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a b s t r a c t 

The implementation of nonlinear control depends on the accuracy of the system model, which, however, 

is often restricted by parametric and structural uncertainty in the underlying dynamics. In this paper, we 

propose methods of estimating parameters and states that aim at matching the identified model and the 

true dynamics not only in the direct output measurements, i.e., in an L 2 -sense, but also in the higher- 

order time derivatives of the output signals, i.e., in a Sobolev sense. A Lie-Sobolev gradient descent-based 

observer-estimator and a Lie-Sobolev moving horizon estimator (MHE) are formulated, and their con- 

vergence properties and effects on input–output linearizing control and model predictive control (MPC) 

respectively are studied. Advantages of Lie-Sobolev state and parameter estimation in nonlinear processes 

are demonstrated by numerical examples and a reactor with complex dynamics. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The development of nonlinear control methods has been one 

f the most important topics in process control due to the in- 

rinsic nonlinearity of process systems. Examples include input–

utput linearization ( Isidori, 1995 ), which uses state feedback to 

ancel out the nonlinearity and shape the output response, and 

odel predictive control (MPC) ( Rawlings et al., 2017 ), which gen- 

rates control signals by optimizing a cost associated with the pre- 

icted trajectory. It is self-evident that the successful application 

f these nonlinear model-based control methods is intrinsically de- 

endent on high-quality dynamic models. Process systems may be 

epresented as white-box first-principles models, black-box mod- 

ls of completely unknown dynamics, or grey-box models in be- 

ween ( Sjöberg et al., 1995 ). Whenever a perfect white-box model 

s unavailable, the unknown parts of the underlying dynamics must 

e inferred through system identification , which is typically per- 

ormed off-line, although on-line approaches such as adaptive con- 

rol ( Farrell and Polycarpou, 2006 ) or dual control ( Filatov and Un-

ehauen, 2004 ) have also been proposed.In this paper, we focus on 

he off-line system identification problem, where perturbations are 

mposed on the system to generate data for identification and the 

ontroller is designed after the model is identified. 
∗ Corresponding author. 

E-mail address: daout001@umn.edu (P. Daoutidis). 
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The specific formulations and procedures of system identifica- 

ion vary with the context. In general, system identification may 

efer to any regression or data-driven characterization of the un- 

nown parts in dynamic models, e.g., state-space models, trans- 

er function models, and autoregressive models ( Schoukens and 

jung, 2019 ). A wide spectrum of approaches have been developed 

n this sense in the process control literature ( Doyle III et al., 1995;

hu, 1998; Favoreel et al., 20 0 0; Simkoff and Baldea, 2019 ). In a

roader sense, the identification can be performed in a model- 

ree manner only to learn useful control-relevant information from 

ata, such as optimal value/policy functions or dissipativity param- 

ters ( Tang and Daoutidis, 2018; 2019; 2021 ). The characterization 

f the unknown model structure along with the identification pro- 

edure can be categorized as parametric ( Ljung, 1999 ) or nonpara- 

etric ( Greblicki and Pawlak, 2008 ). 

For nonlinear chemical processes, the aim of system identifica- 

ion is typically to estimate the unknown parameters, usually phys- 

cal and chemical properties, in models of certain a-priori struc- 

ures derived from first principles or approximations ( Englezos and 

alogerakis, 20 0 0; Zavala and Biegler, 20 06 ). Also, for chemical 

rocesses there usually exist states that are not directly measurable 

nd hence the parameter estimation needs to be combined with 

he simultaneous state observation, i.e., both dynamic states and 

odel parameters should be estimated. Therefore, in this paper, 

e use the parametric formulation and consider system identifica- 

ion as the problem of designing such an observer-estimator . If the 

rocess dynamics can be represented by a parametric model with- 

ut structural errors, the aim of such an observer-estimator (also 

https://doi.org/10.1016/j.compchemeng.2021.107369
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2021.107369&domain=pdf
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nown as adaptive observer in this context) design is to achieve 

oth state and parameter convergence to the true values; other- 

ise, it is desirable that the identification results in only small de- 

iations and the resulting control performance is not severely de- 

eriorated (see, e.g., Marino et al., 2001; Liu, 2009; Zhang and Xu, 

015 ). 

State observer design for dynamic systems is a classical prob- 

em in process control ( Soroush, 1998; Dochain, 2003; Kravaris 

t al., 2013 ), which can be extended to combined observer- 

stimator design by viewing parameters as invariant states. The 

ost common approach for nonlinear systems is to modify the 

alman filter for linear systems into an extended or unscented 

ne (EKF, UKF) ( Simon, 2006 ). For systems of specific structure, 

tate observers can be designed through backstepping ( Krsti ́c et al., 

995 ) or based on the semilinear form obtained through input–

utput linearization ( Farza et al., 2009; Tyukin et al., 2013 ). The 

atter approaches essentially employ high-gain output feedback 

nd have led to elegant conditions under which the output- 

eedback control with state observer achieves desired perfor- 

ance ( Khalil and Praly, 2014 ). As a generic result, Kazantzis and 

ravaris (1998) proposed a nonlinear observer with assignable er- 

or dynamics based on the solution of partial differential equa- 

ions, whose theoretical existence was established ( Andrieu and 

raly, 2006 ) but whose solution is hindered by computational con- 

iderations. In a different vein, implicit schemes based on nonlin- 

ar optimization, such as maximum likelihood estimation (MLE) 

 Schön et al., 2011 ) and especially moving horizon estimation 

MHE) ( Rao et al., 2003 ), have gained increasing applications. It 

hould be noted that for generic nonlinear systems, a separation 

rinciple, either for state observer or for observer-estimator de- 

ign, is lacking. In the present work, we will consider observer- 

stimators in a gradient descent and MHE form. 

A key motivation for this work is the need for a control-oriented 

pproach for nonlinear system identification. It is well known that 

ny identified model is an approximation of the actual dynam- 

cs, and for a model used for the purpose of process control, 

he quality of system identification should be assessed by the re- 

ulting control performance ( Ljung, 1999 ). However, the mismatch 

etween the typical identification objective, e.g., least squares of 

egression residuals, and the control performance, makes system 

dentification for truly optimal control performance an intrinsically 

hallenging problem ( Schrama, 1992; Gevers, 2005 ). Nevertheless, 

t is possible to develop control-oriented identification methods 

hat account for certain aspects or information that are impor- 

ant for control ( Rivera et al., 1992 ). To this end, we hereby fo-

us on the role of directional derivatives ( Lie derivatives ) of the 

odel functions in nonlinear control which capture information 

n the derivatives of the output functions. Their role is explicit 

n input–output linearizing control, where the control laws are di- 

ectly constructed using Lie derivatives. For MPC, their impact is 

mplied from the local Chen-Fliess series expansions ( Isidori, 1995 , 

ection 3.2) of the predicted trajectories, whose coefficients rely on 

he Lie derivatives of the nonlinear model. Typical estimation pro- 

edures such as MHE ( Kühl et al., 2011 ) only seek to match the

stimated model with the actual model in the directly measured 

utput values and may not be effective in matching the output 

erivatives and thus the corresponding Lie derivatives, especially 

hen structural errors exist, i.e., the true dynamics may not be ex- 

ctly parameterized. 

Motivated by the above, we propose a Lie-Sobolev framework 

or nonlinear state and parameter estimation. We develop con- 

tructive procedures for incorporating output derivative informa- 

ion in the combined observer-estimator design aiming to match 

he estimated model to the actual one in the corresponding Lie 

erivatives of the output functions. We establish well-characterized 

ominal convergence properties for the resulting estimators and 
2 
oundedness in the presence of structural errors. We further illus- 

rate how to proposed estimators can be combined with feedback 

inearizing controllers and model predictive controllers, and docu- 

ent their advantages through simulations. In related works, the 

egression of linearly parameterized functions accounting for first- 

rder derivatives was discussed in ( Novara et al., 2019 ), where the 

egression error bounds are derived through derivatives; Sobolev 

raining of neural networks, where the errors together with error 

erivatives contribute to the back-propagation, was proposed by 

achine learning researchers ( Pukrittayakamee et al., 2011; Czar- 

ecki et al., 2017 ). The idea of accounting for output derivatives 

as also implicitly embodied in the design of state observers and 

daptive observers based on input–output linearization for systems 

ith specific structures ( Afri et al., 2016 ), but to the best of our

nowledge, was not considered explicitly in the identification of 

eneric nonlinear systems and little used in schemes such as MHE. 

The remainder of this paper is organized as follows. First, in 

ection 2 , the general formulation of Lie-Sobolev estimation will be 

iven. The Lie-Sobolev formulations of an explicit gradient descent 

bserver-estimator and MHE are derived, and their convergence 

roperties as well as their effects on nonlinear control are dis- 

ussed in Sections 3 and 4 , respectively. The advantages of the Lie- 

obolev approaches are demonstrated by the application to simple 

umerical examples and a glycerol etherification reactor with com- 

lex dynamics in Section 5 . Conclusions are given in Section 6 . 

. Lie-Sobolev estimation 

.1. System identification with observer-estimator 

Consider a nonlinear dynamic model: 

˙  (t) = f (x (t)) + g(x (t)) u (t) 

 (t) = h (x (t)) (1) 

here x (t) ∈ X ⊆ R 
d x , u (t) ∈ U ⊆ R 

d u and y (t) ∈ R 
d y are the vec-

ors of states, inputs and outputs, respectively. f : X → R 
d x , g :

 → R 
d x ×d u and h : X → R 

d y are supposed to be smooth func-

ions but may not be completely known, and hence need to be 

pproximated within parameterized families of smooth functions 

 ( ̂  f (x | θ ) , ̂  g (x | θ ) , ̂  h (x | θ )) | θ ∈ �} , where θ ∈ � ⊆ R 
d θ is a vector of

arameters to be estimated. That is, we parameterize the system 

1) as follows: 

˙  (t) = 
ˆ f (x (t) | θ ) + ˆ g (x (t) | θ ) u (t) 

 (t) = 
ˆ h (x (t) | θ ) . (2) 

hen there is a value θ ∈ � such that the parameterization keeps 

he model functions unchanged, i.e., f (·) = 
ˆ f (·| θ ) , g(·) = ˆ g (·| θ ) ,

nd h (·) = ̂
 h (·| θ ) , then the parameterization (2) is said to be exact.

therwise, we say that there exist structural errors in the parame- 

erization. 

Suppose that the estimates of θ are updated in continuous time 

ased on measurements of the inputs u and outputs y . Specifically, 

t any time t , the historical measurements and past estimates in 

he time interval [0 , t] are available for deriving an estimation ˆ θ (t) 

hich is generally represented as 

ˆ (t) = �({ y (s ) , u (s ) , ˆ θ (s ) | 0 ≤ s < t} ) , (3) 

here � is an adaptation (estimation) law ( Yakubovich, 1968 ). 

nce the parameter estimation is completed, the nonlinear model 

s considered as identified and a control law 

 (t) = κ({ y (s ) , u (s ) , ˆ θ | 0 ≤ s < t} ) (4) 

an be designed to shape the closed-loop trajectory. 
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fer to as the Lie-Sobolev norm. 

