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true dynamics not only in the direct output measurements, i.e., in an L%-sense, but also in the higher-
order time derivatives of the output signals, i.e., in a Sobolev sense. A Lie-Sobolev gradient descent-based
observer-estimator and a Lie-Sobolev moving horizon estimator (MHE) are formulated, and their con-
vergence properties and effects on input-output linearizing control and model predictive control (MPC)
respectively are studied. Advantages of Lie-Sobolev state and parameter estimation in nonlinear processes
are demonstrated by numerical examples and a reactor with complex dynamics.
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1. Introduction

The development of nonlinear control methods has been one
of the most important topics in process control due to the in-
trinsic nonlinearity of process systems. Examples include input-
output linearization (Isidori, 1995), which uses state feedback to
cancel out the nonlinearity and shape the output response, and
model predictive control (MPC) (Rawlings et al., 2017), which gen-
erates control signals by optimizing a cost associated with the pre-
dicted trajectory. It is self-evident that the successful application
of these nonlinear model-based control methods is intrinsically de-
pendent on high-quality dynamic models. Process systems may be
represented as white-box first-principles models, black-box mod-
els of completely unknown dynamics, or grey-box models in be-
tween (Sjoberg et al.,, 1995). Whenever a perfect white-box model
is unavailable, the unknown parts of the underlying dynamics must
be inferred through system identification, which is typically per-
formed off-line, although on-line approaches such as adaptive con-
trol (Farrell and Polycarpou, 2006) or dual control (Filatov and Un-
behauen, 2004) have also been proposed.In this paper, we focus on
the off-line system identification problem, where perturbations are
imposed on the system to generate data for identification and the
controller is designed after the model is identified.
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The specific formulations and procedures of system identifica-
tion vary with the context. In general, system identification may
refer to any regression or data-driven characterization of the un-
known parts in dynamic models, e.g., state-space models, trans-
fer function models, and autoregressive models (Schoukens and
Ljung, 2019). A wide spectrum of approaches have been developed
in this sense in the process control literature (Doyle III et al., 1995;
Zhu, 1998; Favoreel et al., 2000; Simkoff and Baldea, 2019). In a
broader sense, the identification can be performed in a model-
free manner only to learn useful control-relevant information from
data, such as optimal value/policy functions or dissipativity param-
eters (Tang and Daoutidis, 2018; 2019; 2021). The characterization
of the unknown model structure along with the identification pro-
cedure can be categorized as parametric (Ljung, 1999) or nonpara-
metric (Greblicki and Pawlak, 2008).

For nonlinear chemical processes, the aim of system identifica-
tion is typically to estimate the unknown parameters, usually phys-
ical and chemical properties, in models of certain a-priori struc-
tures derived from first principles or approximations (Englezos and
Kalogerakis, 2000; Zavala and Biegler, 2006). Also, for chemical
processes there usually exist states that are not directly measurable
and hence the parameter estimation needs to be combined with
the simultaneous state observation, i.e., both dynamic states and
model parameters should be estimated. Therefore, in this paper,
we use the parametric formulation and consider system identifica-
tion as the problem of designing such an observer-estimator. If the
process dynamics can be represented by a parametric model with-
out structural errors, the aim of such an observer-estimator (also
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known as adaptive observer in this context) design is to achieve
both state and parameter convergence to the true values; other-
wise, it is desirable that the identification results in only small de-
viations and the resulting control performance is not severely de-
teriorated (see, e.g., Marino et al., 2001; Liu, 2009; Zhang and Xu,
2015).

State observer design for dynamic systems is a classical prob-
lem in process control (Soroush, 1998; Dochain, 2003; Kravaris
et al, 2013), which can be extended to combined observer-
estimator design by viewing parameters as invariant states. The
most common approach for nonlinear systems is to modify the
Kalman filter for linear systems into an extended or unscented
one (EKF, UKF) (Simon, 2006). For systems of specific structure,
state observers can be designed through backstepping (Krstic et al.,
1995) or based on the semilinear form obtained through input-
output linearization (Farza et al., 2009; Tyukin et al.,, 2013). The
latter approaches essentially employ high-gain output feedback
and have led to elegant conditions under which the output-
feedback control with state observer achieves desired perfor-
mance (Khalil and Praly, 2014). As a generic result, Kazantzis and
Kravaris (1998) proposed a nonlinear observer with assignable er-
ror dynamics based on the solution of partial differential equa-
tions, whose theoretical existence was established (Andrieu and
Praly, 2006) but whose solution is hindered by computational con-
siderations. In a different vein, implicit schemes based on nonlin-
ear optimization, such as maximum likelihood estimation (MLE)
(Schon et al., 2011) and especially moving horizon estimation
(MHE) (Rao et al.,, 2003), have gained increasing applications. It
should be noted that for generic nonlinear systems, a separation
principle, either for state observer or for observer-estimator de-
sign, is lacking. In the present work, we will consider observer-
estimators in a gradient descent and MHE form.

A key motivation for this work is the need for a control-oriented
approach for nonlinear system identification. It is well known that
any identified model is an approximation of the actual dynam-
ics, and for a model used for the purpose of process control,
the quality of system identification should be assessed by the re-
sulting control performance (Ljung, 1999). However, the mismatch
between the typical identification objective, e.g., least squares of
regression residuals, and the control performance, makes system
identification for truly optimal control performance an intrinsically
challenging problem (Schrama, 1992; Gevers, 2005). Nevertheless,
it is possible to develop control-oriented identification methods
that account for certain aspects or information that are impor-
tant for control (Rivera et al., 1992). To this end, we hereby fo-
cus on the role of directional derivatives (Lie derivatives) of the
model functions in nonlinear control which capture information
on the derivatives of the output functions. Their role is explicit
in input-output linearizing control, where the control laws are di-
rectly constructed using Lie derivatives. For MPC, their impact is
implied from the local Chen-Fliess series expansions (Isidori, 1995,
Section 3.2) of the predicted trajectories, whose coefficients rely on
the Lie derivatives of the nonlinear model. Typical estimation pro-
cedures such as MHE (Kiihl et al., 2011) only seek to match the
estimated model with the actual model in the directly measured
output values and may not be effective in matching the output
derivatives and thus the corresponding Lie derivatives, especially
when structural errors exist, i.e., the true dynamics may not be ex-
actly parameterized.

Motivated by the above, we propose a Lie-Sobolev framework
for nonlinear state and parameter estimation. We develop con-
structive procedures for incorporating output derivative informa-
tion in the combined observer-estimator design aiming to match
the estimated model to the actual one in the corresponding Lie
derivatives of the output functions. We establish well-characterized
nominal convergence properties for the resulting estimators and
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boundedness in the presence of structural errors. We further illus-
trate how to proposed estimators can be combined with feedback
linearizing controllers and model predictive controllers, and docu-
ment their advantages through simulations. In related works, the
regression of linearly parameterized functions accounting for first-
order derivatives was discussed in (Novara et al., 2019), where the
regression error bounds are derived through derivatives; Sobolev
training of neural networks, where the errors together with error
derivatives contribute to the back-propagation, was proposed by
machine learning researchers (Pukrittayakamee et al., 2011; Czar-
necki et al., 2017). The idea of accounting for output derivatives
was also implicitly embodied in the design of state observers and
adaptive observers based on input-output linearization for systems
with specific structures (Afri et al., 2016), but to the best of our
knowledge, was not considered explicitly in the identification of
generic nonlinear systems and little used in schemes such as MHE.
The remainder of this paper is organized as follows. First, in
Section 2, the general formulation of Lie-Sobolev estimation will be
given. The Lie-Sobolev formulations of an explicit gradient descent
observer-estimator and MHE are derived, and their convergence
properties as well as their effects on nonlinear control are dis-
cussed in Sections 3 and 4, respectively. The advantages of the Lie-
Sobolev approaches are demonstrated by the application to simple
numerical examples and a glycerol etherification reactor with com-
plex dynamics in Section 5. Conclusions are given in Section 6.

