Optimization and Engineering
https://doi.org/10.1007/5s11081-020-09585-w

RESEARCH ARTICLE

®

Check for
updates

Fast and stable nonconvex constrained distributed
optimization: the ELLADA algorithm

Wentao Tang'?® - Prodromos Daoutidis’

Received: 4 May 2020 / Revised: 29 November 2020 / Accepted: 29 November 2020
©The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract

Distributed optimization using multiple computing agents in a localized and coordi-
nated manner is a promising approach for solving large-scale optimization problems,
e.g., those arising in model predictive control (MPC) of large-scale plants. How-
ever, a distributed optimization algorithm that is computationally efficient, globally
convergent, amenable to nonconvex constraints remains an open problem. In this
paper, we combine three important modifications to the classical alternating direc-
tion method of multipliers for distributed optimization. Specifically, (1) an extra-
layer architecture is adopted to accommodate nonconvexity and handle inequality
constraints, (2) equality-constrained nonlinear programming (NLP) problems are
allowed to be solved approximately, and (3) a modified Anderson acceleration is
employed for reducing the number of iterations. Theoretical convergence of the pro-
posed algorithm, named ELLADA, is established and its numerical performance is
demonstrated on a large-scale NLP benchmark problem. Its application to distrib-
uted nonlinear MPC is also described and illustrated through a benchmark process
system.

Keywords Distributed optimization - Nonconvex optimization - Model predictive
control - Acceleration

1 Introduction

Distributed optimization (Boyd et al. 2011) refers to methods of performing opti-

mization using a distributed architecture—the monolithic problem is first decom-
posed into several subproblems, each handled by a corresponding solver (agent), and

< Prodromos Daoutidis
daou001 @umn.edu

Department of Chemical Engineering and Materials Science, University of Minnesota,
Minneapolis, MN 55455, USA

Present Address: Surface Operations, Projects and Technology, Shell Global Solutions (U.S.)
Inc., Houston, TX 77082, USA

Published online: 03 January 2021 @ Springer

http://orcid.org/0000-0003-0816-2322
http://orcid.org/0000-0003-4803-0404
http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-020-09585-w&domain=pdf

W.Tang, P. Daoutidis

Agent 1

Dual lPrimul

Agent 2

y/
1
\]
\

Agent 4

Coordinator

Fig. 1 Primal—dual distributed optimization

necessary information among the agents is communicated to coordinate the distrib-
uted computation. The alternating direction method of multipliers (ADMM), as the
most classical and representative algorithm for distributed optimization, was pro-
posed in the 1970s (Glowinski and Marroco 1975; Gabay and Mercier 1976) and
has underdone significant development in the last decade. ADMM is an iterative
primal—dual algorithm that is closely related to the method of multipliers (MM).
In each iteration, the blocks of primal variables are alternately optimized, and the
dual variables are updated according to the updated values of the primal variables.
The underlying architecture of the algorithm is illustrated in Fig. 1, with two dis-
tinct groups of components—the distributed agents and the coordinator(s) collecting
information about the primal and dual values from each other to solve their own
subproblems.

Convergence is the most basic requirement of distributed optimization and also
the central theme of a large amount of theoretical research on ADMM. For con-
vex problems and nonconvex problems whose nonconvexity resides in the objective
function, by connecting the ADMM algorithm with the monotone operator theory
and Douglas—Rachford splitting, the Fejér monotonicity and monotonicity of the
augmented Lagrangian become standard arguments of proving theoretical conver-
gence guarantees (He and Yuan 2012; Nishihara et al. 2015; Hong et al. 2016; Hong
and Luo 2017; Wang et al. 2019; Themelis and Patrinos 2020). However, nonconvex
constraints appear much more difficult to handle. To guarantee convergence, Hours
and Jones (2015) suggested dualizing and penalizing all nonconvex constraints,
making them undifferentiated and tractable by ADMM; however, this alteration of
the problem structure eliminates the option for distributed agents to use any subrou-
tine other than MM. Houska et al. (2016) used a quadratic programming problem to
decide the dual variables in the augmented Lagrangian as well as an extrapolation of
primal updates; this algorithm, however, involves a central agent that extracts Hes-
sian and gradient information of the subsystem models from the distributed agents in
every iteration, and is thus essentially semi-centralized. Scutari et al. (2016) adopted
feasibility-preserving convex approximations to approach the solution, which is
applicable to problems without nonconvex equality constraints. We note that several

@ Springer

Fast and stable nonconvex constrained distributed...

recent papers (Sun and Sun 2019; Jiang et al. 2019; Yang et al. 2020) proposed the
idea of placing slack variables corresponding to the inter-subsystem constraints and
forcing the decay to zero by tightening the penalty parameters of slack variables.
This modification to the ADMM with slack variables and their penalties leads to
a globally convergent extra-layer augmented Lagrangian-based algorithm with pre-
served agent-coordinator problem architecture.

Computational efficiency is also of critical importance for distributed optimiza-
tion. The slothfulness of primal—dual algorithms typically arises from two issues.
First, the subgradient (first-order) update of dual variables restricts the number of
iterations to be of linear complexity (Hong and Luo 2017). For convex problems,
momentum methods (Goldstein et al. 2014; Ouyang et al. 2015) or Krylov subspace
methods (Zhang and White 2018) can be adopted for acceleration, which, however,
do not directly extend to nonconvex problems. Under nonconvexity, it was only very
recently realized that Anderson acceleration, a multi-secant technique for fixed-
point problems, can be generally used to accelerate the dual variables (Zhang et al.
2018, 2019; Fu et al. 2019). The second cause for the high computational cost of
distributed optimization is the instruction on the distributed agents to fully solve
their subproblems to high precision in each iteration. Such exhaustive efforts may be
unnecessary since the dual information to be received from the coordinator will keep
changing. For convex problems, it is possible to linearize the augmented Lagran-
gian and replace the distributed subproblems with Arrow—Hurwicz—Uzawa gradi-
ent flows (Dhingra et al. 2019). In the presence of nonconvexity of the objective
functions, a dual perturbation technique to restore the convergence of the augmented
Lagrangian was proposed (Hajinezhad and Hong 2019). It is yet unknown how to
accommodate such gradient flows to nonconvex constraints. A different approach is
to allow inexact solution of the subproblems with adaptively tightening tolerances
(Eckstein and Yao 2017, 2018). Such an approximate ADMM algorithm allows a
better balance between the primal and dual updates, and avoids wasteful computa-
tional steps inside the subroutines.

An important engineering application that demands both a convergent and effi-
cient distributed optimization algorithm is model predictive control (MPC), which is
an advanced control strategy widely adopted in process industries. In MPC, control
decisions are made through solving an optimal control problem minimizing the cost
associated with the predicted trajectory in a future horizon subject to the system
dynamics and operational constraints (Rawlings et al. 2017). For large-scale sys-
tems, it is desirable to seek a decomposition, e.g., using community detection or
network block structures (Daoutidis et al. 2018, 2019; Tang et al. 2018), and deploy
distributed MPC strategies (Scattolini 2009; Christofides et al. 2013), which prom-
ises better performance than fully decentralized MPC by enabling coordination,
while avoiding assembling and computing on a monolithic model as in centralized
MPC. In general, distributed nonlinear MPC with subsystem interactions should
be considered as a distributed optimization problem under nonconvex constraints.
Whether the distributed optimization algorithm converges affects the quality of con-
trol decisions and hence the closed-loop control performance, whereas computa-
tional efficiency determines whether a distributed nonlinear MPC strategy can be
practically implemented online.

@ Springer

W.Tang, P. Daoutidis

Although ADMM for distributed MPC has been discussed (Farokhi et al. 2014;
Mota et al. 2014), due to the lack of convergent and efficient nonconvex constrained
distributed optimization algorithms, its application is so far limited mainly to linear
systems (Giselsson et al. 2013; Wang and Ong 2017). The most common approach of
distributed nonlinear MPC is to iterate the control inputs among the subsystems (in
sequence or in parallel) (Stewart et al. 2010; Liu et al. 2010; Chen et al. 2012). The
input iteration routine is typically either semi-decentralized by implicitly assuming
that the subsystems interact only through inputs and considering state coupling as
disturbances, or semi-centralized by using moving-horizon predictions based on the
entire system, which, however, contradicts the fact that the subsystem models should
be usually packaged inside the local agents rather than shared over the entire system.
In a different vein, efficient centralized MPC algorithms have been proposed which
exploit the underlying sparse patterns in the variable-constraint structure of the opti-
mal control problems and decompose the linear algebraic operations involved in the
optimization solver (Wang and Boyd 2009; Patterson and Rao 2014; Biegler and
Thierry 2018). While these efficient centralized MPC algorithms improve compu-
tational efficiency without compromising the solution quality, distributed MPC is
still advantageous in its capability of solving very large MPC problems on a local-
ized subsystem basis without the need of engineering the solver details. Moreover,
such structure exploitation can also be utilized by the solvers employed in distrib-
uted MPC. The crucial computational issue faced by distributed MPC is its iterative
complexity and this will be addressed in this paper.

The purpose of this work is to develop a convergent and computationally efficient
algorithm for distributed optimization under nonconvex constraints. Although the
algorithm is in principle not restricted to any specific problem, we consider distrib-
uted nonlinear MPC as an application of special interest. Based on the above discus-
sion, we identify the following modifications to the classical ADMM algorithm as
the key to mitigating the challenges in convergence and computational complexity:
(1) additional slack variables are placed on the constraints relating the distributed
agents and the coordinator, (2) approximate optimization is performed in the distrib-
uted agents, and (3) the Anderson acceleration technique is adopted by the coordi-
nator. We therefore combine and extend as appropriate these techniques into a new
algorithm with a two-layer augmented Lagrangian-based architecture, in which the
outer layer handles the slack variables as well as inequality constraints by using a
barrier technique, and the inner layer performs approximate ADMM under an accel-
eration scheme. With guaranteed stability and elevated speed, fo the best knowledge
of the authors, the proposed algorithm is the first practical and generic algorithm of
its kind for distributed nonlinear MPC with truly localized model information. We
name this algorithm as ELLADA (standing for extra-layer augmented Lagrangian-
based accelerated distributed approximate optimization).

The paper discusses the motivation, develops the ELLADA algorithm and estab-
lishes its theoretical properties, and illustrates its application through case studies. The
remainder of this paper is organized as follows. In Sect. 2, we first review the classical
ADMM and its modified versions. Then we derive our ELLADA algorithm in Sect. 3
with a trilogy pattern. First, a basic two-layer augmented Lagrangian-based algorithm
(ELL) is introduced and its convergence is discussed. Then the approximate solution of

@ Springer

Fast and stable nonconvex constrained distributed...

equality-constrained NLP problems and the Anderson acceleration scheme are incor-
porated to form the ELLA and ELLADA algorithms. In Sect. 4, a large-scale nonlinear
optimization benchmark problem is used to demonstrate the numerical performance of
the proposed ELLADA algorithm. The implementation of ELLADA on the distributed
optimization problem involved in distributed nonlinear MPC is shown in Sect. 5, and a
case study on a benchmark process is examined in Sect. 6. Conclusions and discussions
are given in Sect. 7.

2 ADMM and its modifications
2.1 ADMM

The alterating direction method of multipliers is the most commonly used algorithm for
distributed optimization under linear equality constraints (Boyd et al. 2011). Specifi-
cally, consider the following problem

min f(x)+g(Xx) st Ax+Bx=0 (1)

with two blocks of variables x and X, where f and g are usually assumed to be con-
vex. [The symbols in (1) are not related to the ones in Sect. 5.] The augmented
Lagrangian for such a constrained optimization problem is

L(x, %) = f() + g(&) + T (Ax + BY) + §||Ax + Bx|?, ?)

in which y stands for the vector of dual variables (Lagrangian multipliers) and p > 0
is called the penalty parameter. According to the duality theory, the optimal solution
should be determined by a saddle point of the augmented Lagrangian:

supmin L(x, X;y).
P 3)
The classical method of multipliers (MM) deals with this saddle point problem with

an iterative procedure, where the primal variables are optimized first and then the dual
variables are updated with a subgradient ascent (Bertsekas 2016, Chapter 6):

M F = arg rr;;n L(x,xy"),

“)
Y = yF 4 p(AdH 4 BEH),

in which the superscript stands for the count of iterations. In a distributed context,

x and X usually can not be optimized simultaneously. ADMM is thus an approxima-
tion of MM that allows the optimization of x and x to be performed separately, i.e.,

@ Springer

W.Tang, P. Daoutidis

X = arg minL(x,i/‘;y"),
X

7+ = arg min L(xk,)'c;yk), 5)
P = +p(A)H‘+1 +B)"ck+1).

