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Abstract
Distributed optimization using multiple computing agents in a localized and coordi-
nated manner is a promising approach for solving large-scale optimization problems, 
e.g., those arising in model predictive control (MPC) of large-scale plants. How-
ever, a distributed optimization algorithm that is computationally efficient, globally 
convergent, amenable to nonconvex constraints remains an open problem. In this 
paper, we combine three important modifications to the classical alternating direc-
tion method of multipliers for distributed optimization. Specifically, (1) an extra-
layer architecture is adopted to accommodate nonconvexity and handle inequality 
constraints, (2) equality-constrained nonlinear programming (NLP) problems are 
allowed to be solved approximately, and (3) a modified Anderson acceleration is 
employed for reducing the number of iterations. Theoretical convergence of the pro-
posed algorithm, named ELLADA, is established and its numerical performance is 
demonstrated on a large-scale NLP benchmark problem. Its application to distrib-
uted nonlinear MPC is also described and illustrated through a benchmark process 
system.

Keywords  Distributed optimization · Nonconvex optimization · Model predictive 
control · Acceleration

1  Introduction

Distributed optimization (Boyd et  al. 2011) refers to methods of performing opti-
mization using a distributed architecture—the monolithic problem is first decom-
posed into several subproblems, each handled by a corresponding solver (agent), and 

 *	 Prodromos Daoutidis 
	 daou001@umn.edu

1	 Department of Chemical Engineering and Materials Science, University of Minnesota, 
Minneapolis, MN 55455, USA

2	 Present Address: Surface Operations, Projects and Technology, Shell Global Solutions (U.S.) 
Inc., Houston, TX 77082, USA

http://orcid.org/0000-0003-0816-2322
http://orcid.org/0000-0003-4803-0404
http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-020-09585-w&domain=pdf


	 W. Tang, P. Daoutidis 

1 3

necessary information among the agents is communicated to coordinate the distrib-
uted computation. The alternating direction method of multipliers (ADMM), as the 
most classical and representative algorithm for distributed optimization, was pro-
posed in the 1970s (Glowinski and Marroco 1975; Gabay and Mercier 1976) and 
has underdone significant development in the last decade. ADMM is an iterative 
primal–dual algorithm that is closely related to the method of multipliers (MM). 
In each iteration, the blocks of primal variables are alternately optimized, and the 
dual variables are updated according to the updated values of the primal variables. 
The underlying architecture of the algorithm is illustrated in Fig. 1, with two dis-
tinct groups of components—the distributed agents and the coordinator(s) collecting 
information about the primal and dual values from each other to solve their own 
subproblems.

Convergence is the most basic requirement of distributed optimization and also 
the central theme of a large amount of theoretical research on ADMM. For con-
vex problems and nonconvex problems whose nonconvexity resides in the objective 
function, by connecting the ADMM algorithm with the monotone operator theory 
and Douglas–Rachford splitting, the Fejér monotonicity and monotonicity of the 
augmented Lagrangian become standard arguments of proving theoretical conver-
gence guarantees (He and Yuan 2012; Nishihara et al. 2015; Hong et al. 2016; Hong 
and Luo 2017; Wang et al. 2019; Themelis and Patrinos 2020). However, nonconvex 
constraints appear much more difficult to handle. To guarantee convergence, Hours 
and Jones (2015) suggested dualizing and penalizing all nonconvex constraints, 
making them undifferentiated and tractable by ADMM; however, this alteration of 
the problem structure eliminates the option for distributed agents to use any subrou-
tine other than MM. Houska et al. (2016) used a quadratic programming problem to 
decide the dual variables in the augmented Lagrangian as well as an extrapolation of 
primal updates; this algorithm, however, involves a central agent that extracts Hes-
sian and gradient information of the subsystem models from the distributed agents in 
every iteration, and is thus essentially semi-centralized. Scutari et al. (2016) adopted 
feasibility-preserving convex approximations to approach the solution, which is 
applicable to problems without nonconvex equality constraints. We note that several 

Fig. 1   Primal–dual distributed optimization
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recent papers (Sun and Sun 2019; Jiang et al. 2019; Yang et al. 2020) proposed the 
idea of placing slack variables corresponding to the inter-subsystem constraints and 
forcing the decay to zero by tightening the penalty parameters of slack variables. 
This modification to the ADMM with slack variables and their penalties leads to 
a globally convergent extra-layer augmented Lagrangian-based algorithm with pre-
served agent-coordinator problem architecture.

Computational efficiency is also of critical importance for distributed optimiza-
tion. The slothfulness of primal–dual algorithms typically arises from two issues. 
First, the subgradient (first-order) update of dual variables restricts the number of 
iterations to be of linear complexity (Hong and Luo 2017). For convex problems, 
momentum methods (Goldstein et al. 2014; Ouyang et al. 2015) or Krylov subspace 
methods (Zhang and White 2018) can be adopted for acceleration, which, however, 
do not directly extend to nonconvex problems. Under nonconvexity, it was only very 
recently realized that Anderson acceleration, a multi-secant technique for fixed-
point problems, can be generally used to accelerate the dual variables (Zhang et al. 
2018, 2019; Fu et al. 2019). The second cause for the high computational cost of 
distributed optimization is the instruction on the distributed agents to fully solve 
their subproblems to high precision in each iteration. Such exhaustive efforts may be 
unnecessary since the dual information to be received from the coordinator will keep 
changing. For convex problems, it is possible to linearize the augmented Lagran-
gian and replace the distributed subproblems with Arrow–Hurwicz–Uzawa gradi-
ent flows (Dhingra et  al. 2019). In the presence of nonconvexity of the objective 
functions, a dual perturbation technique to restore the convergence of the augmented 
Lagrangian was proposed (Hajinezhad and Hong 2019). It is yet unknown how to 
accommodate such gradient flows to nonconvex constraints. A different approach is 
to allow inexact solution of the subproblems with adaptively tightening tolerances 
(Eckstein and Yao 2017, 2018). Such an approximate ADMM algorithm allows a 
better balance between the primal and dual updates, and avoids wasteful computa-
tional steps inside the subroutines.

