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a b s t r a c t

Data-driven, model-free control strategies leverage statistical or learning techniques to design con-
trollers based on data instead of dynamic models. We have previously introduced the dissipativity
learning control (DLC) method, where the dissipativity property is learned from the input–output
trajectories of a system, based on which L2-optimal P/PI/PID controller synthesis is performed. In this
work, we analyze the statistical conditions on dissipativity learning that enable control performance
guarantees, and establish theoretical results on performance under nominal conditions as well as in
the presence of statistical errors. The implementation of DLC is further formalized and is illustrated
on a two-phase chemical reactor, along with a comparison to model identification-based LQG control.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Data-driven techniques are playing an increasing role in con-
rol due to their potential of easing the derivation and mainte-
ance of dynamic models [1]. Based on the different roles of data,
e can classify data-driven control approaches into two cate-
ories: model-based and model-free. In data-driven model-based

control, data is mainly used for the identification of a dynamic
model. This ranges from the classical approaches of transfer func-
tion or linear state–space model construction [2], parameter es-
timation in adaptive control [3], neural networks [4] to more
recent Koopman operator approaches [5]. In these model-based
approaches, difficulties of establishing models that accurately
describe the system dynamics are often encountered. To relieve
the complexity of full system identification, ‘‘identification for
control’’ has been pursued, which seeks a model that is sufficient
for the resulting control performance [6,7].

In contrast, in data-driven model-free control, one directly
seeks to learn from data some essential control-relevant informa-
tion, which can be much simpler than a dynamic model but has

more direct relation to the resulting control performance. This
dea dates back to the traditional PID tuning approaches based on
he time and frequency constants on response curves [8]. More
eneric frameworks such as iterative feedback tuning (IFT) [9]
nd virtual reference feedback tuning (VRFT) [10] have been
eveloped for linear systems, and the iterative learning control
ILC) approach [11] has been proposed for repetitive control
asks. Preliminary explorations on the theoretical foundations
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and potential of data-driven model-free control based on be-
havioral approaches have also been made for linear systems
[12–14]. In recent years, approximate dynamic programming
(ADP) and reinforcement learning (RL) have gained more popu-
larity [15–17]. These approaches learn the optimal control policy
and cost as the essential control-relevant information. However,
rooted in Bellman’s optimality principle, RL and ADP intrinsi-
cally depend on state–space information, either explicitly using
full state measurements or implicitly by augmenting observable
outputs with their memories, and their application on nonlinear
systems is usually limited to small-scale ones with relatively
simple dynamics.

We have recently developed [18,19] an input–output data-
driven model-free control framework, named dissipativity learning
control (DLC). The DLC framework is built upon the dissipative
theory in classical nonlinear control [20–23], where dissipativ-
ity is used as a characterization of the input–output behavior
of systems and as a basis for controller synthesis, and is also
motivated by the works on dissipativity-based control [24–27]
where the dissipativity property is obtained through a rigorous
thermodynamic analysis. Different from these works on model-
based dissipative control, in DLC, the dissipativity property is
considered as the essential control-relevant information to be
learned from data in the form of input–output trajectories under
excitations. Such a dissipativity learning approach avoids the re-
strictions of thermodynamic analysis, and lends itself to a generic
data-driven model-free control method applicable to nonlinear
systems. We note that in parallel to our works, a series of papers
in literature have addressed the determination and verification
of input–output properties from trajectory data [28,29] includ-
ing dissipativity [30–32], and have discussed the conditions and
sampling strategies involved in these procedures [33,34].

https://doi.org/10.1016/j.sysconle.2020.104831
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Despite the well-established dissipativity-based control theory
in a model-based setting and the developments in dissipativity
learning approaches, formal guarantees on the control perfor-
mance of DLC are lacking. In this work, we aim at providing such
a theoretical support with a more formalized DLC framework.
Specifically, the following key results are established:

• If free of statistical errors, DLC yields the optimal dissipative
output-feedback control law that is in a certain nearly L2-
optimal sense defined on a certain neighborhood of the
origin;

• The errors resulting from data sampling and statistical in-
ference of the dissipativity property cause an error in the
learning result in terms of an upper bound of the L2-gain
from the exogenous disturbances to the inputs and outputs;

• Under small errors in dissipativity learning, the perturbation
on the resulting upper bound of L2-gain is also small, so that
nearly L2-optimal control performance is still achievable.

We introduce a series of novel definitions referring to key ob-
jects relevant to dissipativity learning in a generic nonlinear
setting, such as admissible inputs (Definition 1), effective reach-
able domain (Definition 6), effective supply rate (Definition 7),
and effective (dual) dissipativity set (Definitions 8 and 9). These
concepts lend themselves to a different approach to establish
dissipativity learning compared to the existing ones based on
iterative experiment design [28] or persistent excitation condi-
tions [32] for linear systems. Based on these definitions, two
assumptions are made allowing us to establish the above results,
namely the existence of closed-loop invariance on the effective
reachable domain (Assumption 1) and a dense sampling oracle
on the effective dual dissipativity set (Assumption 2). The latter
assumption is analogous to one in [33]. We note that computing
the defined objects and verifying the assumptions may not be
easy for general nonlinear systems, which is rather expected.

The exposition in the paper is self-contained, without an ex-
plicit review of our previous work [18,19]. We first introduce
the key control-theoretic concepts underlying dissipativity-based
control in Section 2. Statistical aspects of dissipativity learning, in-
cluding the sampling of trajectories and inference of the effective
dual dissipativity set, are discussed in Section 3. A standardized
DLC algorithm with a formal guarantee of control performance
is formulated in Section 4. We examine such a standardized
DLC framework and compare it with linear system identification-
based optimal control through a case study on a two-phase chem-
ical reactor in Section 5. Conclusions are given in Section 6.