1 A Sobolev space, conventionally denoted as W 
p,k , refers to a vector space of 

functions equipped with a Sobolev norm that is defined based on the L p -norms of 

the function and its derivative functions up to order k . 
Since the states x are not directly measured, the parameter es- 

imation is realized with an accompanying state observer. We for- 

ulate the observer so as to estimate the state derivatives ˙ x in ad- 

ition to the states x . We denote the observation law for ˙ ˆ x as σ .

he state observer and the parameter estimator are realized in the 

orm of ordinary differential equations (ODEs) driven by historical 

nformation on y , derivatives of y (up to some order r y ), u and the

urrent estimates: 

˙ ˆ  (t) = ˆ v (t) 

˙ ˆ  (t) = σ
(
ˆ x (t ) , ̂  v (t ) , ˆ θ (t ) , 

{{ y (r) (s ) } r y 
r=0 

, u (s ) , 
∣∣0 ≤ s < t 

})
˙ ˆ (t) = π

(
ˆ x (t) , ̂  v (t) , ˆ θ(t) , 

{{ y (r) (s ) } r y 
r=0 

, u (s ) , 
∣∣0 ≤ s < t 

})
. (5) 

The reason for using both ˆ x and ˙ ˆ x is to allow a criterion 

hat evaluates how well the first equation in (2) , which involves 

 ̇ x , x, θ ) , is satisfied by the estimates ( ̇ ˆ x, ̂  x , θ ) . As the control law κ
s usually constructed based on the estimated model ( ̂  f , ̂  g , ̂  h ) , key

o the construction of the observation and estimation laws (σ, π) 

s the matching of the trajectory of ˆ x (t) , ˙ ˆ x (t) and ˆ θ (t) to the be-

avior of the parameterized model (2) under the measured histor- 

cal data. A perfect identification refers to a pair (σ, π) that makes 

he following ODEs hold for all t ≥ 0 : 

˙ ˆ  (t) = 
ˆ f ( ̂  x (t) | ̂  θ (t)) + ˆ g ( ̂  x (t) | ̂  θ(t)) u (t) 

 (t) = 
ˆ h ( ̂  x (t) | ̂  θ (t)) . (6) 

.2. Lie-Sobolev state and parameter estimation 

Before introducing the Sobolev-type state and parameter esti- 

ation of the dynamic system (1) from input and output historical 

rajectories, we review the definition of Lie derivatives in nonlinear 

ontrol ( Isidori, 1995 , Chapter 4). 

efinition 1 (Lie derivative) . The Lie derivative of the i th compo- 

ent of h , h i , with respect to a vector field f is defined as 

 f h i = 

∂h i 
∂x 

f (7) 

espectively, where ∂ h i /∂ x ∈ R 
1 ×d x . The Lie differentiation opera- 

ors can be recursively composed to generate high-order or mixed 

ie derivatives, e.g., (L f 1 L f 2 ) h i = L f 1 (L f 2 h i ) . Denote L 
k +1 
f 

= L f L 
k 
f 
, k =

 , 1 , . . . , with L 0 
f 
being identity. With a slight abuse of notation, we

ill denote by L g h i a row vector of L g j h i . 

efinition 2 (relative degree) . The relative degree ρi for the i th 

utput is the smallest positive integer r such that L g L 
r−1 
f 

h i �≡ 0 . 

With relative degree ρi known, we have 

 i (t) = L 0 f h i (x (t)) 

˙  i (t) = L 1 f h i (x (t)) 

. . . 

 

(ρi ) 
i 

(t) = L 
ρi 

f 
h i (x (t)) + L g L 

ρi −1 

f 
h i (x (t )) u (t ) (8) 

hich implies that the direct effect of inputs u falls on the ρi th 

ime derivative of t . For controlling the system (1) by shaping 

he responses of y i , accurately evaluating or managing the errors 

n approximating the Lie derivatives L r 
f 
h i (x ) , r = 0 , 1 , . . . , ρi and

 g L 
ρi −1 

f 
h i (x ) , i = 1 , . . . , d y is thus of crucial importance. Therefore,

or a control-oriented system identification, we propose that the 

tate and parameter estimation should be performed such that not 

nly the output values match the estimated ones, i.e., (6) is satis- 

ed, but also the output time derivatives match the estimated ones 

p to an order equal to their relative degree, i.e.: 

 i (t) = L 0 ˆ f 
ˆ h i ( ̂  x (t ) | ̂  θ(t )) 
3 
˙  i (t) = L 1 ˆ f 
ˆ h i ( ̂  x (t ) | ̂  θ(t )) 

. . . 

 

(ρi ) 
i 

(t) = L 
(ρi ) 

ˆ f 
ˆ h i ( ̂  x (t) | ̂  θ(t)) + L ˆ g L 

ρi −1 

ˆ f 
ˆ h i ( ̂  x (t) | ̂  θ(t)) u (t) . (9) 

e refer to such a scheme as Lie-Sobolev state and parameter esti- 

ation (or identification) . 1 

In the next two sections, we formulate the Lie-Sobolev 

bserver-estimator for nonlinear systems based on the gradient de- 

cent method, which underlies the majority of adaptive parame- 

er estimation schemes ( Fradkov, 1979 ). Specifically, a real-valued 

riterion J is defined based on the state observations ˆ x (t) , their 

ime derivatives ˆ v (t) = 
˙ ˆ x (t) and parameter estimates ˆ θ (t) , given 

he measured inputs, outputs and output derivatives. The update 

ules are designed such that the time derivative of J is made as 

egative as possible. Depending on the way that J(t) is defined, 

e formulate two different Lie-Sobolev estimation schemes. 

• In the first type, J(t) is defined based only on the current esti- 

mates and measurements. We view this explicit gradient-based 

identification scheme as a prototype approach, for which the- 

oretical properties can be analyzed with classical Lyapunov ar- 

guments. 
• The second type – MHE, is an implicit observer-estimator for- 

mulated as an optimization problem involving the current and 

past measurements. Its convergence properties are established 

in a similar way to the ordinary MHE whose analysis has been 

covered in the recent literature. 

In addition to the constructive design procedures, we provide 

ormal statements for the convergence and boundedness properties 

nd their impact on control. 

. Lie-Sobolev gradient descent observer-estimator 

.1. Derivation 

Consider the following function J(t) , which accounts for the 

esiduals of the parameterized model (2) evaluated based on 

he estimations and measurements of inputs, outputs and output 

erivatives: 

(t) = Q( ̂  x (t ) , ˙ ˆ x (t ) , ˆ θ(t )) 

= 

1 

2 

∥∥∥ ˙ ˆ x (t) − ˆ f ( ̂  x (t ) | ̂  θ(t )) − ˆ g ( ̂  x (t ) | ̂  θ(t )) u (t ) 

∥∥∥2 

+ 

1 

2 

d y ∑ 

i =1 

[ ρi −1 ∑ 

r=0 

w 
r 
i 

∥∥∥y (r) i 
(t) − L r ˆ f 

ˆ h i ( ̂  x (t ) | ̂  θ (t )) 

∥∥∥2 

+ w 

ρi 

i 

∥∥∥y (ρi ) 
i 

(t) − L 
ρi 

ˆ f 
ˆ h i ( ̂  x (t ) | ̂  θ(t )) − L ˆ g L 

ρi −1 

ˆ f 
ˆ h i ( ̂  x (t ) | ̂  θ(t )) u (t ) 

∥∥∥2 ] 
(10) 

here the weights w 
r 
i 
corresponding to the response of y (r) 

i 
, r = 

 , 1 , . . . , ρi , i = 1 , . . . , d y are positive constants. If the terms in

he brackets (involving y and y derivatives) are all removed ex- 

ept for the one corresponding to r = 0 (involving y ), then J re- 

uces to the one used in classical gradient descent methods. 

he criterion function J(t) equals zero whenever the estimated 

odel is equivalent to the true model and the state observation 

s error-free. J lends itself to the following performance measure 

hat captures the distance between the estimated model functions 

 ̂
 f (·| θ ) , ̂  g (·| θ ) , ̂  h (·| θ )) and actual dynamics ( f, g, h ) , which we re-
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h  
efinition 3 (Lie-Sobolev norm) . For the identified model ˆ f (x | ̂  θ ) , 

ˆ  (x | ̂  θ ) , ˆ h (x | ̂  θ ) , the squared Lie-Sobolev norm of the model error


 f, 
g, 
h ) = ( f, g, h ) − ( ̂  f , ̂  g , ̂  h ) is 

 
( f, g, h ) ‖ 
2 
W 

= 

∫ 
X×U 

‖ 
 f + 
gu ‖ 
2 + 

d y ∑ 

i =1 

[ ρi −1 ∑ 

r=0 

w 
r 
i 

∥∥∥L r f h i − L r ˆ f 
ˆ h i 

∥∥∥2 

+ w 

ρi 

i 

∥∥∥L ρi 

f 
h i + L g L 

ρi −1 

f 
h i u − L 

ρi 

ˆ f 
ˆ h i − L ˆ g L 

ρi −1 

ˆ f 
ˆ h i u 

∥∥∥2 ] 
d xd u (11) 

Here we assume that U contains a d u -dimensional (i.e., full- 

imensional) neighborhood of 0 and that the characteristic ma- 

rix 

 (x ) = 

⎡ 

⎢ ⎣ 

L g 1 L 
ρ1 

f 
h 1 (x ) . . . L g d u L 

ρ1 

f 
h 1 (x ) 

. . . 
. . . 

. . . 

L g 1 L 
ρd y 

f 
h d y (x ) · · · L g m L 

ρd y 

f 
h d y (x ) 

⎤ 

⎥ ⎦ (12) 

s nonsingular, so that ‖ (
 f, 
g, 
h ) ‖ W 
= 0 only when 
 f (x ) ,

g(x ) , 
h (x ) as well as the differences in the Lie derivatives in-

olved in (11) are equal to 0 in X . Thus, (11) gives a well-defined

positive definite) norm and Q( ̂  x (t) , ˙ ˆ x (t) , ˆ θ (t)) can be regarded as

n approximate evaluation of the Lie-Sobolev norm on the snap- 

hot at time t . Hence, the observer-estimator should be designed 

ith an aim to reduce the value of Q with time. 