An important engineering application that demands both a convergent and effi-
cient distributed optimization algorithm is model predictive control (MPC), which is 
an advanced control strategy widely adopted in process industries. In MPC, control 
decisions are made through solving an optimal control problem minimizing the cost 
associated with the predicted trajectory in a future horizon subject to the system 
dynamics and operational constraints (Rawlings et  al. 2017). For large-scale sys-
tems, it is desirable to seek a decomposition, e.g., using community detection or 
network block structures (Daoutidis et al. 2018, 2019; Tang et al. 2018), and deploy 
distributed MPC strategies (Scattolini 2009; Christofides et al. 2013), which prom-
ises better performance than fully decentralized MPC by enabling coordination, 
while avoiding assembling and computing on a monolithic model as in centralized 
MPC. In general, distributed nonlinear MPC with subsystem interactions should 
be considered as a distributed optimization problem under nonconvex constraints. 
Whether the distributed optimization algorithm converges affects the quality of con-
trol decisions and hence the closed-loop control performance, whereas computa-
tional efficiency determines whether a distributed nonlinear MPC strategy can be 
practically implemented online.
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Although ADMM for distributed MPC has been discussed (Farokhi et al. 2014; 
Mota et al. 2014), due to the lack of convergent and efficient nonconvex constrained 
distributed optimization algorithms, its application is so far limited mainly to linear 
systems (Giselsson et al. 2013; Wang and Ong 2017). The most common approach of 
distributed nonlinear MPC is to iterate the control inputs among the subsystems (in 
sequence or in parallel) (Stewart et al. 2010; Liu et al. 2010; Chen et al. 2012). The 
input iteration routine is typically either semi-decentralized by implicitly assuming 
that the subsystems interact only through inputs and considering state coupling as 
disturbances, or semi-centralized by using moving-horizon predictions based on the 
entire system, which, however, contradicts the fact that the subsystem models should 
be usually packaged inside the local agents rather than shared over the entire system. 
In a different vein, efficient centralized MPC algorithms have been proposed which 
exploit the underlying sparse patterns in the variable-constraint structure of the opti-
mal control problems and decompose the linear algebraic operations involved in the 
optimization solver (Wang and Boyd 2009; Patterson and Rao 2014; Biegler and 
Thierry 2018). While these efficient centralized MPC algorithms improve compu-
tational efficiency without compromising the solution quality, distributed MPC is 
still advantageous in its capability of solving very large MPC problems on a local-
ized subsystem basis without the need of engineering the solver details. Moreover, 
such structure exploitation can also be utilized by the solvers employed in distrib-
uted MPC. The crucial computational issue faced by distributed MPC is its iterative 
complexity and this will be addressed in this paper.

The purpose of this work is to develop a convergent and computationally efficient 
algorithm for distributed optimization under nonconvex constraints. Although the 
algorithm is in principle not restricted to any specific problem, we consider distrib-
uted nonlinear MPC as an application of special interest. Based on the above discus-
sion, we identify the following modifications to the classical ADMM algorithm as 
the key to mitigating the challenges in convergence and computational complexity: 
(1) additional slack variables are placed on the constraints relating the distributed 
agents and the coordinator, (2) approximate optimization is performed in the distrib-
uted agents, and (3) the Anderson acceleration technique is adopted by the coordi-
nator. We therefore combine and extend as appropriate these techniques into a new 
algorithm with a two-layer augmented Lagrangian-based architecture, in which the 
outer layer handles the slack variables as well as inequality constraints by using a 
barrier technique, and the inner layer performs approximate ADMM under an accel-
eration scheme. With guaranteed stability and elevated speed, to the best knowledge 
of the authors, the proposed algorithm is the first practical and generic algorithm of 
its kind for distributed nonlinear MPC with truly localized model information. We 
name this algorithm as ELLADA (standing for extra-layer augmented Lagrangian-
based accelerated distributed approximate optimization).

The paper discusses the motivation, develops the ELLADA algorithm and estab-
lishes its theoretical properties, and illustrates its application through case studies. The 
remainder of this paper is organized as follows. In Sect. 2, we first review the classical 
ADMM and its modified versions. Then we derive our ELLADA algorithm in Sect. 3 
with a trilogy pattern. First, a basic two-layer augmented Lagrangian-based algorithm 
(ELL) is introduced and its convergence is discussed. Then the approximate solution of 
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equality-constrained NLP problems and the Anderson acceleration scheme are incor-
porated to form the ELLA and ELLADA algorithms. In Sect. 4, a large-scale nonlinear 
optimization benchmark problem is used to demonstrate the numerical performance of 
the proposed ELLADA algorithm. The implementation of ELLADA on the distributed 
optimization problem involved in distributed nonlinear MPC is shown in Sect. 5, and a 
case study on a benchmark process is examined in Sect. 6. Conclusions and discussions 
are given in Sect. 7.

2 � ADMM and its modifications

2.1 � ADMM

The alterating direction method of multipliers is the most commonly used algorithm for 
distributed optimization under linear equality constraints (Boyd et al. 2011). Specifi-
cally, consider the following problem

with two blocks of variables x and x̄ , where f and g are usually assumed to be con-
vex. [The symbols in (1) are not related to the ones in Sect.  5.] The augmented 
Lagrangian for such a constrained optimization problem is

in which y stands for the vector of dual variables (Lagrangian multipliers) and 𝜌 > 0 
is called the penalty parameter. According to the duality theory, the optimal solution 
should be determined by a saddle point of the augmented Lagrangian:

The classical method of multipliers (MM) deals with this saddle point problem with 
an iterative procedure, where the primal variables are optimized first and then the dual 
variables are updated with a subgradient ascent (Bertsekas 2016, Chapter 6):

in which the superscript stands for the count of iterations. In a distributed context, 
x and x̄ usually can not be optimized simultaneously. ADMM is thus an approxima-
tion of MM that allows the optimization of x and x̄ to be performed separately, i.e.,

(1)min
x,x̄

f (x) + g(x̄) s.t. Ax + Bx̄ = 0

(2)L(x, x̄;y) = f (x) + g(x̄) + y⊤(Ax + Bx̄) +
𝜌

2
‖Ax + Bx̄‖2,

(3)sup
y

min
x,x̄

L(x, x̄;y).

(4)
(xk+1, x̄k+1) = argmin

x,x̄
L
(
x, x̄;yk

)
,

yk+1 = yk + 𝜌
(
Axk+1 + Bx̄k+1

)
,
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Since the appearance of ADMM in 1970s (Glowinski and Marroco 1975; Gabay 
and Mercier 1976), there have been many works regarding its theoretical properties, 
extensions and applications. As we have mentioned in the Introduction, ADMM is 
known to have a linear convergence rate for convex problems. This does not change 
when the variables are constrained in convex sets. For example, if x ∈ X  , it suffices 
to modify the corresponding term f(x) in the objective function by adding an indica-
tor function �X(x) (equal to 0 if x ∈ X  and +∞ otherwise), which is still a convex 
function.

2.2 � ADMM with approximate updates

Unless the objective terms f(x) and g(x̄) are of simple forms such as quadratic func-
tions, the optimization of x and x̄ in (5) does not have an exact solution. Usually, 
iterative algorithms for nonlinear programming need to be called for the first two 
lines of (5), and always searching for a highly accurate solution in each ADMM 
iteration will result in an excessive computational cost. It is thus desirable to solve 
the optimization subproblems in ADMM inexactly when the dual variables are yet 
far from the optimum, i.e., to allow xk+1 and x̄k+1 to be chosen such that

where �x and 𝜕x̄ represent the subgradients with respect to x and x̄ , respectively, and 
dx and dx̄ are not exactly 0 but only converging to 0 asymptotically. For example, one 
can assign externally a shrinking and summable sequence of absolute errors (Eck-
stein and Bertsekas 1992):

or a sequence of relative errors to the errors proportional to other variations in the 
algorithm (Eckstein and Yao 2017; Xie et al. 2017).

