside

the outer mixture of Ni and Fe. In this situation where the Ni-rich
and Fe-rich regions are physically separated, [Ni1]/[Fe1r] roughly
reflects the mass ratio of Ni and Fe in the entire ejecta®, which is
1.3-3.0 in the ECSN models'. The observed [Niir] 17378/[Fei1]
A7155 ratio of 1.3-1.6 in SN 2018zd (Fig. 4) is indeed within the
expected range. In principle, clumping, fluorescence, and/or shock
excitation could enhance [Ni1] 17378 such that [Ni11] 17378/[Fe11]
A7155 overestimates the Ni/Fe mass ratio®, but we leave a detailed
theoretical study to future works.

SN 2018zd fulfils the expected characteristics and is strong evi-
dence for the existence of ECSNe and their progenitor SAGB stars
(see Supplementary Information and Extended Data Fig. 7 for other
previously suggested ECSN candidates). With SN 2018zd, we roughly
estimate an ECSN rate of 0.6-8.5% of all CCSNe, corresponding to
a narrow SAGB progenitor mass window of AMj, ;= 0.06-0.69 M,
(Methods and Extended Data Fig. 8). Theoretically, the evolution-
ary path to SAGB stars is uncertain owing to the high sensitivity of
nuclear burning on complex dredge-up/out and mass-loss mecha-
nisms®’, giving a variety of expected mass windows at different
metallicities (for example, AM,; ~ 0.2-1.4 M at solar metallicity®).

NATURE ASTRONOMY | www.nature.com/natureastronomy
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Their final fate may vary from CC to thermonuclear ECSNe depend-
ing on the electron-capture rates and oxygen flame speed in the
degenerate core’””, resulting in different nucleosynthetic yields
and galactic chemical evolution®”. The CC ECSNe are expected to
leave low mass, spin and kick-velocity neutron stars, forming a
low-mass peak (~1.25M,) in neutron star mass distribution® and
low-eccentricity (~0.2) gravitational wave source population®.
Therefore, using SN 2018zd as an ECSN template, future statistical
studies with homogeneous samples from large surveys will be able to
further reveal the evolution of SAGB progenitors and the influence
of ECSNe on the kinetic and chemical composition of the Universe.

Methods

Extinction. We obtained the Milky Way (MW) extinction* of A,y =0.258 mag
via the NASA/Infrared Processing and Analysis Center (IPAC) Infrared Science
Archive. We measure the total Na1 D EW of each host and MW component using
the MMT blue channel spectra (moderate resolution of 1.45 A) taken 3.6-53.4d
after the explosion (Extended Data Fig. 4). Since the ratio of the total Na1 D EW
of the host to MW varies between 1.07 and 1.25, we estimate Ay, 2 Ayyw. As a
cross-check, we transform the gri magnitudes of SN 2018zd to VRI magnitudes™
and compare the V—I colour to that of well-observed, low-extinction type II-P
SNe 1999em*, 1999gi* and 2017eaw’’ by assuming Ay, = Ay for SN 2018zd.
Since the V—I colour of SN 2018zd during the photospheric phase is consistent
with the other SNe, we adopt a host extinction of Ay}, = Ay and assume a
reddening law* with R, =3.1. This extinction value is also consistent with the
lower limit obtained from the spectropolarimetry (Supplementary Information).
Increasing (or decreasing) the host extinction by more than 0.10 mag makes the

V —1I colour inconsistent with that of the other type II-P SNe. Thus, we adopt a host
extinction uncertainty of +0.10 mag.