2. Control-theoretic foundations

2.1. Dissipativity

We consider nonlinear systems in the form of

ẋ(t) = f (x(t), u(t), d(t)), y(t) = h(x(t)) (1)

where x(t) ∈ Rnx is the vector of states, y(t) ∈ Rny is the vector of
outputs, u(t) ∈ Rnu is the vector of control inputs (manipulated
variables), and d(t) ∈ Rnd is the exogenous disturbances. The
vector of inputs v(t) = (u(t), d(t)) ∈ Rnv is stacked from
anipulated variables and disturbances. The functions f and h
re assumed to be Lipschitz continuous, satisfying f (0, 0, 0) = 0
nd h(0) = 0, i.e., the origin is an equilibrium point of (1) giving
ero outputs under zero inputs. An output feedback control law
s considered as a Lipschitz continuous function κ : Rny → Rnu ,
eading to a closed-loop system:

˙(t) = f (x(t), κ(h(x(t))), d(t)). (2)

For the design of κ , it is desirable that the closed-loop system (2)
s asymptotically attracted to the origin from some neighborhood
2

of the origin in the absence of disturbances, or is subject to
limited impact of the disturbances. The concept of dissipativity,
originally introduced in [35,36] and later developed in [37,38],
provides a global description of a fundamental constraint on
the input–output behavior of dynamical systems. We note that
since a globally dissipative property is difficult to obtain, here we
consider dissipativity in a more restricted but practical context.

We first define the set of admissible input signals.

Definition 1 (Admissible Inputs). The set of admissible input sig-
nals on [0, t], t > 0 is the collection of real nv-dimensional
vector-valued continuous functions on [0, t] that has a squared
L2-norm not exceeding t/2, and for each of its components, if
expressed as cosine series, the contribution to the L2-norm from
all the high-frequency terms with wave number over Nf ∈ N
cannot exceed a proportion of a small positive number ϵf, i.e.,

VNf,ϵf (t) =

{
v : [0, t] → Rnv

⏐⏐⏐⏐⏐vj(τ ) =
aj0
√
2

+

∞∑
i=1

aji cos
iπτ

t

∞∑
i=0

(aji)
2

≤ 1,
∞∑

i=Nf

(aji)
2

≤ ϵf

Nf−1∑
i=0

(aji)
2, j = 1, . . . , nv

} (3)

Such an admissible input signal set excludes very large or
highly oscillatory signals. By using this definition, we are implic-
itly assuming that for the controller design of the system (1),
its behavior under excessively large or oscillatory input signals
does not contain any information that is of interest, nor does the
controller necessarily result in such signals. This is an assumption
on both manipulated inputs and exogenous disturbances. We also
define the domain of states that are reachable from the origin
within time t .

Definition 2 (Reachable Domain). The reachable domain at time t
under admissible input signals) is the endpoint of all trajectories
f system (1) on [0, t] under input signals whose restriction on
0, τ ] is admissible for all τ ∈ (0, t]:

DNf,ϵf (t) =

{
x(t)

⏐⏐⏐⏐⏐ẋ(τ ) = f (x(τ ), v(τ )), τ ∈ [0, t]

v|[0,τ ]∈ VNf,ϵf (τ ), τ ∈ (0, t], x(0) = 0
}
.

(4)

For brevity we will usually omit the Nf, ϵf in the subscript.
Clearly, if x ∈ D(t1) for some t1 ≥ 0, then there exists v on
[0, t1] driving the states from the origin to x; then for any t2 > t1,
the signal v with a time delay of t2 − t1 drives the states from 0
to x in [0, t2], and hence x ∈ D(t2). This implies D(t1) ⊆ D(t2)
whenever 0 ≤ t1 ≤ t2, and hence the reachable domain at time
t is equivalent to the reachable domain within time t . With these
definitions, we reconstruct the dissipative control theory through
an adaptation of the approach of [37].

Definition 3 (Hill-Moylan Inequality). The system (1) is said to
satisfy the Hill-Moylan inequality on D(T ) for some T > 0, if for
any t ∈ [0, T ] and v : [0, t] → Rnv such that v|[0,τ ]∈ V(τ ) for all
τ ∈ (0, t], the resulting trajectory starting from x(0) = 0 on [0, t]
satisfies∫ t

0
s(y(τ ), v(τ ))dτ ≥ 0 (5)

for some continuous function s : Rny ×Rnv → R. Such a function
s is called the supply rate function.

Now we establish the dissipativity property of the system.
For this we define the storage function and the concept of early
reachable domain.
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efinition 4 (Storage Function). If the system (1) satisfies the Hill-
oylan inequality on D(T ) for some T > 0, then the following

unction V (x) defined on D(T ), which is positive semidefinite with
(0) = 0, is called the storage function:

(x) = min
v|[0,τ ]∈V(τ ), τ∈(0,t], t≤T

x(0)=0, x(t)=x

∫ t

0
s(y(τ ), v(τ ))dτ . (6)

e refer to any such minimizing input signal from the origin to
as an effective reaching signal.

The minimum in the above definition is well defined due to
he Lipschitz continuity of the dynamics, continuity of the storage
unction, and completeness of the admissible input signal set.
bviously, the minimum can always be found for an input signal
ith t = T (by using the time-delay argument). However, for
tudying the dissipativity property, we should consider only the
tates for which an effective reaching signal exists for some t < T ,
o that this signal may be extended after t .

efinition 5 (Early Reachable Domain). The early reachable do-
ain D̊(T ) is the subset of D(T ) with states x such that an
ffective reaching signal for x defined in (6) exists on some time
strictly less than T . We call any such effective reaching signal
n early reaching signal.

Now we may follow a similar approach to [37] to establish the
issipativity property on the reachable domain.

emma 1 (Hill-Moylan Lemma). Suppose that the Hill-Moylan in-
quality (5) holds. Then for any x1 ∈ D̊(T ), suppose that it has
n early reaching signal that is defined on [0, t1] for some 0 <

1 < T , can be extended to some t2 ∈ [t1, T ] without violating the
dmissibility, and drives the states to x2. Then

(x2) − V (x1) ≤

∫ t2

t1

s(y(t), v(t))dt. (7)

e refer to such a property as the dissipativity of storage function
with respect to supply rate s on D(T ), and (7) as the dissipative

nequality.

roof. According to the definition of the storage function (6),

(x2) − V (x1) = min
v|[0,τ ]∈V(τ ), τ∈(0,t], t≤T

x(0)=0, x(t)=x2

∫ t2

0
s(τ )dτ −

∫ t1

0
s(τ )dτ . (8)

he lemma is proved by relaxing the minimum term to this
ypothetical trajectory on [0, t1] from the origin to x1 continued
n [t1, t2] from x1 to x2. □

Therefore, to acquire the knowledge about the dissipativity
roperty of the system (1), one needs to solve the following
roblem, which we will further discuss later.

roblem 1 (Determination of the Supply Rate Function). Given
yperparameters Nf, ϵf and T , find (a set of) continuous functions
satisfying the Hill-Moylan inequality.