2. Lie-Sobolev estimation
2.1. System identification with observer-estimator

Consider a nonlinear dynamic model:

X(t) = f(x(0)) +gx(E))u(t)
y(t) = h(x(t)) (1)

where x(t) e ¥ € R%, u(t) et/ < R% and y(t) e RY are the vec-
tors of states, inputs and outputs, respectively. f: X — R, g:
X - RI%xdu and h:x — R%Y are supposed to be smooth func-
tions but may not be completely known, and hence need to be
approximated within parameterized families of smooth functions
{(F(x|0),8(x|0), h(x]0))|0 € O}, where § ¢ ® c R% is a vector of
parameters to be estimated. That is, we parameterize the system
(1) as follows:

X(t) = f(x(6)|0) + B(x(t)|0)u(t)
y(t) = h(x(t)]6). (2)

When there is a value 6 € ® such that the parameterization keeps
the model functions unchanged, i.e., f(.) = f(-l@), g() =8(-10),
and h(-) = ﬁ(~|9), then the parameterization (2) is said to be exact.
Otherwise, we say that there exist structural errors in the parame-
terization.

Suppose that the estimates of # are updated in continuous time
based on measurements of the inputs u and outputs y. Specifically,
at any time t, the historical measurements and past estimates in
the time interval [0, t] are available for deriving an estimation o)
which is generally represented as

8(t) = TT{y(s), u(s),6(s)[0 < s < t}), (3)

where IT is an adaptation (estimation) law (Yakubovich, 1968).
Once the parameter estimation is completed, the nonlinear model
is considered as identified and a control law

u(t) =k ({y(s), u(s), 010 <s < t}) (4)

can be designed to shape the closed-loop trajectory.
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Since the states x are not directly measured, the parameter es-
timation is realized with an accompanying state observer. We for-
mulate the observer so as to estimate the state derivatives x in ad-
dition to the states x. We denote the observation law for X as o.
The state observer and the parameter estimator are realized in the
form of ordinary differential equations (ODEs) driven by historical
information on y, derivatives of y (up to some order ry), u and the
current estimates:

X(t) = 0(t)
D) = o (%0, 90.00). (" ©)}p u(s). [0 <5 <t}
60) =7 (%0.90.00). {7 ()70 uCs).

O§s<t}>. (5)

The reason for using both & and % is to allow a criterion
that evaluates how well the first equation in (2), which involves
(%,x,0), is satisfied by the estimates (%, %, 0). As the control law «
is usually constructed based on the estimated model (f, g, h), key
to the construction of the observation and estimation laws (o, 77)
is the matching of the trajectory of X(t), X(t) and 6(t) to the be-
havior of the parameterized model (2) under the measured histor-
ical data. A perfect identification refers to a pair (o, ) that makes
the following ODEs hold for all ¢t > 0:

X(t) = FROIO©)) +ERDO(0)u(t)
y(t) = hE©)10(1)). (6)

2.2. Lie-Sobolev state and parameter estimation

Before introducing the Sobolev-type state and parameter esti-
mation of the dynamic system (1) from input and output historical
trajectories, we review the definition of Lie derivatives in nonlinear
control (Isidori, 1995, Chapter 4).

Definition 1 (Lie derivative). The Lie derivative of the ith compo-
nent of h, h;, with respect to a vector field f is defined as

dh;
Lihi = ETXIf (7)

respectively, where dh;/0x € R1*%, The Lie differentiation opera-
tors can be recursively composed to generate high-order or mixed
Lie derivatives, e.g., (Lflsz)hi =Ly, (szhj). Denote L’}“ = LfL’}, k=
0,1,..., with L? being identity. With a slight abuse of notation, we
will denote by Lgh; a row vector of Lg].h,-.

Definition 2 (relative degree). The relative degree p; for the ith
output is the smallest positive integer r such that Lngﬂh,» £0.

With relative degree p; known, we have
yi(t) = Ljhi(x(t))
Vi(t) = Lt (x(t))

VP (E) = LY (x(0)) + Ll p ™" i (x(6))u(e) (8)

which implies that the direct effect of inputs u falls on the p;th
time derivative of t. For controlling the system (1) by shaping
the responses of y;, accurately evaluating or managing the errors
in approximating the Lie derivatives L}hj(x), r=0,1,..., 0; and

LgL?"’lh,-(x), i=1,...,dy is thus of crucial importance. Therefore,
for a control-oriented system identification, we propose that the
state and parameter estimation should be performed such that not
only the output values match the estimated ones, i.e., (6) is satis-
fied, but also the output time derivatives match the estimated ones
up to an order equal to their relative degree, i.e.:

yi(6) = L3 RO)10))
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Yi®) = Ly R®)16.))

Y0 = L REOI0(0) + Ll hiRO100)u (). (9)

We refer to such a scheme as Lie-Sobolev state and parameter esti-
mation (or identification).!

In the next two sections, we formulate the Lie-Sobolev
observer-estimator for nonlinear systems based on the gradient de-
scent method, which underlies the majority of adaptive parame-
ter estimation schemes (Fradkov, 1979). Specifically, a real-valued
criterion J is defined based on the state observations A)?(t), their
time derivatives ¥(t) = X(t) and parameter estimates & (t), given
the measured inputs, outputs and output derivatives. The update
rules are designed such that the time derivative of J is made as
negative as possible. Depending on the way that J(t) is defined,
we formulate two different Lie-Sobolev estimation schemes.

o In the first type, J(t) is defined based only on the current esti-
mates and measurements. We view this explicit gradient-based
identification scheme as a prototype approach, for which the-
oretical properties can be analyzed with classical Lyapunov ar-
guments.

The second type — MHE, is an implicit observer-estimator for-
mulated as an optimization problem involving the current and
past measurements. Its convergence properties are established
in a similar way to the ordinary MHE whose analysis has been
covered in the recent literature.

In addition to the constructive design procedures, we provide
formal statements for the convergence and boundedness properties
and their impact on control.

3. Lie-Sobolev gradient descent observer-estimator
3.1. Derivation

Consider the following function J(t), which accounts for the
residuals of the parameterized model (2) evaluated based on
the estimations and measurements of inputs, outputs and output
derivatives:

J(®) = QR(),R(t), 0(¢))
. R N N 2
£(6) — FROI10®) - RO1D®)u) H

dy _pi-1

[

i=1 ~ r=0

N N N N 2
Y - LREOI©) - L RGO U] ]
(10)

_1
=2

. . 2
yO(t) - Lrhi(R(6)|0(6)) H

L1
2

+wf""

where the weights w] corresponding to the response of yi(r), r=
0,1,...,p5 i=1,...,dy are positive constants. If the terms in
the brackets (involving y and y derivatives) are all removed ex-
cept for the one corresponding to r =0 (involving y), then | re-
duces to the one used in classical gradient descent methods.
The criterion function J(t) equals zero whenever the estimated
model is equivalent to the true model and the state observation
is error-free. J lends itself to the following performance measure
that captures the distance between the estimated model functions
(f(-16).8(10), h(:|9)) and actual dynamics (f,g h), which we re-
fer to as the Lie-Sobolev norm.