Luminosity distance. We apply the expanding photosphere method (EPM)***
and the standard candle method (SCM)* using the measured Fe11 15169 velocities
and transforming the gri to VRI magnitudes™, which yields 6.5+ 0.7 Mpc and

9.6 +1.0 Mpc, respectively. The EPM is best used at early times (530 d) when SN
emission can be approximated as a diluted blackbody in free expansion®. However,
the early emission from SN 2018zd is dominated by CSM interaction (Fig. 2

and Extended Data Fig. 5), making the EPM unreliable. On the other hand, the
SCM is based on the luminosity-velocity correlation** at day 50 when the CSM
interaction is negligible, which is well reproduced by our MESA + STELLA models
(‘MESA 4 STELLA progenitor and light-curve models’ section and Extended Data
Fig. 6). Thus, we favour the SCM over the EPM.

It has been suggested that NGC 2146 may be farther away than the SCM
estimate. There is a claim of a preliminary tip of the red giant branch (TRGB)
distance obtained from archival HST Wide Field Camera 3 IR channel (WFC3/
IR) data (programme GO-12206, principal investigator M. Westmoquette) that
places the galaxy out at ~18 Mpc (ref. '°). We have independently reduced and
analysed these same data and find that the single orbit of observations available
(split between F110W and F160W) does not reach the necessary depths to make
this conclusion. Even at the closer 10 Mpc distance, the archival data would not
allow us to obtain a TRGB measurement owing to the short exposure times and
intense levels of crowding. We also find that there are no archival HST optical data
of sufficient depths to obtain a TRGB measurement.

Future SN-independent distance measurements (for example, Cepheids and
TRGB with HST) will be necessary to verify the SCM estimate. We discuss the
implications if the luminosity distance were larger than the SCM estimate in
Supplementary Information.

HST and Spitzer progenitor detection and upper limits. We were able to locate
astrometrically the site of SN 2018zd in existing pre-explosion HST archival
images, specifically data obtained in bands F814W and F658N with the Advanced
Camera for Surveys(ACS)/WEFC instrument on 2004 April 10 (programme GO-
9788, principal investigator L. Ho, with total exposure times of 120s and 7005,
respectively; the F814W image consists of a single exposure), as well as in F225W
with WEC3/UVIS on 2013 March 7 (programme GO-13007, principal investigator
L. Armus; total exposure time of 1,500s). We identified a potential candidate
progenitor precisely by obtaining images of the SN itself on 2019 May 19 in
F555W and F814W with WFC3/UVIS, as part of programme GO-15151 (principal
investigator S. Van Dyk). We were able to astrometrically register the 2019 F814W
image mosaic to the 2004 one using 23 stars in common, with a root-mean-square
uncertainty of 0.14 ACS/WFC pixel. Furthermore, in a similar fashion we were
able to match precisely the SN image with the F658N and F225W images as well;
however, the progenitor candidate was not detected in either of those bands. We
show the pre- and post-explosion images in Extended Data Fig. 1.

We extracted photometry from all of the HST images using the package
Dolphot". We found that Dolphot detected and measured a source at the position
of the progenitor candidate with 1y, =25.05 +0.15 mag. Unfortunately, as noted
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above, the F814W pre-explosion observation consisted of only a single exposure,
so it was not possible for the standard STScI pipeline to reject cosmic-ray hits in
the usual way, while constructing an image mosaic from the single frame, as would
normally be the case for two or more dithered exposures. In addition, we note that
the flux measurement with Dolphot may be affected by the presence of cosmic-ray
hits in the image at or around the progenitor site. Nevertheless, the values of both
the Dolphot output parameters ‘object type’ (1) and ‘sharpness’ (—0.013) appear to
point to the source being stellar-like.

To determine whether the peak pixel seen at the candidate location is indeed
merely a cosmic-ray hit or is the actual peak of a stellar point-spread function, we
employ a deep-learning model (C.X. et al., manuscript in preparation) based on
the results from DeepCR*. We find that no pixels in the vicinity of the candidate
progenitor have a model score higher than 5.1 107" If we use this score as a
threshold, the model has a completeness of 99.93% based on the test data taken
with the same instrument. We therefore conclude that progenitor candidate is
a real point-spread function with >3¢ confidence. If the object was not actually
detected, we find that the upper limit at 3¢ to detection in F814W is >26.3 mag.