Since the appearance of ADMM in 1970s (Glowinski and Marroco 1975; Gabay
and Mercier 1976), there have been many works regarding its theoretical properties,
extensions and applications. As we have mentioned in the Introduction, ADMM is
known to have a linear convergence rate for convex problems. This does not change
when the variables are constrained in convex sets. For example, if x € X, it suffices
to modify the corresponding term f{x) in the objective function by adding an indica-
tor function [,(x) (equal to 0 if x € X and 400 otherwise), which is still a convex
function.

2.2 ADMM with approximate updates

Unless the objective terms f{x) and g(X) are of simple forms such as quadratic func-
tions, the optimization of x and X in (5) does not have an exact solution. Usually,
iterative algorithms for nonlinear programming need to be called for the first two
lines of (5), and always searching for a highly accurate solution in each ADMM
iteration will result in an excessive computational cost. It is thus desirable to solve
the optimization subproblems in ADMM inexactly when the dual variables are yet
far from the optimum, i.e., to allow x**! and ¥*! to be chosen such that

dl;+1 e ()XL(kar],)_ck;yk), d§+1 e GXL(ka,)_ckH;yk), (6)

where 0, and J; represent the subgradients with respect to x and X, respectively, and
d, and d; are not exactly 0 but only converging to 0 asymptotically. For example, one
can assign externally a shrinking and summable sequence of absolute errors (Eck-
stein and Bertsekas 1992):

o

K ko gk
il < e, llds ||<€-,§
k=1

< 0,)

£M8
w»

or a sequence of relative errors to the errors proportional to other variations in the
algorithm (Eckstein and Yao 2017; Xie et al. 2017).

It was shown in Eckstein and Yao (2017) that a relative error criterion for termi-
nating the iterations in subproblems, compared to other approximation criteria such
as a summable absolute error sequence, better reduces the total number of subrou-
tine iterations throughout the ADMM algorithm. Such a relative error criterion is a
constructive one, rendered to guarantee the decrease of a quadratic distance between
the intermediate solutions (x*, x*,y) and the optimum (x*,x*,y*). In the context
of distributed optimization problems under nonconvex constraints, since the con-
vergence proof is established on a different basis from the quadratic distance, the
construction of such a criterion must be reconsidered. We will address this issue in
Sect. 3.2.

@ Springer

Fast and stable nonconvex constrained distributed...

2.3 Anderson acceleration

Linear convergence of the classical ADMM is essentially the result of subgradi-
ent dual update, which uses the information of only the first-order derivatives with
respect to the dual variables: d,L = Ax + Bx. The idea of creating a quadratically
convergent algorithm using only first-order derivatives originates back from Nest-
erov’s approach of solving convex optimization problems, which performs iterations
based on a linear extrapolation of the previous two iterations instead of the current
solution alone (Nesterov 1983). Such a momentum method can be used to acceler-
ate the ADMM algorithm, which can be seen as iterations over the second block of
primal variables X and the dual variables y (Goldstein et al. 2014). However, such
a momentum is inappropriate for nonconvex problems, since the behavior of the
extrapolated point can not be well controlled by a bound on the curvature of the
objective function.

Therefore, we resort to a different type of technique—Anderson acceleration,
which was proposed in Anderson (1965) first and later “rediscovered” in the field of
chemical physics (Pulay 1980). Generally speaking, Anderson acceleration is used
to solve the fixed-point iteration problem

w = hy(w) 8)

for some vector w and non-expansive mapping A, (satisfying
llhg(w) = ho(w') || < |lw = w/|| for any w and w). Different from the simple Krasno-
selskii-Mann iteration w**! = ewk + (1 — k)hy(w*) (x € (0, 1)), Anderson accelera-
tion takes a quasi-Newton approach, which aims at a nearly quadratic convergence
rate (Fang and Saad 2009). Specifically,! in each iteration k, the results from the
previous m iterations are recalled from memory to form the matrix of secants in w
and h(w) = w — hy(w):

A = [akom k1] 6K = WK WK K =k —m, k- 1
Ak = [816K = h(wK) — h(WK) K =k —m, .. k= 1. ©)
An estimated Jacobian is given by
Hy =1+ (A - AY) (Al a%) 7' ALT, (10)
or
H' =1+ () - af) (Al a}) Al (11)

which minimizes the Frobenius norm of B, — I subject to BkA’:V = A’;l. Then the

quasi-Newton iteration wi*! = wk — H h 11¥ leads to a weighted sum of the previous
m function values:

! There are two different types of Anderson acceleration. Here we focus on Type I, which was found to
have better performance (Fang and Saad 2009) and was improved in Zhang et al. (2018).

@ Springer

W.Tang, P. Daoutidis

m
Wk+1 - 2 afn/ho(xk—m+m) (12)
m'=0
. k m .
where the weights {am, }m,:0 are specified by
s’é, m'
kK _ k ! —
Er =Y S ™ S -1 m=1...m-1, (13)
1—sk | m =m
m—1

with Sl;n , being the m'th component s*:
st = (AFTAN T ART A, (14)

Anderson acceleration (12) may not always be convergent, although local conver-
gence was studied in some special cases (Toth and Kelley 2015). Recently, a glob-
ally convergent modification of Anderson acceleration was proposed in Zhang et al.
(2018), where regularization, restarting, and safeguarding measures are taken to
ensure the well-conditioning of the Afv matrix, boundedness of the inverse Jacobian
estimate (11), and acceleration only in a safety region, respectively.

The relevance of Anderson acceleration to ADMM lies in that the ADMM algo-
rithm (5) can be seen as fixed-point iterations (x*,y*) — (x**1,y**1), k=0,1,2, ...
(Zhang et al. 2019), which is the same idea underlying the ADMM with Nesterov
acceleration. For problems with nonconvex constraints, the iteration mapping # is
not necessarily non-expansive, and hence one can not directly establish the conver-
gence of Anderson acceleration with the original techniques used in Zhang et al.
(2018). We will address this issue in Sect. 3.3.

2.4 ADMM under nonconvex constraints

The presence of nonconvexity largely increases the difficulty of distributed optimi-
zation. Most of the work in nonconvex ADMM considers problems with nonconvex
objective function with bounded Hessian eigenvalues or the Kurdyka—t.ojasiewicz

property assumptions, under which a convergence rate of (9(1/ \/E) (slower than

that of convex ADMM, O(1/k)) was established (Li and Pong 2015; Hong et al.
2016; Wang et al. 2019). However, for many distributed optimization problems, e.g.,
the distributed MPC of nonlinear processes, there exist nonconvex constraints on the
variables, which is intrinsically non-equivalent to the problems with nonconvex
objective functions. For our problem of interest, the relevant works are scarce.

Here we introduce the algorithm of Sun and Sun (2019) for (1) under nonconvex
constraints x € X and X € X, reformulated with slack variables z:

min f(x) 4+ g(X) st.Ax+Bi+z=0,z2=0, x€X, T€X. (15)
X, X2

The augmented Lagrangian is now written as

@ Springer

Fast and stable nonconvex constrained distributed...

Lx, %, 25y, A, p, B) = f(X) + 8(X) + (%) + 13(X)

B2

> Mzl
(16)

The algorithm is a two-layer one, where each outer iteration (indexed by k) con-

tains a series of inner iterations (indexed by r). In the inner iterations, the classical

ADMM algorithm is used to update x, X, z and y in sequence, while keeping 4 and f

unchanged:

+y (Ax+Bx+2)+ glle+ch+z||2 + ATz +

xk,r+l = arg l’IlXil'lL(.X,)—Ck,r’zk,r;yk,r’ /lk,pk, ﬁk)

2

pk yk,r
= argminf(x) + = ||{Ax + B¥*" + 7*" + —
xeX 2 pk
)_Ck’r+] =arg In_inL()H"rH JX, Zk,r;yk,r’ Ak, ,Dk, ﬁk)
X
2
k k,r
= arg min g(x) + P A+t + B+ + Y a7
eX 2 pk
Zk,r+1 = arg minL(xk,r+1’xk,r+l’z;yk,r’ ﬂk,pk,ﬂk)
k k,r
’ 1
_ kP k<Axk,r+1+B)—Ck,r+l+y_k>_ - kik
P+ p P P+ p

yk,r+l — yk,r + pk (A)Ck’r+1 +B}_Ck’r+] + Zk,r+1)

Under mild assumptions, in the presence of slack variables z, it was proved (Sun and
Sun 2019) that if one chooses p* = 24, then the inner iterations converge to the set
of stationary points (x*, X, ¥, y*) of the relaxed problem

. _ B
kT P2
min fO+gx)+ A" z+ 2IIzII (18)

st. Ax+Bi+z=0,xe X, x€ X.

Then in the outer iterations, the dual variables A¥ are updated. To enforce the conver-
gence of the slack variables to zero, the corresponding penalty ¥ is amplified by a ratio
y > 1if the returned z¥ from the inner iterations does not decay enough from the previ-
ous outer iteration X! (||z*|| > wl|Z"! ||, @ € (0, 1)). The outer iteration is written as

K+l _ ko pk k w1 _ JvBS NIZE > ol
SN {2 el

in which the projection IT onto a predefined compact hypercube [4, E] is used to

guarantee the boundedness of the dual variables and hence the augmented Lagran-
gian L. If the augmented Lagrangian L remains bounded despite the increase of the
penalty parameters p* and ¥, the algorithm converges to a stationary point of the
original problem (1). The iterative complexity of such an algorithm to reach an e
-approximate stationary point is O(e~*1n (e7')).

@ Springer

W.Tang, P. Daoutidis

In the next section, building on the algorithm of Sun and Sun (2019) that guarantees
the convergence of distributed optimization under nonconvex constraints, we propose
a new algorithm that integrates into it the ideas of approximate ADMM and Anderson
acceleration, aiming at improving the computational efficiency.

3 Proposed algorithm
3.1 Basicalgorithm and its convergence

Consider an optimization problem in the following form:
min f(x) + ()
st. Ax+Bx=0, (20)
x€ X = {x|¢p(x) <0,y(x) =0}, x€ X
or equivalently with slack variables
min f(x) + (%)
st. Ax+Bx+z=0,z=0, 2D
x € X = {x|¢p(x) <0,w(x) =0},x € X.

We make the following assumptions.
Assumption 1 Assume that fis lower bounded, i.e., 3f such that Vx € X, f(x) > f.
Assumption 2 Function g is lower bounded.

Our basic algorithm (Algorithm 1) for (21) is slightly modified from the procedure
of Sun and Sun (2019), which considered the case where g(x) = 0 and X is a hyper-
cube. The algorithm uses an inner loop of ADMM iterations and an outer loop of MM
with possibly amplifying penalty parameters. The inner iterations are terminated when
the following criterion is met

61; > €11<,r = HpkAT(B)—Ck,rH 4 o+l _ gk _ Zk,r) ’

k kro. kpT(kr+l _ _k,
&2 &7 o= || BT -2, (22)
e 2 e 1= [|axkret 4 R et

@ Springer

Fast and stable nonconvex constrained distributed...

1 Set: Bound of dual variables [4, 2], shrinking ratio of slack variables w € [0, 1), amplifying ratio
of penalty parameter 'y > 1, diminishing outer iteration tolerances { Elk, ezk, 53k }Zo:l 10,
terminating tolerances €, €, €3 > 0;

2 Initialization: Starting points x°, 0, 20, duals and bounds A € [4, ﬁ], penalty B! > 0;

3 Outer iteration count k « 0;

4 while stationarity criterion (25) is not met do

5 pk — Zﬁk;

6 Inner iteration count r « 0;

7 Initialization: x*-0, xk-0 7k:0 k.0 garisfying Ak + gk K0 4 k.0 = 0,

8 while stopping criterion (22) is not met do

k k2

9 xkr+l = argmingex f (x) + 5 HAx + Bxkor 4 zkr 4 yp—k ;

ok, r+l : o L ek kot 4 e ey 350 |

10 x :argmlnXEXg(x)+THAx T+ Bx + 2% +p—k ;

k k,r
ko+l _ __P k,r+1 —k,r+l y _ 1 k.