.2. Dissipative controller synthesis

Suppose that we now know a supply rate function s (or a
et of supply rate functions) of the system. According to the
ill-Moylan Lemma, the system is dissipative with respect to
upply rate s for some storage function V . We now consider how
he dissipativity property leads to results in controller synthesis
o guarantee closed-loop stability. Key to the desirable stability
3

roperty is to shape the closed-loop supply rate function with
ounded nonconcavity:

(y, κ(y), d) ≤ β∥d∥2
− ∥κ(y)∥2

− ∥y∥2, (9)

or some β > 0, so that the dissipative inequality (7) constrains
he L2-gain from d to the performance outputs z = (y, u) not to
xceed β1/2.
To guarantee the dissipative inequality throughout the time,

e need to prevent the concepts defined in the previous sub-
ection on a finite time horizon from becoming ill-defined when
xtended to infinite time. Hence, we define for each controller a
losed-loop forward invariant set in which the admissibility and
ffective reaching signal concepts are recursively preserved.

efinition 6 (Effective Reachable Domain). The effective reachable
omain Ďκ (T ) = Ďκ

Nf,ϵf
(T ) of the output feedback control law κ

s such a subset of D̊ satisfying the following condition. For any
oint x0 ∈ D̊(T ) and for any exogenous disturbance signal that is
dmissible on [0, t] for all t > 0, the closed-loop system starting
rom x0 at time 0 under control u = κ(y) = κ(h(x)) remains in
ˇ , and the input signal retains the admissibility of the effective
eaching signal for all t > 0.

It appears to be difficult to characterize the effective reach-
ble domain and prove whether it is a connected open set. For
implicity, we make the following assumption.

ssumption 1 (Closed-loop Invariance in the Effective Reachable
omain). Assume that when the output-feedback law κ is chosen
ithin a predefined range of interest K, there is a neighborhood
f the origin Ď that is in the intersection of all the effective
eachable domains, i.e., Ď(T ) ⊆ ∩κ∈KĎκ (T ).

With a slight abuse of terminology, we still call this Ď(T ) the
ffective reachable domain. Clearly, it is the domain on which the
issipative inequality (7) holds recursively. Moreover, since we

only discuss the dissipativity on the effective reachable domain
Ď(T ) under controller κ , it suffices to have a relaxed definition of
supply rate, called effective supply rate function. Of course, since
Ď(T ) is difficult to know, so is the effective supply rate.

Definition 7 (Effective Supply Rate). An effective supply rate func-
tion is a continuous function s such that for any state in Ď(T ),
the Hill-Moylan inequality holds for some of its early reaching
signals. We refer to the set of supply rate functions as S and the
set of effective supply rate functions as Š . Then Š ⊇ S .

Now we establish the guarantee of L2-stability according to
the following proposition, for which the proof is obtained by
combining (7) and (9).

Lemma 2 (Stability of Dissipative Control). Suppose that there exist
an output-feedback control law κ ∈ K and an effective supply rate
function s ∈ Š satisfying (9) for some β > 0. Then under the control
law κ , for any t > 0, if the disturbances are admissible on [0, τ ] for
all τ ∈ (0, t], then we have a nonnegative constant C such that∫ t

0

(
∥y(τ )∥2

+ ∥u(τ )∥2) dτ ≤ β

∫ t

0
∥d(τ )∥2dτ + C (10)

holds for any initial condition x(0) ∈ Ď(T ), and hence the exogenous
disturbance has a L2-gain to z = (y, u) not exceeding β1/2. In other
words, the closed-loop system is L2-stable.

Hence the controller synthesis problem based on dissipativity
is formally stated as the following problem.
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roblem 2 (Determination of the Control Law). Given a (or a set
f) supply rate function s with respect to which the system is

dissipative on DNf,ϵf (T ), find an output feedback control law κ

uch that s(y, κ(y), d) ≤ −∥y∥2
− ∥κ(y)∥2

+ β∥d∥2 for some (or
he smallest) β > 0.

For computational tractability of the controller synthesis, we
onsider supply rate functions in quadratic forms:

(y, u, d) =
[
y⊤ u⊤ d⊤

]
Π

[y
u
d

]
(11)

nd hence the supply rate function is represented by a symmetric
atrix Π ∈ R(ny+nv )×(ny+nv ). We also consider controllers in linear

orm κ(y) = Ky. The condition in Lemma 2 thus results in a
semidefinite programming problem of finding a feasible or op-
timal solution of (K , β) satisfying the following matrix inequality[
I K⊤ 0
0 0 I

](
Π +

[ I 0 0
0 I 0
0 0 −βI

])[ I 0
K 0
0 I

]
⪯ 0. (12)

emark 1 (PID Control). Although we have represented the con-
roller in the form of proportional feedback, the semidefinite
rogramming formulation can be extended to more general linear
ontroller forms such as PID controllers, by simply augmenting
he output variables with its derivatives and the state variables
ith an integrator. If the set of supply rate functions is accu-
ately known and the optimal controller gain is optimized over
ll supply rate functions, then we obtain theoretically the op-
imal dissipative P/PI/PID controller in the L2-sense within the
ontroller range K.

emark 2 (Tracking Control). For tracking control tasks where
he goal is to drive the system towards a reference trajectory
ather than to the predefined steady state (origin), it suffices to
plit the process variables (v, x, y) into the corresponding ref-
rence variables (v̄, x̄, ȳ) (whose trajectory is specified a priori)

and deviation variables (ṽ, x̃, ỹ) (so that the goal is to drive the
deviations to zero), and correspondingly redefine the reachable
domain, storage function, and supply rate functions based on the
origin of deviation variables. This was discussed in our previous
work [19].