Inserting and recovering an artificial star of varying brightness at the exact SN
position with Dolphot in both F225W and F658N led to estimates of the upper
limits to detection (at 3¢) of >23.6 mag and >24.1 mag, respectively. In addition,
note that we measured a brightness of the SN itself in the 2019 HST observations of
Mygssw =21.53 +0.01 mag and .,y =20.33 +0.01 mag,

The SN site also can be found in pre-explosion Spitzer data both from the
cryogenic and so-called warm (post-cryogenic) missions, from 3.6 pm to 24 pm.
The data are from observations with the Infrared Array Camera (IRAC*) in
channels 1 (3.6 pm) and 2 (4.5 pm; the SN site sits in a gap of spatial coverage in
channels 3 and 4 at 5.8 ym and 8 pm, respectively) on 2004 March 8 (programme
59, principal investigator G. Rieke) and on 2007 October 16 (programme 40410,
principal investigator G. Rieke) in channels 2 and 4; from observations with the
Multiband Imaging Photometer for Spitzer (MIPS") at 24 pm on 2004 March 16
(programme 59, principal investigator G. Rieke; the sensitivity and resolution of
the data at 70 pm and 160 pm are not sufficient to hope to detect the progenitor
and were not considered further); and from observations with IRAC in channels
1 and 2 on 2011 November 15 (programme 80089, principal investigator D.
Sanders). We show the 2011 November 15 IRAC observation in channel 1 in
Extended Data Fig. 1.

Observations with IRAC of the SN itself were obtained on 2019 January
24 (programme 14098, principal investigator O. Fox); however, we did not
analyse these data, other than to extract an absolute position for the SN of
a=6h18min03.43s, 5=78°22"01.4" (J2000; +0.3" in each coordinate). Using
MOPEX", we constructed mosaics from all of the useful pre-SN imaging data,
and with APEX within MOPEX* we inserted into the images an artificial star of
varying brightness at this absolute position. From this, we estimated upper limits to
detection of the progenitor (at 3¢) of >19.0 mag and >18.1 mag in channels 1 and
2 (respectively) from the 2004 March 8 data; >18.1 mag and >14.5mag in channels
2 and 4 (respectively) from 2007 October 16; and >19.0 mag and >18.4 mag in
channels 1 and 2 (respectively) from 2011 November 15 (we have assumed the
zeropoints from the IRAC Instrument Handbook). We also estimated >10.2 mag at
24 pm from the 2004 March 16 observation (we have assumed the zeropoint from
the MIPS Instrument Handbook).

We show the resulting spectral energy distribution (SED), or limits thereon,
for the SN 2018zd progenitor in Extended Data Fig. 2. The distance (9.6 + 1.0 Mpc)
and extinction (A, =0.52+0.10 mag) to the SN were adopted (‘Luminosity
distance’ and ‘Extinction’ sections), assuming that the latter also applied to the
progenitor as well. We have further assumed a reddening law* with R,=3.1 and
extended it into the mid-infrared™. For comparison, we also show single-star
SAGB and RSG (with respective initial masses M,,, =8 M, and 15 M) models
from BPASS v2.2°! with metallicities Z=0.020 (solar) and Z=0.010 (subsolar;
as discussed in Supplementary Information, the SN site metallicity is probably
subsolar). We have further included for comparison the observed SED for the
candidate SAGB star MSX SMC 055 (IRAS 00483—7347)** as well as the SED for
the progenitor of the low-luminosity type II-P SN 2005¢s™**.

We note that the SEDs for the BPASS RSG models with M,,,=15M,, are
probably not realistic, since they are merely bare photospheres, whereas we would
expect such a star to possess a dusty CSM, as was the case for the progenitor of SN
2017eaw”. The same could also potentially be said for the SAGB models, given
the dusty nature of MSX SMC 055. Again, these BPASS model SEDs are bare
photospheres and do not include CSM, for the presence of which we have strong
evidence (given here) in the case of the SN 2018zd progenitor; this merits further
development of the SED models including the effect of dusty CSM.