11 z == kopk (Ax + Bx + a) /7),%8,(/1 ;

” yhortl = ykor 4 ok (Axk,rﬂ + Brkor+l +Zk,r+1);

13 re—r+l;

14 end

15 (xk+1 ,)?kH, ZkH, yk+1) P (xk,r’ xk,r, Zk,r’ yk,r);

16 Update A%*! and gk+! by (19);

17 end

Lemma 1 (Convergence of inner iterations) Suppose that Assumptions 1 and 2
hold. When p* = 2%, the inner iterations are terminated at a finite r when (22) is
met and the point (xk”“,)‘ck”“, o+l) satisfies the following conditions

d/1< c af(xk,r+l) +NX(xk,r+l) +ATyk,r+l
d12< = ag()—ck,r+1) +N)_(()—Ck,r+1) +BTyk,r+1 (23)
0= /lk + ﬁkzk,r+1 +yk,r+1’ d§ :Axk,r+1 + Bx o+l + Zk,r+1

for some d, d’2‘ and d§ satisfying “d’]‘” < e’l‘, ”d;‘” < 612‘ and ”d’;” < e§, respectively.
N(x) (N3(X)) refers to the normal cone to the set X (X) at point x (X):

Nay) = {vv" (+' —x) <0,¥x' € &}. 24)

The proof of the above lemma is given in “Appendix 1” using the augmented
Lagrangian (16) as a decreasing Lyapunov function throughout the inner itera-
tions (Hong et al. 2016; Hong and Luo 2017), which gives the convergence of
the inner iterations. It is apparent that if €, e}, eX are all equal to 0, (23) is the
Karush—Kuhn-Tucker optimality condition of the relaxed problem (18) (Rock-
afellar and Wets 1998). To establish the convergence of outer iterations, we need
to make the following assumption to restrict the upper level of the augmented

Lagrangian.

@ Springer

W.Tang, P. Daoutidis

Assumption 3 The augmented Lagrangians are uniformly upper bounded at ini-
tialization of all inner iterations, i.c., there exists L > L(xk0, xk0, zk0 yk0 2k 5k pgk)
for all k.

The above assumption is actually a “warm start” requirement. Suppose that we
have a feasible solution (0 0) to the original problem (20), then we can always
choose x¥0 = x0, 30 = ¥ ,zko 0, y%0 = — ik to guarantee an L = F(x0) + g(x0).

Lemma 2 (Convergence of outer iterations) Suppose that Assumptions 1, 2 and3
hold. Then for any €,, €,, and €5 > 0, within a finite number of outer iterations k,
Algorithm 1 finds an approximate stationary point (xk“,)‘c"“,zk“ k+1) of (20),
satisfying

dy € of (") + Np(X*1) + ATYH!
d2 € ag(1) 4 Ny (xF1) + BTy (25)
.Xk+1 +B—k+1

for some d|, d,, ds satlsfymg”d “ <e¢,j=123

See “Appendix 2” for a proof. In addition to the convergence, we can also estab-
lish a theoretical complexity. Previously in Sun and Sun (2019), it was shown that
to reach an e-approximate stationary point satisfying (25) with €;,¢€,,e5 =€ > 0,
the total number of inner iterations needed is of the order O(~“4In(1/ e)). Here, we
show that by appropriately choosing the way that the tolerances (e, e’z‘,) shrink,
the iteration complexity can be provably reduced anywhere in (O(e 2) 4)]. for
which a proof is given in “Appendix 3”.

Lemma 3 (Complexity of the basic algorithm) Suppose that Assumptions 1, 2
and3 hold. For some constant 9 € (0, w], choose e1 ~ (’)(19"), e ~ (9(19"), and
€§ ~ (’)((8 / ﬂ)k). Then each outer iteration k requires R* ~ ((190)) —2) inner itera-
tions. Hence, for the Algorithm 1 to reach an e-approximate stationary point, the

total iterations needed is R ~ 0(6‘2(”9), where ¢ =loggw € (0, 1].

3.2 Approximate algorithm

We note that the basic algorithm requires undesirable complete minimization of x
and X in each inner iteration (Lines 9-10, Algorithm 1). For simplicity, we assume
that such a minimization oracle” exists for .

2 We use the word “oracle” with its typical meaning in mathematics and computer science. An oracle
refers to an ad hoc numerical or computational procedure, regarded as a black box mechanism, to gener-
ate the needed results as its outputs based on some input information.

@ Springer

Fast and stable nonconvex constrained distributed...

Assumption 4 The minimization of the augmented Lagrangian with respect to x
(Line 10, Algorithm 1) admits a unique explicit solution

P = G(BAK + 2 14/,). 26)

Let us also assume that the problem has a smoothness property as follows.

Assumption 5 Functions f, ¢ and y are continuously differentiable, and X has a
nonempty interior.

Under this smoothness assumption, the KKT condition for x-minimization is written
as the following equalities with ¢ > 0 and v representing the Lagrangian dual variables
corresponding to the inequalities ¢(x) < 0 and y(x) = 0, respectively

0= Vf(xk,r+1> + pkAT (Axk,r+l +B)_Ck’r +Zk,r +yk,r/pk)

Cy c,
+ D V() + vV () Q27)
=1 =1
0=y (), c=1,....Cs, 0=y (F*),c=1,....C,.

Line 9 of Algorithm 1 is thus to solve the above equations for x*"*!. This can be
achieved through an interior point algorithm, which employs double-layer iterations
to find the solution. In the outer iteration, a barrier technique is used to convert the
inequality constraints into an additional term in the objective; the optima (or sta-
tionary points) of the resulting barrier problems converge to true optima (stationary
points) as the barrier parameter converges to 0. In the inner iteration, a proper search
method is used to obtain the optimum of the barrier problem.Since both the interior
point algorithm and the ELL algorithm 1 have a double-layer structure, using an
interior point algorithm as the NLP solver in ELL results in four layers of iterations.
For simplification, we consider matching the outer layers and inner layers of the
NLP algorithm and ELL, respectively. Specifically, this implies the following two
modifications of the ELL algorithm.

To incorporate the outer iterations of interior point optimization into the outer itera-
tions of ELL, the function f(x) is appended with a barrier term —b* Zfﬁl In (—qﬁc(x)),
where the b* is the barrier parameter varying with the outer iteration k and decaying to
0 as k increases. Hence a “barrier augmented Lagrangian” can be defined as

Cy
L,=L-b) In(-¢,(x). (28)
c=1

Based on the arguments in the previous subsection, if the x-optimization step
returns a x*"*! minimizing L, with respect to x, then the inner iterations result in
the descent of L,:, which implies the satisfaction of conditions (23), with f modified
by the barrier function. Obviously, if Assumption 3 holds for L, then it also holds
for L,x when X has a nonempty interior. It follows that the outer iterations can find

@ Springer

W.Tang, P. Daoutidis

an approximate stationary point of the original problem with the decay of barrier
parameters b-.

With the inequality constraints handled by the barrier term, the inner ADMM
iterations only deals with equality-constrained NLP problems. To merge the itera-
tive routine to solve equality-constrained NLP problems (Wachter and Biegler 2005)
into the ADMM iterations, we allow to perform only a proper amount of searching
steps instead of the entire equality-constrained NLP in each inner iteration, so that the
solution to the equality-constrained NLP problem can be approached asymptotically
throughout the inner iterations. For this purpose, we assume that we have at hand a
solver that can find an approximate solution of the equality-constrained NLP with any
prespecified tolerances of violations to the KKT conditions.

Assumption 6 Assume that for any equality-constrained smooth NLP problem
rnxin Y@ st o wx)=0 (29)

a solver that guarantees the convergence to any approximate stationary point of the
above problem with a lower objective function is available. That is, starting from
any initial point x°, for any tolerances €, es > 0, within a finite number of searches
the solver finds a point (x, v) satisfying

CV
dy=Vyx) + Z v.Vy (), ds.=y.(0),c=1,....C,. 30)

c=1

for some ||dy|| < €, ||d5|| < €5, and f(x) < f(x°). Such an approximate solution is
denoted as F(x%; y, v, €, €5).

The above approximate NLP solution oracle is realizable by NLP solvers where
the tolerances of the KKT conditions are allowed to be specified by the user, e.g., the
IPOPT solver (Wichter and Biegler 2006). Under Assumption 6, the x-update step on
Line 9 of Algorithm 1 is replaced by an approximate NLP solution

xk,r+l — F(xk,r;)(k,r, v, €{4<,r’ els(,r)7 (31)
where the objective function in the current iteration is the part of barrier augmented
Lagrangian L that is related to x with the indicator function [,(x) excluded:

Cy X o |2
750 =f(x) — by Z‘f In (—=¢.(x)) + % Ax + B + 257 + yp—k (32)

This approximate algorithm with inexact x-minimization is summarized as Algo-
rithm 2. The inner iterations are performed until ef’r and eg‘” are lower than ¢} and
6'2‘, respectively, and (22) holds. The outer iterations are terminated when ei‘ < ey,
€

s < €s, the barrier parameter is sufficiently small bk < €6, and (25) holds.

@ Springer

Fast and stable nonconvex constrained distributed...

1 Set: Bound of dual variables [4, 2], shrinking ratio of slack variables w € [0, 1), amplifying ratio

0
of penalty parameter 'y > 1, diminishing outer iteration tolerances {elkz 145 6}A . 10,
diminishing barrier parameters {bk};::l 1 0, terminating tolerances €| 234,56 > 0;

2 Initialization: Starting points xO,)20, zo, duals and bounds 1! € [4, j], penalty /31 > 0;

3 Outer iteration count k « 0;
4 while E4k > € or 65"' > €5 or bK > € or stationarity criterion (25) is not met do

0
5 Set: Diminishing tolerances {ef’r, esk’r} ! 10;
r=
6 Let pk =28k,
7 Inner iteration count r « 0;
8 Initialization: xK-0, xk-0 7k.0 k.0 gorisfying Ak 4 gk k-0 4 k.0 = 0,
9 while e4k’r > e4k or €5k,r > ESk or stopping criterion (22) is not met do
k,r+l _ k,or. Kk, k,r k,r ke o .
10 xrtl = F (x XN g €) where " is given by (32);
1 =G (B, Ax"H 4 R yk”/pk,pk), where G is given by (26);
k k,r
k,r+l1 P k,r+l ckor+l | Y 1 k.
12 20T = —— ,(Ax' + Bx" +—,)—f/l,
pk+pk ok pk+pk
5 yhorsl = ykor 4 ok (Axk,r+l + Bikor+l +Zk,r+1);
14 re—r+1;
15 end
s (xk+l’xk+]’zk+]’yk+l) - (xk,r’)—(k,r’ Zkr yk,r);
17 Update Ak+1 gpd gkl by (19);
18 end

Lemma 4 (Convergence of the approximate algorithm) Suppose that Assump-
tions 1-6 hold. For any outer iteration k, given any positive tolerances {e’l‘ e’s‘}
within a finite number of inner iterations r, the obtained solution satisfies

Cy

dllc +d§ — Vf(xk,r+l) + Zﬂf,r+lv¢c(xk,r+l)
c=1

c,
+ 2 V/;,r+lvwc()g(,r+l) +ATyk,r+1
c=1

(33)
d\ € 0g(F 1) + Ny(F+1) + BTy,

0 = Ak 4 phlrtl 4yt
k _ Jo+1 —k,r+1 k,r+1 k _ Jr+1
d3—Axk + BX +z, ds—u/(xk),
k _ kr+l kr+1 _
= =y () e =1,...,C,.

for some d, ..., d’s‘ with ”d]]‘” < €’]‘, e, ”d’§| < 615‘. Then, suppose that the outer iter-
ation tolerances {e’l‘, . eé‘} and barrier parameters bk are diminishing with

increasing k, given any terminating tolerances €, ... , €5 > 0, within a finite number

@ Springer

W.Tang, P. Daoutidis

k+1 zk+1 k+1 +1’vk+1)

of outer iterations, Algorithm 2 finds a point (x AT

satisfying

X, 2
Cy
dl +d4 — Vf(xk+1 + Zﬂk+lv¢ k+1 Z k+]VWC xk+1) +ATyk+l
c=1
d2 c ag(/—g(+l) +N;\g()_€k+l) +BTyk+l, 0= Ak+ﬂk2k+l +yk+l (34)
dy = AX + B dg =y (M),
—dg = ,uf“(,bc(xk“),c =1,...,Cy.

for somed,, ...,dgwith ||d || <e¢,j=1,....5ds € (O, 66].

3.3 Accelerated algorithm

In the ELLA algorithm let us make the following assumption regarding our choice

of tolerances e 4 "and e

Assumption 7 Suppose that we choose a continuous and strictly monotonically
increasing function z: [0, 00) = [0, 00) with z(0) = 0 such that e’s"r = n(eﬁ”), and

choose ei'rH with an analogous function of ” prAT (Bxkr+1 — Bk 4 ghrtl — Zhr)

when the resulting value is strictly smaller than the previous tolerance eﬁ’r but not

smaller the ultimate one €*.