T A Sobolev space, conventionally denoted as WPk, refers to a vector space of
functions equipped with a Sobolev norm that is defined based on the LP-norms of
the function and its derivative functions up to order k.
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Definition 3 (Lie-Sobolev norm). For the identified model f (x|é)
g(xl@) h(x|9) the squared Lie-Sobolev norm of the model error

(Af.Ag.Ah) = (f.g.h) - (f.& h) is
dy _pi—1 2
IaGamly = [ 1a7+agulP+ Y[ X i -5k,
i=1 r=0
. . 2
+wf HLjth,- + LgL}’"lhiu - L;ifh,- - LgL;3**1hiu‘ ]dxdu (11)

Here we assume that / contains a d,-dimensional (i.e., full-
dimensional) neighborhood of 0 and that the characteristic ma-
trix

L, L hy (x) Ly, L7 h1 (x)

Alx) = : :
Lg, L7 g, (x) Lg, Ly g, (x)

is nonsingular, so that ||[(Af, Ag, Ah)|lw =0 only when Af(x),
Ag(x), Ah(x) as well as the differences in the Lie derivatives in-
volved in (11) are equal to 0 in X. Thus, (11) gives a well-defined
(positive definite) norm and Q(X(t),X(t),0(t)) can be regarded as
an approximate evaluation of the Lie-Sobolev norm on the snap-
shot at time t. Hence, the observer-estimator should be designed
with an aim to reduce the value of Q with time.

Assuming that the input signals are differentiable and the out-
put signals are differentiable up to the order of relative degrees
with respect to t,

i (S e (3) o

aS 3 2 AT du Bg]
+[3g‘("‘f‘g“)< +;’ )]

(12)

e}
Il
—_
x>
|
>

y Pi
(r+1)
(f+gu)+—u+ZZ8 (,)yr+ (13)
i=1 r=0
where
. A X . (
=S(x,9 Wy YO Y T Vg )
dy _pi—1 R R 2
= [y - shaobo]
i=1 ~ r=0
. . e 2
[y © - R EOI10©0) - L2 REOD OO ]
(14)
represents the part of Q after the first term in (10). In (13), % and

6 can be designed through the laws of the state observer o and
parameter estimator 7 in Eq. (5). We construct the state observer
o and parameter estimator 7 as follows:

; N T
——FU(V—f—gu)Jr( +Zu1 gf) (gi) + g

S . s .
—rﬂ[aé—(x—f—guf( +,21’ )] (15)

where I'; and Fé are tunable positive definite matrices of order dx
and dy, respectively.

Q
|

g

3.2. Convergence properties

Substituting the observer-estimator law (15) into the expression
of Q (13) according to (5), we can characterize the convergence
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property of the observer-estimator (15) based on Lyapunov stabil-
ity analysis. To begin with, we consider the case with exact param-
eterization, i.e., there exists a true value of 6 such that the errors
between the functions f, g, h and Lie derivatives vanish. The follow-
ing proposition gives the conditions for the nominal convergence
of (15).

Proposition 1 (Nominal convergence of the gradient descent
observer-estimator). Assume that

. f 8 h, the Lie derivative functions and their partial derivatives
with respect to X and 6 are bounded and Lipschitz in X;

e Q is strongly convex in 0;

e u,1 and g(X) are bounded;

o The errors in state observations are linearly bounded by the errors
in their estimated dynamics and the parameter estimations, ie.,
% — x|l < c1l1X = f = 8ull + c21|60 - O]| for some ¢y, c; > 0.

Under the observer-estimator (15), if the tunable matrices I'y and
I’z are chosen such that their smallest eigenvalues are large enough,
then Q < 0 and the equality holds when X = f(X) + §(X)u and 6 = 6.

Remark 1 (Satisfiability of assumptions). Among the above as-
sumptions, the first and third are rather mild and can be satisfied
as long as X and ¢/ are bounded sets and the input signals are
generated with a bounded rate of change. Since Q is a weighted
sum of squares of estimation errors, the strong convexity condition
on Q essentially requires that the parameterization should be such
that these estimation errors are strictly monotonically dependent
on the parameters. In nonlinear process systems, such parameter-
izations can often be satisfied (at least locally), e.g., the conver-
sion or flux quantities in transport-reaction systems usually have
monotonic relations with the corresponding rate or activation en-
ergy constants. The last condition, however, usually can be verified
only a-posteriori. If the errors in x grow with time, then the errors
in x will grow on a higher order, and hence the linear bounding
condition can not be satisfied by any constant c;. Hence to meet
the last condition, it is necessary to make the errors bounded, e.g.,
by designing the input signals such that the resulting state trajec-
tory oscillates around the origin.

Remark 2 (Implication of nonlinear observability condition). In the
case of exact parameterization, the simultaneous state and param-
eter estimation is equivalent to the state observation of the follow-
ing system of augmented states X = (x,6):

X[ _ | fx0) |, |8kx.0)
[«9}‘[ o [T o M (16)
y=h(x,0).
Denoting the corresponding model functions of the augmented
states as (f, g h), we know from nonlinear control theory that the
system (16) is observable if the observability co-distribution

0= span(dLng gjk ‘O <J--Jk<dyl1<i=<dyk< oo)

(17)

is of full rank (where g, = f). It then suffices if a restricted sub-
space of O, which can be denoted as @', where the recursive Lie
derivatives in its definition only contain the Lie derivatives that are
involved in (10):

O = span(dL;h,-, dLgL;"'_lh,» O<r<p,l<iz< dy> (18)

is also of full rank. This full-rank condition is in fact implied by the
second and the fourth assumptions in Proposition 1, which guaran-
tee that the convergence of the state observations and parameter
estimations in (15) can be driven by dS/0x = (9S/0x, dS/06), and
hence 9S/0x is of full rank. Examining the form of S in (14), it can
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be found that (3S/0x%)dx € ©’. Therefore, ©' must be a full-rank co-
distribution.

In general, when there exist structural errors, i.e., there is a
non-vanishing distance between the parameterized and true dy-
namics even when 6 = 6 (for some “good” parameter estimate 6)
and X = x, the asymptotic convergence property is replaced with
ultimate boundedness, if the structural errors are also bounded.
This is stated in the following proposition.

Proposition 2 (Boundedness of errors of the gradient descent
observer-estimator under structural uncertainty). Assume that

. f g h, Lie derivatives and their partial derivatives are bounded
linearly in the nominal parameter errors, state observation errors
plus bounded quantities, i.e., for ¥ = f,g. h Lrh,, Lngl h;, r=
0,1,...,p5 i=1,...,dy, there exists my,, £y, cy >0, such that

1V () —

Q is strongly convex in 0 with a bounded deviation, i.e., 90/06 =
(30/809) +e€g, with (8Q/80)0(0 —6) = |6 — 0|2 for some
u>0and |eqll <cq for some cg > 0;

u, u and g(X) are bounded;

o The errors in state observations are linearly bounded by the errors
in their estimated dynamics and the parameter estimations, ie.,
IR—xl <c1llX— f - 8ull + 216 — Ol +co for some cq, ¢z, ¢ >
0.

YR <myll6 -0 + ey llx — Rl +cy; (19)

Under (15), the errors in state observations and parameter estima-
tions will be ultimately bounded.

Assuming that the trajectory on which state and parameter esti-
mation is performed is informative in the sense that it can be ren-
dered close enough to any point in X x ¢/, and that the sensitivity
of errors to such a distance is limited, the boundedness property
can be generalized from the trajectory to & x U.

Proposition 3 (Boundedness of identification error under the gra-
dient descent observer-estimator). Suppose that the assumptions in
Proposition 2 hold, and assume that

e For some € >0 and a corresponding T > 0, there exists
t1,....tn, >Te and n >0 such that for any (x,u) e X xU,
&) —x, u(t) —ull < n;

. L;h,-(x) - L}h,-(x|9) and
r=0,1,...,p0, i=1
for all § € ©.

Lngjf‘lh,-(x) - LgL}fi_lﬁi(x|é),
..dy are uniformally Lipschitz in x

Then there is an upper bound B(e, n) > 0 such that
I(Af. Ag. AR)|IF, < B(e, ). (20)

The proofs of the 3 propositions in this subsection are provided
in Appendix A.