It was shown in Eckstein and Yao (2017) that a relative error criterion for termi-
nating the iterations in subproblems, compared to other approximation criteria such 
as a summable absolute error sequence, better reduces the total number of subrou-
tine iterations throughout the ADMM algorithm. Such a relative error criterion is a 
constructive one, rendered to guarantee the decrease of a quadratic distance between 
the intermediate solutions (xk, x̄k, yk) and the optimum (x∗, x̄∗, y∗) . In the context 
of distributed optimization problems under nonconvex constraints, since the con-
vergence proof is established on a different basis from the quadratic distance, the 
construction of such a criterion must be reconsidered. We will address this issue in 
Sect. 3.2.

(5)

xk+1 = argmin
x

L
(
x, x̄k;yk

)
,

x̄k+1 = argmin
x̄

L
(
xk, x̄;yk

)
,

yk+1 = yk + 𝜌
(
Axk+1 + Bx̄k+1

)
.

(6)dk+1
x

∈ 𝜕xL
(
xk+1, x̄k;yk

)
, dk+1

x̄
∈ 𝜕x̄L

(
xk+1, x̄k+1;yk

)
,

(7)‖dk
x
‖ ≤ 𝜖k

x
, ‖dk

x̄
‖ ≤ 𝜖k

x̄
,

∞�
k=1

𝜖k
x
< ∞,

∞�
k=1

𝜖k
x̄
< ∞,
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2.3 � Anderson acceleration

Linear convergence of the classical ADMM is essentially the result of subgradi-
ent dual update, which uses the information of only the first-order derivatives with 
respect to the dual variables: 𝜕yL = Ax + Bx̄ . The idea of creating a quadratically 
convergent algorithm using only first-order derivatives originates back from Nest-
erov’s approach of solving convex optimization problems, which performs iterations 
based on a linear extrapolation of the previous two iterations instead of the current 
solution alone (Nesterov 1983). Such a momentum method can be used to acceler-
ate the ADMM algorithm, which can be seen as iterations over the second block of 
primal variables x̄ and the dual variables y (Goldstein et al. 2014). However, such 
a momentum is inappropriate for nonconvex problems, since the behavior of the 
extrapolated point can not be well controlled by a bound on the curvature of the 
objective function.

Therefore, we resort to a different type of technique—Anderson acceleration, 
which was proposed in Anderson (1965) first and later “rediscovered” in the field of 
chemical physics (Pulay 1980). Generally speaking, Anderson acceleration is used 
to solve the fixed-point iteration problem

for some vector w and non-expansive mapping h0 (satisfying 
‖h0(w) − h0

�
w�
�‖ ≤ ‖w − w�‖ for any w and w′ ). Different from the simple Krasno-

selskii–Mann iteration wk+1 = �wk + (1 − �)h0
(
wk

)
 ( � ∈ (0, 1) ), Anderson accelera-

tion takes a quasi-Newton approach, which aims at a nearly quadratic convergence 
rate (Fang and Saad 2009). Specifically,1 in each iteration k, the results from the 
previous m iterations are recalled from memory to form the matrix of secants in w 
and h(w) = w − h0(w):

An estimated Jacobian is given by

or

which minimizes the Frobenius norm of Bk − I subject to BkΔ
k
w
= Δk

h
 . Then the 

quasi-Newton iteration wk+1 = wk − H−1
k
hk leads to a weighted sum of the previous 

m function values:

(8)w = h0(w)

(9)
Δk

w
=
[
�k−m
w

… �k−1
w

]
, �k

�

w
= wk�+1 − wk� , k� = k − m,… , k − 1;

Δk
h
=
[
�k−m
h

… �k−1
h

]
, �k

�

h
= h

(
wk�+1

)
− h

(
wk�

)
, k� = k − m,… , k − 1.

(10)Hk = I +
(
Δk

h
− Δk

w

)(
Δk⊤

w
Δk

w

)−1
Δk⊤

w
,

(11)H−1
k

= I +
(
Δk

w
− Δk

h

)(
Δk⊤

w
Δk

h

)−1
Δk⊤

w
,

1  There are two different types of Anderson acceleration. Here we focus on Type I, which was found to 
have better performance (Fang and Saad 2009) and was improved in Zhang et al. (2018).
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where the weights 
{
�k
m�

}m

m�=0
 are specified by

with sk
m′ being the m′ th component sk:

Anderson acceleration (12) may not always be convergent, although local conver-
gence was studied in some special cases (Toth and Kelley 2015). Recently, a glob-
ally convergent modification of Anderson acceleration was proposed in Zhang et al. 
(2018), where regularization, restarting, and safeguarding measures are taken to 
ensure the well-conditioning of the Δk

w
 matrix, boundedness of the inverse Jacobian 

estimate (11), and acceleration only in a safety region, respectively.
The relevance of Anderson acceleration to ADMM lies in that the ADMM algo-

rithm (5) can be seen as fixed-point iterations (x̄k, yk) → (x̄k+1, yk+1) , k = 0, 1, 2,… 
(Zhang et al. 2019), which is the same idea underlying the ADMM with Nesterov 
acceleration. For problems with nonconvex constraints, the iteration mapping h is 
not necessarily non-expansive, and hence one can not directly establish the conver-
gence of Anderson acceleration with the original techniques used in Zhang et  al. 
(2018). We will address this issue in Sect. 3.3.

2.4 � ADMM under nonconvex constraints

The presence of nonconvexity largely increases the difficulty of distributed optimi-
zation. Most of the work in nonconvex ADMM considers problems with nonconvex 
objective function with bounded Hessian eigenvalues or the Kurdyka–Łojasiewicz 
property assumptions, under which a convergence rate of O

�
1∕

√
k
�
 (slower than 

that of convex ADMM, O(1∕k) ) was established (Li and Pong 2015; Hong et  al. 
2016; Wang et al. 2019). However, for many distributed optimization problems, e.g., 
the distributed MPC of nonlinear processes, there exist nonconvex constraints on the 
variables, which is intrinsically non-equivalent to the problems with nonconvex 
objective functions. For our problem of interest, the relevant works are scarce.

Here we introduce the algorithm of Sun and Sun (2019) for (1) under nonconvex 
constraints x ∈ X  and x̄ ∈ X̄  , reformulated with slack variables z:

The augmented Lagrangian is now written as

(12)wk+1 =

m∑
m�=0

�k
m�h0

(
xk−m+m

�)

(13)�k
m� =

⎧
⎪⎨⎪⎩

sk
0
, m� = 0

sk
m� − sk

m�−1
, m� = 1,… ,m − 1

1 − sk
m−1

, m� = m

,

(14)sk = (Δk⊤
w
Δk

h
)−1Δk⊤

w
hk.