It is difficult to infer much about the nature of the SN 2018zd progenitor, based
on a probable detection in one band and upper limits in the others. However, its
inferred SED does appear to be less consistent with that of an M, ; > 8 M, RSG star,
as well as the SN 2005c¢s progenitor, and more consistent with a potentially dusty
SAGB star, such as MSX SMC 055. If there were circumstellar dust around the SN
2018zd progenitor, it was destroyed as the SN shock progressed through.

We should revisit this site either with HST or the James Webb Space Telescope
in a bandpass similar to F814W, when the SN has sufficiently faded, to confirm
that the candidate object was indeed the progenitor. Again, we cannot entirely
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rule out that the source detected in the pre-SN image at the precise SN position is
not related to a cosmic-ray hit; however, all of the indications suggest that this is
a real detected star, which should have vanished when the SN site is observed at a
sufficiently late time.

MESA + STELLA progenitor and light-curve models. Recent work***-" has
highlighted the non-uniqueness of bolometric light-curve modelling for extracting
explosion characteristics (ejecta mass M,;, explosion energy E,,, and progenitor
radius R) from plateau features (in particular, luminosity at day 50, L., and plateau
duration, £,) without an independent prior on one of M,;, E,,, or R. Owing to the
presumed presence of dense CSM and its potential influence on the early light
curves and velocities, shock-cooling modelling and early expansion velocities
cannot simply lift this degeneracy.

To allow light-curve analysis to be agnostic to the progenitor mass, three
different explosion models were created with equally good by-eye matches to the
bolometric light curve and expansion-velocity data on the plateau. The progenitor
models were selected from a pre-existing grid** of MESA***" RSG progenitor
models with expected ejecta masses and radii within the family of explosions
consistent with the L, £, and My; of SN 2018zd (Extended Data Fig. 6; see
Supplementary Information for the model details).

The explosion energies for each model were then chosen and adjusted to match
the light curve of SN 2018zd with the respective progenitor model radii using the
degeneracy relations”

log (Es]) = —0.728 + 214810g (pr42) — 028010g (MNi)

+209110g (tp,z) - 163210g (Rso[)),
1
log (MIO) = —0.947 + 147410g (LPAZ) - 051810g (MNi)

+386710g (tpyz) - 112010g (R50[)),

where E;, = E,,,/10° erg, M,,= M/10 M, My; is in units of Mg, L, ,, = L5,/10% ergs™,
t,,=1,/100d, and Rs,,= R/500 R, Plugging in L;,=8.6 x 10* ergs™" from the
bolometric light curve at day 50, £,=125.4d determined by fitting the drop from
the plateau'’, and observed My;=0.0086 M,, these relations describe the possible
explosion parameter space (Extended Data Fig. 6). They are intended for Ni-rich
(My; > 0.03 M,,) type II-P SNe of RSG progenitors with no fallback, but nonetheless
provide a heuristic estimate for the degeneracy between explosion energy,
progenitor radius and ejected mass.

This degeneracy motivates the set of progenitor models and explosion energies
that we use to reproduce the light-curve properties, and reveals low recovered
E,,, that overlaps substantially with the expected parameter space of ECSNe.
The mapping between M,; recovered for Fe CCSNe and ECSNe is less robust, as
differences in mixing extent and H/He abundances could account for differences in
the recovered M, from explosions of different stellar progenitors**>'. As seen in
Extended Data Fig. 6, even though SN 2018zd is not particularly dim, low-energy
explosions of radially extended progenitors can match the plateau luminosity. A
slightly lower-M,; progenitor with a radius of 1,400 R, for example, could even
produce this luminosity with an explosion energy of ~1.5x10*erg.