2.3. Dissipativity and dual dissipativity sets

Suppose that the model of the system (1) is unknown. In order
to find a (or a set of) supply rate function parameterized by a
quadratic form (11) in a data-driven setting, we first note that
the Hill-Moylan inequality (5) can be rewritten as

⟨Π,

∫ t

0

[y(τ )
u(τ )
d(τ )

] [
y(τ )⊤ u(τ )⊤ d(τ )⊤

]
dτ ⟩ ≥ 0, (13)

where the inner product ⟨M1,M2⟩ for any two symmetric ma-
trices M1 and M2 is defined as trace(M1M2), with ⟨M,M⟩ =

∥M∥
2 being the squared Frobenius norm. We note that Π as a

representation of the supply function is a property of the system,
and the integral above is a property of the excitation input signal.
Hence we introduce the following definitions in dual.

Definition 8 (Dissipativity Parameters and Sets). The matrix Π is
called the (matrix of) dissipativity parameters. The set of dis-
sipativity parameters such that the corresponding supply rate
function (11) is in S is called the dissipativity set (still denoted
as S). The dissipativity parameter set Π is said to be effective
if the corresponding supply rate is effective. The set of effective
dissipativity parameters is called the effective dissipativity set
(still denoted as Š).
4

Definition 9 (Dual Dissipativity Parameters and Sets). The dual
dissipativity parameter of an excitation input signal on [0, t] that
s admissible on all [0, τ ] for τ ∈ (0, t] is defined based on the
esulting excited trajectory as

=

∫ t

0

[y(τ )
u(τ )
d(τ )

] [
y(τ )⊤ u(τ )⊤ d(τ )⊤

]
dτ . (14)

he set of dual dissipativity parameters is called the dual dis-
ipativity set (denoted as G), and the set of dual dissipativity
arameters of effective input signals is called the effective dual
issipativity set (denoted as Ǧ).

It directly follows from these definitions that S ⊆ Š , G ⊇ Ǧ,
nd S and Š are the dual cones of G and Ǧ, respectively, i.e.,

S = G∗
= {Π |⟨Π, Γ ⟩ ≥ 0, ∀Γ ∈ G}

Š = Ǧ∗
= {Π |⟨Π, Γ ⟩ ≥ 0, ∀Γ ∈ Ǧ}.

(15)

The dissipativity sets and dual dissipativity sets defined above
are also hyper-parameterized by Nf, ϵf and T . These symbols are
omitted for brevity. For a quadratic supply rate function and
linear feedback laws, we can restate Lemma 2 as

Lemma 3 (Stability of Dissipative Control). Suppose that there exist
Π ∈ Ǧ∗, K ∈ K, and β > 0 satisfying (12). Then the closed-loop
system is L2-stable in Ď.

Therefore, the task of obtaining a dissipative controller for
system (1), involving the determination of supply rate function
(Problem 1) and the output-feedback control (Problem 2), is
stated as follows.

Problem 3 (Dissipativityb-based Control). Given hyperparameters
Nf, ϵf and T , obtain Ǧ and its dual cone Š = Ǧ∗, and solve for a
ontrol law K satisfying (12) with some Π ∈ Š and β > 0.

3. Statistical foundations

In a data-driven setting, the determination of the effective
dual dissipativity set Ǧ and its dual cone for the system (1) is
done on the basis of statistical inference. That is, an estimation
of Ǧ, denoted as Ĝ and its dual cone Ŝ , as an estimation of Š ,
should be obtained from some data samples of the system. In this
section, we discuss the effect of the sampling and inference steps,
and provide guidelines on how to collect samples and conduct
inference.

3.1. Sampling of input excitations

In order to obtain estimations of the dissipativity and dual
dissipativity sets, one needs to create samples of admissible input
signals to excite the system (1) from the origin, collect the re-
sulting output trajectories, and calculate the corresponding dual
dissipativity parameters Γ . We note that each admissible input
signal in VNf,ϵf (T ) is identical to an infinite-dimensional point
(series) a in Anv

Nf,ϵf
(T ), where

ANf,ϵf (T ) =

⎧⎨⎩(a0, a1, . . . )

⏐⏐⏐⏐⏐
∞∑
i=0

a2i ≤ 1,
∞∑

i=Nf

a2i ≤ ϵf

Nf−1∑
i=0

a2i

⎫⎬⎭ . (16)

Sampling from Anv
Nf,ϵf

(T ) as an infinite-dimensional set is appar-
ently not tractable. Hence we consider sampling on its approxi-
mation as a finite-dimensional unit ball centered at the origin:

ÂNf,ϵf (T ) =

{
(a0, a1, . . . , aNf )

⏐⏐⏐⏐⏐
Nf−1∑

a2i ≤ 1

}
= BNf (0, 1). (17)
i=0
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a

very element of Â(T ) is also in A(T ) if suffixed with infinite
number of zeros, and in this sense Â(T ) is a subset of A(T ). For
ach a ∈ A(T ), one can obviously find a corresponding â ∈ Â(T )

such that ∥a − â∥ ≤ ϵf∥â∥ by grounding the numbers after the
Nfth to zero.

Therefore, if one samples in Â(T ) in a sufficiently ‘‘proportion-
ally dense’’ manner, such that for any â ∈ Â(T ), there exists
a sample a′ that is close enough to â with ∥a′

− â∥ ≤ ϵâ∥a′
∥

for some small ϵâ > 0, then for any a ∈ A(T ), there exists
a sample a′ with ∥a′

− a∥ ≤ ϵa∥a′
∥ for some ϵa > 0. We

note that the ℓ2-distance on the space of Fourier coefficients
equals the L2-distance of the input signals. Hence a proportionally
dense sampling on Â(T ) implies a proportionally dense sampling
of admissible input signals, which also implies a proportionally
dense sampling on the dual dissipativity set G.