Assuming that the input signals are differentiable and the out- 

ut signals are differentiable up to the order of relative degrees 

ith respect to t , 

˙ 
 = ( ̇ ˆ x − ˆ f − ˆ g u ) � 

[ 
¨̂
 x −

( 

∂ ˆ f 

∂ ̂  x 
+ 

d u ∑ 

j=1 

u j 
∂ ̂  g j 

∂ ̂  x 

) 

˙ ˆ x + 

(
∂S 

∂ ̂  x 

)� 
− ˆ g ̇ u 

] 

+ 

[ 
∂S 

∂ ̂  θ
− ( ̇ ˆ x − ˆ f − ˆ g u ) � 

( 

∂ ˆ f 

∂ ̂  θ
+ 

d u ∑ 

j=1 

u j 
∂ ̂  g j 

∂ ̂  θ

) ] 
˙ ˆ θ

+ 

∂S 

∂ ̂  x 
( ̂  f + ˆ g u ) + 

∂S 

∂u 
˙ u + 

d y ∑ 

i =1 

ρi ∑ 

r=0 

∂S 

∂y (r) 
i 

y (r+1) 
i 

, (13) 

here 

 = S 

(
ˆ x , ˆ θ

∣∣∣u, y 1 , ˙ y 1 , . . . , y 
(ρ1 ) 
1 

, . . . , y d y , ˙ y d y , . . . , y 
(ρd y 

) 

d y 

)

= 

1 

2 

d y ∑ 

i =1 

[ ρi −1 ∑ 

r=0 

w 
r 
i 

∥∥∥y (r) i 
(t) − L r ˆ f 

ˆ h i ( ̂  x (t ) | ̂  θ (t )) 

∥∥∥2 

+ w 

ρi 

i 

∥∥∥y (ρi ) 
i 

(t) − L 
ρi 

ˆ f 
ˆ h i ( ̂  x (t ) | ̂  θ(t )) − L ˆ g L 

ρi −1 

ˆ f 
ˆ h i ( ̂  x (t ) | ̂  θ (t )) u (t ) 

∥∥∥2 ] 
(14) 

epresents the part of Q after the first term in (10) . In (13) , ˙ ˆ x and
˙ ˆ can be designed through the laws of the state observer σ and 

arameter estimator π in Eq. (5) . We construct the state observer 

and parameter estimator π as follows: 

= −�σ (v − ˆ f − ˆ g u ) + 

( 

∂ ˆ f 

∂ ̂  x 
+ 

d u ∑ 

j=1 

u j 
∂ ̂  g j 

∂ ̂  x 

) 

v −
(

∂S 

∂ ̂  x 

)� 
+ ˆ g ̇ u 

= −�π

[ 
∂S 

∂ ̂  θ
− ( ̇ ˆ x − ˆ f − ˆ g u ) � 

( 

∂ ˆ f 

∂ ̂  θ
+ 

d u ∑ 

j=1 

u j 
∂ ̂  g j 

∂ ̂  θ

) ] 
. (15) 

here � ˆ x and � ˆ θ
are tunable positive definite matrices of order d x 

nd d θ , respectively. 

.2. Convergence properties 

Substituting the observer-estimator law (15) into the expression 

f ˙ Q (13) according to (5) , we can characterize the convergence 
4 
roperty of the observer-estimator (15) based on Lyapunov stabil- 

ty analysis. To begin with, we consider the case with exact param- 

terization, i.e., there exists a true value of θ such that the errors 

etween the functions f, g, h and Lie derivatives vanish. The follow- 

ng proposition gives the conditions for the nominal convergence 

f (15) . 

roposition 1 (Nominal convergence of the gradient descent 

bserver-estimator) . Assume that 

• ˆ f , ̂  g , ̂  h , the Lie derivative functions and their partial derivatives 

with respect to ˆ x and ˆ θ are bounded and Lipschitz in ˆ x ; 
• Q is strongly convex in ˆ θ ; 
• u, ˙ u and ˆ g ( ̂  x ) are bounded; 
• The errors in state observations are linearly bounded by the errors 

in their estimated dynamics and the parameter estimations, i.e., 

‖ ̂ x − x ‖ ≤ c 1 ‖ ̇ ˆ x − ˆ f − ˆ g u ‖ + c 2 ‖ ̂  θ − θ‖ for some c 1 , c 2 > 0 . 

Under the observer-estimator (15) , if the tunable matrices �σ and 

π are chosen such that their smallest eigenvalues are large enough, 

hen ˙ Q ≤ 0 and the equality holds when ˙ ˆ x = 
ˆ f ( ̂  x ) + ̂  g ( ̂  x ) u and ˆ θ = θ .

emark 1 (Satisfiability of assumptions) . Among the above as- 

umptions, the first and third are rather mild and can be satisfied 

s long as X and U are bounded sets and the input signals are 

enerated with a bounded rate of change. Since Q is a weighted 

um of squares of estimation errors, the strong convexity condition 

n Q essentially requires that the parameterization should be such 

hat these estimation errors are strictly monotonically dependent 

n the parameters. In nonlinear process systems, such parameter- 

zations can often be satisfied (at least locally), e.g., the conver- 

ion or flux quantities in transport-reaction systems usually have 

onotonic relations with the corresponding rate or activation en- 

rgy constants. The last condition, however, usually can be verified 

nly a-posteriori. If the errors in ˙ x grow with time, then the errors 

n x will grow on a higher order, and hence the linear bounding 

ondition can not be satisfied by any constant c 1 . Hence to meet 

he last condition, it is necessary to make the errors bounded, e.g., 

y designing the input signals such that the resulting state trajec- 

ory oscillates around the origin. 

emark 2 (Implication of nonlinear observability condition) . In the 

ase of exact parameterization, the simultaneous state and param- 

ter estimation is equivalent to the state observation of the follow- 

ng system of augmented states x̄ = (x, θ ) : 

˙ x 
˙ θ

]
= 

[
f (x, θ ) 

0 

]
+ 

[
g(x, θ ) 

0 

]
u 

 = h (x, θ ) . 

(16) 

enoting the corresponding model functions of the augmented 

tates as ( ̄f , ̄g , ̄h ) , we know from nonlinear control theory that the

ystem (16) is observable if the observability co-distribution 

 = span 

(
dL ̄g j 1 

. . . L ̄g j k 
h̄ i 

∣∣∣0 ≤ j 1 , . . . , j k ≤ d u , 1 ≤ i ≤ d y , k < ∞ 

)
(17) 

s of full rank (where ḡ 0 = f̄ ). It then suffices if a restricted sub- 

pace of O, which can be denoted as O 
′ , where the recursive Lie

erivatives in its definition only contain the Lie derivatives that are 

nvolved in (10) : 

 
′ = span 

(
d L r 

f 
h i , d L g L 

ρi −1 

f 
h i 

∣∣∣0 ≤ r ≤ ρi , 1 ≤ i ≤ d y 

)
(18) 

s also of full rank. This full-rank condition is in fact implied by the 

econd and the fourth assumptions in Proposition 1 , which guaran- 

ee that the convergence of the state observations and parameter 

stimations in (15) can be driven by ∂ S/∂ ̄x = (∂ S/∂ x, ∂ S/∂ θ ) , and

ence ∂ S/∂ ̄x is of full rank. Examining the form of S in (14) , it can
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‖

e found that (∂ S/∂ ̄x ) d ̄x ∈ O 
′ . Therefore, O 

′ must be a full-rank co-

istribution. 

In general, when there exist structural errors, i.e., there is a 

on-vanishing distance between the parameterized and true dy- 

amics even when ˆ θ = θ (for some “good” parameter estimate θ ) 
nd ˆ x = x , the asymptotic convergence property is replaced with 

ltimate boundedness, if the structural errors are also bounded. 

his is stated in the following proposition. 

roposition 2 (Boundedness of errors of the gradient descent 

bserver-estimator under structural uncertainty) . Assume that 

• ˆ f , ̂  g , ̂  h , Lie derivatives and their partial derivatives are bounded 

linearly in the nominal parameter errors, state observation errors 

plus bounded quantities, i.e., for ψ = f, g, h , L r 
f 
h i , L g L 

ρi −1 

f 
h i , r =

0 , 1 , . . . , ρi , i = 1 , . . . , d y , there exists m ψ 
, 
 ψ 

, c ψ 
> 0 , such that 

‖ ψ(x ) − ˆ ψ ( ̂  x | ̂  θ ) ‖ ≤ m ψ 
‖ θ − ˆ θ‖ + 
 ψ 

‖ x − ˆ x ‖ + c ψ 
; (19) 

• Q is strongly convex in ˆ θ with a bounded deviation, i.e., ∂ Q/∂ ̂  θ = 

(∂ Q/∂ ̂  θ ) 0 + ε� 
Q 
, with (∂ Q/∂ ̂  θ ) 0 ( ̂  θ − θ ) ≥ μ‖ ̂  θ − θ‖ 2 for some

μ > 0 and ‖ εQ ‖ ≤ c Q for some c Q > 0 ; 
• u, ˙ u and ˆ g ( ̂  x ) are bounded; 
• The errors in state observations are linearly bounded by the errors 

in their estimated dynamics and the parameter estimations, i.e., 

‖ ̂ x − x ‖ ≤ c 1 ‖ ̇ ˆ x − ˆ f − ˆ g u ‖ + c 2 ‖ ̂  θ − θ‖ + c 0 for some c 1 , c 2 , c 0 >

0 . 

Under (15) , the errors in state observations and parameter estima- 

ions will be ultimately bounded. 

Assuming that the trajectory on which state and parameter esti- 

ation is performed is informative in the sense that it can be ren- 

ered close enough to any point in X × U , and that the sensitivity 
f errors to such a distance is limited, the boundedness property 

an be generalized from the trajectory to X × U . 

roposition 3 (Boundedness of identification error under the gra- 

ient descent observer-estimator) . Suppose that the assumptions in 

roposition 2 hold, and assume that 

• For some ε > 0 and a corresponding T ε > 0 , there exists 

t 1 , . . . , t n k > T ε and η > 0 such that for any (x, u ) ∈ X × U ,
‖ (x (t k ) − x, u (t k ) − u ‖ ≤ η; 

• L r 
f 
h i (x ) − L r 

ˆ f 
ˆ h i (x | ̂  θ ) and L g L 

ρi −1 

f 
h i (x ) − L ˆ g L 

ρi −1 

ˆ f 
ˆ h i (x | ̂  θ ) ,

r = 0 , 1 , . . . , ρi , i = 1 , . . . , d y are uniformally Lipschitz in x

for all ˆ θ ∈ �. 