Remark 3 (Tuning of the matrices. ['; and I';) Under exact pa-
rameterization and the assumptions in Proposition 1, the nominal
convergence is guaranteed for any positive definite I'y and 'y, and
hence using high-gain observers and estimators helps to acceler-
ate the convergence. However, when the assumptions do not hold
globally on X x U/, but rather locally in a neighborhood of zero
errors, arbitrarily large matrices I'y and 'y, may not be allowed.
When the parameterization induces structural errors, from the end
of the proof of Proposition 2 in A.2 we see that the ultimate bound
of errors has a lower bound that is independent of I'; and I,
which implies that the use of high-gain observers and estimators
can not eliminate the intrinsic uncertainties.
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3.3. Effect on input-output linearizing control

Assuming that the characteristic matrix A(x) is nonsingular,
then there exist vector fields ¢, (x), k=1,..., dp =dx— Z;jil p; to
complement the Lie derivatives, satisfying Lgl, =0 (k=1,...,d;),
such that the following nonlinear change of coordinates ® is non-
singular (Isidori, 1995):

£.86)=2x) =[5H(X),...
S LShg, (), . L] - hd @], (21)

84, (0, Ly (), 19 hy (),

and thus an inverse transformation x = ®~1(¢, ) exists. Under the
transformed coordinates, the original system (1) is expressed as

{=2(¢.8)
E0 = &]

EPl = Lhi(x) + LgL?’]hi(x)u

(i=1,....dy) (22)
where Si‘), o Eip"_l correspond to y;, ... ,yf"_l, respectively. In the
zero dynamics, £ can be considered as the inputs to the partial
states ¢. For the input-output linearizing control of system (22), if

the states are accurately known, then the inputs can be specified
as such that the output trajectories are shaped to satisfy

dy pi dry
PIPIN ORI (23)

i=1 r=0

for a dy-dimensional reference signal w, in which B; € R% with
[ﬁml,...,ﬂdypd | being a nonsingular matrix. In other words, the
Yy

control law is designed as

1
u= Z?i] 'BfPiLgl L})iilhi(x)

d
w-30

Z?il ﬂipil‘gdu Lﬁf)ii1 hi (X)]
Lo Biljhi(0)] =t B 'b(x. ).
(24)

With observation and estimation errors, the terms in the ideal
control law above are then replaced with the corresponding ob-
served and estimated terms B(%|d) and b(%|6). This results in
an additional term Aw = B(B+ AB)~'Ab— AB(B+ AB)~'b to the
right-hand side of (23), where AB = B(X|0) — B(x) and Ab is de-
fined analogously. If the outputs and Lie derivatives are subject to
bounded errors, then Aw is bounded by their errors, as long as the
nonsingularity of B(x) is retained. Usually the reference response
should be shaped such that the eigenvalues of the left-hand side of
(23) should be negative in real parts. Hence the errors in outputs
and output derivatives are bounded in terms of Aw and thereafter
in terms of the errors. That is, there exist positive constants Cy

for ¢ =Lih;, r=0,....p; and LgL‘f)"_]hi, i=1,...,dy, such that a
bound on the deviation of & from the reference traJectory (23) can
be written as [|A£|| < Yy, ¢y [l (x) - ¥ (RI6).

Then consider the deviation of the zero dynamics states ¢ from
its reference trajectory. Since the zero dynamics takes & as its in-

put, as long as the incremental zero dynamics

AL =2+ ALE+AE) -Z(8.8) (25)

is input-state stable (ISS), then there exists c;b > 0 such that

IAC] <> c)llv (x) — ¥ R1O)]. (26)
v

The above discussion is summarized as follows.
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Proposition 4 (Performance of input-output linearizing control
under the gradient descent observer-estimator). Suppose that the
assumptions in Proposition 2 hold, and also assume that

o The eigenvalues for the left-hand side of reference trajectory
(23) are all negative in the real part.

e The incremental zero dynamics with A& as inputs and A{ as
states is ISS.

Then the input-output linearizing control based on the observer-
estimator given by (15) gives a trajectory with bounded deviations
from the reference (23).

4. Lie-Sobolev moving horizon estimator
4.1. Formulation

Different from the previous explicit observer-estimator, the Lie-
Sobolev MHE determines the state observation X(t) and parameter
estimation 6 (t) based on the historical measurements in the past
time period of length T, by solving the following dynamic opti-
mization problem about 6 and X(s) for s e [t — T, t]:

t ~ A~
min fpr Q(X(s),0|u(s),y(s))ds+RE({t —T),0) (27)

The objective accounts for the discrepancies between the esti-
mated outputs along with their time derivatives and the measured
values. A regulation term R(X(t — T), ) accounts for the truncation
before the time instant t — T and the allowed range of parame-
ters 6. The non-Lie-Sobolev counterpart takes the same form with
the exception that Q does not involve output derivatives-related
terms (see Eq. (10)). By solving the above problem, the obtained
X(t) and X(t) are the observed states and state derivatives at the
current time t, respectively, and @ is the current estimated parame-
ters 0 (t). Although the practical approximate solution of the prob-
lem requires discretization, here we use the original formulation
for analysis.

Applying variational calculus, one can verify that the optimal
solution of the observation-estimation pair ({%(s)|s [t — T, t]}.0)
should be specified by the following first-order optimality condi-
tions:

d . A N PR ~ oS . ~
0= E;(X(S) — f(R(5)|0) — 8(X(s)|0)u(s)) — ﬁ(xc), 0)
— (X(s) — F(R(5)10) — 8(x(5)0)u(s))"

~ . aAv )

0=R(t—T) - fR(t-T)6)
—g@ -0 -1 - W -1).0)
0=4() - FROID) - 8RO
0= [ 22060.0) + G - FGO)10) - 25 Dus)T

~

0 R ~
8g<x<s>|0)+;uj

%) 2(s)16 Rae-1.0). 2
aé(x(s)|9) ds+aé(x(t ).0). (28)

As the time t flows for an infinitesimal time §t, there will be in-
finitesimal changes in the inputs, outputs and output derivatives
in the time horizon [t —T,t], which are the parameters needed
by the optimization problem (27). This will then result in changes
8%, 8%, 6%, 80 to guarantee that the first-order optimality conditions
still hold. The procedure to find the changes in the optimal solu-
tion originating from changes in the parameters is known as sensi-
tivity analysis (Fiacco, 1983).
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Specifically, under appropriate regularity assumptions, the vari-
ation of the first equation in (28) can be expressed as

80 = ({8%(s). 8%(s). 8u(s), 8Y (s)|s e [t — T.t]}) (29)

for some linear functional 7, and the variation of the third equa-
tion is

53(t) = o(&?(t), 80, su(r), 8Y(t)> (30)

for some linear functional o, in which Y(s) is the collection of
ylfr) (s) forr=0,1,..., p;, i=1,...,dy. The variations in the states
and their derivatives during the horizon are determined by the
variations of the fourth equation of (28) as second-order ODEs,
and the variations of the second and third equations of (28) as
two boundary conditions. This results in 6%(s) and 6%(s) as linear
functionals of {Su(s),8Y(s)|s € [t — T, t]} depending on the current
solution. Therefore we can rewrite the above two formulas as

80 = 7 ({R(5). R(5), u(s). Y (). 8u(s). 8Y (s)|s € [t — T.1]}),
53(t) = 0(2(t),§,u(s),Y(s),8u(t),8Y(t)>, (31)

with functionals 7 apd o linear in du(s) and 8Y(s). Since Su(s) =
(s)ét and 8Y (s) = Y(s)dt, we finally have

0 = 7 ({£(5). 2(5), u(s), Y (5), u(s), Y(5)Is e [t — T, ¢1}), )

() o()?(t),é,u(s),Y(s),ll(t),Y(t)).
This indicates that the MHE is an implicit dynamic system of an
observer-estimator.?