(15)min
x,x̄,z

f (x) + g(x̄) s.t. Ax + Bx̄ + z = 0, z = 0, x ∈ X, x̄ ∈ X̄.
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The algorithm is a two-layer one, where each outer iteration (indexed by k) con-
tains a series of inner iterations (indexed by r). In the inner iterations, the classical 
ADMM algorithm is used to update x, x̄ , z and y in sequence, while keeping � and � 
unchanged:

Under mild assumptions, in the presence of slack variables z, it was proved (Sun and 
Sun 2019) that if one chooses �k = 2�k , then the inner iterations converge to the set 
of stationary points 

(
xk, x̄k, zk, yk

)
 of the relaxed problem

Then in the outer iterations, the dual variables �k are updated. To enforce the conver-
gence of the slack variables to zero, the corresponding penalty �k is amplified by a ratio 
𝛾 > 1 if the returned zk from the inner iterations does not decay enough from the previ-
ous outer iteration zk−1 ( ‖zk‖ > 𝜔‖zk−1‖ , � ∈ (0, 1) ). The outer iteration is written as

in which the projection Π onto a predefined compact hypercube 
[
�, �

]
 is used to 

guarantee the boundedness of the dual variables and hence the augmented Lagran-
gian L. If the augmented Lagrangian L remains bounded despite the increase of the 
penalty parameters �k and �k , the algorithm converges to a stationary point of the 
original problem (1). The iterative complexity of such an algorithm to reach an �
-approximate stationary point is O

(
�−4 ln

(
�−1

))
.

(16)

L(x, x̄, z;y, 𝜆, 𝜌, 𝛽) = f (x) + g(x̄) + �X(x) + �X̄(x̄)

+ y⊤(Ax + Bx̄ + z) +
𝜌

2
‖Ax + Bx̄ + z‖2 + 𝜆⊤z +

𝛽

2
‖z‖2.

(17)

xk,r+1 = argmin
x

L
(
x, x̄k,r, zk,r;yk,r, 𝜆k, 𝜌k, 𝛽k

)

= argmin
x∈X

f (x) +
𝜌k

2

‖‖‖‖‖
Ax + Bx̄k,r + zk,r +

yk,r

𝜌k

‖‖‖‖‖

2

x̄k,r+1 = argmin
x̄

L
(
xk,r+1, x̄, zk,r;yk,r, 𝜆k, 𝜌k, 𝛽k

)

= argmin
x̄∈X̄

g(x̄) +
𝜌k

2

‖‖‖‖‖
Axk,r+1 + Bx̄ + zk,r +

yk,r

𝜌k

‖‖‖‖‖

2

zk,r+1 = argmin
z

L
(
xk,r+1, x̄k,r+1, z;yk,r, 𝜆k, 𝜌k, 𝛽k

)

= −
𝜌k

𝜌k + 𝛽k

(
Axk,r+1 + Bx̄k,r+1 +

yk,r

𝜌k

)
−

1

𝜌k + 𝛽k
𝜆k

yk,r+1 = yk,r + 𝜌k
(
Axk,r+1 + Bx̄k,r+1 + zk,r+1

)

(18)
min
x,x̄,z

f (x) + g(x̄) + 𝜆k⊤z +
𝛽k

2
‖z‖2

s.t. Ax + Bx̄ + z = 0, x ∈ X, x̄ ∈ X̄.

(19)𝜆k+1 = Π�
𝜆,𝜆

�
�
𝜆k + 𝛽kzk

�
, 𝛽k+1 =

�
𝛾𝛽k, ‖zk‖ > 𝜔‖zk−1‖
𝛽k, ‖zk‖ ≤ 𝜔‖zk−1‖
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In the next section, building on the algorithm of Sun and Sun (2019) that guarantees 
the convergence of distributed optimization under nonconvex constraints, we propose 
a new algorithm that integrates into it the ideas of approximate ADMM and Anderson 
acceleration, aiming at improving the computational efficiency.

3 � Proposed algorithm

3.1 � Basic algorithm and its convergence

Consider an optimization problem in the following form:

or equivalently with slack variables

We make the following assumptions.

Assumption 1  Assume that f is lower bounded, i.e., ∃f  such that ∀x ∈ X  , f (x) ≥ f .

Assumption 2  Function g is lower bounded.

Our basic algorithm (Algorithm 1) for (21) is slightly modified from the procedure 
of Sun and Sun (2019), which considered the case where g(x) = 0 and X̄  is a hyper-
cube. The algorithm uses an inner loop of ADMM iterations and an outer loop of MM 
with possibly amplifying penalty parameters. The inner iterations are terminated when 
the following criterion is met

 

(20)

min
x,x̄

f (x) + g(x̄)

s.t. Ax + Bx̄ = 0,

x ∈ X = {x|𝜙(x) ≤ 0,𝜓(x) = 0}, x̄ ∈ X̄

(21)

min
x,x̄,z

f (x) + g(x̄)

s.t. Ax + Bx̄ + z = 0, z = 0,

x ∈ X = {x|𝜙(x) ≤ 0,𝜓(x) = 0}, x̄ ∈ X̄.

(22)

𝜖k
1
≥ 𝜖k,r

1
∶=

‖‖‖𝜌
kA⊤(Bx̄k,r+1 + zk,r+1 − Bx̄k,r − zk,r)

‖‖‖,
𝜖k
2
≥ 𝜖k,r

2
∶=

‖‖‖𝜌
kB⊤(zk,r+1 − zk,r)

‖‖‖,
𝜖k
3
≥ 𝜖k,r

3
∶=

‖‖‖Ax
k,r+1 + Bx̄k,r+1 + zk,r+1

‖‖‖.
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Lemma 1  (Convergence of inner iterations) Suppose that Assumptions  1 and  2 
hold. When �k = 2�k , the inner iterations are terminated at a finite r when (22) is 
met and the point 

(
xk,r+1, x̄k,r+1, zk,r+1

)
 satisfies the following conditions

for some dk
1
 , dk

2
 and dk

3
 satisfying ‖‖‖dk1

‖‖‖ ≤ �k
1
 , ‖‖‖dk2

‖‖‖ ≤ �k
2
 and ‖‖‖dk3

‖‖‖ ≤ �k
3
 , respectively. 

NX(x) ( NX̄(x̄) ) refers to the normal cone to the set X  ( ̄X  ) at point x ( ̄x):

The proof of the above lemma is given in “Appendix 1” using the augmented 
Lagrangian (16) as a decreasing Lyapunov function throughout the inner itera-
tions (Hong et  al. 2016; Hong and Luo 2017), which gives the convergence of 
the inner iterations. It is apparent that if �k

1
, �k

2
, �k

3
 are all equal to 0, (23) is the 

Karush–Kuhn–Tucker optimality condition of the relaxed problem (18) (Rock-
afellar and Wets 1998). To establish the convergence of outer iterations, we need 
to make the following assumption to restrict the upper level of the augmented 
Lagrangian.