Then there is an upper bound B (ε, η) > 0 such that 

 (
 f, 
g, 
h ) ‖ 
2 
W 

≤ B (ε, η) . (20) 

The proofs of the 3 propositions in this subsection are provided 

n Appendix A . 

emark 3 (Tuning of the matrices. �σ and �π ) Under exact pa- 

ameterization and the assumptions in Proposition 1 , the nominal 

onvergence is guaranteed for any positive definite �σ and �π , and 

ence using high-gain observers and estimators helps to acceler- 

te the convergence. However, when the assumptions do not hold 

lobally on X × U , but rather locally in a neighborhood of zero 
rrors, arbitrarily large matrices �σ and �π may not be allowed. 

hen the parameterization induces structural errors, from the end 

f the proof of Proposition 2 in A.2 we see that the ultimate bound

f errors has a lower bound that is independent of �σ and �π , 

hich implies that the use of high-gain observers and estimators 
an not eliminate the intrinsic uncertainties. 

5 
.3. Effect on input–output linearizing control 

Assuming that the characteristic matrix A (x ) is nonsingular, 

hen there exist vector fields ζk (x ) , k = 1 , . . . , d ζ = d x −
∑ d y 

i =1 
ρi to

omplement the Lie derivatives, satisfying L g ζk = 0 ( k = 1 , . . . , d ζ ),

uch that the following nonlinear change of coordinates � is non- 

ingular ( Isidori, 1995 ): 

ζ , ξ ) = �(x ) = [ ζ1 (x ) , . . . , ζd ζ (x ) , L 
0 
f h 1 (x ) , . . . , L 

ρ1 −1 

f 
h 1 (x ) , 

. . . , L 0 f h d y (x ) , . . . , L 
ρd y 

−1 

f 
h d y (x )] 

� , (21) 

nd thus an inverse transformation x = �−1 (ζ , ξ ) exists. Under the 

ransformed coordinates, the original system (1) is expressed as 

˙ = Z(ζ , ξ ) 

˙ 0 
i = ξ 1 

i 

. . . 

˙ ρi −1 

i 
= L 

ρi 

f 
h i (x ) + L g L 

ρi −1 

f 
h i (x ) u 

i = 1 , . . . , d y ) (22) 

here ξ 0 
i 
, . . . , ξ

ρi −1 

i 
correspond to y i , . . . , y 

ρi −1 

i 
, respectively. In the 

ero dynamics, ξ can be considered as the inputs to the partial 

tates ζ . For the input–output linearizing control of system (22) , if 

he states are accurately known, then the inputs can be specified 

s such that the output trajectories are shaped to satisfy 

d y 
 

i =1 

ρi ∑ 

r=0 

βir 

d r y i 
dt r 

(t) = ω(t) (23) 

or a d y -dimensional reference signal ω, in which βir ∈ R 
d y with 

 β1 ρ1 
, . . . , βd y ρd y 

] being a nonsingular matrix. In other words, the 

ontrol law is designed as 

 = 

[ ∑ d y 
i =1 

βiρi 
L g 1 L 

ρi −1 

f 
h i (x ) . . . 

∑ d y 
i =1 

βiρi 
L g d u L 

ρi −1 

f 
h i (x ) 

] −1 

[ 
ω − ∑ d y 

i =1 

∑ ρi 

r=0 
βir L 

r 
f 
h i (x ) 

] 
=: B (x ) −1 b(x, ω) . 

(24) 

With observation and estimation errors, the terms in the ideal 

ontrol law above are then replaced with the corresponding ob- 

erved and estimated terms B ( ̂  x | ̂  θ ) and b( ̂  x | ̂  θ ) . This results in

n additional term 
ω = B (B + 
B ) −1 
b − 
B (B + 
B ) −1 b to the

ight-hand side of (23) , where 
B = B ( ̂  x | ̂  θ ) − B (x ) and 
b is de-

ned analogously. If the outputs and Lie derivatives are subject to 

ounded errors, then 
ω is bounded by their errors, as long as the 

onsingularity of B (x ) is retained. Usually the reference response 

hould be shaped such that the eigenvalues of the left-hand side of 

23) should be negative in real parts. Hence the errors in outputs 

nd output derivatives are bounded in terms of 
ω and thereafter 

n terms of the errors. That is, there exist positive constants c ψ 

or ψ = L r 
f 
h i , r = 0 , . . . , ρi and L g L 

ρi −1 

f 
h i , i = 1 , . . . , d y , such that a

ound on the deviation of ξ from the reference trajectory (23) can 

e written as ‖ 
ξ‖ ≤ ∑ 

ψ 
c ψ 

‖ ψ(x ) − ˆ ψ ( ̂  x | ̂  θ ) ‖ . 
Then consider the deviation of the zero dynamics states ζ from 

ts reference trajectory. Since the zero dynamics takes ξ as its in- 

ut, as long as the incremental zero dynamics 

˙ ζ = Z(ζ + 
ζ, ξ + 
ξ ) − Z(ζ , ξ ) (25) 

s input–state stable (ISS), then there exists c ′ 
ψ 

> 0 such that 

 
ζ‖ ≤
∑ 

ψ 

c ′ ψ 
‖ ψ(x ) − ˆ ψ ( ̂  x | ̂  θ ) ‖ . (26) 

The above discussion is summarized as follows. 
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2 In many works on MHE (e.g., Kühl et al. (2011) ), the consistency with the 

identified dynamic model is imposed as a hard constraint, which is the case with 

w 
r 
i 
→ 0 . Bounds for ˆ x and ˆ θ can also be imposed. Under such formulations, the 

above analysis of variations and sensitivities can be extended by incorporating the 

flow of the Lagrangian multipliers of equality constraints, known as co-states λ(s ) , 

s ∈ [ t − T, t] . Optimality conditions can be derived in a similar appearance to the 

equations in the Pontryagin maximum principle. 
roposition 4 (Performance of input–output linearizing control 

nder the gradient descent observer-estimator) . Suppose that the 

ssumptions in Proposition 2 hold, and also assume that 

• The eigenvalues for the left-hand side of reference trajectory 

(23) are all negative in the real part. 
• The incremental zero dynamics with 
ξ as inputs and 
ζ as 

states is ISS. 

Then the input–output linearizing control based on the observer- 

stimator given by (15) gives a trajectory with bounded deviations 

rom the reference (23) . 

. Lie-Sobolev moving horizon estimator 

.1. Formulation 

Different from the previous explicit observer-estimator, the Lie- 

obolev MHE determines the state observation ˆ x (t) and parameter 

stimation ˆ θ (t) based on the historical measurements in the past 

ime period of length T , by solving the following dynamic opti- 

ization problem about ˆ θ and ˆ x (s ) for s ∈ [ t − T , t] : 

in 

∫ t 
t−T 

Q( ̂  x (s ) , ˆ θ | u (s ) , y (s )) ds + R ( ̂  x (t − T ) , ˆ θ ) (27)

he objective accounts for the discrepancies between the esti- 

ated outputs along with their time derivatives and the measured 

alues. A regulation term R ( ̂  x (t − T ) , ˆ θ ) accounts for the truncation

efore the time instant t − T and the allowed range of parame- 

ers θ . The non-Lie-Sobolev counterpart takes the same form with 

he exception that Q does not involve output derivatives-related 

erms (see Eq. (10) ). By solving the above problem, the obtained 

ˆ  (t) and ˙ ˆ x (t) are the observed states and state derivatives at the 

urrent time t , respectively, and ˆ θ is the current estimated parame- 

ers ˆ θ (t) . Although the practical approximate solution of the prob- 

em requires discretization, here we use the original formulation 

or analysis. 

Applying variational calculus, one can verify that the optimal 

olution of the observation-estimation pair ({ ̂  x (s ) | s ∈ [ t − T , t] } , ˆ θ )

hould be specified by the following first-order optimality condi- 

ions: 

 = 

d 

ds 
( ̇ ˆ x ( s ) − ˆ f ( ̂  x (s ) | ̂  θ ) − ˆ g ( ̂  x (s ) | ̂  θ ) u (s )) − ∂S 

∂ ̂  x 
( ̂  x (s ) , ˆ θ ) 

− ( ̇ ˆ x ( s ) − ˆ f ( ̂  x ( s ) | ̂  θ ) − ˆ g ( ̂  x ( s ) | ̂  θ ) u ( s )) � ( 

∂ ˆ f 

∂ ̂  x 
( ̂  x (s ) | ̂  θ ) + 

∑ 

j 

u j 
∂ ̂  g j 

∂ ̂  x 
( ̂  x (s ) | ̂  θ ) 

) 

, s ∈ [ t − T , t] 

 = 
˙ ˆ x (t − T ) − ˆ f ( ̂  x (t − T ) | ̂  θ ) 

− ˆ g ( ̂  x (t − T ) | ̂  θ ) u (t − T ) − ∂R 

∂ ̂  x 
( ̂  x (t − T ) , ˆ θ ) 

 = 
˙ ˆ x (t) − ˆ f ( ̂  x (t) | ̂  θ ) − ˆ g ( ̂  x (t ) | ̂  θ ) u (t ) 

 = 

∫ t 
t−T 

∂S 

∂ ̂  θ
( ̂  x (s ) , ˆ θ ) + ( ̇ ˆ x (s ) − ˆ f ( ̂  x (s ) | ̂  θ ) − ˆ g ( ̂  x (s ) | ̂  θ ) u (s )) � ( 

∂ ˆ f 

∂ ̂  θ
( ̂  x (s ) | ̂  θ ) + 

∑ 

j 

u j 
∂ ̂  g j 

∂ ̂  θ
( ̂  x (s ) | ̂  θ ) 

) 

ds + 

∂R 

∂ ̂  θ
( ̂  x (t − T ) , ˆ θ ) . (28) 

s the time t flows for an infinitesimal time δt , there will be in- 

nitesimal changes in the inputs, outputs and output derivatives 

n the time horizon [ t − T , t] , which are the parameters needed

y the optimization problem (27) . This will then result in changes 
¨̂
 x, δ ˙ ˆ x, δ ˆ x , δ ˆ θ to guarantee that the first-order optimality conditions 

till hold. The procedure to find the changes in the optimal solu- 

ion originating from changes in the parameters is known as sensi- 

ivity analysis ( Fiacco, 1983 ). 
6 
Specifically, under appropriate regularity assumptions, the vari- 

tion of the first equation in (28) can be expressed as 

ˆ θ = π
({

δ ˙ ˆ x (s ) , δ ˆ x (s ) , δu (s ) , δY (s ) | s ∈ [ t − T , t] 
})

(29) 

or some linear functional π , and the variation of the third equa- 

ion is 

˙ ˆ x (t) = σ
(
δ ˆ x (t) , δ ˆ θ, δu (t) , δY (t) 

)
(30) 

or some linear functional σ , in which Y (s ) is the collection of 

 
(r) 
i 

(s ) for r = 0 , 1 , . . . , ρi , i = 1 , . . . , d y . The variations in the states

nd their derivatives during the horizon are determined by the 

ariations of the fourth equation of (28) as second-order ODEs, 

nd the variations of the second and third equations of (28) as 

wo boundary conditions. This results in δ ˆ x (s ) and δ ˙ ˆ x (s ) as linear

unctionals of { δu (s ) , δY (s ) | s ∈ [ t − T , t] } depending on the current
olution. Therefore we can rewrite the above two formulas as 

ˆ θ = π
({

˙ ˆ x (s ) , ̂  x (s ) , u (s ) , Y (s ) , δu (s ) , δY (s ) | s ∈ [ t − T , t] 
})

, 

˙ ˆ x (t) = σ
(
ˆ x (t) , ˆ θ, u (s ) , Y (s ) , δu (t) , δY (t) 

)
, (31) 

ith functionals π and σ linear in δu (s ) and δY (s ) . Since δu (s ) =
˙  (s ) δt and δY (s ) = ˙ Y (s ) δt , we finally have 

˙ ˆ = π
({

˙ ˆ x (s ) , ̂  x (s ) , u (s ) , Y (s ) , ˙ u (s ) , ˙ Y (s ) | s ∈ [ t − T , t] 
})

, 

¨̂
  (t) = σ

(
ˆ x (t) , ˆ θ, u (s ) , Y (s ) , ˙ u (t) , ˙ Y (t) 

)
. 