4.2. Convergence properties

Due to the implicitness of MHE, the convergence properties
need to be considered in a roundabout way. The key idea is to es-
tablish the conditions under which the objective function of (27) is
a Lyapunov function, and the descent or boundedness of such a
Lyapunov function implies convergence or boundedness of the dis-
tance to nominal parameters and true states. Such properties have
been well studied in the literature (Rao et al., 2003; Ji et al., 2015;
Miiller, 2017). Here we rephrase the conditions for the convergence
of MHE for state observation given in (Miiller, 2017, Theorem 14).
Compared to the original theorem, we simply augment the out-
puts with their derivatives, augment the states with time-invariant
model parameters, and reformulate the conditions in continuous
time.

Definition 4. A function « is said to belong to class K if it is
defined on [0, +00), strictly increasing, and such that «(0) = 0 and
a(r) - oo as r — oo. A function S : [0, +00) x [0, +00) — [0, +o0]
is said to belong to class K. if it is strictly increasing in the first
variable with B(0,s) =0 for any s, and decreasing in the second
variable with B(r,s) — 0 as s — +oo.

Proposition 5 of Lie-Sobolev
MHE). Assume that

(Convergence  properties

2 In many works on MHE (e.g., Kiihl et al. (2011)), the consistency with the
identified dynamic model is imposed as a hard constraint, which is the case with
W’ — 0. Bounds for ® and § can also be imposed. Under such formulations, the
above analysis of variations and sensitivities can be extended by incorporating the
flow of the Lagrangian multipliers of equality constraints, known as co-states A(s),
s e[t —T,t]. Optimality conditions can be derived in a similar appearance to the
equations in the Pontryagin maximum principle.
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o The system represented as the estimation model under nominal
parameter values 6 with structural errors w, v:

x=f(x|0) + 8x|0)u+w

o _ L}fl,-(x|«9)+v{,r:0,1,...,p,~—l (33)

P L}”ﬁi(x|6’)+L§L)€‘fli(x|9)u+v{’f,r=pi

is incrementally input-to-state stable (ISS) and output-to-state sta-
ble (0SS). That is, there exists a K£-class function B and two K-
class functions ay and «y, such that if the two systems (33) starts
at time 0 from two different states x(0) and x'(0), then at any
time t, their states x(t) and x'(t) have a distance bounded by

() =% ©)] < BX(O) ~ X (O], 1) (30

+aw ([lw — W ljo) + o ([[V — V|l [0,e)-

The function B satisfies B(r,s) < cgrPrs=Ps for some cg > 0, pr >
1, and ps > 0. The functions a,, and oy, satisfy oy (r) < cyriw and
oy (r) < cyrdv, respectively, for some cw, ¢y, Qw, Qv > O.

The regulation term R(&, @) is restricted by

R(E—T) =R (t—T)
0 — 6+

q

R 0) e ‘ [mg, Mg], (35)

where <{2*(s)|se[t—T,t]},é) is the optimal solution

to (27), Mgp=z=mg>0, and max(1/qw,1/qy,2pr/ps) <q <
2/ max(qw, qu).

The initial observation-estimation error and structural errors are
bounded.

Then the observation-estimation errors of the MHE (27) remain
bounded. Furthermore in the absence of structural error in the model,
X(t)—x(t)—0,0()—6—0.

4.3. Effect on nonlinear MPC

The nonlinear MPC of the system (1) is such a control strategy
where at each time instant ¢, the control signal u(t) is determined
by solving the following optimization problem

min [ ¢(%(s), Ti(s))ds + £c(R(t + T))
S.LX(S) = f(R(5)) + &R (5))iA(5), s € [t, t +T], (36)
R(t) = x(t)

and extracting the first piece of the input signal ii(s) in the re-
ceding horizon [t,t + T] (the horizon length T may be different
from the one in MHE). The functions ¢ and ¢; are called stage
cost and terminal cost, respectively. For simplicity we consider the
case without process constraints. The stability conditions for non-
linear MPC have been well established in the literature, where
the objective function of (36), denoted as V, is considered as a
control-Lyapunov function. Specifically, if there exists a control pol-
icy u =« (x) such that

% (fx) + 2Kk (x)) < —£(x, k(X)) (37)

then the asymptotic stability towards the origin follows from
the descent property V(t) < —¢(x(t), u(t)) under appropriate as-
sumptions on the choice of the relevant functions (Mayne and
Falugi, 2019).

When the model and the states are not precisely known,
(f(-).g()) in (36) should be replaced by (f(-|9),&(-|9), and x(t)
should be replaced by the observed state %(t). The effect of the
accuracy of Lie derivatives on the solution of the MPC problem is
implicit. First, the predicted states are related to the predicted out-
puts, output derivatives and states of the zero dynamics through
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the nonlinear transformation (21): &= ®~! (f, §), which trans-
forms the MPC problem into the following form:

min (). E(s).(s))ds + ee(E(E+T).E(E +T))

SLE(S) =Z(¢(s).5(5)). s €[t.t+T]

Ei(s)=E1(s).r=0,--  pj—2,5€[t,t+T] (38)

Api—1

i (9) = L(R(9)) + Lel? " hy(R(s))il(s). s € [t. £ +T]

X(t) = x(t)
where the Lie derivatives appear in the prediction of the trans-
formed state trajectories. Alternatively, if only the outputs are ac-

counted for in the objective function, one may use Chen-Fliess se-
ries expansion to express the outputs (Isidori, 1995, Section 3.2):

Yi(s) = hi(x(t))

[ee) dy S
£ Y Ly Ly h©) [ dxdi,(39)

k=0 jo,....jx=0
where
g = /. XOS(S) =s
Xxi(8) = [fuj(sHds’, j=1,....dy, (40)

fts dek e deo = fts dek () ftsr dek—l .- 'deo'

Again in (39) we see the presence of Lie derivatives.

We formalize the impact of the observation-estimation errors
on the MPC performance by considering its perturbation on the
stability conditions (37) and hence on the Lyapunov descent. The
coordinate-transformed MPC formulation is used, with the dy-
namics abbreviated as (£,&) = Ag(¢, &) + A(S, E)u. Suppose that
there exists a control policy u =k (¢, §) such that

(Z? g@mo(g,g) + AL E(E,E)) < 00, E,Kk(L,E)).
(41)

When the information of Ay and A is erroneous, the right-hand
side above needs to be added with a term to bound such errors.
We may assume that structural errors are linearly bounded by
|6 — 6| plus a positive constant. Then the change in the Lyapunov
function becomes

V(t) < —€R(t),u(t)) +colld - 0] +co (42)

for some ¢y, cg > 0. Then, as long as the X(t) entry in the ¢ term
above can be replaced by x(t) with an additional term linear in
the observation error ||x(t) — X(t)||, and the observation-estimation
errors are ultimately bounded, it follows that

V(t) < —e(x(t), u(t)) + € (43)

for some € > 0, which implies the ultimate boundedness of the
states in the closed-loop system (Mayne and Falugi, 2019). The
conditions are summarized in the following proposition.

Proposition 6 (Performance of MPC under the Lie-Sobolev
MHE). Assume that

o the state observation and parameter estimation errors (x — X, 6 —
) are ultimately bounded, e.g., under the conditions of Proposi-
tion 5;

o the stage cost [¢(x) — €(X)| < cx|lx — X|| for some cx > 0O;

o the structural errors in the transformed dynamics (22) are
bounded by ¢y (|0 — 6|| + co for some ¢y, cg > 0;

o there exist K -class functions o and oy such that £;(x) < o(x)
and ¢(x,u) > a(x).

Then ||x|| is ultimately bounded.
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Fig. 1. Observed states and estimated parameters for (44) under the Lie-Sobolev (red) and non-Lie-Sobolev (blue) approaches compared to the true values (black). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5. Applications

We apply the proposed Lie-Sobolev state and parameter esti-
mation approaches to several examples. First, we use the explicit
observer-estimator proposed in Section 3 on two numerical exam-
ples, one with exact parameterization, and the other with struc-
tural error in the parameterized model. Then we apply the Lie-
Sobolev MHE in Section 4 to a complex chemical reactor sys-
tem. Through these case studies, improved convergence of the es-
timated parameters, smaller structural errors, and better perfor-
mance of the resulting nonlinear control can be seen in the Lie-
Sobolev approaches compared to the non-Lie-Sobolev ones.