The explosions were carried out using MESA until near shock breakout. The
models were then handed off to STELLA®-* to produce synthetic bolometric
light curves and expansion velocities (Extended Data Fig. 6; see Supplementary
Information for the modelling details). We see good agreement between all
three models and observations (varying by at least 50% in M,;, E,, and R), with
deviations at early times that can be attributed to the extended stellar atmosphere
and potential interaction with the circumstellar environment.

To account for the early deviations, we affix a wind-density profile with
Puind (1) = Mying/4T7 Vyging> Where 7 is the radial extent, Mg is a constant
wind mass-loss rate, and v, is the wind velocity for time ¢,;,, (that is,
Mying = Miyindtwina)> onto the MESA model at handoff to STELLA. We construct a
grid of CSM models by varying the following parameters:

Myina = {1074, 3 x 10741072, 3 x 1073, 1072, 3x

10721071, 3 x 107!} Mg yr™!
and t,;,4=1{1,3,10,30} yr for each MESA model, assuming a typical wind
velocity' v,,4=20kms™". Then we perform y* fitting on the observed bolometric
light curve over the full temporal evolution and find the best-fit parameters
Mying = 0.01 Mg yr~tand t,,,=10yr.

Remarkably, the best-fit parameters are the same for all three degenerate
models, and also reproduce the early blueward UV-colour evolution (Extended
Data Fig. 6). Thus, we choose model M8.3_R1035_E0.23 (Supplementary
Information) as being representative and present it for the UV-colour plot in Fig.

2. In addition to matching the early-time luminosity excess, a dense wind profile
suppresses the early photospheric and Fe line velocities®. The kink seen in the
modelled Fe line velocity with Sobolev optical depth 74, =1 in the STELLA models
can be attributed to numerics at the boundary between the CSM profile and the
surface of the stellar ejecta (Extended Data Fig. 6). Overall, the models still yield
general agreement between the calculated velocity evolution and the data.
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We note that at 3-10d after the explosion, the blackbody temperatures
(~20,000-25,000 K) may be underestimated (Supplementary Information), which
could affect the luminosity around the peak, and so the CSM models as well. For
the flash spectral model comparisons in Fig. 3, we use a conservative temperature
constraint of ~20,000-30,000 K.

The rate of ECSNe. Among other previously suggested ECSN candidates
(Supplementary Information and Extended Data Fig. 7), type IIn-P SNe share
similar properties to SN 2018zd. Thus, the type IIn-P SN rate may be related to
the ECSN rate. As there is no rate estimation for type IIn-P SNe in the literature
to our knowledge, we put a rough lower limit using publicly announced type IIn
SNe on the Weizmann Interactive Supernova Data Repository (WISeREP)** and/
or the Transient Name Server (TNS) by cross-checking with the literature and
the Open Supernova Catalog®, and also cross-correlating the public spectra to
SN spectral libraries Superfit”” and SNID when available. There are 528 objects
classified as type IIn SNe on WISeREP and/or TNS (as of 2020 March 11). We
exclude 73 objects as misclassified early-flash type II SNe, type Ia-CSM SNe, type
Ibn SNe, SN imposters or active galactic nuclei. Although 241 objects do not have
enough public and/or published spectra and/or light curves to secure the type IIn
classifications and/or to be identified as type IIn-P SNe, we include them in the
further analysis so as not to overestimate the lower limit when taking a number
ratio of type IIn-P to type IIn SNe (see below and Supplementary Fig. 1).

To identify type IIn-P SN candidates from the 455 objects, we apply two
light-curve criteria based on the known type IIn-P SN characteristics: (1) the V, r/R
or i/I-band decline of less than 2 mag in the first 50d after the explosion; and (2)
the V, #/R or i/I-band drop of more than 2 mag in 30d within 100-150d after the
explosion. This yields four type IIn-P SN candidates: SNe 2005cl (z=0.025878),
2005db (z=0.015124)%, 2006bo (z=0.0153) and 2011A (z=0.008916)"". In
addition, there are three known type IIn-P SNe: 1994W (z=0.004116)", 2009kn
(z=0.015798)" and 2011ht (z=0.003646)"* (Supplementary Fig. 1).