Lemma 4 (Denseness of Sampling on the Dual Dissipativity Set).
If for any input signal v ∈ A(T ), there exists a sample input
signal v(p)

∈ Â(T ) (where p is the sample index) such that ∥v −

v(p)
∥L2([0,T ]) ≤ ϵv∥v

(p)
∥L2([0,T ]) for some small ϵv > 0 (assuming

ϵv < 1), then there exist constants C0, C1, C2 > 0 such that the
corresponding dual dissipativity parameters Γ and Γ (p) satisfy

∥Γ − Γ (p)
∥ ≤ C0(1 + C1eC2T )ϵvtrace(Γ (p)). (18)

Proof. Consider the incremental dynamics

∆ẋ = f (x + ∆x, v + ∆v) − f (x, v), ∆y = h(x + ∆x) − h(x). (19)

Let the f and h have Lipschitz constants Lf ,x, Lf ,v and Lh,x > 0,
respectively. Then we obtain

∥∆ẋ∥ ≤ Lf ,x∥∆x∥ + Lf ,v∥∆v∥, ∥∆y∥ ≤ Lh,x∥∆x∥. (20)

Applying Grönwall inequality and Cauchy–Schwartz inequality,
one can verify that

∥∆y∥L2([0,T ]) ≤
Lh,xLf ,v
2Lf ,x

eLf ,xT∥∆v∥L2([0,T ]). (21)

The resulting difference of the dual dissipativity parameters can
be shown to be upper bounded by

∥∆Γ ∥
2

≤
1
3
(
L2h,xL

2
f ,v

4L2f ,x
e2Lf ,xT + 1)2(2∥v∥

2
L2 + ∥∆v∥

2
L2 )∥∆v∥

2
L2 , (22)

nd hence

∆Γ ∥ ≤
2

√
3
(1 +

L2h,xL
2
f ,v

4L2f ,x
e2Lf ,xT )ϵv∥v∥L2 . (23)

This leads to the conclusion of the lemma with C0 = 2/
√
3,

C1 = L2h,xL
2
f ,v/4L

2
f ,x and C2 = 2Lf ,x, since trace(Γ (p)) = ∥∆v∥

2
L2

+

∥∆y∥2
L2
. □

Remark 3 (Dense Sampling and Curse of Dimensionality). The idea
of dense sampling on the space of trajectories to accurately learn
input–output properties was earlier proposed by Montenbruck &
Allgöwer [33] in the context of operator norm over-estimation. In
our approach, through the admissibility concept in Definition 1,
we handle this in a Euclidean space of Fourier coefficients. As
the dimension of the input signal increases, the dense sampling
requires a drastic increase of the number of trajectories to be
collected. This curse of dimensionality poses a limitation of dissi-
pativity learning approaches for systems with high-dimensional
inputs.

If the sampling is dense on G, then the remaining task is to
select the samples that are useful to estimate the effective subset
Ǧ, and perform the inference of Ǧ. Such a data cleaning step is
5

a common practice in data-driven techniques. From a theoretical
point of view, we can only assume that the user is given a priori
a proper strategy to choose samples that are sufficiently informa-
tive to approximately cover the effective dual dissipativity set.

Assumption 2 (Effective Sample Selection Oracle). Assume that for
any dual dissipativity parameter Γ in the effective dual dissi-
pativity set Ǧ, there is a selected sample Γ (p) among the set of
samples Γ (1), . . . , Γ (P) such that

∥Γ − Γ (p)
∥ ≤ ϵΓ trace(Γ (p)) (24)

for some ϵΓ > 0. Alternatively we may assume that the samples
re directly generated so that the above inequality is satisfied.

Since such an oracle is unavailable in reality, it must be ap-
roximated by a heuristic rule. Here we propose a simple heuris-
ic based on the intuition that the effective reaching signal should
end to result in a smaller extent of oscillations in the inputs and
utputs. If expressed as Fourier series, these input signals should
ave larger (in absolute values) low-frequency coefficients than
he high-frequency coefficients. Hence we sort the components of
he sample points in ÂNf,ϵf (T ) in the descending order of absolute
values and use the sorted a ∈ Â(T ) to replace the original one.
We shall refer to this rule as the sorting heuristics later.

Remark 4 (Negligibly Small Excitations). The condition of propor-
tionally dense sampling is in fact not realizable with a finite
sample set, since the excitation input signal may be arbitrarily
small. We need to compromise such excessively small signals,
which drive the states from the origin to a small neighborhood.
In that case the guaranteed L2-stability degrades into a practical
tability on the effective reaching domain excluding such a small
eighborhood.

.2. Inference of effective dissipativity set

Now suppose that a dense sampling is performed on G and
effective samples Γ (p), p = 1, . . . , P are selected such that the
condition in Assumption 2 is satisfied. A statistical inference pro-
edure is subsequently used to give an approximate description
f the effective dual dissipativity set Ǧ. It is easily verifiable that,
f such a set Ĝ estimated from samples may leave a sample out
or a small enough distance, i.e., for any Γ (p) there exists a Γ̂ ∈ Ĝ
uch that for a small ϵΓ̂ > 0, ∥Γ (p)

− Γ̂ ∥ ≤ ϵΓ̂ ∥Γ̂ ∥, then there
xists a 0 < ϵ+

Γ ≤ ϵΓ + ϵΓ̂ + ϵΓ ϵΓ̂

√
ny + nv > 0 such that

Γ (p)
− Γ̂ ∥ ≤ ϵ+

Γ ∥Γ̂ ∥. Hence for any Γ ∈ Ǧ there exists Γ̂ ∈ Ĝ
such that ∥Γ − Γ̂ ∥ ≤ ϵ∥Γ̂ ∥ for some 0 < ϵ < ϵ+

Γ + ϵΓ̂ . Simply
tated, if the sampling is effective enough and the inference of Ǧ
s close to the samples, then the estimated Ĝ is close to the actual
ˇ.

The following proposition establishes the impact of the accu-
acy of Ĝ on the inference of its dual cone Ŝ .

emma 5 (Accuracy of Effective Dual Dissipativity Set). Suppose that
or any Γ ∈ Ǧ there exists a Γ̂ ∈ Ĝ such that ∥Γ − Γ̂ ∥ ≤ ϵ∥Γ̂ ∥,
hen

ˇ ⊇

⋂
Γ̂ ∈Ĝ

{
Π̂ |⟨Π̂, Γ̂ ⟩ ≥ ϵ∥Π̂∥ · ∥Γ̂ ∥

}
. (25)

he right-hand side can be viewed as a ‘‘modified dual cone’’ of Ĝ
the angle between any its element and any element of Ĝ is an acute
ngle not exceeding arccos ϵ). Therefore for any Π̂ ∈ Ŝ , there exists
Π ∈ Š with ∥Π − Π̂∥ ≤ δ∥Π̂∥ with δ ∈ [0, 2 sin arcsin(ϵ/2)].
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roof. According to the condition of the lemma, we have

ˇ ⊆ {Γ̂ + ∆∥Γ̂ ∥|Γ̂ ∈ Ĝ, ∥∆∥ ≤ ϵ}. (26)