5.1. Example without structural errors

Consider the following system (Isidori, 1995, Example 4.1.5):

91X1X2 —X? 0

X = X1 + 92(]—1—)(3) . Y =2X4 (44)
—X3 1
93)(% + X2 0

with true parameter values 6; =1, 6, = 2 and 03 = 1. By choosing
the control input as a proportional feedback from the output, the
resulting state trajectories appear to be oscillatory around the ori-
gin for a considerable time span, and hence this is considered as a
suitable condition to perform system identification.

For the Lie-Sobolev approach, the weight constants w°, w!,
w2 are all set as 1. For the non-Lie-Sobolev one, w! and w?
become 0. The tunable semidefinite matrices in the observer-
estimator are empirically determined as I'; = diag(5,2,2,1), 'y =
diag(1, 5, 1.5), under which the observed states and estimated pa-
rameters of the Lie-Sobolev approach converge to the true val-
ues.> The trajectories of (%.0) during a simulation time span of
T =30 are shown in Fig. 1. For non-Lie-Sobolev observation and
estimation, the lack of convergence to the nominal values does not
appear to be improved by choosing different tunings of I'; and
I';. The reason for this limitation of the non-Lie-Sobolev approach
is that when the output derivatives are not explicitly considered,

3 The initial state for simulation x(0) is chosen according to a uniform dis-
tribution in the hypercube [-0.5,0.5]*. The initialized observation error for x,
%(0) —x(0) is randomized in [—0.25, 0.25]*, and for X, )?(0) —x(0) is randomized in
[-0.252,0.252] x [-0.25, 0.25]3. The initial guess for the parameters, §(0), is ran-
domly chosen in [0.5,1.5] x [1.5,2.5] x [0.5, 1.5].

the objective function can be insensitive to some of the parame-
ters. After a short incipient time, the trajectories of the observed
states become consistent with the estimated parameters that devi-
ate from the true values. Afterwards, the updates on the estimated
parameters are driven only by the difference between the output
y and the observed %4, which results in changes significant only in
0s.

5.2. Example with structural errors

Consider the following system (Isidori, 1995, Example 4.1.4):

—X1 ¢ (x2)
X=|x1x | + 1 U,y ==x3 (45)
X2 0

where ¢(x,) = exp(xy) unknown a priori and parametrized as
D (x2]0) = O + 01%5 + %sz%. A nominal estimation according to
the Maclaurin series would be 6y =1, 6; =1, 6, = 1. The tuning
of the observer-estimator (15) is determined as I'c =1, and 'y =
diag(4, 1, 10). The resulting trajectories* within T = 20 are shown
in Fig. 2, where one can observe that the Lie-Sobolev approach re-
sults in apparently smaller state observation errors, while under
the non-Lie-Sobolev estimation, the state observation error does
not appear to vanish. To quantify the performance of parameter es-
timation, we may calculate the integrated errors on the identified
function ¢: foT(cp(x(t)) — @ (R()|0(t)))2dt, which equals 0.7131 for
Lie-Sobolev estimation and 7.0140 for non-Lie-Sobolev estimation.
This result confirms the advantage of using Lie-Sobolev estimation
in the presence of structural errors.

A non-trivial problem involved in the Lie-Sobolev approach is
how to numerically find the derivatives of y; up to order p; at
any time instant t > 0. Generally, numerical derivatives will result
in noise inevitably, and typically higher-order derivatives will be
noisier than lower-order ones. If the assumptions in the proposi-
tions presented earlier still hold, then the theoretical convergence
properties can be established. Here we use a sliding-mode differ-
entiator proposed by (Levant, 2003), which was found to result in
smaller noises compared to several other classical differentiators
in numerical studies (Listmann and Zhao, 2013). The sliding mode

4 The initial guess of parameters are chosen under a uniform distribution in
[0.5,1.5]%. The initial state is chosen randomly in [-0.5,0.5]?, and the initial guess
of states and state derivatives are perturbed from their true values respectively by
[-0.5,0.53.
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Fig. 2. Observed states and estimated parameters for (45) under Lie-Sobolev (red)
and ordinary (blue) identification, respectively. The solid curves and dashed lines in
black are true states and nominal parameter values, respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 3. Observed states and estimated parameters for (45) under the Lie-Sobolev
approach with exact output derivatives (red solid) and sliding mode numerical dif-
ferentiation (red dash). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

differentiator is written as

1 ni
-0 0., 7+ 1,0 T o 0 1
Z; = =My, |z —yil 7T sign(z) - yi) + z;

1

pi=T
# =My g - 2 e sign(e — 21 + 20t

(r: 1,...,p,'—])

2= —Alysign(z —207) (46)

where the parameters are recommended as k? =12, )Lil =8, )‘;‘2 =
5, with y; being a tunable Lipschitz estimate of the y; signal. z[ is

thus an estimate of yi(r). For faster ODE solution, we approximate
sign(-) with tanh(./0.01).

Assuming an initial deviation of z from (y,y,j) randomized
according to a uniform distribution in [0.5,0.5]3, under the Lev-
ant sliding mode differentiator (y = 1), the trajectories of the ob-
served states and estimated parameters are shown in Fig. 3. It is
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observed that the trajectories under the sliding mode differentia-
tor are asymptotically close to the trajectories with exact output
derivatives. The integrated errors for the numerical differentiation-
based estimation is 0.8993, 26.1% larger than the exact case. It is
thus concluded that due to the capability of sliding mode differ-
entiator to give accurate estimations of output derivatives, the per-
formance of numerical differentiation-based Lie-Sobolev state and
parameter estimation remains satisfactory.

Remark 4 (Filtering differentiation of noisy signals). Practically,
the output measurements usually contain noise. Signal preprocess-
ing and filtering techniques need to be applied in this case. For ex-
ample, in the Laplace domain, the differentation operator s can be
modified as s/(1 + As) with a time constant A > 0 which should be
much larger than that of the noise dynamics while much shorter
than the dynamics of the differentiated signal.

5.3. A glycerol etherification reactor

We consider a glycerol etherification reactor (Liu et al., 2016)
with 6 states, 1 input and 1 output, and a relative degree of 1. The
true dynamics involving the thermodynamics of non-ideal mix-
tures is approximated by a 6-parameter ideal mixture model. It is
desirable to handle such structural errors with Lie-Sobolev estima-
tion, in which the time derivative of the output accounts for the
sensitivity of reaction rates on component concentrations. A de-
tailed description of the system is given in Appendix B.

For the estimation, a sinusoidal excitation is imposed on the in-
put F; with an amplitude of 50 kmol/h and a period of 1 h. The
output derivatives are obtained by Levant’s sliding mode differen-
tiator (46). The horizon length for MHE is set as 1.5 h. The trajecto-
ries of observed states, estimated parameters, and the correspond-
ingly inferred outputs and output derivatives of the Lie-Sobolev
and non-Lie-Sobolev MHEs® are compared to the actual states and
nominal parameters in Fig. 4. It is observed that due to the struc-
tural error in the parametric model assuming ideal liquid mixture,
the observed states and estimated parameters inevitably have de-
viations from the true values of states and nominal kinetic param-
eters. By using the Lie-Sobolev MHE, the observation and estima-
tion result in significantly smaller deviations in the output deriva-
tive. Comparing the trajectories of the Lie-Sobolev MHE to those
of the non-Lie-Sobolev MHE, we note that the different decisions
made by the two identification schemes include primarily the es-
timation of 63 and secondarily the estimation of 65, namely the
pre-exponential factors of the two main reactions occurring in the
system - the reactions of IB with DE (with a molar fraction of
about 0.1045) and with ME (with a molar fraction of approximately
0.0436).