(23)

dk
1
∈ 𝜕f

(
xk,r+1

)
+NX

(
xk,r+1

)
+ A⊤yk,r+1

dk
2
∈ 𝜕g

(
x̄k,r+1

)
+NX̄

(
x̄k,r+1

)
+ B⊤yk,r+1

0 = 𝜆k + 𝛽kzk,r+1 + yk,r+1, dk
3
= Axk,r+1 + Bx̄k,r+1 + zk,r+1

(24)NX(x) =
{
v|v⊤(x� − x

)
≤ 0,∀x� ∈ X

}
.
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Assumption 3  The augmented Lagrangians are uniformly upper bounded at ini-
tialization of all inner iterations, i.e., there exists L ≥ L

(
xk,0, x̄k,0, zk,0, yk,0, 𝜆k, 𝜌k, 𝛽k

)
 

for all k.

The above assumption is actually a “warm start” requirement. Suppose that we 
have a feasible solution 

(
x0, x̄0

)
 to the original problem (20), then we can always 

choose xk,0 = x0 , x̄k,0 = x̄0 , zk,0 = 0 , yk,0 = −�k to guarantee an L = f
(
x0
)
+ g

(
x̄0
)
.

Lemma 2  (Convergence of outer iterations) Suppose that Assumptions  1,  2 and3 
hold. Then for any �1 , �2 , and 𝜖3 > 0 , within a finite number of outer iterations k, 
Algorithm  1 finds an approximate stationary point 

(
xk+1, x̄k+1, zk+1, yk+1

)
 of (20), 

satisfying

for some d1 , d2 , d3 satisfying ‖‖‖dj
‖‖‖ ≤ �j , j = 1, 2, 3.

See “Appendix 2” for a proof. In addition to the convergence, we can also estab-
lish a theoretical complexity. Previously in Sun and Sun (2019), it was shown that 
to reach an �-approximate stationary point satisfying (25) with 𝜖1, 𝜖2, 𝜖3 = 𝜖 > 0 , 
the total number of inner iterations needed is of the order O

(
�−4 ln (1∕�)

)
 . Here, we 

show that by appropriately choosing the way that the tolerances 
(
�k
1
, �k

2
, �k

3

)
 shrink, 

the iteration complexity can be provably reduced anywhere in 
(
O
(
�−2

)
,O

(
�−4

)]
 , for 

which a proof is given in “Appendix 3”.

Lemma 3  (Complexity of the basic algorithm) Suppose that Assumptions  1,  2 
and3 hold. For some constant � ∈ (0,�] , choose �k

1
∼ O

(
�k
)
 , �k

2
∼ O

(
�k
)
 , and 

�k
3
∼ O

(
(�∕�)k

)
 . Then each outer iteration k requires Rk ∼ O

(
(��)−2k

)
 inner itera-

tions. Hence, for the Algorithm 1 to reach an �-approximate stationary point, the 
total iterations needed is R ∼ O

(
�−2(1+�)

)
 , where � = log� � ∈ (0, 1].

3.2 � Approximate algorithm

We note that the basic algorithm requires undesirable complete minimization of x 
and x̄ in each inner iteration (Lines 9–10, Algorithm 1). For simplicity, we assume 
that such a minimization oracle2 exists for x̄.

(25)

d1 ∈ 𝜕f
(
xk+1

)
+NX

(
xk+1

)
+ A⊤yk+1

d2 ∈ 𝜕g
(
x̄k+1

)
+NX̄

(
x̄k+1

)
+ B⊤yk+1

d3 = Axk+1 + Bx̄k+1

2  We use the word “oracle” with its typical meaning in mathematics and computer science. An oracle 
refers to an ad hoc numerical or computational procedure, regarded as a black box mechanism, to gener-
ate the needed results as its outputs based on some input information.
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Assumption 4  The minimization of the augmented Lagrangian with respect to x̄ 
(Line 10, Algorithm 1) admits a unique explicit solution

Let us also assume that the problem has a smoothness property as follows.

Assumption 5  Functions f, � and � are continuously differentiable, and X  has a 
nonempty interior.

Under this smoothness assumption, the KKT condition for x-minimization is written 
as the following equalities with � ≥ 0 and � representing the Lagrangian dual variables 
corresponding to the inequalities �(x) ≤ 0 and �(x) = 0 , respectively

Line 9 of Algorithm 1 is thus to solve the above equations for xk,r+1 . This can be 
achieved through an interior point algorithm, which employs double-layer iterations 
to find the solution. In the outer iteration, a barrier technique is used to convert the 
inequality constraints into an additional term in the objective; the optima (or sta-
tionary points) of the resulting barrier problems converge to true optima (stationary 
points) as the barrier parameter converges to 0. In the inner iteration, a proper search 
method is used to obtain the optimum of the barrier problem.Since both the interior 
point algorithm and the ELL algorithm  1 have a double-layer structure, using an 
interior point algorithm as the NLP solver in ELL results in four layers of iterations. 
For simplification, we consider matching the outer layers and inner layers of the 
NLP algorithm and ELL, respectively. Specifically, this implies the following two 
modifications of the ELL algorithm. 

To incorporate the outer iterations of interior point optimization into the outer itera-
tions of ELL, the function f(x) is appended with a barrier term −bk

∑C�

c=1
ln
�
−�c(x)

�
 , 

where the bk is the barrier parameter varying with the outer iteration k and decaying to 
0 as k increases. Hence a “barrier augmented Lagrangian” can be defined as

Based on the arguments in the previous subsection, if the x-optimization step 
returns a xk,r+1 minimizing Lb with respect to x, then the inner iterations result in 
the descent of Lbk , which implies the satisfaction of conditions (23), with f modified 
by the barrier function. Obviously, if Assumption 3 holds for L, then it also holds 
for Lbk when X  has a nonempty interior. It follows that the outer iterations can find 

(26)x̄k,r+1 = G
(
B,Axk,r+1 + zk,r + yk,r∕𝜌k, 𝜌k

)
.

(27)

0 = ∇f
(
xk,r+1

)
+ 𝜌kA⊤

(
Axk,r+1 + Bx̄k,r + zk,r + yk,r∕𝜌k

)

+

C𝜙∑
c=1

𝜇c∇𝜙c

(
xk,r+1

)
+

C𝜓∑
c=1

𝜈c∇𝜓c

(
xk,r+1

)

0 = 𝜇c𝜙c

(
xk,r+1

)
, c = 1,… ,C𝜙, 0 = 𝜓c

(
xk,r+1

)
, c = 1,… ,C𝜓 .

(28)Lb = L − b

C�∑
c=1

ln
(
−�c(x)

)
.
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an approximate stationary point of the original problem with the decay of barrier 
parameters bk.

With the inequality constraints handled by the barrier term, the inner ADMM 
iterations only deals with equality-constrained NLP problems. To merge the itera-
tive routine to solve equality-constrained NLP problems (Wächter and Biegler 2005) 
into the ADMM iterations, we allow to perform only a proper amount of searching 
steps instead of the entire equality-constrained NLP in each inner iteration, so that the 
solution to the equality-constrained NLP problem can be approached asymptotically 
throughout the inner iterations. For this purpose, we assume that we have at hand a 
solver that can find an approximate solution of the equality-constrained NLP with any 
prespecified tolerances of violations to the KKT conditions.