The choice of function x to relate the stationarity tolerance and equality tolerance
in NLP subroutine is aimed at balancing the effort to reduce both errors. The choice
of ei"’“ is based on the rationale that after the rth inner iteration, the obtained solu-
tion x*"*! satisfies the stationarity condition within a tolerance of ei"r, and after the
update of X, z and y variables, the violation to the stationarity condition is bounded
by €+ ||FAT(BF"+! — BX*" 4 57+ — 250)||. Therefore, €;” should be balanced
with the second term, which, however, is realizable only after the x- and z-updates
after the x-update and hence assigned to ¢’ gt

We note from Algorithm 2 that under Assumption 7, each inner iteration r is a
mappmg from (xkr kr+l yk,r+l frf) to (xk,r+l —k,r+1 Zk r+1 yk,r+17 €:J+1) In
fact, despite the dependence of the latter variables on x*" and ek such dependence
can be ignored in the sense that the descent of the barrier augmented Lagrangian
L, will always guide the sequence of intermediate solutions towards the set of ei‘
-approximate stationary points of the relaxed barrier problem. It follows that under
the approximate algorithm, the sequence {(rZh)} _, will converge to a fixed
point, and the convergence of { yo } accompanies the convergence of {zk ’} It is thus
clear that we may resort to Anderson acceleration introduced in Sect. 2.3 by denot-
ing w = (X,), the iteration as a mapping 5, and A(w) = w — hy(w), and collecting at
the rth inner iteration the following multi-secant information about the previous m
inner iterations:

@ Springer

Fast and stable nonconvex constrained distributed...

il R i B A A (35)
where 5r—m’ — Wk,r—m’+1 _ Wk,r—m’
h
m=m-1,...,0.

However, the possibility that A’fv may not be of full rank and H, , may be singu-
lar requires certain modifications to the original acceleration scheme. The following
regulation technique was used in Zhang et al. (2018). To ensure the invertibility of
H, ,, the 6, vector is perturbed to

and 5Z—m’ = h((wk,r—m’+1) _ h(Wk’r_m’),

S:,r—m+m’ — <1 _ HZ;)élhc,r—m+m’ + gm’ 5k3r—m+m” (36)

kor~w

where the perturbation magnitude 0]’:1; is determined by

Sk,r—m4m’ T N\ k,r—m~+m'
- (6w e) H]’:’r 5h
O, =@ 5 M | (37)
’ ’ gk,r—m+m’ ||
W

with regularization hyperparameter 7, € (0, 1). The function ¢(6;7) is defined by

ignd — 0)/(1 — 0), 0| <
q)(em)z{g?mgn -0, Wl<n)

.y
With regulation, Hk‘rl is induced from <H2r> = I according to
A AN
() = (1)
k,r—m-+m' m' _l”k,r—m+m’ Skr—mtm’ \ T m' -
skromn' — (Hpt)) (8m) (1) 39)

+ -1
Sk,r—m+m’ T m' sk,r—m—+m’
(&) () 3,

for m' =0, ...,m—1 with H,’fr =H,,. To avoid the rank deficiency A,,, a restart
checking strategy is used, where the memory is cleared when the Gram-Schmidt
orthogonalization becomes ill conditioned (“5{3’ < |8k for some #,, € (0, 1))
or the memory exceeds a maximum M; otherwise the memory is allowed to grow.
Hence the Anderson acceleration is well-conditioned.

Lemma 5 (Well-conditioning of Anderson acceleration, Zhang et al. (2018)) Using
the regularization and restart checking techniques, it is guaranteed that

-1
“Hk,r

w

" Moy N-1
<0 [3(1+9+nw)11 —2] < +oo (40)

where M is the maximum number of steps in the memory and N is the dimension of
w.

@ Springer

W.Tang, P. Daoutidis

A well-conditioned Anderson acceleration is not yet sufficient to guarantee the
convergence. Hence we employ a safeguarding technique modified from Zhang
et al. (2018) which aims at suppressing a too large increase in the barrier aug-
mented Lagrangian by rejecting such acceleration steps. When Anderson accel-
eration suggests an update from w = (x,z) to w = ():c, Z) under the current value of
Ax, the resulting Lagrangian increase black, if positive, must not exceed an upper
bound:

AL

max

~ k
chi i = (ol -
s

(R+ + 1)l+0'

(41)

where L, is the expected Lagrangian decrease after the first non-accelerated iteration
after initialization according to Lemma 1, used as a scale for the change in the bar-
rier augmented Lagrangian, #;,0 > 0 are hyperparameters, and R, is the number of
already accepted acceleration steps. With safeguarding, it can be guaranteed that the
barrier augmented Lagrangian always stays bounded, since
22:0 (R Lt 1)_(1+G) < 400. We also require that the acceleration should not lead
to a drastic change in w:

Iawl, = 2 @)
P \/T+R,
where n; > 0 is a hyperparameter. 1/4/1 + R, reflects an expected change accord-
ing to the plain ADMM iteration, which is used to suppress disproportionate large
deviations due to Anderson acceleration.

Finally, the accelerated algorithm using the Anderson acceleration technique
for fixed-point iteration of (X,z) is summarized as Algorithm 3. This is our final
ELLADA algorithm, whose convergence can now be guaranteed by the following
lemma, the proof of which is given in “Appendix 4”.

Lemma 6 (Convergence under Anderson acceleration) Suppose that Assump-
tions 1-7 hold. Under regulated and safe-guarded Anderson acceleration, Algo-
rithm 3 finds within a finite number of inner iterations r a point satisfying (33). The
convergence of outer iterations to an approximate stationary point satisfying (34)
hence follows.

Summarizing the conclusions of all the previous lemmas in this section, we have
arrived at the following theorem.

Theorem 1 Suppose that the following assumptions hold:

1. Function fis lower bounded on X;)
2. Function g is convex and lower bounded on X’;

@ Springer

Fast and stable nonconvex constrained distributed...

3. Initialization of outer iterations allows a uniform upper bound of the augmented
Lagrangian, e.g., a feasible solution is known a priori;

4. Minimization of g(X) + §||B)'c + || with respect to X allows an oracle G(B, v, p)
returning a unique solution for any v of appropriate dimension and p > 0;

5. Functions f, ¢, and y are continuously differentiable, and the constraints (¢, y)
are strictly feasible;

6. There exists a solver for equality-constrained NLP to any specified tolerances of
KKT conditions.

Then given any tolerances €, ...,e5 > 0, the ELLADA algorithm (Algorithm 3)
gives an (el, ey €g)—approximate KKT point satisfying the conditions (34).

@ Springer

W.Tang, P. Daoutidis

1 Set: Dual bounds [4,] outer iteration parameters w € [0,1), y > 1, { €234 6} . 10
{bk}Z;l 1 0, final tolerances € 3 3,4,6 > 0, function rt, acceleration parameters 6 € (0, 1),
o>0,ne>0 1y €(0,1), n, >0, 7% >0, M eN. Let s = 7 (€4);

2 Initialization: Starting points x°, 9, 20, A' € [4, Z], penalty parameter B' > 0, 550 = (ef);

3 Outer iteration count k « 0;

4 while e4k > € or esk > €5 or bX > € or stationarity criterion (25) is not met do

5 Set: Initial tolerances ef’o, esk’o = ﬂ(e4k’0), penalty p* = 28%, Jacobian estimate Hk’l0 =1,

6 Inner iteration count r « 0, count of accelerated steps Rff = 0, memory length m < 0;

7 Initialization: xK-0, xk-0 7k.0 k.0 gorishying Ak 4 gk k-0 4 k.0 =

. k,r k,r k . o, .

8 while €," > 54 or & > € or stopping criterion (22) is not met do

9 xkr+tl - (ko kor Ly, e4k’r, esk’r), where %" is given by (32);

10 ghr+l = G (B AxTH g gor g ykor ok pk) where G is given by (26);

k
k,r+l1 k,r+l k,r+l y 1 k.
11 ot = 7(Ax + Bx*" ¢) ——— A5,
pk+ﬁk p I\+ﬁk
2 yhortl = phkor g ok (Axkorel g gkl +Zk,r+1);
13 }~Ik,r - —/lk _Bkzk,r;
~k,r+l _ k,r. ck,r k.r k.r : ~ tho¥ =z 55
14 X —F(x RS S s €),w1th)(1n (32) with X, z, y replaced by x, Z, J;
is shor+l _ G (B, AFTH 4 shor +yk,r/pk,pk);
k k r
shor+l _ __p° (ek, r+l zk,r+l 1 k.
16 Z = AX + Bx' + -) - =A%
T pkepk P LI

17 if ¥ = 0 then

18 ‘ whkl ()Ek’l,zk’l),andcalculatel:oby (41);

19 else

20 65‘)#—1 N S 6: Wk _ okl okl ok g

ak,r T k-1
” Sl = ghr=t _ym (88) Glor-nt’,
w - 7 — 2 H(gk,rfm’ 2 w il
w
. ”‘5” IH ck,r=1 k-1 _
22 lfm=M+lorm<nwthenm<—O O — Oy ‘dekrl —1;
W
sk, r—1 1 k,r—1
I) Sk H{!_ &F
23 Obtain ét’r by (36) with m’ = m — 1 and Ok r-1 = (v) k-1 10|
sl
k,r-1 1 zk,r— sk,r
8 -H, o S
-1 1 (w k,r=1%h)(W)krl .)
24 Update Hk, =H k-1 T (T ’_1) S , and suggest
k
Wk,r+l — wk,r _ HI:lr (Wk,r _ wk,r+);

25 if criteria (41) and (42) hold then w7+l \pkor+l ykor+l gk _ gkzk.r+l,

26 end

- 64k,r+l —|lok AT (Bxk,rﬂ _ Bk 4 g+l _ Zk,r) ’ ESk,r+| - (E4k,r+]);

28 rer+1;

29 end

0 (xk+l,ik+l’ 2K+ yk+l) - (xk,r’)—ck,r, Zk,r’yk,r);

31 Update A%*! and g1 by (19);

32 k—k+1;

33 end

@ Springer

Fast and stable nonconvex constrained distributed...

3.4 Parameter tuning

We have so far proved the theoretical convergence of the proposed ELLADA algo-
rithm (Algorithm 3). It is not surprising to expect that such an algorithm that com-
bines multiple techniques aiming at improving the computational performance will
require some parameter tuning effort, although these parameters do not alter the ulti-
mate convergence. Three main groups of parameters are involved here.

The first group of parameters is related to the outer iterations, namely the thresh-
old of slack variable decay w and the triggered penalty amplifying ratio y. Although
the bounds of the dual variables ij also appear as parameters, they are expected

to play a theoretical role in establishing convergence rather than practically affecting
the numerical performance. Generally, smaller w and larger y values result in more
radical increase of the penalty parameter, which on one hand reduces the number of
outer iterations needed for the slack variables to converge to zero, but on the other
hand, is prone the making the problem ill-conditioned and increasing the number of
inner iterations. Hence, @ and y should be at neither too large nor too small values,
which can be tuned by fixing the tolerance parameters at some conservative levels
(to be improved by the next step), and examining when the ELL algorithm is the
most efficient.

The second groups of parameters are the tolerances associated with the approxi-
mate NLP solution and inner layer ADMM iterations. Since Bx*+! — Bx*" and
Zor+l — 767 are related to the first two terms in the linear constraint Ax + B¥ +z =0
and hence of similar magnitudes, €; and €, as well as e']‘ and 6’2‘ during the outer itera-
tions k should be similar. According to Assumption 7, 6{4‘” should be chosen accord-
ingly with ef”, and efj accordingly with €,. Across the outer iterations, these toler-
ances are required to be exponentially decaying so that only a few outer iterations
should be needed. To obtain a suitable relation z between stationarity tolerances ek,
efj and equality constraint tolerances ek”, 6’5‘ of the NLP solver, we simply let z to be
a linear function. That is,

€ =€ =€,
€
=2

€ (43)

ko _ kor\% k ko _ €s k,r
€, —max<c4(e1) e),6‘5 = €4€4 .

k_ k_ k
| =6 =€

€ 4

=max (c;/d\"',€)), €

The primal and dual residuals €, and €5 should also be set in proportion so that the
obtained solution is an approximate stationary point rather than a stagnant point.
For the barrier constant, we need to guarantee that its diminishing should be in pace
with the outer iterations, and hence can be set based on 673‘ . We also require that the
barrier constants should be clamped within a specified range. That is,

€ a,
e = e—?e’f,bk = min (b™, max (e, €6 (€} /€,)™)). (44)

@ Springer

W.Tang, P. Daoutidis

All the tolerance parameters thus reduce to c;,a;,cs,as,a¢ and the limits,
€], €3, €4, €5, €5, V™. The limits should be determined at the values at which the
solution is satisfactory while not causing excessive computational cost. The expo-
nents a, and a4 can be chosen between 1 or 2. Then there exists only three param-
eters ¢y, a, ¢, to be determined empirically so that the numerical performance of the
resulting ELLA algorithm best improves that of ELL.