To examine the impact of Lie-Sobolev MHE on nonlinear con-
trol, MPC simulations are then performed based on the identified
model starting from initial points randomly sampled around the
steady state within the state bounds of the MHEs. The MPC is ac-
tivated after one MHE horizon is passed, before which the con-
trol signal is fixed at zero. The prediction horizon length and the
discretization scheme is the same as those of MHE, and the sam-
pling time is 0.1 h, during which the control input is held con-
stant. Fig. 5 shows the closed-loop trajectories of inputs and states
using MPC based on MHE as the state observer and the models

5 The MHE is discretized by 30 finite elements. The weights for output
and output derivative are 102 and 1, respectively. The MHEs are coded us-
ing the pyomo.dae module (Nicholson et al, 2018) in Python 3.6 in Ana-
conda 3 with IPOPT 3.11.1 as the solver. The computational performance is im-
proved by providing a lower bound (-5,-5,1,1,5,1) and an upper bound
(-0.5,-1,10, 10, 15, 5) on the parameters. The observed states are bounded within
a proportion of (0.1,0.025,0.1,0.1,0.1,0.1) of their respective steady-state values,
and the quadratic inverse of these bounds are used as the weights of the states.
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Fig. 4. Observed states and estimated parameters for the glycerol etherification reactor under Lie-Sobolev (red dotted) and ordinary (blue dotted) MHE, respectively. The
solid curves and dashed lines in black are true states and nominal parameter values, respectively. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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Fig. 5. Closed-loop trajectories of MHE-MPC based on Lie-Sobolev (red) and non-Lie-Sobolev estimation (blue)

compared to the steady state (black). (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of this article.)

determined by the Lie-Sobolev and non-Lie-Sobolev identification.
Clearly, the model predictive controller using the Lie-Sobolev es-
timated model parameters and Lie-Sobolev MHE better stabilizes
the process near the steady state in the presence of structural er-
rors, while the non-Lie-Sobolev controller steers the molar frac-
tions away from the steady state. In other words, nonlinear system
identification using the Lie-Sobolev MHE results in improved MPC
control performance.

It should be noted, however, that the incorporation of Lie
derivative terms significantly increases the computational difficulty
of solving the MHE problem. The total computational time for MHE
in the above MPC simulation is 372.3 and 116.4 seconds with Lie-
Sobolev and non-Lie-Sobolev state observation, respectively. Solver
failures are also more frequently encountered.

6. Conclusions

In this paper we have proposed that for nonlinear control, it
is desirable to perform state and parameter estimation following a
Lie-Sobolev procedure, where the state observations and parameter
estimates aim to match not only the predicted outputs but also the
output time derivatives to the measurements. We have discussed
the Lie-Sobolev formulations and their convergence properties for
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explicit gradient descent-based and implicit moving horizon-based
estimation schemes. Their effects on input-output linearizing con-
trol and MPC have also been discussed, respectively. The improved
performance of Lie-Sobolev state and parameter estimation was
demonstrated by two numerical examples and a case study on a
glycerol etherification reactor.

We note that classical observer and estimator designs tend to
avoid using time derivatives of output variables due to the view
that the derivative estimates are usually inaccurate with noisy out-
put signals. On the other hand, as shown in this work, Lie-Sobolev
schemes that exploit derivative information can play a significant
role in improving the identification and control performance, as-
suming that the outputs are accurately measured and appropriate
numerical differentiators are used. How these two aspects can be
reconciled towards better practice in a general setting remains an
open question.
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Appendix A. Proofs of Propositions 1-3
Al. Proof of Proposition 1

The design of the gradient descent-based observer-estimator re-
sults in the time derivative of Q equal to

2

. LA 2 0Q
0=-[#-7-¢ —‘A
J-a Lo |30 |1,
3s 3S . I 2 3s
9o 2 & vo . (r+1)
+8>?(f+gu)+8uu+l§;ayl@y’ . (A1)

The first two terms are negative whenever R(t) = f()?(t)|§(t)) +
g0 (t))u(t) and 0Q/06 =0 are not satisfied, i.e., when there
exist state observer errors and the parameter estimates are not at
their temporal stationary values, respectively. The remaining three
terms are not manipulable by the construction of o and 7, in
which the first term is the change of S resulted from the flow of
the state observations, and the other two terms are resulted from
the exogenous changes in the input and output and output deriva-
tive signals, respectively. For convergence, these non-manipulable
terms should be small enough compared to the negative definite
terms.

By finding the partial derivatives of S and substituting them
into (A.1), after simplifications we have

2

a=-[t-f-al —‘89

Ty 00 |lr,
+ i: { p;: W{A(L}hi)[A<agi(hi> (f +au) + %(AJ‘ + Agu)]
+ W[ AW + ALy hu] [A(agihi + ang});lhi u) (f +gu)
N (8La;’;hi . aLg?’;‘1hiu> (Af + Agu) + A(LgL;’f%i)u]}. (A2)

where A denotes the differences between the true dynamics eval-
uated at true states x(t) and the estimated dynamics at observed
states X(t). Under the assumptions of Proposition 1, there exist
constants ¢y, ¢y > 0 such that

Q= —collR—f—gull* —cx 10 - 012, (A.3)

and hence the criterion Q(t) becomes a Lyapunov function. Ast —
oo, we have X(t) — f(X(t)|0(t)) — &&X()|0(t))u(t) — 0 and O(t) —
6 — 0, and therefore %(t) — x(t) — O.

A2. Proof of Proposition 2

Under the first two assumptions, we may specify constants
Mj1, Mq3, My, Mg > 0 such that

1
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2

: i 7 A ad S P a4
QS—IIX—f—gullzrg—”<9> +eg|  +Mullx—f—gul?
90 /g r,

+2Mi IR = f = 8ulll0 - 01 + M2 |0 — 61| + Mo,

(A4)

where the second term on the right hand side is further bounded
by —iAmin(Tx)I0 — 0% + 2cqAmax(I'7)(0Q/360), where 3Q/00
can be bounded linearly with mq, £y, ¢ > 0 as in the first assump-
tion. It follows that

. Coa 2 .
0= —Mz(x—f—gu\ +u||9—9||2)
. , 12 (A5)
+M1( - f - +u||9—9||2) + M,
where
M; = 2¢qhmax(Tx) (£ + G¢) max(tq, mq),
My = min (Amin(Co) — My = Y2, i (Tz) — Mz — ¥2).
(A.6)
Therefore Q is guaranteed to decrease unless
5o |2 ~ M; + (M? + 4MoM) 172\ *
i fogu ooy < (MR Y
2M,
(A7)

When this inequality is satisfied, according to the first assumption,
there will be a corresponding upper bound Qmax > 0 of Q. In other
words, whenever Q > Qmax, Q <0, implying that Q is ultimately
bounded, and hence the errors are ultimately bounded. Thus we
have proved the proposition. We note that the right-hand side ex-
pression above is always lower-bounded by a constant:

M /M3 > cq(£q + Mg/ ) max(€q, Mq). (A.8)

A3. Proof of Proposition 3

Having assumed the Lipschitz continuity of f,g h and Lie
derivatives, we can claim that the difference between the esti-
mated model and the true dynamics and their Lie derivatives will
be ultimately bounded. That is, 3B > 0, Ve > 0, 3T > 0 such that
vVt > Te,

1f(x(0) ~ F®I() +gxO)u(t) - 2O ©)u(®)])”
+ 30 [ S WL ) — L (x(©) 16 0)
+W] LY Ry (x(6)) = L2 Ry (x(O)10 () + L™ hi (x(e) u(e)
Ll B xOI©)u©)?] =B+ e.
(A.9)

Under the assumptions of Propositions 2 and 3, replacing the x(t)
and u(t) with any x e X and u € &/ leads to an increase linearly
bounded by n on the right-hand side of the above formula. That
is, Vxe X, Yu e U,

£ () = F(x10) + g(x)u — §RIO)ul|?