Assumption 6  Assume that for any equality-constrained smooth NLP problem

a solver that guarantees the convergence to any approximate stationary point of the 
above problem with a lower objective function is available. That is, starting from 
any initial point x0 , for any tolerances 𝜖4, 𝜖5 > 0 , within a finite number of searches 
the solver finds a point (x, �) satisfying

for some ‖‖d4‖‖ ≤ �4 , ‖‖d5‖‖ ≤ �5 , and f (x) ≤ f
(
x0
)
 . Such an approximate solution is 

denoted as F
(
x0;� ,� , �4, �5

)
.

The above approximate NLP solution oracle is realizable by NLP solvers where 
the tolerances of the KKT conditions are allowed to be specified by the user, e.g., the 
IPOPT solver (Wächter and Biegler 2006). Under Assumption 6, the x-update step on 
Line 9 of Algorithm 1 is replaced by an approximate NLP solution

where the objective function in the current iteration is the part of barrier augmented 
Lagrangian Lbk that is related to x with the indicator function �X(x) excluded:

This approximate algorithm with inexact x-minimization is summarized as Algo-
rithm 2. The inner iterations are performed until �k,r

4
 and �k,r

5
 are lower than �k

4
 and 

�k
5
 , respectively, and (22) holds. The outer iterations are terminated when �k

4
≤ �4 , 

�k
5
≤ �5 , the barrier parameter is sufficiently small bk ≤ �6 , and (25) holds.

(29)min
x

�(x) s.t. �(x) = 0

(30)d4 = ∇�(x) +

C�∑
c=1

�c∇�c(x), d5c = �c(x), c = 1,… ,C� .

(31)xk,r+1 = F
(
xk,r;�k,r,� , �k,r

4
, �k,r

5

)
,

(32)𝜒k,r(x) = f (x) − bk

C𝜙∑
c=1

ln
(
−𝜙c(x)

)
+

𝜌k

2

‖‖‖‖‖
Ax + Bx̄k,r + zk,r +

yk,r

𝜌k

‖‖‖‖‖

2

.
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Lemma 4  (Convergence of the approximate algorithm) Suppose that Assump-
tions 1–6 hold. For any outer iteration k, given any positive tolerances 

{
�k
1
,… , �k

5

}
 , 

within a finite number of inner iterations r, the obtained solution satisfies

for some dk
1
,… , dk

5
 with ‖‖‖dk1

‖‖‖ ≤ �k
1
,… ,

‖‖‖dk5
‖‖‖ ≤ �k

5
 . Then, suppose that the outer iter-

ation tolerances 
{
�k
1
,… , �k

5

}
 and barrier parameters bk are diminishing with 

increasing k, given any terminating tolerances 𝜖1,… , 𝜖6 > 0 , within a finite number 

(33)

dk
1
+ dk

4
= ∇f

(
xk,r+1

)
+

C𝜙∑
c=1

𝜇k,r+1
c

∇𝜙c

(
xk,r+1

)

+

C𝜓∑
c=1

𝜈k,r+1
c

∇𝜓c

(
xk,r+1

)
+ A⊤yk,r+1

dk
2
∈ 𝜕g

(
x̄k,r+1

)
+NX̄

(
x̄k,r+1

)
+ B⊤yk,r+1,

0 = 𝜆k + 𝛽kzk,r+1 + yk,r+1

dk
3
= Axk,r+1 + Bx̄k,r+1 + zk,r+1, dk

5
= 𝜓

(
xk,r+1

)
,

− bk = 𝜇k,r+1
c

𝜙c

(
xk,r+1

)
, c = 1,… ,C𝜙.
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of outer iterations, Algorithm 2 finds a point 
(
xk+1, x̄k+1, zk+1, yk+1,𝜇k+1, 𝜈k+1

)
 

satisfying

for some d1,… , d6 with ‖‖‖dj
‖‖‖ ≤ �j , j = 1,… , 5 , d6 ∈

(
0, �6

]
.

3.3 � Accelerated algorithm

In the ELLA algorithm, let us make the following assumption regarding our choice 
of tolerances �k,r

4
 and �k,r

5
.

Assumption 7  Suppose that we choose a continuous and strictly monotonically 
increasing function �∶ [0,∞) → [0,∞) with �(0) = 0 such that �k,r

5
= �

(
�k,r
4

)
 , and 

choose �k,r+1
4

 with an analogous function of ‖‖‖𝜌kA⊤
(
Bx̄k,r+1 − Bx̄k,r + zk,r+1 − zk,r

)‖‖‖ 
when the resulting value is strictly smaller than the previous tolerance �k,r

4
 but not 

smaller the ultimate one �k
4
.

The choice of function � to relate the stationarity tolerance and equality tolerance 
in NLP subroutine is aimed at balancing the effort to reduce both errors. The choice 
of �k,r+1

4
 is based on the rationale that after the rth inner iteration, the obtained solu-

tion xk,r+1 satisfies the stationarity condition within a tolerance of �k,r
4

 , and after the 
update of x̄ , z and y variables, the violation to the stationarity condition is bounded 
by 𝜖k,r

4
+ ‖‖𝜌kA⊤(Bx̄k,r+1 − Bx̄k,r + zk,r+1 − zk,r)‖‖ . Therefore, �k,r

4
 should be balanced 

with the second term, which, however, is realizable only after the x̄ - and z-updates 
after the x-update and hence assigned to �k,r+1

4
.

We note from Algorithm 2 that under Assumption 7, each inner iteration r is a 
mapping from 

(
xk,r, x̄k,r, zk,r+1, yk,r+1, 𝜖k,r

4

)
 to 

(
xk,r+1, x̄k,r+1, zk,r+1, yk,r+1, 𝜖k,r+1

4

)
 . In 

fact, despite the dependence of the latter variables on xk,r and �k,r
4

 , such dependence 
can be ignored in the sense that the descent of the barrier augmented Lagrangian 
Lbk will always guide the sequence of intermediate solutions towards the set of �k

4

-approximate stationary points of the relaxed barrier problem. It follows that under 
the approximate algorithm, the sequence 

{(
x̄k,r, zk,r

)}∞

r=1
 will converge to a fixed 

point, and the convergence of 
{
yk,r

}
 accompanies the convergence of 

{
zk,r

}
 . It is thus 

clear that we may resort to Anderson acceleration introduced in Sect. 2.3 by denot-
ing w = (x̄, z) , the iteration as a mapping h0 , and h(w) = w − h0(w) , and collecting at 
the rth inner iteration the following multi-secant information about the previous m 
inner iterations:

(34)

d1 + d4 = ∇f
(
xk+1

)
+

C𝜙∑
c=1

𝜇k+1
c

∇𝜙c

(
xk+1

)
+

C𝜓∑
c=1

𝜈k+1
c

∇𝜓c

(
xk+1

)
+ A⊤yk+1

d2 ∈ 𝜕g
(
x̄k+1

)
+NX̄

(
x̄k+1

)
+ B⊤yk+1, 0 = 𝜆k + 𝛽kzk+1 + yk+1

d3 = Axk+1 + Bx̄k+1, d5 = 𝜓
(
xk+1

)
,

− d6 = 𝜇k+1
c

𝜙c

(
xk+1

)
, c = 1,… ,C𝜙.
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where �r−m
�

h
= wk,r−m�+1 − wk,r−m� and �r−m

�

h
= h

(
(wk,r−m�+1

)
− h

(
wk,r−m�) , 

m� = m − 1,… , 0.
However, the possibility that Δk

w
 may not be of full rank and Hk,r may be singu-

lar requires certain modifications to the original acceleration scheme. The following 
regulation technique was used in Zhang et al. (2018). To ensure the invertibility of 
Hk,r , the �h vector is perturbed to

where the perturbation magnitude �m′

k,r
 is determined by

with regularization hyperparameter �� ∈ (0, 1) . The function �(�;�) is defined by

With regulation, H−1
k,r

 is induced from 
(
H0

k,r

)−1

= I according to

for m� = 0,… ,m − 1 with Hm
k,r

= Hk,r . To avoid the rank deficiency Δw , a restart 
checking strategy is used, where the memory is cleared when the Gram-Schmidt 
orthogonalization becomes ill conditioned ( ‖‖‖𝛿k,rw

‖‖‖ < 𝜂w
‖‖‖𝛿k,rw

‖‖‖ for some �w ∈ (0, 1) ) 
or the memory exceeds a maximum M; otherwise the memory is allowed to grow. 
Hence the Anderson acceleration is well-conditioned.

Lemma 5  (Well-conditioning of Anderson acceleration, Zhang et al. (2018)) Using 
the regularization and restart checking techniques, it is guaranteed that

where M is the maximum number of steps in the memory and N is the dimension of 
w.

(35)Δk,r
w

=
[
�k,r−m
w

… �k,r−1
w

]
,Δk,r

h
=
[
�k,r−m
h

… �k,r−1
h

]
,

(36)𝛿k,r−m+m
�

h
=
(
1 − 𝜃m

�

k,r

)
𝛿k,r−m+m

�

h
+ 𝜃m

�

k,r
𝛿k,r−m+m

�

w
,

(37)𝜃m
�

k,r
= 𝜑

⎛
⎜⎜⎜⎝

�
𝛿k,r−m+m

�

w

�⊤�
Hm�

k,r

�−1

𝛿k,r−m+m
�

h

���𝛿
k,r−m+m�

w
���
2

;𝜂𝜃

⎞
⎟⎟⎟⎠
.

(38)𝜑(𝜃;𝜂) =

{
(𝜂sign𝜃 − 𝜃)∕(1 − 𝜃), |𝜃| ≤ 𝜂
0, |𝜃| > 𝜂

.

(39)

(
Hm�+1

k,r

)−1

=
(
Hm�

k,r

)−1

+

(
𝛿k,r−m+m

�

w
−
(
Hm�

k,r

)−1

𝛿k,r−m+m
�

h

)(
𝛿k,r−m+m

�

w

)⊤(
Hm�

k,r

)−1

(
𝛿k,r−m+m

�

w

)⊤(
Hm�

k,r

)−1

𝛿k,r−m+m
�

h

(40)‖‖‖H
−1
k,r

‖‖‖2 ≤ 𝜃−M
[
3
(
1 + 𝜃 + 𝜂w

)M
𝜂−N
w

− 2
]N−1

< +∞
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A well-conditioned Anderson acceleration is not yet sufficient to guarantee the 
convergence. Hence we employ a safeguarding technique modified from Zhang 
et  al. (2018) which aims at suppressing a too large increase in the barrier aug-
mented Lagrangian by rejecting such acceleration steps. When Anderson accel-
eration suggests an update from w = (x̄, z) to w̃ =

(
̃̄x, z̃

)
 under the current value of 

Ax, the resulting Lagrangian increase black, if positive, must not exceed an upper 
bound:

where L̃0 is the expected Lagrangian decrease after the first non-accelerated iteration 
after initialization according to Lemma 1, used as a scale for the change in the bar-
rier augmented Lagrangian, 𝜂L, 𝜎 > 0 are hyperparameters, and R+ is the number of 
already accepted acceleration steps. With safeguarding, it can be guaranteed that the 
barrier augmented Lagrangian always stays bounded, since ∑∞

R+=0

�
R+ + 1

�−(1+𝜎)
< +∞ . We also require that the acceleration should not lead 

to a drastic change in w:

where 𝜂w̃ > 0 is a hyperparameter. 1∕
√
1 + R+ reflects an expected change accord-

ing to the plain ADMM iteration, which is used to suppress disproportionate large 
deviations due to Anderson acceleration.

Finally, the accelerated algorithm using the Anderson acceleration technique 
for fixed-point iteration of (x̄, z) is summarized as Algorithm  3. This is our final 
ELLADA algorithm, whose convergence can now be guaranteed by the following 
lemma, the proof of which is given in “Appendix 4”.

Lemma 6  (Convergence under Anderson acceleration) Suppose that Assump-
tions  1–7 hold. Under regulated and safe-guarded Anderson acceleration, Algo-
rithm 3 finds within a finite number of inner iterations r a point satisfying (33). The 
convergence of outer iterations to an approximate stationary point satisfying (34) 
hence follows.

Summarizing the conclusions of all the previous lemmas in this section, we have 
arrived at the following theorem.

Theorem 1  Suppose that the following assumptions hold: 

1.	 Function f is lower bounded on X ;
2.	 Function g is convex and lower bounded on X̄ ;

(41)

ΔLmax =L̃0
𝜂L(

R+ + 1
)1+𝜎 =

(
𝛽k
‖‖‖Bx̄

k,1 − Bx̄k,0
‖‖‖
2

+
𝛽k

2

‖‖‖z
k,1 − zk,0

‖‖‖
2
)

𝜂L(
R+ + 1

)1+𝜎

(42)‖Δw‖2
max

=
L̃0

𝛽k
𝜂w̃√
1 + R+

,
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3.	 Initialization of outer iterations allows a uniform upper bound of the augmented 
Lagrangian, e.g., a feasible solution is known a priori;

4.	 Minimization of g(x̄) + 𝜌

2
‖Bx̄ + v‖2 with respect to x̄ allows an oracle G(B, v, �) 

returning a unique solution for any v of appropriate dimension and 𝜌 > 0;
5.	 Functions f, � , and � are continuously differentiable, and the constraints (�,�) 

are strictly feasible;
6.	 There exists a solver for equality-constrained NLP to any specified tolerances of 

KKT conditions.

Then given any tolerances 𝜖1,… , 𝜖6 > 0 , the ELLADA algorithm (Algorithm 3) 
gives an 

(
�1,… , �6

)
-approximate KKT point satisfying the conditions (34).
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3.4 � Parameter tuning

We have so far proved the theoretical convergence of the proposed ELLADA algo-
rithm (Algorithm 3). It is not surprising to expect that such an algorithm that com-
bines multiple techniques aiming at improving the computational performance will 
require some parameter tuning effort, although these parameters do not alter the ulti-
mate convergence. Three main groups of parameters are involved here.