To compare with the volume-limited (<60 Mpc) Lick Observatory Supernova
Search (LOSS) sample’, we apply the same distance cut, leaving 42 type IIn SNe
(17 and 25 with sufficient and insufficient data, respectively) and 3 type IIn-P
SNe (SNe 1994W, 2011A and 2011ht). As these SNe were discovered by different
surveys with different strategies, we have no handle on the incompleteness (but
also see Supplementary Fig. 1). Thus, we neglect the incompleteness and take the
number ratio of type IIn-P to type IIn SNe within 60 Mpc multiplied by the LOSS
type IIn SN rate’, 3/42 x 8.8% =0.63% of all CCSNe, as a rough lower limit of the
type IIn-P SN rate.

The identification of SN 2018zd-like SNe from type II-P SNe (48.2% of
all CCSNe) requires not only the light-curve morphology, but also the early
UV colours and the flash and nebular spectroscopy; all of which combined are
rarely available on WISeREP, TNS and/or the Open Supernova Catalog. This
current sample limitation may indicate that many SN 2018zd-like SNe have been
overlooked as normal type II-P SNe. Given the limitation, we simply take the
lowest possible limit of >0% with the one identification of SN 2018zd as an ECSN.

By combining the estimated type IIn-P and SN 2018zd-like lower limits, we
obtain a type IIn-P + SN 2018zd-like lower limit of >0.6% of all CCSNe. From
the nucleosynthetic point of view, ECSNe are expected to constitute $8.5% of all
CCSNe’®. With the above estimates, the ECSN rate can be roughly constrained
within 0.6-8.5% of all CCSNe, which corresponds to a narrow SAGB progenitor
mass window of AM;,¢, = 0.06-0.69 M, assuming maximum and minimum
SAGB masses of 9.25 M, and 9.25 M, — AMj,; (respectively) at solar metallicity®
(Extended Data Fig. 8). We note that the type IIn-P and SN 2018zd-like rates are
probably metallicity dependent (as is the SAGB mass window), but we defer more
detailed analysis with a homogeneous sample in the future when one becomes
publicly available.

Data availability

The data that support the plots within this paper and other findings of this study
are available from the Open Supernova Catalog (https://sne.space/) and the
Weizmann Interactive Supernova Data Repository (https://wiserep.weizmann.
ac.il/), or from the corresponding author upon reasonable request.

Code availability
MESA is publicly available at http://mesa.sourceforge.net/.
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Extended Data Fig. 1| The host galaxy and post- and pre-explosion images of SN 2018zd. a, Las Cumbres 2 m BVgr-composite image of SN 2018zd and
the host starburst galaxy NGC 2146 (Supplementary Information), courtesy of Peter I1as. At the assumed luminosity distance of 9.6 Mpc, 1" corresponds to
2.8 kpc. SN 2018zd is on a tidal stream which was likely ejected during a galaxy merger event. b, Portion of an HST WFC3/UVIS F814W mosaic obtained
on 2019 May 19, 443.7 d after the explosion of SN 2018zd (indicated by the tick marks). ¢, Portion of an HST ACS/WFC F814W mosaic from 2004 April
10; the SN site is similarly indicated by tick marks. This mosaic consists of a single exposure, so to remove a number of cosmic-ray hits in the image,