(32) 

his indicates that the MHE is an implicit dynamic system of an 

bserver-estimator. 2 

.2. Convergence properties 

Due to the implicitness of MHE, the convergence properties 

eed to be considered in a roundabout way. The key idea is to es- 

ablish the conditions under which the objective function of (27) is 

 Lyapunov function, and the descent or boundedness of such a 

yapunov function implies convergence or boundedness of the dis- 

ance to nominal parameters and true states. Such properties have 

een well studied in the literature ( Rao et al., 2003; Ji et al., 2015;

üller, 2017 ). Here we rephrase the conditions for the convergence 

f MHE for state observation given in ( Müller, 2017 , Theorem 14). 

ompared to the original theorem, we simply augment the out- 

uts with their derivatives, augment the states with time-invariant 

odel parameters, and reformulate the conditions in continuous 

ime. 

efinition 4. A function α is said to belong to class K ∞ if it is

efined on [0 , + ∞ ) , strictly increasing, and such that α(0) = 0 and

(r) → ∞ as r → ∞ . A function β : [0 , + ∞ ) × [0 , + ∞ ) → [0 , + ∞ ]

s said to belong to class KL if it is strictly increasing in the first 

ariable with β(0 , s ) = 0 for any s , and decreasing in the second

ariable with β(r, s ) → 0 as s → + ∞ . 

roposition 5 (Convergence properties of Lie-Sobolev 

HE) . Assume that 
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Then ‖ x ‖ is ultimately bounded. 
• The system represented as the estimation model under nominal 

parameter values θ with structural errors w , v : 

˙ x = 
ˆ f (x | θ ) + ˆ g (x | θ ) u + w 

y (r) 
i 

= 

{ 

L r 
ˆ f 
ˆ h i (x | θ ) + v r 

i 
, r = 0 , 1 , . . . , ρi − 1 

L 
ρi 

ˆ f 
ˆ h i (x | θ ) + L ˆ g L 

ρi 

ˆ f 
ˆ h i (x | θ ) u + v ρi 

i 
, r = ρi 

(33) 

is incrementally input-to-state stable (ISS) and output-to-state sta- 

ble (OSS). That is, there exists a KL -class function β and two K ∞ - 

class functions αw and αv , such that if the two systems (33) starts 

at time 0 from two different states x (0) and x ′ (0) , then at any

time t, their states x (t) and x ′ (t) have a distance bounded by 

‖ x (t) − x ′ (t) ‖ ≤ β(‖ x (0) − x ′ (0) ‖ , t) 
+ αw (‖ w − w 

′ ‖ [0 ,t] ) + αv (‖ v − v ′ ‖ [0 ,t] ) . 
(34) 

• The function β satisfies β(r, s ) ≤ c β r 
p r s −p s for some c β > 0 , p r ≥

1 , and p s > 0 . The functions αw and αv satisfy αw (r) ≤ c w r 
q w and

αv (r) ≤ c v r q v , respectively, for some c w , c v , q w , q v > 0 . 
• The regulation term R ( ̂  x , ˆ θ ) is restricted by 

R ( ̂  x , ˆ θ ) ∈ 

∥∥∥∥
[
ˆ x (t − T ) − ˆ x ∗(t − T ) 

ˆ θ − ˆ θ ∗

]∥∥∥∥
q 

[ m R , M R ] , (35) 

where 

(
{ ̂ x ∗(s ) | s ∈ [ t − T , t] } , ˆ θ

)
is the optimal solution 

to (27) , M R ≥ m R > 0 , and max (1 /q w , 1 /q v , 2 p r /p s ) ≤ q ≤
2 / max (q w , q v ) . 

• The initial observation-estimation error and structural errors are 

bounded. 

Then the observation-estimation errors of the MHE (27) remain 

ounded. Furthermore in the absence of structural error in the model, 

ˆ  (t) − x (t) → 0 , ˆ θ (t) − θ → 0 . 

.3. Effect on nonlinear MPC 

The nonlinear MPC of the system (1) is such a control strategy 

here at each time instant t , the control signal u (t) is determined 

y solving the following optimization problem 

min 
∫ t+ T 
t 
 ( ̃  x ( s ) , ˜ u ( s ) ) ds + 
 f ( ̃  x ( t + T ) ) 

s . t . ̇ ˜ x ( s ) = f ( ̃  x ( s ) ) + g ( ̃  x ( s ) ) ̃  u ( s ) , s ∈ [ t, t + T ] , 
˜ x ( t ) = x ( t ) 

(36) 

nd extracting the first piece of the input signal ˜ u (s ) in the re-

eding horizon [ t, t + T ] (the horizon length T may be different

rom the one in MHE). The functions 
 and 
 f are called stage 

ost and terminal cost, respectively. For simplicity we consider the 

ase without process constraints. The stability conditions for non- 

inear MPC have been well established in the literature, where 

he objective function of (36) , denoted as V , is considered as a

ontrol-Lyapunov function. Specifically, if there exists a control pol- 

cy u = κ(x ) such that 

d
 f 

dx 
( f (x ) + g(x ) κ(x )) ≤ −
 (x, κ(x )) (37) 

hen the asymptotic stability towards the origin follows from 

he descent property ˙ V (t) ≤ −
 (x (t ) , u (t )) under appropriate as-

umptions on the choice of the relevant functions ( Mayne and 

alugi, 2019 ). 

When the model and the states are not precisely known, 

f (·) , g(·)) in (36) should be replaced by ( ̂  f (·| ̂  θ ) , ̂  g (·| ̂  θ ) , and x (t)

hould be replaced by the observed state ˆ x (t) . The effect of the 

ccuracy of Lie derivatives on the solution of the MPC problem is 

mplicit. First, the predicted states are related to the predicted out- 

uts, output derivatives and states of the zero dynamics through 
7 
he nonlinear transformation (21) : ˜ x = �−1 ( ̃  ζ , ˜ ξ ) , which trans- 

orms the MPC problem into the following form: 

min 
∫ t+ T 
t 
 

(
˜ ζ ( s ) , ˜ ξ ( s ) , ̃  u ( s ) 

)
ds + 
 f 

(
˜ ζ ( t + T ) , ˜ ξ ( t + T ) 

)
s . t . ̇ ˜ ζ ( s ) = Z 

(
˜ ζ ( s ) , ˜ ξ ( s ) 

)
, s ∈ [ t, t + T ] 

˙ ˜ ξ
r 

i ( s ) = 
˜ ξ r+1 
i ( s ) , r = 0 , · · · , ρi − 2 , s ∈ [ t, t + T ] 

˙ ˜ ξ
ρi −1 

i ( s ) = L 
ρi 

f 
h i ( ̃ x ( s ) ) + L g L 

ρi −1 

f 
h i ( ̃ x ( s ) ) ̃  u ( s ) , s ∈ [ t, t + T ] 

˜ x ( t ) = x ( t ) 

(38) 

here the Lie derivatives appear in the prediction of the trans- 

ormed state trajectories. Alternatively, if only the outputs are ac- 

ounted for in the objective function, one may use Chen-Fliess se- 

ies expansion to express the outputs ( Isidori, 1995 , Section 3.2): 

 i (s ) = h i (x (t)) 

+ 

∞ ∑ 

k =0 

d u ∑ 

j 0 , ... , j k =0 

L g j 0 . . . L g j k 
h i (x (t)) 

∫ s 
t 

d χ j k 
. . . d χ j 0 (39) 

here 

g 0 = f, χ0 (s ) = s, 

χ j (s ) = 

∫ s 
t u j (s 

′ ) ds ′ , j = 1 , . . . , d u , ∫ s 
t d χ j k 

. . . d χ j 0 = 

∫ s 
t d χ j k 

(s ′ ) 
∫ s ′ 
t d χ j k −1 

. . . d χ j 0 . 

(40) 

gain in (39) we see the presence of Lie derivatives. 

We formalize the impact of the observation-estimation errors 

n the MPC performance by considering its perturbation on the 

tability conditions (37) and hence on the Lyapunov descent. The 

oordinate-transformed MPC formulation is used, with the dy- 

amics abbreviated as ( ˙ ζ , ˙ ξ ) = �0 (ζ , ξ ) + �(ζ , ξ ) u . Suppose that

here exists a control policy u = κ(ζ , ξ ) such that 

d
 f 

dζ
, 
d
 f 

dξ

)
(�0 (ζ , ξ ) + �(ζ , ξ ) κ(ζ , ξ )) ≤ −
 (ζ , ξ , κ(ζ , ξ )) . 

(41) 

hen the information of �0 and � is erroneous, the right-hand 

ide above needs to be added with a term to bound such errors. 

e may assume that structural errors are linearly bounded by 

 ̂
 θ − θ‖ plus a positive constant. Then the change in the Lyapunov 

unction becomes 

˙ 
 (t) ≤ −
 ( ̂  x (t ) , u (t )) + c θ‖ ̂

 θ − θ‖ + c 0 (42) 

or some c θ , c 0 > 0 . Then, as long as the ˆ x (t) entry in the 
 term

bove can be replaced by x (t) with an additional term linear in 

he observation error ‖ x (t) − ˆ x (t) ‖ , and the observation-estimation 

rrors are ultimately bounded, it follows that 

˙ 
 (t) ≤ −
 (x (t ) , u (t )) + ε (43) 

or some ε > 0 , which implies the ultimate boundedness of the 

tates in the closed-loop system ( Mayne and Falugi, 2019 ). The 

onditions are summarized in the following proposition. 

roposition 6 (Performance of MPC under the Lie-Sobolev 

HE) . Assume that 

• the state observation and parameter estimation errors (x − ˆ x , θ −
ˆ θ ) are ultimately bounded, e.g., under the conditions of Proposi- 

tion 5 ; 
• the stage cost | 
 (x ) − 
 ( ̂  x ) | ≤ c x ‖ x − ˆ x ‖ for some c x > 0 ; 
• the structural errors in the transformed dynamics (22) are 

bounded by c θ‖ ̂  θ − θ‖ + c 0 for some c θ , c 0 > 0 ; 
• there exist K ∞ -class functions α and αf such that 
 f (x ) ≤ αf (x ) 

and 
 (x, u ) ≥ α(x ) . 
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Fig. 1. Observed states and estimated parameters for (44) under the Lie-Sobolev (red) and non-Lie-Sobolev (blue) approaches compared to the true values (black). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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. Applications 

We apply the proposed Lie-Sobolev state and parameter esti- 

ation approaches to several examples. First, we use the explicit 

bserver-estimator proposed in Section 3 on two numerical exam- 

les, one with exact parameterization, and the other with struc- 

ural error in the parameterized model. Then we apply the Lie- 

obolev MHE in Section 4 to a complex chemical reactor sys- 

em. Through these case studies, improved convergence of the es- 

imated parameters, smaller structural errors, and better perfor- 

ance of the resulting nonlinear control can be seen in the Lie- 

obolev approaches compared to the non-Lie-Sobolev ones. 