Hence Š is a superset of the dual cone of the right-hand side of
the ‘‘⊆’’ symbol. Since for each Γ̂ ,

{Γ̂ + ∆∥Γ̂ ∥|, ∥∆∥ ≤ ϵ}∗ = {Π̂ |⟨Π̂, Γ̂ ⟩ + ∥Γ̂ ∥ min
∥∆∥≤ϵ

⟨Π̂, ∆⟩ ≥ 0},

(27)

here the minimization leads to a −ϵ∥Π̂∥ · ∥Γ̂ ∥ term, by taking
he intersection over all Γ̂ ∈ Ĝ we see the conclusion. □

For the estimation of the efficient reaching domain Ĝ, any
nomaly detection, one-class classification, probability density
stimation, or hull algorithm is in principle suitable. However,
or computational tractability of the controller synthesis, we need
he estimate Ĝ to have a simple convex form such as polyhedron,
olyhedral cone, ellipsoid, or second-order cone. In our previous
orks [18,19] we have used support vector machine and prob-
bility estimation with independent bi-exponential distributions
or polyhedral sets. Here we provide the procedure for inferring
ˆ as a second-order cone.

Note that any Γ (p) must be a semidefinite matrix, whose
race is positive except for the singular case of the zero-input
rajectory, which we can assume does not exist in the sample. We
irst normalize all the samples of dual dissipativity parameters to
race 1:
(p)
+ = Γ (p)/∥Γ (p)

∥, p = 1, . . . , P . (28)

hen a principal component analysis (PCA) algorithm is applied to
he trace-1 samples. For this purpose, a basis {Ek}Kk=1 for (ny+nv)-
rder symmetric matrices is chosen, which vectorizes the samples
nto
(p)

= [⟨Ek, Γ
(p)
+ ⟩]

K
k=1. (29)

y finding the sample average γ̄ and the diagonal matrix of
omponent-wise standard deviations D = diag(Dk, k = 1, . . . , K ),
he vectorized samples are whitened by translation and scaling:

γ̄ =
1
P

P∑
p=1

γ (p), Dk =
1

P − 1

P∑
p=1

(γ (p)
k − γ̄k)2,

γ
(p)
+ = D−1(γ (p)

− γ̄ ).

(30)

hen the ellipsoidal range of γ
(p)
+ , p = 1, . . . , P is found by a

ingular value decomposition (SVD) of the horizontally stacked
atrix of samples,
1

√
P − 1

[
γ

(1)
+ . . . γ

(P)
+

]
= USV⊤, (31)

here U and V are orthogonal matrices, and S ∈ RK×P is a
diagonal matrix of singular values (SVs) si ≥ 0 (in descending
order), i.e., if subscribing the column vectors of U and V and the
SVs, then the right-hand side above is

∑min(K ,P)
i=1 siuiv

⊤

i . Typically
sufficiently small SVs are neglected by choosing the number of
principal values J according to a certain rule, then

1
√
P − 1

[
γ

(1)
+ . . . γ

(P)
+

]
≈ U1:JS1:JV⊤

1:J , (32)

hich implies that the sample covariance matrix is approxi-
ately U1:JS21:JU

⊤

1:J (the subscript 1 : J stands for columns 1 to J for
and V , and also rows 1 to J for S). Suppose that the samples are
ormally distributed. Then the vectors of principle components
PCs)
(p)

= S−1U⊤ γ
(p)

∈ RJ , p = 1, . . . , P (33)
1:J 1:J +

6

hould be samples from a standard normal distribution, for which
he ℓ2-norm is the Hotelling statistics, and a threshold hyperpa-
ameter Θ > 0 can be chosen.

Through the PCA, an estimation Ĝ is obtained as a confidence
egion in the form of

Ĝ = {η|∥η∥ ≤ Θ} = {γ+|γ+ = U1:JS1:Jη, ∥η∥ ≤ Θ}

= {γ = γ̄ + DU1:JS1:Jη, ∥η∥ ≤ Θ}
(34)

all the following matrix as the mixing matrix:

= DU1:JS1:J . (35)

hen

ˆ =

{
Γ

⏐⏐⏐⏐⏐Γ = r
K∑

k=1

γkEk, γ = γ̄ + Gη, r ≥ 0, ∥η∥ ≤ Θ

}
, (36)

hose dual cone is expressed as

ˆ =

{
Π

⏐⏐⏐⏐⏐Π =

K∑
k=1

πkEk, ⟨π, γ̄ ⟩ − Θ∥G⊤π∥ ≥ 0

}
. (37)

.3. The effect of learning on control

Finally, we consider the impact of the statistical errors on the
esulting control performance in terms of the upper bound on the
2-gain. Call the third matrix on the left-hand side of the matrix
nequality (12) as the loop-closing matrix, and denote it as H . The
erturbation on the resulting L2-gain is then considered by the
odification of the matrix inequality.

emma 6 (Resulting Control Performance). Let

=

[ I 0
K 0
0 I

]
. (38)

uppose that the matrix inequality

⊤

(
Π̂ +

[ I 0 0
0 I 0
0 0 −βI

])
H ⪯ 0, (39)

olds for some Π̂ ∈ Ŝ , and that there exists a Π ∈ Š such that
Π − Π̂∥ ≤ δ∥Π̂∥. Then the square L2-gain from exogenous d to
= (y, u) is guaranteed to be upper bounded by β + δβ on Ď with

β = (1 + β)δ∥Π̂∥/(1 − δ∥Π̂∥), if β∥Π̂∥ ≤ 1.

roof. Since for any symmetric matrix the spectral radius cannot
xceed its Frobenius norm, ∥Π − Π̂∥ ≤ δ∥Π̂∥ implies that

− Π̂ −

⎡⎣δ∥Π̂∥I 0 0
0 δ∥Π̂∥I 0
0 0 δ∥Π̂∥I

⎤⎦ ⪯ 0. (40)

y multiplying the left-hand side by H⊤ on the left and H on
he right, adding it to (39), and multiplying by 1/(1− δ∥Π̂∥), we
btain:

⊤

(
1

1 − δ∥Π̂∥
Π +

[ I 0 0
0 I 0
0 0 (β + δβ )I

])
H ⪯ 0. (41)

ince Š is a cone, when Π ∈ Š , 1
1−δ∥Π̂∥

Π ∈ Š . According to
Lemma 2, the conclusion is proved. □

Due to the possibility that the adopted schemes of sample
generation, selection and statistical inference may not be effective
enough to cover a significant part of Ǧ (satisfying the condition of
Lemma 5), the above-mentioned perturbed control performance
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Fig. 1. Procedures involved in the DLC framework.

s guaranteed only on a subset of Ď that is positive-invariant
nder control laws in K without violating admissibility of input
ignals. Finally we assume that this true domain of attraction Ω

s still a neighborhood of the origin with a satisfactory size.