The remaining 6 parameters are related to Anderson acceleration and its auxiliary
regulation and safeguarding techniques — (;19, s M, 0,15, nL), which can be classified
into 3 groups, namely 7, involved in regularization, (#,,, M) in memory clean-up, and
(o-, N nL) in rejecting inappropriate acceleration candidates. Since #, aims at guaran-
teeing the invertibility of the Jacobian estimate with a perturbation, its value should
be reasonably small (e.g., 7, = 0.05 or 0.01), and the same holds for #,,. The maxi-
mum allowed memory M should be large enough to obtain a meaningful “average”
curvature, but should not be too large to include too many obsolete previous points.
Empirically, nevertheless, it was found that the variation of #,, #,,, and M does not have
a strong impact. For the last three safeguarding-related parameters, the decrease of ¢ or
the increase of #;;, or #; allows more accepted Anderson acceleration steps. The effects
on the overall computational performance, however, are non-intuitive, since more
accelerations may imply not only faster convergence but also possibly more overshoot
and oscillations. Therefore, careful tuning is needed to obtain an appropriate extent of
acceleration.

4 Nonlinear optimization benchmark

To test the proposed ELLADA algorithm as a generic method of nonconvex con-
strained distributed optimization, we consider a problem from the NLP benchmark
library in this section, while the implementation and a case study on distributed non-
linear MPC will be discussed in the next sections. The benchmark is the camshape
problem from the COPS (constrained optimization problem set) library (Dolan and
Moré 2002), described as follows:

Ste Fin <1 S Tpaei=1,...,0 (45)
2r;_ 1 Fig cos0§ri(ri_l+ri+1),i=0,1,...,n,n+1
Fipl — T
—a< L <qi=01,..,n
0
where 7y =1, 7 =2, a =15, 0 =27/5(n+1), r_| =715 = Inins Tl = Tmaxe

Tneo = 1. We consider solving this problem with n = 4ng + 2, n, = 100, in a dis-
tributed manner with 4 subproblems. The variables r;, ., and r;, ,», i =1,2,3 are
the shared variables between the neighboring subproblems, and hence x are created
for these variables, and equality constraints are imposed (for example, the last com-

ponent of x; and the second component of x, should both be equal to the second

@ Springer

Fast and stable nonconvex constrained distributed...

1.6

1.5

10° 10’ 102 103 100 10! 102 103

10710
10° 10’ 102 103 100 10! 102 103
T T

Fig.2 Results of the ELL algorithm for the camshape problem. Colors from blue to red correspond to
increasing outer iterations. (Color figure online)

component of X). Thus, formulations in the form of (20) and subsequently of (21)
are obtained, with the dimensions of X and z being 6 and 12, respectively. Each sub-
problem contains 102 variables, 100 or 101 nonlinear inequality constraints, and 202
linear inequality constraints. The subproblems are handled with the IPOPT solver
used in OPTI Toolbox of Matlab. The gradient of the objective function, the Jaco-
bian matrix of the nonlinear constraints and its structure are provided to the solver.
For ELL, the final tolerances €, = €, = 107%, ¢; = 107 are set as equal to the
default values in the IPOPT solver, and the parameters are tuned as w = 0.75,y = 2,
ek =k =103 /24, €§ = 10~!'/2*-1. The initial penalty parameter f = 4. The max-
imum number of outer iterations is set as 20, and the maximum number of inner
iterations for each outer iteration is set as 1000. The intermediate calculated results
of augmented Lagrangian L and e'l”, 612”, 613‘” are shown in Fig. 2. The expected
monotonic decreasing property of L is observed, leading to the convergence of the
asymptotic inner iterations. However, for all the outer iterations after the 15th, the
maximum allowed number of inner iterations is reached, and the maximum allowed
number of outer iterations is also reached, resulting in a total number of 6002 inner
iterations and a computational time of 761.40 s (0.1269 s for each inner iteration on
average). At the end of the 20 outer iterations, ||z||, = 5.69 x 10~ remains high.
This is due to the large value of the penalty parameter values (above 2'°), which fun-

damentally limits the speed of convergence.

@ Springer

W.Tang, P. Daoutidis

"o 100\
15f T~ ———
= = \ -
1.3}
1.2 . . 10 . ,
100 10" 102 100 10" 102
' '
102
N\
%104X
10® 108
100 10" 102 100 10" 102
' '

Fig. 3 Results of the ELLA algorithm for the camshape problem. Colors from blue to red correspond
to increasing outer iterations. (Color figure online)

By observing Fig. 2, for ELLA we decide to reset the final tolerances to coarser
values €, = €, = ¢, = 107, ¢; = 1073 since it appears difficult for the solver to prac-
tically reach lower precisions. We let ef’r = 612” =1071/21 es = 1074, ¢, = 107
The barrier parameter is set as b* = 66(673‘ /€3)%. The total number of inner itera-
tions needed to converge is 151 in 11 outer iterations, with a computational time of
14.38 s. In contrast, ELL achieves these tolerances in 7 outer iterations, which takes
317 inner iterations and 33.67 s. Hence, ELLA needs 47.6% less iterations and 57.3
% less computational time than ELL to reach solutions with the same level of toler-
ances. On average for each inner iteration, 10.3 % of computational time is saved
compared to ELL. In ELLA, the behaviors of the barrier augmented Lagrangian L,
and e]f:;y as shown in Fig. 3, are similar to that of ELL.

Finally we seek to decrease the number of inner iterations needed by using
ELLADA. The Anderson acceleration-related parameters are tuned as #,, = 0.001,
0 =0.001, 06 =0.1, 7, =35, ;, = 1, and M = 3. After acceleration, the total number
of inner iterations needed becomes 84, 44.4% lower than ELLA. Within these inner
iterations, 72 iterations are under Anderson acceleration. The resulting computa-
tional time is 8.1010 s, 43.7% lower than that of ELLA. It is noted from Fig. 4 that
under ELLADA, the curves of e'f£3 becomes more kinky and larger deviations from
monotonicity. Such phenomena highlight the necessity of safeguarding techniques to
curb the behavior of Anderson acceleration as well as careful tuning of the relevant
parameters.

@ Springer

Fast and stable nonconvex constrained distributed...

167 100F

15}

\

J 14 25 N

1.3}

1.2 107®

100 10’ 10° 10!
T T

T
10 10
10° 10’ 10° 10!
T T

Fig.4 Results of the ELLADA algorithm for the camshape problem. Colors from blue to red corre-
spond to increasing outer iterations. (Color figure online)

5 Implementation on distributed nonlinear MPC

Consider a nonlinear discrete-time dynamical system
x(t + 1) = f(x(®), u(r)) (46)

where x(f) € R" and u(¢) € R™ are the vectors of states and inputs, respectively, for
t=0,1,2,..., and f: R"xR™ — R". Suppose that at time ¢ we have the current
states x = x(¢), then in MPC, the control inputs are determined by the following opti-
mal control problem:

+7T-1
min J=) £ 1), () + £t + T))

T=t
st Xz + 1) =fG@), (), t="t....,t+T—1
pG(o), i(r),7) <0, v =t,...,t+ T —1
qG(r),a(r),7) =0, =t¢,...,.t+T -1

Xt =x.

(47)

@ Springer

W.Tang, P. Daoutidis

In the above formulation, the optimization variables X(z) and #i(7) represent the pre-
dicted states and inputs in a future horizon {z,#+1,...,¢#+ T} with length 7 € N.
The predicted trajectory is constrained by the dynamics (46) as well as some addi-
tional path constraints p, ¢ such as the bounds on the inputs and states or Lyapunov
descent to enforce stability. Functions # and ¢ are called the stage cost and termi-
nal cost, respectively. By solving (47), one executes u(t) = i(¢). For simplicity it is
assumed here that the states are observable; otherwise, the states can be estimated
using an optimization formulation such as moving horizon estimation (MHE). For
continuous-time systems, collocation techniques can be used to discretize the result-
ing optimal control problem into a finite-dimensional one.

Now suppose that the system (46) is large scale with its states and outputs
decomposed into n subsystems: x = [xl, X)seees T] u= [ul, Uysonns T]
that the optimal control problem should be solved by the corresponding n agents
each containing the model of its own subsystem:

5@+ D) = £ (3501, (501,00},) @48)

where {xl,]l} stands for the states and inputs in subsystem j (i.e., components of
x; and u;) that appear in the arguments of f;, which comprise of the components of
f correspondlng to the ith subsystem. P; is the collection of subsystems j that has
some inputs and outputs influencing subsystem i. We assume that the cost functions
and the path constraints are separable:

£, i) = Zf), ') = fofc

:
P&, 2, 7) = [p1 (&1 027) o s (B s T)T] , (49)

5.1 Formulation on directed and bipartite graphs

Graphs or networks are systematic tools to visualize distributed control/optimiza-
tion problems and allow the practitioners of distributed MPC to construct and
configure their specific problem of interest in a structured manner, by using net-
work decomposition methods to automatically generate subsystems (Daoutidis
et al. 2019) and associating the subsystems and their interactions with a graph
topology (Jalving et al. 2019). To better illustrate the application of ELLADA
on the distributed solution of the optimal control problem (47) reformulated into
the form of (21), we introduce some graph-theoretic representations of optimiza-
tion problems. For problem (47), we first define a directed graph (digraph), which
is a straightforward characterization of the mutual impacts among the subsystem
models.

@ Springer

Fast and stable nonconvex constrained distributed...

Definition 1 (Digraph) The digraph of systemT (46) under the decomposi-
tion x= [x[,x],....xT| and u=[u],ul,...,u] is G ={V.€ } with nodes

V, ={1,2,...,n}and edges &, = {(j,)|j € 77(1)}. If i,) € &€, i.e., j € P(), we say
that j is a parent of i and i is a child of j (denoted as i € C(j)).

Then under the decomposition, (47) can be written as

+7T-1
Da=3 3 (a0, i) + £ (%, + 1))
i€V, i€y T=t

st 2+ 1) = (300,00, (H0. 00})

(50)
pi(%(@),0(0),7) 0, r=1,...,t+T—1,i €V
q;(%(0), 0(2),) =0, 7 =t,...,.t+ T = 1,i € V),
@) =x,i€V,
We denote the variables of the ith agent as
=[x0N aO", A5+ T =D a0+ T-D" 50+ D',
T (51

{£:07. aj,.(z)T}jEp(i), AR+ T =D A+ T =17 }1673(1)]

in which the variables related to the jth subsystem are denoted as &;. Since &; is a
part of the predicted states and inputs from subsystem j, i.e., some components of &;,
the interactions between the parent j and the child i be captured by a matrix D with
exactly one unit entry (“17) on every row: &; = Dﬂéj, where the right arrow repre-
sents the impact of the parent subsystem j on the child subsystem i. By denoting the
model and path constraints in agent i as &; € 5, the optimal control problem (46) is
expressed in a compact way as follows:

min) J,(&) st& €ELi€ V& =D&, (.0 €E,. (52)

i€V,

This is an optimization problem defined on a directed graph. An illustration for a
simple case when &, = {(1,2), (2,3), (3, 1)} is shown in Fig. 5a.

Although it is natural to represent the interactions among the subsystems in
a digraph, performing distributed optimization on digraphs where the agents
communicate among themselves without a coordinator can be challenging. For
example, it is known that the ADMM algorithm, which behaves well for distrib-
uted optimization with 2 blocks of variables, can become divergent when directly
extended to multi-block problems (Chen et al. 2016). Hence we construct such a
2-block architecture by using a bipartite graph.

Definition 2 (Bipartite graph) The bipartite graph of system (46) G, is

constructed from the digraph G, by taking both the nodes and edges as
the new nodes, and adding an edge between i€V, and e€ &, if i is the

@ Springer

W. Tang, P. Daoutidis

(2) (b)

(e

Fig.5 Graphical illustrations of the problem structure of distributed MPC

head or tail of e in the digraph, ie., G, = (V,.&) with V, =V, U¢E,
& ={GelieV,e€& e={(j.jeCi)ore=(,i),j € Pi}.

@ Springer

Fast and stable nonconvex constrained distributed...