.1. Example without structural errors 

Consider the following system ( Isidori, 1995 , Example 4.1.5): 

˙  = 

⎡ 

⎢ ⎣ 

θ1 x 1 x 2 − x 3 1 
x 1 

−x 3 
θ3 x 

2 
1 + x 2 

⎤ 

⎥ ⎦ + 

⎡ 

⎢ ⎣ 

0 
θ2 (1 + x 3 ) 

1 
0 

⎤ 

⎥ ⎦ u, y = x 4 (44) 

ith true parameter values θ1 = 1 , θ2 = 2 and θ3 = 1 . By choosing

he control input as a proportional feedback from the output, the 

esulting state trajectories appear to be oscillatory around the ori- 

in for a considerable time span, and hence this is considered as a 

uitable condition to perform system identification. 

For the Lie-Sobolev approach, the weight constants w 
0 , w 

1 , 

 
2 are all set as 1. For the non-Lie-Sobolev one, w 

1 and w 
2 

ecome 0. The tunable semidefinite matrices in the observer- 

stimator are empirically determined as �σ = diag (5 , 2 , 2 , 1) , �π =
iag (1 , 5 , 1 . 5) , under which the observed states and estimated pa-

ameters of the Lie-Sobolev approach converge to the true val- 

es. 3 The trajectories of ( ̂  x , ˆ θ ) during a simulation time span of 

 = 30 are shown in Fig. 1 . For non-Lie-Sobolev observation and 

stimation, the lack of convergence to the nominal values does not 

ppear to be improved by choosing different tunings of �σ and 

π . The reason for this limitation of the non-Lie-Sobolev approach 

s that when the output derivatives are not explicitly considered, 
3 The initial state for simulation x (0) is chosen according to a uniform dis- 

ribution in the hypercube [ −0 . 5 , 0 . 5] 4 . The initialized observation error for x , 

ˆ  (0) − x (0) is randomized in [ −0 . 25 , 0 . 25] 4 , and for ˙ x , ˙ ˆ x (0) − ˙ x (0) is randomized in 

 −0 . 25 2 , 0 . 25 2 ] × [ −0 . 25 , 0 . 25] 3 . The initial guess for the parameters, ˆ θ (0) , is ran- 

omly chosen in [0 . 5 , 1 . 5] × [1 . 5 , 2 . 5] × [0 . 5 , 1 . 5] . 

i

[

o

[

8 
he objective function can be insensitive to some of the parame- 

ers. After a short incipient time, the trajectories of the observed 

tates become consistent with the estimated parameters that devi- 

te from the true values. Afterwards, the updates on the estimated 

arameters are driven only by the difference between the output 

 and the observed ˆ x 4 , which results in changes significant only in 
ˆ 
3 . 

.2. Example with structural errors 

Consider the following system ( Isidori, 1995 , Example 4.1.4): 

˙  = 

[ −x 1 
x 1 x 2 
x 2 

] 

+ 

[ 

φ(x 2 ) 
1 
0 

] 

u, y = x 3 (45) 

here φ(x 2 ) = exp (x 2 ) unknown a priori and parametrized as 
ˆ (x 2 | θ ) = θ0 + θ1 x 2 + 

1 
2 θ2 x 

2 
2 
. A nominal estimation according to 

he Maclaurin series would be θ0 = 1 , θ1 = 1 , θ2 = 1 . The tuning

f the observer-estimator (15) is determined as �σ = I, and �π = 

iag (4 , 1 , 10) . The resulting trajectories 4 within T = 20 are shown

n Fig. 2 , where one can observe that the Lie-Sobolev approach re- 

ults in apparently smaller state observation errors, while under 

he non-Lie-Sobolev estimation, the state observation error does 

ot appear to vanish. To quantify the performance of parameter es- 

imation, we may calculate the integrated errors on the identified 

unction φ: 
∫ T 
0 (φ(x (t)) − ˆ φ( ̂  x (t ) | ̂  θ (t ))) 2 dt , which equals 0.7131 for

ie-Sobolev estimation and 7.0140 for non-Lie-Sobolev estimation. 

his result confirms the advantage of using Lie-Sobolev estimation 

n the presence of structural errors. 

A non-trivial problem involved in the Lie-Sobolev approach is 

ow to numerically find the derivatives of y i up to order ρi at 

ny time instant t > 0 . Generally, numerical derivatives will result 

n noise inevitably, and typically higher-order derivatives will be 

oisier than lower-order ones. If the assumptions in the proposi- 

ions presented earlier still hold, then the theoretical convergence 

roperties can be established. Here we use a sliding-mode differ- 

ntiator proposed by ( Levant, 2003 ), which was found to result in 

maller noises compared to several other classical differentiators 

n numerical studies ( Listmann and Zhao, 2013 ). The sliding mode 
4 The initial guess of parameters are chosen under a uniform distribution in 

0 . 5 , 1 . 5] 3 . The initial state is chosen randomly in [ −0 . 5 , 0 . 5] 3 , and the initial guess 

f states and state derivatives are perturbed from their true values respectively by 

 −0 . 5 , 0 . 5] 3 . 
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Fig. 2. Observed states and estimated parameters for (45) under Lie-Sobolev (red) 

and ordinary (blue) identification, respectively. The solid curves and dashed lines in 

black are true states and nominal parameter values, respectively. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 3. Observed states and estimated parameters for (45) under the Lie-Sobolev 

approach with exact output derivatives (red solid) and sliding mode numerical dif- 

ferentiation (red dash). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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5 The MHE is discretized by 30 finite elements. The weights for output 

and output derivative are 10 2 and 1, respectively. The MHEs are coded us- 

ing the pyomo.dae module ( Nicholson et al., 2018 ) in Python 3.6 in Ana- 

conda 3 with IPOPT 3.11.1 as the solver. The computational performance is im- 

proved by providing a lower bound (−5 , −5 , 1 , 1 , 5 , 1) and an upper bound 

(−0 . 5 , −1 , 10 , 10 , 15 , 5) on the parameters. The observed states are bounded within 

a proportion of (0 . 1 , 0 . 025 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1) of their respective steady-state values, 

and the quadratic inverse of these bounds are used as the weights of the states. 
ifferentiator is written as 

˙  0 i = −λ0 
i γ

1 
ρi +1 

i 
| z 0 i − y i | 

ρi 
ρi +1 sign (z 0 i − y i ) + z 1 i 

˙  r i = −λr 
i γ

1 
ρi −r+1 

i 
| z r i − ˙ z r−1 

i 
| ρi −r 

ρi −r+1 sign (z r i − ˙ z r−1 
i 

) + z r+1 
i 

r = 1 , . . . , ρi − 1) 

˙  
ρi 

i 
= −λρi 

i 
γi sign (z 

ρi 

i 
− ˙ z 

ρi −1 

i 
) (46) 

here the parameters are recommended as λ0 
i 

= 12 , λ1 
i 

= 8 , λ2 
i 

= 

 , with γi being a tunable Lipschitz estimate of the y i signal. z 
r 
i 
is

hus an estimate of y (r) 
i 

. For faster ODE solution, we approximate 

ign (·) with tanh (·/ 0 . 01) . 

Assuming an initial deviation of z from (y, ˙ y , ̈y ) randomized 

ccording to a uniform distribution in [0 . 5 , 0 . 5] 3 , under the Lev-

nt sliding mode differentiator ( γ = 1 ), the trajectories of the ob- 

erved states and estimated parameters are shown in Fig. 3 . It is 
9 
bserved that the trajectories under the sliding mode differentia- 

or are asymptotically close to the trajectories with exact output 

erivatives. The integrated errors for the numerical differentiation- 

ased estimation is 0.8993, 26 . 1% larger than the exact case. It is 

hus concluded that due to the capability of sliding mode differ- 

ntiator to give accurate estimations of output derivatives, the per- 

ormance of numerical differentiation-based Lie-Sobolev state and 

arameter estimation remains satisfactory. 

emark 4 (Filtering differentiation of noisy signals) . Practically, 

he output measurements usually contain noise. Signal preprocess- 

ng and filtering techniques need to be applied in this case. For ex- 

mple, in the Laplace domain, the differentation operator s can be 

odified as s/ (1 + λs ) with a time constant λ > 0 which should be

uch larger than that of the noise dynamics while much shorter 

han the dynamics of the differentiated signal. 

.3. A glycerol etherification reactor 

We consider a glycerol etherification reactor ( Liu et al., 2016 ) 

ith 6 states, 1 input and 1 output, and a relative degree of 1. The

rue dynamics involving the thermodynamics of non-ideal mix- 

ures is approximated by a 6-parameter ideal mixture model. It is 

esirable to handle such structural errors with Lie-Sobolev estima- 

ion, in which the time derivative of the output accounts for the 

ensitivity of reaction rates on component concentrations. A de- 

ailed description of the system is given in Appendix B . 

For the estimation, a sinusoidal excitation is imposed on the in- 

ut F 1 with an amplitude of 50 kmol/h and a period of 1 h. The

utput derivatives are obtained by Levant’s sliding mode differen- 

iator (46) . The horizon length for MHE is set as 1.5 h. The trajecto-

ies of observed states, estimated parameters, and the correspond- 

ngly inferred outputs and output derivatives of the Lie-Sobolev 

nd non-Lie-Sobolev MHEs 5 are compared to the actual states and 

ominal parameters in Fig. 4 . It is observed that due to the struc- 

ural error in the parametric model assuming ideal liquid mixture, 

he observed states and estimated parameters inevitably have de- 

iations from the true values of states and nominal kinetic param- 

ters. By using the Lie-Sobolev MHE, the observation and estima- 

ion result in significantly smaller deviations in the output deriva- 

ive. Comparing the trajectories of the Lie-Sobolev MHE to those 

f the non-Lie-Sobolev MHE, we note that the different decisions 

ade by the two identification schemes include primarily the es- 

imation of θ3 and secondarily the estimation of θ2 , namely the 

re-exponential factors of the two main reactions occurring in the 

ystem – the reactions of IB with DE (with a molar fraction of 

bout 0.1045) and with ME (with a molar fraction of approximately 

.0436). 