. The DLC framework

.1. General DLC algorithm and its performance

At this point we summarize the results in the previous two
ections. Generally, the DLC approach to input–output data-
riven model-free control contains the following procedures, for
hich an illustration is given in Fig. 1.
1. Sampling by excitation: Densely choose admissible input

signals by the vector of Fourier coefficients from (17), and
heuristically select effective samples (e.g., using the sort-
ing heuristics). Alternatively, samples may be generated
directly by a heuristic rule.

2. Sample processing: Calculate the dual dissipativity param-
eters of the sample trajectories by (14). Then choose ma-
trix basis and vectorize the dual dissipativity parameters
normalized to trace 1 as in (28) and (29).

3. Dissipativity learning: Perform a PCA procedure on the vec-
tor samples as in (30) and (32) to find the mixing matrix
by (35). Characterize the dissipativity set by (37).

4. Controller synthesis: Find a solution (or the optimal solu-
tion) of K satisfying the matrix inequality (39) with some
Π̂ ∈ Ŝ and some (or the smallest) β ≥ 0.

The performance guarantee of DLC is formalized as the follow-
ng theorem, which follows from the lemmas in the previous two
ections.

heorem 1 (Performance of DLC). Suppose that
• Assumption 1 (on the existence of an effective reaching domain

in the vicinity of the origin) and Assumption 2 (on the selection
of dense samples around the effective reaching domain) hold;

• For any Γ ∈ Ĝ, there exists Γ̂ ∈ Ĝ such that ∥Γ −Γ̂ ∥ ≤ ϵ∥Γ̂ ∥

for some ϵ > 0;
• There exist K ∈ K, Π̂ ∈ Ŝ , and β ≥ 0 satisfying (39), with H

specified in (38);
• 2 sin arcsin(ϵ/2) · ∥Π̂∥ < 1.

hen on Ď the closed-loop system under u = Ky is L2-stable, with
he L2-gain from d to z = (y, u) upper bounded by β + δβ , where
β = (1 + β)δ∥Π̂∥/(1 − δ∥Π̂∥).
7

.2. Solution of the DLC algorithm

For controller synthesis where we consider to seek the optimal
olution (K , Π̂, β) ∈ K× Ŝ×[0, +∞), it often helps to accelerate
he semidefinite programming problem solution by tightening
he feasible region. We first impose constraints Π̂vv ⪰ 0, which
ndicates that an excitation at the origin cannot lead to any
urther decrease of the storage function. The two-letter subscript
tands for the matrix block whose rows and columns correspond
o the indicated process variables, i.e.,

=

[
Πyy Πyu Πyd
Πuy Πuu Πud
Πdy Πdu Πdd

]
=

[
Πyy Πyv
Πvy Πvv

]
. (42)

e then note that the matrix inequality (39) is non-convex
ut multi-convex in (Π̂, β) and K as two groups of variables.
n iterative algorithm can hence be adopted [19], i.e., in each
teration, K is first fixed to solve the remaining variables, and then
he remaining variables are fixed to update K .

To update K , we let Π ′
= Π̂ +diag(I, I, −βI) and rewrite (39)

s
Π ′

yy + K⊤Π ′⊤
yu + Π ′

yuK + K⊤Π ′
uuK Π ′

yd + K⊤Π ′

ud
Π ′⊤

yd + Π ′⊤

ud K Π ′

dd

]
⪯ 0. (43)

hen (39) is satisfied by some Π and β , the bottom-right block
′

dd is negative semidefinite. The Schur complement of the above
atrix over the Π ′

dd block is therefore

K⊤
(
Π ′

uu − Π ′

udΠ
′−1
dd Π ′⊤

ud

)
K + K⊤

(
Π ′⊤

yu − Π ′

udΠ
′−1
dd Π ′⊤

yd

)
+
(
Π ′

yu − Π ′

ydΠ
′−1
dd Π ′⊤

ud

)
K +

(
Π ′

yy − Π ′

ydΠ
′−1
dd Π ′⊤

yd

)
.

(44)

ince Π ′
uu ⪰ 0, Π ′

dd ⪯ 0, and hence Π ′
uu − Π ′

udΠ
′−1
dd Π ′⊤

ud ⪰ 0,
he negative semidefiniteness of the Schur complement is best
chieved by a controller gain matrix of

= projK
(
−
(
Π ′

uu − Π ′

udΠ
′−1
dd Π ′⊤

ud

)−1 (
Π ′⊤

yu − Π ′

udΠ
′−1
dd Π ′⊤

yd

))
(45)

here the projection operator projK(·) means the element of K
ith the smallest distance to the object in the parentheses, which

s computationally tractable if K is convex.
Hence each iteration executes the following three steps.
1. Obtain (Π̂, β) from

min β s.t. H⊤

(
Π̂ + diag(I, I, −βI)

)
H ⪯ 0

Π̂ ∈ Ŝ, Π̂vv ⪰ 0, β ≥ 0;
(46)

2. Let Π ′
= Π̂ + diag(I, I, −βI) and update K by (45);

3. Reset the loop-closing matrix H according to (38).

.3. Tuning of the DLC algorithm

The DLC algorithm contains multiple hyperparameters in the
ampling and dissipativity learning steps, which may affect the
erformance of the final controller. Specifically, in the sampling
tage, the hyperparameters for the set of admissible input signals,
amely Nf (number of significant terms in Fourier series) and ϵf
allowable truncation error), affect the range of excitation signals
enerated, and T (time span of excitations) affects the reachable
omain. Generally, if Nf is too high or ϵf is too low, there may
e an abuse of signals with high-frequency oscillations. On the
ontrary, the allowed bandwidth of the signals may be too shal-
ow. Both extremes can restrict the effectiveness of the excitation
ignals. T should also be well chosen so that the reachable domain
s of a proper size, in which the control performance is of interest.
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For the statistical inference of effective reaching domain, two
yperparameters are involved if using PCA for a second-order
one estimation, namely the number of PCs J and the threshold of
he Hotelling statistics Θ . These two hyperparameters represent
he reduced dimension and the confidence level, respectively.
wo analogous hyperparameters appeared in a polyhedral cone
stimation scheme used in our previous work [19]. If J and Θ

re large, the estimated Ĝ is large and hence the estimated dissi-
ativity set Ŝ is small, which may result in the conservativeness
namely sub-optimality) of controller performance. On the other
and, if J and Θ are too small, Ŝ is large, which may bring the risk
f obtaining unrealistically optimistic L2-performance. Therefore,
and Θ need to be tuned suitably. Since J affects the dimension of
he feasible region of the semidefinite programming problem, we
xpect that the impact of J on the control performance is more
ignificant than that of Θ , and needs to be tuned in priority.