Such a graph is bipartite since any edge is between a node of V; and a node of &;.

We note that the last line of (52) corresponds to the digraph edges &;. In the
bipartite graph, these edges should become nodes and hence new groups of vari-
ables should be associated with them. For this purpose, we simply need to pull out
&ji as overlapping variables 51,, and add the constraint thatéj_ are some selected com-
ponents of &;: &; D_/lé

min ; Ji(&) st&e€B.ieV, & =D& =D& (i) €& (53)

el
In (53), variables &; (i € V) and Eﬁ ((j,i) € &) are deﬁned on the nodes of the bipar-
tite graph, and the constraints captured by the matrices D ; and D ; correspond to the

bipartite edges (j, (j, {)) and (i, (j, i)), respectively. We may also wrlte the last line of
(53) as

&, =D, ¢, (i,e) €E,. (54)

Therefore (53) is an optimization problem on the bipartite graph. An illustration is
given in Fig. 5b. Under this reformulation, the problem structure becomes a 2-block
one—distributed agents i = 1, ..., N manage the decision variables &;, V, in parallel
without interference, and the coordinator regulates the agents by using overlapping
variables €,, ¢ € &,.

5.2 Reformulation with slack variables

It is known that a key condition for distributed optimization in the context of the
ADMM algorithm to converge is that one block of variables can always be made
feasible given the other block (Wang et al. 2019). Unfortunately this condition is not
always met by the problem (53). For example, given &, and &, there may not be a &
satisfying both &, = D1251 and &, = D12§2 To deal with this issue, it was proposed
to associate with each linear constraint in (53), namely each edge in the bipartite
graph, a slack variable ¢, (e.g., Sun and Sun 2019):

D&

S

st. § €, i€V (55)
D& —-E+¢,=0,3G,e) €E,
¢, =0,3,e) €&,.

Similar to the notation for D, we write ¢, as ‘:y if e = (i,j) and C if e = (j,). Such a
problem structure is graphically illustrated in Fig. 5c.

Finally, we stack all the subscripted variables into &, &, ¢ in a proper ordering
ofieV,,ecf, and (j,e) € £,. The matrices D,, are stacked in a block diagonal
pattern in the same ordering of (i, ¢) € &, into A. The appearance of &, in the equal-
ity constraints is represented by a matrix B (satisfying BTB = 2I). We write the

@ Springer

W.Tang, P. Daoutidis

objective function as J(§), and the set constraints E; are lumped into a Cartesian

product E = X;¢), &;. Finally, we reach a compact formulation for (55):
minJ(&) stEE€BAE4+BE+(=0,{=0 (56)

Such an architecture is represented by the graphs in Fig. 5d, . The variables & and ¢
belong to the coordinator (marked in red), and £ is in the distributed agents. Clearly,
the optimal control problem formulated as (55) with the afore-mentioned graph rep-
resentations is now a special form of (21), with £, € and ¢ rewritten as x, ¥ and z,
respectively, and g(x) = 0, X equal to the entire Euclidean space.

5.3 Implementation of ELLADA

As long as the cost function J is lower bounded (e.g., a quadratic cost), it follows
from Theorem 1 that Algorithm 3 is applicable to (55), where the operations on X, z,
y are performed by the coordinator, and the operations on x is handled by the distrib-
uted agents. Specifically,

e The update steps of X, z,y (Lines 10-13, 15, 16) and the entire Anderson acceler-
ation (Lines 17-26) belong to the coordinator. The updates of penalty parameters
and outer-layer dual variables A (Lines 31) should also be performed by the coor-
dinator. The conditions for e’]‘ s 6’2‘ s eg‘ and €, €,, €5 are checked by the coordinator.

e The distributed agents are responsible for carrying out a trial x-update step for
the Anderson acceleration (Line 9) as well as the plain x-update (Line 14). The

conditions and updates for ef’r, ek ek R eg‘, and ¢4, €5, €, are checked by the agents.

5%

When executing the updates, the agents need the values of Bx + z + y/p to add to
Ax, and the coordinator needs the value of Ax from the agents. When the variables x
are distributed into agents x,, ..., x,, and the equality constraints between the agents
and the coordinator is expressed on a bipartite graph:

Diexi -)_Ce + Zje = 07 (17 e) € 527 (57)

the communication of Ax and Bx + z + y/p takes place in a distributed and parallel
way, i.e., the ith agent obtains the information of —X, + z;, + ¥,/ p for all e such that
(i, e) € &, from the coordinator. The coordinator, based on inter-subsystem edges e
in the digraph, obtains the information of D, x; for all related agents i. When the
objective function and X" are separable f(x) = Z:’: Jilx), X=X - X X, based
on such distributed and parallel communication, the optimization problem

2

Cy
min ()b Y In (~¢.(0) + g
c=1

Ax+Bi+z+2
p

(58)
st. wx)=0

in an x-update step can be solved in a distributed and parallel manner:

@ Springer

Fast and stable nonconvex constrained distributed...

2

min, f;(x;) = b ZCC:{ In (=) + 5 Z{el(i,e)eEz}

= Yie
|Diexl- - X, + 2z, + =

? // for i.

s.t. v, (xi) =0
(59
Similarly, the X-update with the G-mapping is in parallel for its components e, if X
is separable, i.e., if X is a closed hypercube (whether bounded or unbounded), and if
g is also separable. That is, X-update can be expressed as

; = - ie 2
min; g; (%) + § Z{;|(i,e)e52} ”Diexi — Xt g+ y;
// for e. (60)
s.t. X, €X

The z and y updates are in parallel for the edges (i, ¢) on the bipartite graph.

In Algorithm 3, the procedures are written such that in each iteration, the update
steps are carried out in sequence. This requires a synchronization of all the agents
i and the coordinating elements e and (i, ¢). For example, for the x-update, every
distributed agent needs to create a “finish” signal after solving x; in (59) and send
it to the coordinator. Only after the coordinator receives the “finish” signals from
all the distributed agents can the X-update be carried out. Due to the possible com-
putational imbalance among the agents and the coordinator, such synchronization
implies that faster updates must idle for some time to wait for slower ones. In fact,
the convergence properties of the ELLADA algorithm do not rely on the synchroni-
zation. Even when the inner iterations are asynchronous, the update steps still con-
tribute to the convergence of the barrier augmented Lagrangian and hence result in
convergence to KKT conditions. The only exception is that under Anderson accel-
eration, the steps for generating the candidate of accelerated updates are allocated to
another coordinator and another set of distributed agents, and they should communi-
cate to make the decision on executing the accelerations.

6 Application to a quadruple tank process

The quadruple tank process is a simple benchmark process for distributed model
predictive control (Johansson 2000) with 4 states (water heights in the 4 tanks) and
2 inputs (flow rates from the reservoir). The dynamic model is written as follows:

Vi VI Ay =i SR B,

a3 (1 —7’2)"2 L 4 (1 —71)"1
A3 + A—3V2, h4 —_ _14_4 h4 + A—4V1.

(61)

Other parameter values and the nominal steady state are given in Table 1.
The process is considered to have 2 subsystems, one containing tanks 1 and 4
and the other containing tanks 2 and 3. Each subsystem has 2 states, 1 input and 1

@ Springer

W.Tang, P. Daoutidis

Table 1 Parameters and nominal steady state

Parameter Value Parameter Value
Ay, Ay 28 ap, as 3.145
Ay, Ay 32 a,, ay 2.525
7 0.43 k, 3.14

72 0.34 k, 3.29

Input Value Input Value
v 3.15 Vv, 3.15

State Value State Value
hy 12.44 h, 13.17
hsy 473 hy 4.99

12.75 34
5
12.50

12.25 - s
30
12.00 3
2.8
.75
2

0 100 200 300 400 500 600 o 100 200 300 400 500 600 0 100 200 300 400 500 600
t t

5 35
13.00
12.75 4 34
12.50 M

12.25

m

h
h
v.

w

12.00 2 32

1.75 A

0 100 200 300 400 500 600 o 100 200 300 400 500 600 0 100 200 300 400 500 600
t

Fig. 6 Closed-loop trajectories under traditional MPC controllers for the quadruple tank process

upstream state. We first design a centralized MPC with quadratic objective function
for each tank, and bounds on the inputs 2.5 < v;,v, < 3.5. We first decide through
the simulation of centralized MPC that a receding horizon of T = 400 with sampling
time 6¢ = 10 is appropriate. The computations are performed using the Python mod-
ule pyomo . dae with an IPOPT solver (Nicholson et al. 2018).

The closed-loop trajectories under the traditional MPC controllers, including a
centralized MPC (black), a semi-centralized MPC where the inputs are iteratively
updated based on predictions over the entire process (green), a decentralized MPC
(blue), and a distributed MPC with only state feedforwarding among the agents
(purple), are shown in Fig. 6. It was observed that a semi-centralized MPC based
on system-wide prediction maintains the control performance, yielding trajectories
overlapping with those of the centralized MPC. However, the state-feedforward dis-
tributed MPC without sufficient coordination accounting for the state interactions
results in unsatisfactory control performance, whose ultimate deviation from the
steady state is even larger than the decentralized MPC without any communication
between the controllers.

@ Springer

Fast and stable nonconvex constrained distributed...

10729
: . 102
e % AR % 107 \
10 & \ 10-%
JOS— o ~— eSS

Fig. 7 Solution results of the ELL algorithm for the quadruple tank process

Next we use the proposed ELLADA algorithm for distributed nonlinear MPC of
the process. We first examine the basic ELL algorithm (Algorithm 1) by solving
the corresponding distributed MPC problem at a state with h; = 12.6, h, = 12.4,
hy =5.0, hy = 4.5, where we set w = 0.75, y = 2, A = —1 = 10 (in an element-wise
sense) and e} =¢5 =1072/2!, &k =1071/2", ¢, =6, =107%, ;=107 as a
baseline that seeks to terminate only when a highly precise solution is reached. The
solution results in terms of the variation of the augmented Lagrangian L*, the vio-
lations to the KKT conditions e'lc:;ﬁ, and penalty parameters p* throughout the inner
and outer iterations are presented in Fig. 7, where the rainbow colormap from blue
to red colors stand for increasing outer iteration number. In accordance to the con-
clusion of Lemma 1, the augmented Lagrangian is monotonically decreasing in each
outer iterations and remains upper bounded, which guarantees the convergence of
the algorithm. Using the ELL algorithm for the afore-mentioned closed-loop MPC
simulation, the resulting trajectories are found identical to those of the centralized
control, which corroborates the theoretical property of the algorithm of converging
to the set of stationary solutions.

With the preserved control performance of the ELL algorithm, we seek to
improve its computational efficiency with the ELLA and ELLADA algorithms
(Algorithms 2 and 3). In ELLA, the tolerances for approximate NLP solution are

e = = 103 — k_ k _ 1030k — ok — k=1
tl;ned to € =€=¢ —210 € =1 €, =€ =10€¢; =¢, = 100/2%,
e = 103" = max <e§,40(€’1"r)) The barrier constants are updated throughout
outer iterations according to [|z]| according to

P+ = min (1()‘1, max (10‘4, 25(et)2)) Compared to ELL, the accumulated num-

ber of iterations and computational time of ELLA are reduced by over an order of
magnitude. To seek for better computational performance, we apply the ELLADA
algorithm, where we set M = 10, o = 1, n, = n; = 0.01, 5, = 0.5, ,, = 0.05. This
further reduces the number of iterations and computational time. These results are
shown in Fig. 8.

Compared to the basic ELL algorithm, ELLADA achieves acceleration by
approximately 18 times in terms of iterations and 19 times in computational time for
the entire simulation time span. These improvements are more significant when the

@ Springer

W.Tang, P. Daoutidis

‘ o ELL
. + ELLA
a] . + ELLADA
§10 .
g
£ 1027 °
."n." Tee oo, -...
Sevee toettstass 0ed82800s
0 100 200 300 400 500 600
Simulation time
‘ o ELL
) . + ELLA
] . « ELLADA
£ 1024
c
S
:‘-‘5 . 0.0.-.
g. 10° 4 :0. o "0.. . .
g 'n.:. LLIL T
g .:::l.o e .
D T L L T P P PP T LT ST+ £ 3 1 1
100

0 100 200 300 400 500 600
Simulation time

Fig. 8 Iteration and computational time under ELL, ELLA and ELLADA algorithms for the quadruple
tank process

states are far from the target steady state (43 and 45 times, respectively, for the first
1/6 of the simulation). We note that the improvement from ELLA to ELLADA by
using the Anderson scheme is not an order-of-magnitude one mainly because each
outer iteration needs only a few number of inner iterations, leaving little space for
further acceleration (e.g., for the first sampling time, 12 outer iterations including
only 102 inner iterations are needed in ELLA, and in ELLADA, 61 inner iterations
are needed). Under the accelerations, ELLADA returns the identical solution to the
centralized optimization, thus preserving the control performance of the centralized
MPC.