To examine the impact of Lie-Sobolev MHE on nonlinear con- 

rol, MPC simulations are then performed based on the identified 

odel starting from initial points randomly sampled around the 

teady state within the state bounds of the MHEs. The MPC is ac- 

ivated after one MHE horizon is passed, before which the con- 

rol signal is fixed at zero. The prediction horizon length and the 

iscretization scheme is the same as those of MHE, and the sam- 

ling time is 0.1 h, during which the control input is held con- 

tant. Fig. 5 shows the closed-loop trajectories of inputs and states 

sing MPC based on MHE as the state observer and the models 
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Fig. 4. Observed states and estimated parameters for the glycerol etherification reactor under Lie-Sobolev (red dotted) and ordinary (blue dotted) MHE, respectively. The 

solid curves and dashed lines in black are true states and nominal parameter values, respectively. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 5. Closed-loop trajectories of MHE-MPC based on Lie-Sobolev (red) and non-Lie-Sobolev estimation (blue) compared to the steady state (black). (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 
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etermined by the Lie-Sobolev and non-Lie-Sobolev identification. 

learly, the model predictive controller using the Lie-Sobolev es- 

imated model parameters and Lie-Sobolev MHE better stabilizes 

he process near the steady state in the presence of structural er- 

ors, while the non-Lie-Sobolev controller steers the molar frac- 

ions away from the steady state. In other words, nonlinear system 

dentification using the Lie-Sobolev MHE results in improved MPC 

ontrol performance. 

It should be noted, however, that the incorporation of Lie 

erivative terms significantly increases the computational difficulty 

f solving the MHE problem. The total computational time for MHE 

n the above MPC simulation is 372.3 and 116.4 seconds with Lie- 

obolev and non-Lie-Sobolev state observation, respectively. Solver 

ailures are also more frequently encountered. 

. Conclusions 

In this paper we have proposed that for nonlinear control, it 

s desirable to perform state and parameter estimation following a 

ie-Sobolev procedure, where the state observations and parameter 

stimates aim to match not only the predicted outputs but also the 

utput time derivatives to the measurements. We have discussed 

he Lie-Sobolev formulations and their convergence properties for 
10 
xplicit gradient descent-based and implicit moving horizon-based 

stimation schemes. Their effects on input–output linearizing con- 

rol and MPC have also been discussed, respectively. The improved 

erformance of Lie-Sobolev state and parameter estimation was 

emonstrated by two numerical examples and a case study on a 

lycerol etherification reactor. 

We note that classical observer and estimator designs tend to 

void using time derivatives of output variables due to the view 

hat the derivative estimates are usually inaccurate with noisy out- 

ut signals. On the other hand, as shown in this work, Lie-Sobolev 

chemes that exploit derivative information can play a significant 

ole in improving the identification and control performance, as- 

uming that the outputs are accurately measured and appropriate 

umerical differentiators are used. How these two aspects can be 

econciled towards better practice in a general setting remains an 

pen question. 
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ppendix A. Proofs of Propositions 1–3 

1. Proof of Proposition 1 

The design of the gradient descent-based observer-estimator re- 

ults in the time derivative of Q equal to 

˙ 
 = −

∥∥∥ ˙ ˆ x − ˆ f − ˆ g u 

∥∥∥2 

�σ

−
∥∥∥∥∂Q 

∂ ̂  θ

∥∥∥∥
2 

�π

+ 

∂S 

∂ ̂  x 
( ̂  f + ˆ g u ) + 

∂S 

∂u 
˙ u + 

d y ∑ 

i =1 

ρi ∑ 

r=0 

∂S 

∂y (r) 
i 

y (r+1) 
i 

. (A.1) 

he first two terms are negative whenever ˙ ˆ x (t) = 
ˆ f ( ̂  x (t ) | ̂  θ (t )) +

ˆ  ( ̂  x (t) | ̂  θ (t)) u (t) and ∂ Q/∂ ̂  θ = 0 are not satisfied, i.e., when there

xist state observer errors and the parameter estimates are not at 

heir temporal stationary values, respectively. The remaining three 

erms are not manipulable by the construction of σ and π , in 

hich the first term is the change of S resulted from the flow of 

he state observations, and the other two terms are resulted from 

he exogenous changes in the input and output and output deriva- 

ive signals, respectively. For convergence, these non-manipulable 

erms should be small enough compared to the negative definite 

erms. 

By finding the partial derivatives of S and substituting them 

nto (A.1) , after simplifications we have 

˙ 
 = −

∥∥∥ ˙ ˆ x − ˆ f − ˆ g u 

∥∥∥2 

�σ

−
∥∥∥∥∂Q 

∂ ̂  θ

∥∥∥∥
2 

�π

+ 

d y ∑ 

i =1 

{ ρi −1 ∑ 

r=0 

w 
r 
i 
(L r f h i ) 

[ 


(∂L r 

f 
h i 

∂x 

)
( f + gu ) + 

∂L r 
f 
h i 

∂x 
(
 f + 
gu ) 

] 

+ w 

ρi 

i 

[

(L ρi 

f 
h i ) + 
(L g L 

ρi 

f 
h i ) u 

][ 


(∂L ρi 

f 
h i 

∂x 
+ 

∂L g L 
ρi −1 

f 
h i 

∂x 
u 

)
( f + gu

+ 

(∂L ρi 

f 
h i 

∂x 
+ 

∂L g L 
ρi −1 

f 
h i 

∂x 
u 

)
(
 f + 
gu ) + 
(L g L 

ρi −1 

f 
h i ) ̇ u 

] } 

. (A.2) 

here 
 denotes the differences between the true dynamics eval- 

ated at true states x (t) and the estimated dynamics at observed 

tates ˆ x (t) . Under the assumptions of Proposition 1 , there exist 

onstants c σ , c π > 0 such that 

˙ 
 ≤ −c σ‖ ̇

 ˆ x − ˆ f − ˆ g u ‖ 
2 − c π‖ ̂

 θ − θ‖ 
2 , (A.3) 

nd hence the criterion Q(t) becomes a Lyapunov function. As t → 

 , we have ˙ ˆ x (t) − ˆ f ( ̂  x (t ) | ̂  θ (t )) − ˆ g ( ̂  x (t ) | ̂  θ (t )) u (t ) → 0 and ˆ θ (t) −
→ 0 , and therefore ˆ x (t) − x (t) → 0 . 

2. Proof of Proposition 2 

Under the first two assumptions, we may specify constants 

 , M , M , M > 0 such that 
11 12 22 0 

11 
˙ 
 ≤ −‖ ̇

 ˆ x − ˆ f − ˆ g u ‖ 
2 
�σ

−
∥∥∥∥
(

∂Q 

∂ ̂  θ

)
0 

+ ε� 
Q 

∥∥∥∥
2 

�π

+ M 11 ‖ ̇
 ˆ x − ˆ f − ˆ g u ‖ 

2 

+ 2 M 12 ‖ ̇
 ˆ x − ˆ f − ˆ g u ‖‖ ̂

 θ − θ‖ + M 22 ‖ ̂
 θ − θ‖ 

2 + M 0 , (A.4) 

here the second term on the right hand side is further bounded 

y −μλmin (�π ) ‖ ̂  θ − θ‖ 2 + 2 c Q λmax (�π )(∂ Q/∂ ̂  θ ) , where ∂ Q/∂ ̂  θ
an be bounded linearly with m Q , 
 Q , c Q > 0 as in the first assump-

ion. It follows that 

˙ 
 ≤ −M 2 

(∥∥∥ ˙ ˆ x − ˆ f − ˆ g u 

∥∥∥2 

+ μ‖ ̂
 θ − θ‖ 

2 

)

+ M 1 

(∥∥∥ ˙ ˆ x − ˆ f − ˆ g u 

∥∥∥2 

+ μ‖ ̂
 θ − θ‖ 

2 

)1 / 2 

+ M 0 , 

(A.5) 

here 

 1 = 2 c Q λmax (�π ) 
(

 Q + 

m Q 

μ

)
max (
 Q , m Q ) , 

 2 = min 
(
λmin (�σ ) − M 11 − M 12 

μ , λmin (�π ) − M 12 − M 22 

μ

)
. 

(A.6) 

herefore Q is guaranteed to decrease unless 

˙ ˆ x − ˆ f − ˆ g u 

∥∥∥2 

+ μ‖ ̂
 θ − θ‖ 

2 ≤
(
M 1 + (M 

2 
1 + 4 M 0 M 2 ) 

1 / 2 

2 M 2 

)2 

. 

(A.7) 

hen this inequality is satisfied, according to the first assumption, 

here will be a corresponding upper bound Q max > 0 of Q . In other 

ords, whenever Q ≥ Q max , ˙ Q < 0 , implying that Q is ultimately 

ounded, and hence the errors are ultimately bounded. Thus we 

ave proved the proposition. We note that the right-hand side ex- 

ression above is always lower-bounded by a constant: 

 1 /M 2 ≥ c Q (
 Q + m Q /μ) max (
 Q , m Q ) . (A.8) 

3. Proof of Proposition 3 

Having assumed the Lipschitz continuity of f, g, h and Lie 

erivatives, we can claim that the difference between the esti- 

ated model and the true dynamics and their Lie derivatives will 

e ultimately bounded. That is, ∃ B > 0 , ∀ ε > 0 , ∃ T ε > 0 such that

 t > T ε , 

‖ f (x (t)) − ˆ f (x (t) | ̂  θ (t)) + g(x (t)) u (t) − ˆ g (x (t) | ̂  θ(t)) u (t) ‖ 
2 

+ 

∑ d y 
i =1 

[ ∑ ρi −1 
r=0 

w 
r 
i 
‖ L r 

f 
h i (x (t)) − L r 

ˆ f 
ˆ h i (x (t) | ̂  θ (t)) ‖ 

2 

+ w 

ρi 

i 
‖ L 

ρi 

f 
h i (x (t)) − L 

ρi 

ˆ f 
ˆ h i (x (t) | ̂  θ(t)) + L g L 

ρi −1 

f 
h i (x (t)) u (t) 

−L ˆ g L 
ρi −1 

ˆ f 
ˆ h i (x (t) | ̂  θ (t)) u (t) ‖ 

2 

] 
≤ B + ε. 