. Case study: two-phase chemical reactor

In this section we examine DLC with the regulating control of
two-phase reactor, whose first-principles model, considered as
he true dynamics, was described in [39]. We consider the outlet
low rates FV and FL simultaneously (scaled by 1 mol/s) and the
eating rate Q (scaled by 25 kW) as two manipulated inputs, and
he vapor phase composition yA and temperature T as two out-
uts (scaled by 0.001 and 0.5 K, respectively). Two disturbances
n FB0 and TA0 (scaled by 1 mol/s and 2.5 K, respectively) are con-
idered. We generate 1000 trajectory samples excited by random
-term Fourier series in 120 s. For PID controller synthesis, the
utputs are augmented with their integrals and derivatives, and
ence the dual dissipativity parameters are 10 × 10 matrices,
ectorized into 100-dimensional vectors by column-major order.
rom PCA we find that for retaining 99% (99.9%, 99.99%) of data
ariations (sum of squares of SVs), only the 4 (10, 19) largest SVs
re needed.
Setting the number of PCs as 4 and confidence level as 90%

i.e., Ĝ covers 90% of the samples) and following the procedure in
ection 4.2, a DLC-PID controller is obtained:

u(t) =

[
−1.163 0.493
1.711 −2.924

]
y(t) +

[
1.463 7.351

−0.617 0

]
h−1

·

∫ t

0
y(τ )dτ +

[
−0.813 5.037
11.178 −18.996

]
s ·

dy
dt

(t).
(47)

LC-PI and DLC-P controllers are also synthesized following the
ame procedures. To test the control performance, we gener-
te the disturbances as randomized piecewise constant signals
nd simulate the closed-loop trajectories in 3600 s, as shown
n Fig. 2. The control performance is measured by the sum of
ntegrated squares of output errors and control inputs (ISE+ISC =
1

3600

∫ 3600
0 (∥y(t)∥2

+ ∥u(t)∥2)dt). The ISE+ISC indices are 2.5846,
2.4316, and 2.5345 for the PID, PI and P controllers, respectively,
among which the PI controller slightly outperforms the other two,
indicating that it suffices to use a PI or even a P controller for
disturbance rejection around the steady state. The DLC controllers
are also compared to the open-loop trajectories (with fixed u =

) which result in significantly larger deviations in the outputs,
ith ISE + ISC = 35.0907. By further perturbing the 4 gains

n the DLC-P controller, we observe that the lowest ISE+ISC
alue achievable by P controllers under the specific disturbance
cenario in this simulation is approximately 2.17 (by letting K11 =

and increasing K21, K22 by 50%), with which the performance
of the DLC-P controller has a fairly small gap of about 14%. This
gap is due to the intrinsic conservativeness of the L2 synthesis
formulation used in DLC, which aims at mitigating the worst-case
disturbance.
8

Fig. 2. Simulated closed-loop trajectories under the DLC-P (blue), DLC-PI (green),
and DLC-PID (red) controllers compared to LQG (black solid) and open-loop
trajectories (black dashed). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

We compare the performance of DLC to an LQG controller
based on linear system identification using the Kalman–Ho algo-
rithm [40], which finds the minimal realization of linear time-
invariant (LTI) systems. Given a desirable reduced order of states,
the algorithm can be used for LTI system identification with an
approximate SVD. For the two-phase reactor, we choose a sam-
pling time of 10 s and specify the order of states as 6. Under state
disturbance and output noise covariance matrices W = I , V =

.1I and weighting matrices Q = I , R = I , a linear quadratic Gaus-
sian (LQG) controller is obtained. The simulation result shows
that the LQG controller also well rejects the disturbances (with
ISE + ISC = 2.6766). By varying the number of states in the
Kalman–Ho algorithm, we found that the 6-state LQG controller
has the best achievable performance among such linear system
identification-based optimal control (ISE + ISC = 2.6766), which
is out-competed by the DLC-PI controller (ISE + ISC = 2.4316)
by approximately 9.2%. Moreover, by comparing the trajectories
in Fig. 2, we observe that DLC and LQG choose different ways
to reject exogenous disturbances. For DLC, the magnitudes of
inputs and outputs turn out to be more balanced, while the LQG
prefers to tradeoff larger output deviations (especially y1) for
smaller inputs (especially u1), which does not change significantly
when V are tuned to different values such as 0.01I , 0.001I and
0.0001I . This may be related to the different ways that these two
types of controllers are synthesized. The dissipativity learning
relies on the overall (integrated) input–output responses over an
excitation time period, while linear system identification is based
on the incremental responses during each short sampling time.

6. Conclusions

In this paper we have studied fundamental properties of the
DLC framework for input–output data-driven control. The nomi-
nal control performance of DLC and the impact of the dissipativity
learning procedures, including the sampling of excitation sig-
nals and statistical inference of the effective dual dissipativity
set, were formalized. Concisely stated, DLC achieves nearly L2-
ptimal control within an effective reachable domain, assuming that
he sampling and statistical inference steps are sufficiently accu-
ate with respect to the effective dual dissipativity set. DLC was
mplemented on a two-phase chemical reactor, and its perfor-
ance was compared to linear system identification-based LQG
ontrol. The extension of DLC to more general plant dynam-
cs, controllers and large-scale systems, as well as its in-depth
omparison with other data-driven control frameworks such as
einforcement learning, will be addressed in our upcoming works.
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