+i [ Wit ~ o))

+wO (L7 h; (x) — L;Zfﬁ,-(xw)

Ll you - LgAL’}f"*lfli(x|9)u||2] < B(e.n).

(A10)

Thus proving the proposition.
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Table B1
Parameters related to the reaction kinetics.
Eq 21.3 kJ/mol k3 2.56 x 10% kmol/(h - mol H)
E, 39.1 kJ/mol ks 1.14 x 105 kmol/(h - mol H)
E3 25.6 kJ/mol ks 7.52 x 10 kmol/(h - mol H)
E4 39.9 kJ/mol k; 5.59 x 10° kmol/(h - mol H)
AH,  —494kJjmol AS, —119.1 J/(mol - K)
AH, —60Kkj/mol  AS, —36.9]/(mol-K)
AH;  —271KkJ/mol  AS;  —89.8 J/(mol-K)
AHy  -76Kmol Ky 251 x10!
AHp  —123Kkjjmol K, 224 x 10~
wy 92 kg/mol p1 1261 kg/m?
wy 56 kg/mol 02 588 kg/m3
w3 148 kg/mol 03 1015 kg/m3
Wy 204 kg/mol P4 920 kg/m?
Ws 260 kg/mol ps 880 kg/m?3
We 112 kg/mol D6 718 kg/m3
wy 18 kg/mol 07 1000 kg/m?
Peat 60 kg/m? q 4.7 mol H/kg

Appendix B. Dynamics of the etherification reactor

In the glycerol etherification process, glycerol reacts with
isobutene to yield mono-, di-, and tri-tert-butyl ethers of glycerol
with a side dimerization reaction of isobutene:

G + IB <=> ME, ME + IB <=> DE,

DE + IB <=> TE, 2 IB — > DIB.

Apart from these components, water (W) exists in the system as
the solvent. The stoichiometric constants v;; of the 7 species (1=G,
2=IB, 3=ME, 4=DE, 5=TE, 6=DIB, 7=W, subscripted by i) in the 4
reactions (subscripted by j) are given as

vi=—-1Lvy=-Lvy=1Lvn=-1vyp=-1,

vp=1v3=-1v3=-1v53=1,vp=-2,

ve4 = 1, other v;; = 0.

(B.1)

The rates of the 4 reactions, in terms of total extent per unit time

per mole of active catalytic site (kmol - h™!. (mol H)‘1), are
o ki(aia; — as/Keq) . ka(a202 — as/Ke2)
' 0+ Kaa +Kpm)?' T T+ Kaar + Koay
ks(aza? — as /K. kqa?
ry = 3(02a5 — a5 /Ke3) o 405 (B.2)

1+ Kna + Kpay’ (1 + Ka1a1 + Kp202)?’

where k and K. stands for the rate constants, related to pre-
exponential factors and activation energies, and equilibrium con-
stants, related to the enthalpy and entropy changes, respectively.
The adsorption equilibrium constants K, follow similar rules:

k; = k° exp(—E;/RT), Kej = exp(—AH;/RT + AS/R),

Ky = KO exp(—AH,;/RT). (B3)
The reaction rate for each species is therefore
R,‘ = Zj-‘:1 vijerpcatq, V= MZJ 1 WJXJ . (B4)

with ¢ being the quantity of active sites in moles per mass of cat-
alyst, pcar the density of catalyst, and V the volume of reacting lig-
uid linked to the total molar holdup M and molar fractions x; by
densities p; and molar weights w;. The true values of these con-
stants are listed in Table B.1. We assume that the thermodynamic
constants Ej, AH;, AS;, AH,; are known exactly, while the pre-
exponential factors k;’. (j=1,2,3,4) for the reaction rates and K,
(i =1, 2) for adsorption equilibria are to be estimated.

For the activity of the chemical species in the multicomponent
liquid mixture, the NRTL model is used:

ViXi,
ajiA A
z]xm exp( #) x]exp( ”71'1)
kakexp( xkArk)

= e ()

a;

Iny;

12

Computers and Chemical Engineering 151 (2021) 107369

Table B2
Parameters in the NRTL model.
Ay 6000.6295 Axn 7790.3843 o2 0.2
Az 5093.9878 A3 —261.0596 o3 0.2
A 15394.2024 Ay 3470.2636 g 0.2
Ass 18947.6060  As; 9748.1650 o5 0.2
A 10108.9095  Ag 16721.0340  «aq6 0.2
A —2280.9459 Ap 2145.9265 o7 1.011
Ay 10225.3886 Az —2579.3354 3 0.2
Ay —3867.1740 Ay —6172.8956  ay4 0.2
Ass —3867.1740  As; —6172.8956 x5 0.2
Agg —735.1239 Asy  472.8172 azs 0329
Ay7 11654.4821 A7 11799.1457  «ay 0.255
Asg —4605.9560  Ass 8587.5306 o3s 0.2
Ass 7737.8398 Ass —1327.7458  ass 0.2
Ass  2163.8848 Ag3 10377.8670  «a3s  0.275
As7 —3457.2938 Az 13410.9808 a3 0.392
Ass  9937.7242 Asy —3728.8290  aus 0.2
Ag —1867.1581 Ass  8318.6558 ogs 0286
Agy —168.9405 A7y 20784.1686 oy 0.345
Asg —3141.0292 Ags 6209.7266 ose  0.398
Asy —386.1022 Azs 207849169  wsy 0.202
Ag7 9981.2064 Az 20784.9169 oy 0.2
Table B3
Parameters and steady states in the reactor dynamics.
X1 0.0035 X2 0.7267 X3 0.0436
X4 0.1045 Xs 0.0156  xg 0.0887
X1.1 0.0000 Xx12 09198  x;3  0.0000
X14  0.0000 X15 0.0000 x5 0.0584
X1 0.0000 X2 09731 x5  0.0000
X24  0.0000 X35 0.0000 x5 0.0192
X3.1 0.7674 X3 0.0000 X33 0.2294
X34  0.0001 X35  0.0000 x365  0.0000
R 185.4900 F 1.7267 B 40.1762
>k XAy €Xp ’”A“
Aij k *kkj .
x| 24— ,i=1,...,7.  (B5)

RS meenn (4

The parameters in the NRTL model is listed in Table B.2. For i =
1,....7,A;=0and ¢;; =0. For i, j =1, ..., 7, ojj = ;. We assume
that the NRTL model is unknown, and in the identification the
mixture is considered ideal, ie., y; =1, Vi.

For simplicity we consider an isothermal reactor with constant
temperature T =353 K and constant molar holdup M. The inlet
stream to the reactor is mixed by 4 streams, in which one is the
fresh feed of pure isobutene, whose molar flow rate is considered
as the manipulated input. The flow rates and compositions of other
3 streams to the reactor are fixed. The molar flow rate of the outlet
stream is adjusted accordingly to keep the molar holdup constant.
Hence the dynamic model has 6 states standing for the molar frac-
tions of the previous 6 components (with the 7th one dependent).
Let the controlled output be the total reaction rate R= 3"/, R;,
namely the difference between the molar flow rates of the inlet
stream and the outlet, which are assumed measurable. Hence the
model is

. F0+u
Xi = (XOI Xt) + Z (Xll — X

1=1

R; (X)

(B.6)

Under the nominal input u =0, the steady states along with the
parameters are given in Table B.3. The approximate model is the
one with R; in the above accurate model substituted with an ideal
mixture (with all ¥, =1) and kinetic coefficients kg/104, k5/103,
kg /103, k37103, Ky1, Ky2/1074 (scaled by orders of magnitudes that
are assumed to be known) left as 5 unknown parameters, repre-
sented as R(x|).
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