(A.9) 

nder the assumptions of Propositions 2 and 3, replacing the x (t) 

nd u (t) with any x ∈ X and u ∈ U leads to an increase linearly

ounded by η on the right-hand side of the above formula. That 

s, ∀ x ∈ X , ∀ u ∈ U , 

‖ f (x ) − ˆ f (x | θ ) + g(x ) u − ˆ g ( ̂  x | θ ) u ‖ 
2 

+ 

∑ d y 
i =1 

[ ∑ ρi −1 
r=0 

w 
r 
i 
‖ L r 

f 
h i (x ) − L r 

ˆ f 
ˆ h i (x | θ ) ‖ 

2 

+ w 

ρi 

i 
‖ L 

ρi 

f 
h i (x ) − L 

ρi 

ˆ f 
ˆ h i (x | θ ) 

+ L g L 
ρi −1 

f 
h i (x ) u − L ˆ g L 

ρi −1 

ˆ f 
ˆ h i (x | θ ) u ‖ 

2 

] 
≤ B (ε, η) . 

(A.10) 

hus proving the proposition. 
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Table B1 

Parameters related to the reaction kinetics. 

E 1 21 . 3 kJ/mol k ◦1 2 . 56 × 10 2 kmol / ( h · mol H ) 

E 2 39 . 1 kJ/mol k ◦2 1 . 14 × 10 5 kmol / ( h · mol H ) 

E 3 25 . 6 kJ/mol k ◦3 7 . 52 × 10 3 kmol / ( h · mol H ) 

E 4 39 . 9 kJ/mol k ◦4 5 . 59 × 10 3 kmol / ( h · mol H ) 


H 1 −49 . 4 kJ/mol 
S 1 −119 . 1 J / ( mol · K ) 

H 2 −6 . 0 kJ/mol 
S 2 −36 . 9 J / ( mol · K ) 

H 3 −27 . 1 kJ/mol 
S 3 −89 . 8 J / ( mol · K ) 

H a1 −7 . 6 kJ/mol K ◦a1 2 . 51 × 10 −1 


H a2 −12 . 3 kJ/mol K ◦a2 2 . 24 × 10 −4 

w 1 92 kg/mol ρ1 1261 kg / m 
3 

w 2 56 kg/mol ρ2 588 kg / m 
3 

w 3 148 kg/mol ρ3 1015 kg / m 
3 

w 4 204 kg/mol ρ4 920 kg / m 
3 

w 5 260 kg/mol ρ5 880 kg / m 
3 

w 6 112 kg/mol ρ6 718 kg / m 
3 

w 7 18 kg/mol ρ7 10 0 0 kg / m 
3 

ρcat 60 kg / m 
3 q 4.7 mol H/kg 

A

i

w

t

2  

r

T

p

r

r

w

e

s

T

T

R

w

a

u

d

s

c

e

(

l

l

Table B2 

Parameters in the NRTL model. 

A 12 6000.6295 A 21 7790.3843 α12 0.2 

A 13 5093.9878 A 31 −261 . 0596 α13 0.2 

A 14 15394.2024 A 41 3470.2636 α14 0.2 

A 15 18947.6060 A 51 9748.1650 α15 0.2 

A 16 10108.9095 A 61 16721.0340 α16 0.2 

A 17 −2280 . 9459 A 71 2145.9265 α17 1.011 

A 23 10225.3886 A 32 −2579 . 3354 α23 0.2 

A 24 −3867 . 1740 A 42 −6172 . 8956 α24 0.2 

A 25 −3867 . 1740 A 52 −6172 . 8956 α25 0.2 

A 26 −735 . 1239 A 62 472.8172 α26 0.329 

A 27 11654.4821 A 72 11799.1457 α27 0.255 

A 34 −4605 . 9560 A 43 8587.5306 α34 0.2 

A 35 7737.8398 A 53 −1327 . 7458 α35 0.2 

A 36 2163.8848 A 63 10377.8670 α36 0.275 

A 37 −3457 . 2938 A 73 13410.9808 α37 0.392 

A 45 9937.7242 A 54 −3728 . 8290 α45 0.2 

A 46 −1867 . 1581 A 64 8318.6558 α46 0.286 

A 47 −168 . 9405 A 74 20784.1686 α47 0.345 

A 56 −3141 . 0292 A 65 6209.7266 α56 0.398 

A 57 −386 . 1022 A 75 20784.9169 α57 0.202 

A 67 9981.2064 A 76 20784.9169 α67 0.2 

Table B3 

Parameters and steady states in the reactor dynamics. 

x 1 0.0035 x 2 0.7267 x 3 0.0436 

x 4 0.1045 x 5 0.0156 x 6 0.0887 

x 1 , 1 0.0000 x 1 , 2 0.9198 x 1 , 3 0.0000 

x 1 , 4 0.0000 x 1 , 5 0.0000 x 1 , 6 0.0584 

x 2 , 1 0.0000 x 2 , 2 0.9731 x 2 , 3 0.0000 

x 2 , 4 0.0000 x 2 , 5 0.0000 x 2 , 6 0.0192 

x 3 , 1 0.7674 x 3 , 2 0.0000 x 3 , 3 0.2294 

x 3 , 4 0.0001 x 3 , 5 0.0000 x 3 , 6 0.0000 

F 1 185.4900 F 2 1.7267 F 3 40.1762 

T  

1  

t

m

t

s

f

a

3

s

H

t

L

n

s

m

x

U

p

o

m  

k  

a

s

ppendix B. Dynamics of the etherification reactor 

In the glycerol etherification process, glycerol reacts with 

sobutene to yield mono-, di-, and tri- tert -butyl ethers of glycerol 

ith a side dimerization reaction of isobutene: 

G + IB < = > ME, ME + IB < = > DE, 

DE + IB < = > TE, 2 IB − > DIB. 

Apart from these components, water (W) exists in the system as 

he solvent. The stoichiometric constants νi j of the 7 species (1 = G, 

 = IB, 3 = ME, 4 = DE, 5 = TE, 6 = DIB, 7 = W, subscripted by i ) in the 4

eactions (subscripted by j) are given as 

ν11 = −1 , ν21 = −1 , ν31 = 1 , ν22 = −1 , ν32 = −1 , 
ν42 = 1 , ν23 = −1 , ν43 = −1 , ν53 = 1 , ν24 = −2 , 
ν64 = 1 , other νi j = 0 . 

(B.1) 

he rates of the 4 reactions, in terms of total extent per unit time 

er mole of active catalytic site ( kmol · h −1 · (mol H) −1 ), are 

 1 = 

k 1 (a 1 a 2 − a 3 /K e1 ) 

(1 + K a1 a 1 + K a2 a 2 ) 2 
, r 2 = 

k 2 (a 2 a 
2 
3 − a 4 /K e2 ) 

1 + K a1 a 1 + K a2 a 2 
, 

 3 = 

k 3 (a 2 a 
2 
4 − a 5 /K e3 ) 

1 + K a1 a 1 + K a2 a 2 
, r 4 = 

k 4 a 
2 
2 

(1 + K a1 a 1 + K a2 a 2 ) 2 
, (B.2) 

here k and K e stands for the rate constants, related to pre- 

xponential factors and activation energies, and equilibrium con- 

tants, related to the enthalpy and entropy changes, respectively. 

he adsorption equilibrium constants K a follow similar rules: 

k j = k ◦
j 
exp (−E j /RT ) , K e j = exp (−
H j /RT + 
S/R ) , 

K a i = K ◦
a i 
exp (−
H a i /RT ) . 

(B.3) 

he reaction rate for each species is therefore 

 i = 

∑ 4 
j=1 νi j r j V ρcat q, V = M 

∑ 7 
j=1 

w j x j 
ρ j 

. (B.4) 

ith q being the quantity of active sites in moles per mass of cat- 

lyst, ρcat the density of catalyst, and V the volume of reacting liq- 

id linked to the total molar holdup M and molar fractions x j by 

ensities ρ j and molar weights w j . The true values of these con- 

tants are listed in Table B.1 . We assume that the thermodynamic 

onstants E j , 
H j , 
S j , 
H a i are known exactly, while the pre- 

xponential factors k ◦
j 
( j = 1 , 2 , 3 , 4 ) for the reaction rates and K ◦

a i 

 i = 1 , 2 ) for adsorption equilibria are to be estimated. 

For the activity of the chemical species in the multicomponent 

iquid mixture, the NRTL model is used: 

a i = γi x i , 

n γi = 

∑ 

j x j 
A ji 
RT 

exp 

(
−α ji A ji 

RT 

)
∑ 

j x j exp 

(
−α ji A ji 

RT 

) + 

∑ 

j 

x j exp 

(
−αi j A i j 

RT 

)
∑ 

k x k exp 
(
−αik A ik 

RT 

)

12 
×

⎛ 

⎝ 

A i j 

RT 
−

∑ 

k x k A k j exp 

(
−αk j A k j 

RT 

)
∑ 

k x k exp 

(
−αk j A k j 

RT 

)
⎞ 

⎠ , i = 1 , . . . , 7 . (B.5) 

he parameters in the NRTL model is listed in Table B.2 . For i =
 , . . . , 7 , A ii = 0 and αii = 0 . For i, j = 1 , . . . , 7 , αi j = α ji . We assume

hat the NRTL model is unknown, and in the identification the 

ixture is considered ideal, i.e., γi = 1 , ∀ i . 

For simplicity we consider an isothermal reactor with constant 

emperature T = 353 K and constant molar holdup M. The inlet 

tream to the reactor is mixed by 4 streams, in which one is the 

resh feed of pure isobutene, whose molar flow rate is considered 

s the manipulated input. The flow rates and compositions of other 

 streams to the reactor are fixed. The molar flow rate of the outlet 

tream is adjusted accordingly to keep the molar holdup constant. 

ence the dynamic model has 6 states standing for the molar frac- 

ions of the previous 6 components (with the 7th one dependent). 

et the controlled output be the total reaction rate R = 

∑ 7 
i =1 R i , 

amely the difference between the molar flow rates of the inlet 

tream and the outlet, which are assumed measurable. Hence the 

odel is 

˙  i = 

F 0 + u 

M 

(x 0 ,i − x i ) + 

3 ∑ 

l=1 

F l 
M 

(x l,i − x i ) + 

R i (x ) 

M 

, y = 

7 ∑ 

i =1 

R i (x ) . 

(B.6) 

nder the nominal input u = 0 , the steady states along with the 

arameters are given in Table B.3 . The approximate model is the 

ne with R i in the above accurate model substituted with an ideal 

ixture (with all γi = 1 ) and kinetic coefficients k ◦
1 
/ 10 4 , k ◦

2 
/ 10 3 ,

 
◦
3 
/ 10 3 , k ◦

4 
/ 10 3 , K a1 , K a2 / 10 

−4 (scaled by orders of magnitudes that

re assumed to be known) left as 5 unknown parameters, repre- 

ented as ˆ R (x | θ ) . 
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