we use a masked mean filter to smooth any pixels that have a score of 0.001 or higher from our deep-learning model (Methods). The pixels associated
with the progenitor candidate had scores <4 x107°, so are not affected. d, Same as panel (¢), but with F658N on the same epoch. e, Portion of a Spitzer
IRAC 3.6 um mosaic obtained on 2011 November 15, with the SN site again indicated by tick marks. All panels (b)-(e) are shown to the same scale and
orientation, with north up and east to the left. The progenitor candidate is identified only in the single HST ACS/WFC F814W image (c).
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Extended Data Fig. 2 | SN progenitor and SAGB candidate SEDs. The SED for the SN 2018zd progenitor candidate resulting from pre-explosion HST

and Spitzer archival data (Methods; black solid circles). For comparison we show model SEDs from BPASS v2.2°' for SAGB stars (in the initial mass

range M,,,=6 —8 M, with bolometric luminosities L ~#10°L, in the last model timestep; navy curves) and RSG stars at M,,,=8 M, (purple curves) and
M,x=15M,, (orange curves), at metallicities Z=0.02 (solar; short-dashed line) and Z=0.01 (subsolar; long-dashed line). The SEDs of the BPASS models
are extrapolated into the mid-infrared via MARCS’® model stellar atmospheres of similar temperatures as the last BPASS model timesteps, deriving
synthetic photometry from those atmosphere models using the bandpass throughputs provided in the Spitzer IRAC and MIPS Instrument Handbooks. Also
shown for comparison are the SEDs for the SAGB candidate MSX SMC 055 (assuming Galactic foreground extinction and adjusted to a Small Magellanic
Cloud distance modulus of x=18.90 mag from the Extragalactic Distance Database®’; red open pentagons®) and for the progenitor of the low-luminosity
Type II-P SN 2005cs (assuming the total reddening from the two studies®** and adjusted to a recent accurate distance for M51%'; blue open squares®?,
green open diamonds®*). The luminosity of the HST ACS/WFC F814W detection of the SN 2018zd progenitor candidate lies between MSX SMC 055 and
the SN 2005cs progenitor.
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Extended Data Fig. 3 | Multiband light curve of SN 2018zd. a, Multiband light curve of SN 2018zd focusing on the early rise. A quadratic function

F(t— to)2 is fitted to the unfiltered optical Itagaki and the first three Noguchi points to estimate an explosion epoch t,=MJD 58178.4 + 0.1
(Supplementary Information). The observed flash-spectroscopy epochs (Extended Data Fig. 4) are marked by the vertical dashed lines. Note the sharper
rise in the Swift UVYW?2 than in the V and unfiltered photometry during the flash-spectroscopy epochs. b, Multiband light curve of SN 2018zd up to the **Co
decay tail. The data gap is due to the Sun constraint. Error bars denote 1o uncertainties and are sometimes smaller than the marker size. The light-curve
shape resembles that of a typical Type II-P SN. Comparing the luminosity on the tail to that of SN 1987A%2, we estimate a **Ni mass of (8.6 +0.5) x10=>M,
at the assumed luminosity distance of 9.6 Mpc.
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6,000 7,000
Rest wavelength (A)

Extended Data Fig. 4 | Optical spectral time series of SN 2018zd. The flash features (for example, He 11, C i, and C v) persist up to> 8.8 d and disappear

5,000

before 16.8 d. Then the broad Balmer-series P Cygni lines appear, typical of the photospheric phase of a Type II-P SN. After ~200 d, the nebular emission

lines (for example, Ha, [Ca 1], and [Ni 1]) dominate over the relatively flat continuum.
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Extended Data Fig. 5 | Expansion velocities as a function of time. Comparison of the unnormalised (a, b, ¢) and normalized (to day 50; d, e, f) Ha,
Hp, and Fe 1145169 expansion velocities of SN 2018zd (Supplementary Information) with a Type Il SN sample®* (transparent lines), including archetypal
SN 1999em, along with low-luminosity SN 2005cs®, early-flash SN 2013fs?, and low-luminosity and early-flash SN 2016bkv’”#. Error bars denote 1o
uncertainties and are sometimes smaller than the marker size. Note the pronounced early Ha and Hp rises and the relatively flat velocity evolution (up
to~30d) of SN 2018zd, indicating shock propagation inside the dense, optically-thick CSM.
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Extended Data Fig. 6 | MESA+STELLA progenitor and degenerate light-curve models. a, b, Ejecta mass M,; and explosion energy Eeyp inferred from