7 Conclusions and discussions

We have proposed a new algorithm for distributed optimization allowing nonconvex
constraints, which simultaneously guarantees convergence under mild assumptions
and achieves fast computation. Specifically, convergence is established by adopting
a two-layer architecture. In the outer layer, the slack variables are tightened using
the method of multipliers, and the inequalities are handled using a barrier tech-
nique. In the inner layer, ADMM iterations are performed in a distributed and coor-
dinated manner. Approximate NLP solution and Anderson acceleration techniques
are integrated into inner iterations for computational acceleration. A large-scale
optimization problem from a NLP benchmark library is used to show the numerical

@ Springer

Fast and stable nonconvex constrained distributed...

advantages of using the proposed ELLADA algorithm compared to the basic con-
vergent algorithms ELL (Algorithm 1) and ELLA (Algorithm 2).

Distributed nonlinear MPC, as an challenging problem in process control, is an
important application of such an algorithm. The advantages of applying ELLADA
to distributed nonlinear MPC include:

e Arbitrary input and state couplings among subsystems are allowed. No specific
pattern is required a priori.

e The convergence property of the algorithm towards a stationary point is theoreti-
cally guaranteed, and its performance can be monitored throughout iterations.

e Equality-constrained NLP solvers can be used only as a subroutine. No internal

modification of solvers is needed, and the choice of any appropriate solver is
flexible.
Asynchronous updates are allowed without affecting the convergence properties.
Although motivated with a nominal optimal control problem, the algorithm
could be suitable for more intricate MPC formulations such as stochastic/robust
MPC or sensitivity-based advance-step MPC.

The application of the ELLADA algorithm on the distributed nonlinear MPC of a
quadruple tank process has already shown its improved computational performance
compared to ELL and ELLA, and improved control performance compared to the
decentralized MPC and distributed MPC without accounting for state interactions.
Of course, due to the small size of the specific benchmark process, the control can
be realized easily with a centralized MPC. A truly large-scale control problem is
more suitable to demonstrate the effectiveness of our algorithm, and this shall be
presented in an upcoming separate paper.

Acknowledgements This work was supported by National Science Foundation (NSF-CBET). The
authors would also like to thank Prof. Qi Zhang for his constructive opinions.

Appendix 1: Proof of Lemma 1

We first prove that

L(xk,r+l’)—ck,r+l’ Zk,r+1’yk,r+l) S L(xk,r7)—ck,r’ Zk,r’yk,r)

_ ﬂk“B)_ck’H'l _BXJ(J 2 _ ﬁ_k||zk,r+1 : zk” 2 (62)
2

for r =0,1,2, First, since x**! is chosen as the minimizer of the augmented
Lagrangian with respect to x (Line 9, Algorithm 1), the update of x leads to a
decrease in L:

L(xk,r+1,)—ck,r’ Zk,r,yk,r) < L(xk,r’)—ck,r, e yk’r). (63)

Then consider the decrease resulted from x-update:

@ Springer

W.Tang, P. Daoutidis

L(xk,r+] ,)—Ck,r+l , Zk,r’ yk,r) _ L(xk,r+l ,)—Ck,r’ Zk,r’yk,r)
— g()—ck,r+l) _ g()—ck,r) + yk,rT (B.)_Ck’r+l _ B)_Ckr)

2

o 2 pf
+ E||A)Ck,r+l + B)_d(’H—l + Zk,r _ ?“Axk,r+l + B)—d(,r + Zk,r

. X (64)
_ g()—ck,r+1) _g()—ck,r) _ %”B)—Ck,r+l _ B

k.r
_ pk()—ck,r _ kit)TBT <Axk,r+1 + Bt gk 4 y .)
p

The minimization of x (Line 10, Algorithm 1) should satisfy the optimality condition

k.r
0€p'B" <Axk”+] + B 4 2 4 y—k> +0g(!) + Nx(F*), (65)
P

i.e., there exist vectors v, € dg(¥*"+!) and v, € Nyp(x'*1) with

k,r
BT <Ax](,r+1 + Bt 4k 4 yp_k> ——— (66)
Since v, € dg(x*"*!) and g is convex, v] (¥ —xk"*1) < g(35) — g(**1). And
vy € Ny(x*+1) implies v] (¥*" — x**1) < 0. Hence
k,r
pk()—ck,r _)—Ck,r+1)TBT (Axk,r+1 + Bt 4k y_k>
p
= T (R — B) T (77 -) (67)
> —(g(F) —g(x1)).

Substituting the above inequality in (64), we obtain

L(xk,r+l’)—€k,r+l’ Zk,r7yk,r) S L(xk,r+l,xk,r, Zk,r7yk,r)

- %k||35ck”+‘ e (08)

Third, we consider the decrease resulted from z- and y-updates:

@ Springer

Fast and stable nonconvex constrained distributed...

L(]H(’H—l ,)—Ck,r+l , Zk,r+l ’yk,r+l) _ L(]H(,r+l ,)—Ck,r+l , Zk,r’ yk,r)
k 2 2
— kT (Zk,r+1 _Zk,r) + %<||Zk,r+l|| _ ||Zk,r)

+yk,r+1T (Axk,r+1 + Bx o+l + Zk,r+1)
krT(xkr+1 +B—k r+1 +Zk,r) (69)

2
+ %”Axk,r+1 + Bkrtl +Zk,r+1”

o 2
_ 7“Axk,rﬂ + BRRr 4

Since o(z;4, /3)=/1Tz+§||z||2 is a convex function, whose gradient is
Vo(z; 4, p) = A+ Pz,

D(Zk’H—l;Ak, ﬂk) _ D(Zk’r;ik, ﬂk) S (Ak + ﬂkzk,r+l)T(Zk,r+l _ Zk,r)’ (70)
From Line 11 of Algorithm 1 it can be obtained
/1](+ ﬂzk,r+l - _yk,r+]. (71)

Substituting into (69), we obtain

L(xk,r+l ,)_Ck’H—l , Zk,r+l , yk,r+1) _ L(xk,r+l ,)—Ck,r+l , Zk,r, yk,r)

< (yk,r+l _yk,r)T(Axk,rH + Bkl +Zk,r)

ot 1 frl o kst l2 PNy gt 1 kr|)?
+7”Ax’”+ + Bkt g bt || —?”Ax r+l g phrtl g ghr

= ”; (A 4 Bebrtl g 2rt) T (Axhrt] g Brbrtl b (72)

2 k 2
p “A/d(rﬂ +B—kr+l +Zk,r+]|| _ p_“Axk,r+l +B]—d(,r+1 +Zk,r

2
Zk,r+1 _ Zk,r

_?” p ”Axkr+1 + Bkt 4 Z/<,r+1||

From (71),
A+ 4 gkl gkt Lkt oy _ _ﬁ_k kil _ kr
+ +z = (y y)— k(z Z) (73)
Pk p
Then (72) becomes

L()Ck’r+1,)_6k’r+1, Zk,r+1’yk,r+1) _ L(xk,r+1’)—ck,r+l’ Zk,r’yk,r)

< _</’2k (ﬂ;)2>nzk,r+1 — b

Summing up the inequalities (63), (68) and (74), we have proved the inequality (62).

2

2 (74)
Zk,r+1 _ Zk,r .

5|

@ Springer

W.Tang, P. Daoutidis

Next, we show that the augmented Lagrangian is lower bounded, and hence is
convergent towards some I_f‘ € R. We note that v(z;4, f) is a convex function of
modulus f, it can be easily verified that

D<Zk,r;/lk’ﬂk> + (ik + ﬂkzk,r)T<Zl _Zk,r)
o > (75)

+3 |z’ =2 > o(Z545, B)

for any 7/, i.e.,

k
U(Zk’r;ﬂk,ﬁk) +yk,rT(Zk,r _ Z’) > l)(Z,;/lk,ﬁk) _ % ' _ Zk,r 2 (76)

Let 7/ = —(Ax*" + Bx*") and remove the last term on the right-hand side. Then

U(Zk’r;ik, ﬂk) + yk,rT (Axk,r + B)—Ck,r + Zk,r)
> v(—(AX*" + Bx*); 45, BY). 77
Hence
L(xk,r’)—ck,r+1 , Zk,r’yk,r)
=f(x*) + g (3) + o(:45,)

2 (78)

k
+ YT (AR 4 BRET 4 257 %|’A)g(,r + B 4

2 () +8(#) +o(=(A 4 B).

Since v(z) = ATz + Z|[zI[? > ~[|4112/(2). 4 is bounded in [4,1], f* > B and fand g

are bounded below, L has a lower bound.

Taking the limit » — oo on the both sides of inequality (62), it becomes obvi-
ous that B¥**! — Bx*" and z%"*! — 75" converge to 0. Due to (73), we have
Ax®" 4 Bx* 4 77 — 0. Hence there must exist a r such that (22) is met. At this
time, the optimality conditions for x*+!is written as

0e af(xk,r+1) + NX<xk,r+l) + ATyk,r + pkAT (Axk,r+1 + Bxk,r + Zk,r) . (79)
According to the update rule of y*7, the above expression is equivalent to

0 Eaf(xk,r+1) +NX(xk,r+1) 4 AT+ AT

80
(B)_Ck’r+1 + Zk,r+1 _ B)_Ck’r _ Zk,r)’ ()

ie.,

pkAT (B)_Ck’r+1 + Zk,r+1 _)—Ck,r _ Zk,r) c af(xk,r+1)

+ NX(xk,r+1) +ATyk,r+1' (81)

@ Springer

Fast and stable nonconvex constrained distributed...

According to the first inequality of (22), the norm of the left hand side above is not
larger than e’l‘, which directly implies the first condition in (23). In a similar manner,
the second condition in (23) can be established. The third one follows from (71) and

the fourth condition is obvious.

Appendix 2: Proof of Lemma 2

We first consider the situation when g* is unbounded. From (78), we have
—_ k 2
L> (&) + g(x*) = AT (A 4 B + %”Ax"“ +B2 82

Since f and g are both lower bounded, as f* — oo, we have Ax**! + B¥*+! - 0.
Combined with the first two conditions of (23) in the limit of €}, ¢}, €% | 0, we have
reached (25).

Then we suppose that ¥ is bounded, i.e., the amplification step 5! = y ¥ is exe-
cuted for only a finite number of outer iterations. According to Lines 17-21 of Algo-
rithm 1, expect for some finite choices of k, ||“*!|| < w||z*|| always hold. Therefore
71 — 0. Apparently, (25) follows from the limit of (23).

Appendix 3: Proof of Lemma 3

From Lemma 1 one knows that within R inner iterations

L ;klik N g <“B)‘c"”+1 _ B

2

Uikt ok
+ —”z T =
2

2
>. (83)

“B)—Ck,RH _B)—Ck,RH’ “Zk,R+l _ Zk,R” N O<1/\/ﬂk—R>. (84)

For the kth outer iteration, its inner iterations are terminated when (22) is met, which
is translated into the following relations:

O(pk/\/ﬁkRk) < eq‘,elz‘ ~ (9(19]‘),

Then

(85)
O(l/\/ﬁ"R") < ek~ O(9/8).
where the last relation uses (73) with p¥ = 2*. Therefore
RE ~ O(B*/9%). (86)

At the end of the kth iteration, suppose that Lines 19-20 and Lines
17-18 of Algorithm 1 have been executed for k;, and k&, times,

@ Springer

W.Tang, P. Daoutidis

respectively (k; + k, = k). Then the obtained z**! satisfies ||*!|| ~ O("1), and
[AxX<H + BxkH 4+ | < ef ~ O(9F/B*), which imply

|4t + B | < O(8/8%) + O (o). 87)
From (82),
MW%“+B¢ﬂf~ﬁ%0@ﬁﬂ)+o@ﬁnz~oa) (88)

Substituting (88) into (86), we obtain

R~of L !)
(,92k ((9(19"/,6")+(9(a)k1))2 (89)

When 9 < w, % < of < 0F1y*, and hence Y28 < wh, ie., ® dominates over
9%/ p*, leading to

R ~ O(1/8% ™) ~ O(1/8%). 90)
For K outer iterations, the total number of inner iterations is
K K 1)
= k ~ — ~ —
R=];R O(; 192kw2k) O(@ZKQ)ZK)' oD

The number of outer iterations needed to reach an e-approximate stationary point is
obviously K ~ O(logy €). Then

R~ O(e2149). (92)

Appendix 4: Proof of Lemma 6

Through the inner iterations, only Anderson acceleration might lead to an increase in
the barrier augmented Lagrangian. Combining Assumptions 3, 5, and the safeguarding
criterion (41), we obtain

(s
kor+1 <kr+1 kr+1 | kr+l T4T 1

Ly (6or+1 ghortt kot)SL+L0’7LZOr1+O.<+OO’ (93)

=
Together with Assumptions 1 and 2, Ly is also bounded below. Therefore L is
bounded in a closed interval and must have converging subsequences. Therefore we
can choose a subsequence converging to the lower limit L. For any € > 0 there exists
an index R of inner iteration in this subsequence, such that Loy, Y >, r~1%9) < ¢/2

and Ly (xkr+1, xhrtl ghrtl ykrtl) < I+ /2 for any r > R on this subsequence. It
then follows that for any r > R, whether on the subsequence or not, it holds that

@ Springer

Fast and stable nonconvex constrained distributed...