Eq. (1) (Methods) as a function of progenitor radius R consistent with the bolometric light curve of SN 2018zd at the assumed luminosity distance of

9.6 +1.0 Mpc, along with the properties of the three degenerate explosion models. The blue and red shaded regions show explosion parameters expected
for ECSNe®" " and typical of Fe CCSNe®¢, respectively. ¢, d, Three degenerate MESA+STELLA explosion models providing good fits to the light curve and
velocities inferred from the Fe 115169 line during the plateau phase. Models are labelled by M[Mgj ] _R[R@]_E[Eexp,51]. Error bars denote 1o uncertainties.
Note the observed early-time excess luminosity and suppressed velocity of SN 2018zd. This light-curve degeneracy highlights the inability to distinguish
ECSNe from Fe CCSNe solely based on their light curves, suggesting that many ECSNe might have been overlooked owing to the lack of additional
observations. e, f, Same as panels (¢, d), but adding a dense wind profile (Mying = 0.01 Mo yr™, vyng=20kms™, and t,,s=10yr) to the three degenerate
MESA models before handoff to STELLA. g, Comparison of the UV-colour models with the same wind CSM parameters as in panels (e, f). Error bars
denote 1o uncertainties. All three models with the same wind CSM parameters are able to reproduce the early-time luminosity excess and blueward
UV-colour evolution almost identically, suggesting the insensitivity of a particular model choice. Despite a possible artificial velocity kink when the Fe
line-forming region transitions from the CSM to the stellar ejecta, the velocity evolution with the early suppression is also reproduced.
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ECSN Progenitor Explosion

Candidate Identification CSM  Chemical Composition | Energy  Light Curve Nucleosynthesis
SN 2018zd v? v v v? v v

SN 1054 (Crab) - v? v v v'? v

ILRT v'? v ? X X ?
Low-Lum. II-P X ? X v? v %

IIn-P % v ? v? v V7

Extended Data Fig. 7 | ECSN candidate checklist. Check marks, check+question marks, and cross marks (respectively) indicate observations consistent,
perhaps consistent, and inconsistent with theoretical expectations. Dashed lines indicate the lack of observational constraints, and lone question marks
indicate unknowns (Supplementary Information). For SN 2018zd, we identify a faint progenitor candidate that may be consistent with an SAGB star
(Extended Data Figs. 1& 2), and the explosion energy is consistent within the light-curve degeneracy (Extended Data Fig. 6).
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the Type IIn-P SN rate within 60 Mpc combined with SN 2018zd (Methods); ‘ILRT" is a rough estimate from ILRTs within 30 Mpc®’; ‘NS’ is an estimated
rate from the bimodality in the neutron star mass distribution®' assuming that the low-mass and high-mass peaks originate from ECSNe and Fe CCSNe,
respectively; and "®Kr' is an upper limit from the ECSN nucleosynthesis calculation’® assuming that ECSNe are the dominant production source of 8Kr. The
conversion between the fraction of all CCSNe and the SAGB mass window is performed assuming the Salpeter initial mass function with lower and upper
CCSN mass limits of 7.5 M, and 120 M, (respectively) and maximum and minimum SAGB masses of 9.25 M, and 9.25 M, — AM;,¢; (respectively) at solar
metallicity®. The grey vertical dotted line is where the minimum SAGB mass equals the assumed lower CCSN mass limit of 7.5 M,,. The grey shaded region
shows a rough ECSN rate constraint by the 1In-P+2018zd lower limit and the nucleosynthesis upper limit.
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