Lhk (xk,r+l ’)—Ck,r+l , Zk,r+l ’yk,r+1) < é +e. (94)

Hence the upper limit is not larger than L + €. Due to the arbitrariness of € > 0, the
lower limit coincides with the upper limit, and hence the sequence of barrier aug-
mented Lagrangian is convergent.

The convergence of the barrier augmented Lagrangian implies that as r — oo,

Lbk (xk,r+1’)—ck,r+1’ Zk,r+1’ yk,r+1) _ Lbk (xk,r’)—ck,r’ Zk,r’yk,r) - 0 (95)

Suppose that r is not an accelerated iteration, then since this quantity does not exceed
gt B+l — Behr||2 — (g kr+l _ k|2 o+l _ pykor

p*||Bx Bxr||” = (84/2) ||z 27|, we must have Bx Bk -0
and Z%+! — Zkr 5 (. Otherwise if inner iteration r is accelerated, the convergence of
Bxkr+1 — Bxkr and Z%+! — 76" are automatically guaranteed by the second criterion
(42) of accepting Anderson acceleration. The convergence properties of these two
sequences naturally fall into the paradigm of Lemma 1 for establishing the conver-
gence to approximate KKT conditions of the relaxed problem.

References

Anderson DG (1965) Iterative procedures for nonlinear integral equations. J ACM 12(4):547-560

Bertsekas DP (2016) Nonlinear programming, 3rd edn. Athena Scientific, Nashua

Biegler LT, Thierry DM (2018) Large-scale optimization formulations and strategies for nonlinear model
predictive control. IFAC-PapersOnLine 51(20):1-15, the 6th IFAC Conference on Nonlinear Model
Predictive Control (NMPC)

Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning
via the alternating direction method of multipliers. Found Trend Mach Learn 3(1):1-122

Chen X, Heidarinejad M, Liu J, Christofides PD (2012) Distributed economic MPC: application to a non-
linear chemical process network. J Process Control 22(4):689-699

Chen C, He B, Ye Y, Yuan X (2016) The direct extension of ADMM for multi-block convex minimiza-
tion problems is not necessarily convergent. Math Prog 155(1-2):57-79

Christofides PD, Scattolini R, Mufioz de la Pefia D, Liu J (2013) Distributed model predictive control: a
tutorial review and future research directions. Comput Chem Eng 51:21-41

Daoutidis P, Tang W, Jogwar SS (2018) Decomposing complex plants for distributed control: perspec-
tives from network theory. Comput Chem Eng 114:43-51

Daoutidis P, Tang W, Allman A (2019) Decomposition of control and optimization problems by network
structure: concepts, methods and inspirations from biology. AIChE J 65(10):e16708

Dhingra NK, Khong SZ, Jovanovi¢ MR (2019) The proximal augmented Lagrangian method for nons-
mooth composite optimization. IEEE Trans Autom Control 64(7):2861-2868

Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math Prog
91(2):201-213

Eckstein J, Bertsekas DP (1992) On the Douglas-Rachford splitting method and the proximal point algo-
rithm for maximal monotone operators. Math Prog 55(1-3):293-318

Eckstein J, Yao W (2017) Approximate ADMM algorithms derived from Lagrangian splitting. Comput
Optim Appl 68(2):363—405

Eckstein J, Yao W (2018) Relative-error approximate versions of Douglas-Rachford splitting and special
cases of the ADMM. Math Prog 170(2):417-444

Fang Hr, Saad Y (2009) Two classes of multisecant methods for nonlinear acceleration. Numer Linear
Algebra Appl 16(3):197-221

Farokhi F, Shames I, Johansson KH (2014) Distributed MPC via dual decomposition and alternative
direction method of multipliers. In: Distributed model predictive control made easy. Springer, Ber-
lin, pp 115-131

@ Springer

W.Tang, P. Daoutidis

Fu A, Zhang J, Boyd S (2019) Anderson accelerated Douglas—Rachford splitting. arXiv preprint
arXiv:190811482

Gabay D, Mercier B (1976) A dual algorithm for the solution of nonlinear variational problems via finite
element approximation. Comput Math Appl 2(1):17—40

Giselsson P, Doan MD, Keviczky T, De Schutter B, Rantzer A (2013) Accelerated gradient methods and
dual decomposition in distributed model predictive control. Automatica 49(3):829-833

Glowinski R, Marroco A (1975) Sur I’approximation, par éléments finis d’ordre un, et la résolution, par
pénalisation-dualité d’une classe de problemes de dirichlet non linéaires. Rev Fr Autom Inform
Rech Opér, Anal Numér 9(R2):41-76

Goldstein T, O’Donoghue B, Setzer S, Baraniuk R (2014) Fast alternating direction optimization meth-
ods. SIAM J Imaging Sci 7(3):1588-1623

Hajinezhad D, Hong M (2019) Perturbed proximal primal-dual algorithm for nonconvex nonsmooth
optimization. Math Prog 176(1-2):207-245

He B, Yuan X (2012) On the O(1/n) convergence rate of the Douglas—Rachford alternating direction
method. SIAM J Numer Anal 50(2):700-709

Hong M, Luo ZQ (2017) On the linear convergence of the alternating direction method of multipliers.
Math Prog 162(1-2):165-199

Hong M, Luo ZQ, Razaviyayn M (2016) Convergence analysis of alternating direction method of multi-
pliers for a family of nonconvex problems. SIAM J Optim 26(1):337-364

Hours JH, Jones CN (2015) A parametric nonconvex decomposition algorithm for real-time and distrib-
uted NMPC. IEEE Trans Autom Control 61(2):287-302

Houska B, Frasch J, Diehl M (2016) An augmented Lagrangian based algorithm for distributed noncon-
vex optimization. SIAM J Optim 26(2):1101-1127

Jalving J, Cao Y, Zavala VM (2019) Graph-based modeling and simulation of complex systems. Comput
Chem Eng 125:134-154

Jiang B, Lin T, Ma S, Zhang S (2019) Structured nonconvex and nonsmooth optimization: algorithms
and iteration complexity analysis. Comput Optim Appl 72(1):115-157

Johansson KH (2000) The quadruple-tank process: a multivariable laboratory process with an adjustable
zero. IEEE Trans Control Syst Technol 8(3):456-465

Li G, Pong TK (2015) Global convergence of splitting methods for nonconvex composite optimization.
SIAM J Optim 25(4):2434-2460

Liu J, Chen X, Muiloz de la Pefia D, Christofides PD (2010) Sequential and iterative architectures for dis-
tributed model predictive control of nonlinear process systems. AIChE J 56(8):2137-2149

Mota JF, Xavier JM, Aguiar PM, Piischel M (2014) Distributed optimization with local domains: applica-
tions in MPC and network flows. IEEE Trans Autom Control 60(7):2004—-2009

Nesterov YuE (1983) A method of solving a convex programming problem with convergence rate O(klz).
Dokl Akad Nauk SSSR 269(3):543-547

Nicholson B, Siirola JD, Watson JP, Zavala VM, Biegler LT (2018) pyomo . dae: a modeling and auto-
matic discretization framework for optimization with differential and algebraic equations. Math
Prog Comput 10(2):187-223

Nishihara R, Lessard L, Recht B, Packard A, Jordan M (2015) A general analysis of the convergence of
ADMM. Proc Mach Learn Res 37:343-352

Ouyang Y, Chen Y, Lan G, Pasiliao E Jr (2015) An accelerated linearized alternating direction method of
multipliers. STAM J Imaging Sci 8(1):644-681

Patterson MA, Rao AV (2014) GPOPS-II: a MATLAB software for solving multiple-phase optimal con-
trol problems using /,-adaptive Gaussian quadrature collocation methods and sparse nonlinear pro-
gramming. ACM Trans Math Softw (TOMS) 41(1):1-37

Pulay P (1980) Convergence acceleration of iterative sequences. The case of SCF iteration. Chem Phys
Lett 73(2):393-398

Rawlings JB, Mayne DQ, Diehl MM (2017) Model predictive control: theory, computation, and design,
2nd edn. Nob Hill Publishing, Madison

Rockafellar RT, Wets RIB (1998) Variational analysis. Springer, Berlin

Scattolini R (2009) Architectures for distributed and hierarchical model predictive control—a review. J
Process Control 19(5):723-731

Scutari G, Facchinei F, Lampariello L (2016) Parallel and distributed methods for constrained nonconvex
optimization—part I: theory. IEEE Trans Signal Process 65(8):1929-1944

Stewart BT, Venkat AN, Rawlings JB, Wright SJ, Pannocchia G (2010) Cooperative distributed model
predictive control. Syst Control Lett 59(8):460-469

@ Springer

Fast and stable nonconvex constrained distributed...

Sun K, Sun XA (2019) A two-level distributed algorithm for general constrained non-convex optimiza-
tion with global convergence. arXiv preprint arXiv:190207654

Tang W, Allman A, Pourkargar DB, Daoutidis P (2018) Optimal decomposition for distributed optimi-
zation in nonlinear model predictive control through community detection. Comput Chem Eng
111:43-54

Themelis A, Patrinos P (2020) Douglas-Rachford splitting and ADMM for nonconvex optimization: tight
convergence results. SITAM J Optim 30(1):149-181

Toth A, Kelley C (2015) Convergence analysis for Anderson acceleration. SIAM J Numer Anal
53(2):805-819

Waichter A, Biegler LT (2005) Line search filter methods for nonlinear programming: motivation and
global convergence. SIAM J Optim 16(1):1-31

Wichter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Math Prog 106(1):25-57

Wang Y, Boyd S (2009) Fast model predictive control using online optimization. IEEE Trans Control
Syst Technol 18(2):267-278

Wang Z, Ong CJ (2017) Distributed model predictive control of linear discrete-time systems with local
and global constraints. Automatica 81:184-195

Wang Y, Yin W, Zeng J (2019) Global convergence of ADMM in nonconvex nonsmooth optimization. J
Sci Comput 78(1):29-63

Xie J, Liao A, Yang X (2017) An inexact alternating direction method of multipliers with relative error
criteria. Optim Lett 11(3):583-596

Yang Y, Hu G, Spanos CJ (2020) A proximal linearization-based fecentralized method for nonconvex
problems with nonlinear constraints. arXiv preprint arXiv:200100767

Zhang RY, White JK (2018) GMRES-accelerated ADMM for quadratic objectives. SIAM J Optim
28(4):3025-3056

Zhang J, O’Donoghue B, Boyd S (2018) Globally convergent type-I Anderson acceleration for non-
smooth fixed-point iterations. arXiv preprint arXiv:180803971

Zhang J, Peng Y, Ouyang W, Deng B (2019) Accelerating ADMM for efficient simulation and optimiza-
tion. ACM Trans Graph 38(6):163

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

@ Springer

http://arxiv.org/abs/200100767

	Fast and stable nonconvex constrained distributed optimization: the ELLADA algorithm
	Abstract
	1 Introduction
	2 ADMM and its modifications
	2.1 ADMM
	2.2 ADMM with approximate updates
	2.3 Anderson acceleration
	2.4 ADMM under nonconvex constraints

	3 Proposed algorithm
	3.1 Basic algorithm and its convergence
	3.2 Approximate algorithm
	3.3 Accelerated algorithm
	3.4 Parameter tuning

	4 Nonlinear optimization benchmark
	5 Implementation on distributed nonlinear MPC
	5.1 Formulation on directed and bipartite graphs
	5.2 Reformulation with slack variables
	5.3 Implementation of ELLADA

	6 Application to a quadruple tank process
	7 Conclusions and discussions
	Acknowledgements
	References