The first group of parameters is related to the outer iterations, namely the thresh-
old of slack variable decay � and the triggered penalty amplifying ratio � . Although 
the bounds of the dual variables 

[
�, �

]
 also appear as parameters, they are expected 

to play a theoretical role in establishing convergence rather than practically affecting 
the numerical performance. Generally, smaller � and larger � values result in more 
radical increase of the penalty parameter, which on one hand reduces the number of 
outer iterations needed for the slack variables to converge to zero, but on the other 
hand, is prone the making the problem ill-conditioned and increasing the number of 
inner iterations. Hence, � and � should be at neither too large nor too small values, 
which can be tuned by fixing the tolerance parameters at some conservative levels 
(to be improved by the next step), and examining when the ELL algorithm is the 
most efficient.

The second groups of parameters are the tolerances associated with the approxi-
mate NLP solution and inner layer ADMM iterations. Since Bx̄k,r+1 − Bx̄k,r and 
zk,r+1 − zk,r are related to the first two terms in the linear constraint Ax + Bx̄ + z = 0 
and hence of similar magnitudes, �1 and �2 as well as �k

1
 and �k

2
 during the outer itera-

tions k should be similar. According to Assumption 7, �k,r
4

 should be chosen accord-
ingly with �k,r

1
 , and �k

4
 accordingly with �1 . Across the outer iterations, these toler-

ances are required to be exponentially decaying so that only a few outer iterations 
should be needed. To obtain a suitable relation � between stationarity tolerances �k,r

4
 , 

�k
4
 and equality constraint tolerances �k,r

5
 , �k

5
 of the NLP solver, we simply let � to be 

a linear function. That is,

The primal and dual residuals �1 and �3 should also be set in proportion so that the 
obtained solution is an approximate stationary point rather than a stagnant point. 
For the barrier constant, we need to guarantee that its diminishing should be in pace 
with the outer iterations, and hence can be set based on �k

3
 . We also require that the 

barrier constants should be clamped within a specified range. That is,

(43)

�1 = �2 = �4,

�k
1
= �k

2
= �k

4
= max

(
c1∕a

k−1
1

, �1
)
, �k

5
=

�5
�4
�k
1
,

�k,r
4

= max
(
c4
(
�k,r
1

)a4
, �k

4

)
, �k,r

5
=

�5
�4
�k,r
4
.

(44)�k
3
=

�3
�1
�k
1
, bk = min

(
bmax, max

(
�6, �6

(
�k
1
∕�1

)a6)).
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All the tolerance parameters thus reduce to c1, a1, c4, a4, a6 and the limits, 
�1, �3, �4, �5, �6 , bmax . The limits should be determined at the values at which the 
solution is satisfactory while not causing excessive computational cost. The expo-
nents a4 and a6 can be chosen between 1 or 2. Then there exists only three param-
eters c1, a1, c4 to be determined empirically so that the numerical performance of the 
resulting ELLA algorithm best improves that of ELL.

The remaining 6 parameters are related to Anderson acceleration and its auxiliary 
regulation and safeguarding techniques – 

(
𝜂𝜃 , 𝜂w,M, 𝜎, 𝜂w̃, 𝜂L

)
 , which can be classified 

into 3 groups, namely �� involved in regularization, 
(
�w,M

)
 in memory clean-up, and (

𝜎, 𝜂w̃, 𝜂L
)
 in rejecting inappropriate acceleration candidates. Since �� aims at guaran-

teeing the invertibility of the Jacobian estimate with a perturbation, its value should 
be reasonably small (e.g., �� = 0.05 or 0.01), and the same holds for �w . The maxi-
mum allowed memory M should be large enough to obtain a meaningful “average” 
curvature, but should not be too large to include too many obsolete previous points. 
Empirically, nevertheless, it was found that the variation of �� , �w , and M does not have 
a strong impact. For the last three safeguarding-related parameters, the decrease of � or 
the increase of 𝜂w̃ or �L allows more accepted Anderson acceleration steps. The effects 
on the overall computational performance, however, are non-intuitive, since more 
accelerations may imply not only faster convergence but also possibly more overshoot 
and oscillations. Therefore, careful tuning is needed to obtain an appropriate extent of 
acceleration.

4 � Nonlinear optimization benchmark

To test the proposed ELLADA algorithm as a generic method of nonconvex con-
strained distributed optimization, we consider a problem from the NLP benchmark 
library in this section, while the implementation and a case study on distributed non-
linear MPC will be discussed in the next sections. The benchmark is the camshape 
problem from the COPS (constrained optimization problem set) library (Dolan and 
Moré 2002), described as follows:

where rmin = 1 , rmax = 2 , � = 1.5 , � = 2�∕5(n + 1) , r−1 = r0 = rmin , rn+1 = rmax , 
rn+2 = rn . We consider solving this problem with n = 4n0 + 2 , n0 = 100 , in a dis-
tributed manner with 4 subproblems. The variables rin0+1 and rin0+2 , i = 1, 2, 3 are 
the shared variables between the neighboring subproblems, and hence x̄ are created 
for these variables, and equality constraints are imposed (for example, the last com-
ponent of x1 and the second component of x2 should both be equal to the second 

(45)

min
r1,…,rn

n∑
i=1

ri

s.t. rmin ≤ ri ≤ rmax, i = 1,… , n

2ri−1ri+1 cos � ≤ ri
(
ri−1 + ri+1

)
, i = 0, 1,… , n, n + 1

− � ≤
ri+1 − ri

�
≤ �, i = 0, 1,… , n



1 3

Fast and stable nonconvex constrained distributed…

component of x̄ ). Thus, formulations in the form of (20) and subsequently of (21) 
are obtained, with the dimensions of x̄ and z being 6 and 12, respectively. Each sub-
problem contains 102 variables, 100 or 101 nonlinear inequality constraints, and 202 
linear inequality constraints. The subproblems are handled with the IPOPT solver 
used in OPTI Toolbox of Matlab. The gradient of the objective function, the Jaco-
bian matrix of the nonlinear constraints and its structure are provided to the solver.

For ELL, the final tolerances �1 = �2 = 10−6 , �3 = 10−4 are set as equal to the 
default values in the IPOPT solver, and the parameters are tuned as � = 0.75 , � = 2 , 
�k
1
= �k

2
= 10−3∕2k−1 , �k

3
= 10−1∕2k−1 . The initial penalty parameter � = 4 . The max-

imum number of outer iterations is set as 20, and the maximum number of inner 
iterations for each outer iteration is set as 1000. The intermediate calculated results 
of augmented Lagrangian L and �k,r

1
 , �k,r

2
 , �k,r

3
 are shown in Fig.  2. The expected 

monotonic decreasing property of L is observed, leading to the convergence of the 
asymptotic inner iterations. However, for all the outer iterations after the 15th, the 
maximum allowed number of inner iterations is reached, and the maximum allowed 
number of outer iterations is also reached, resulting in a total number of 6002 inner 
iterations and a computational time of 761.40 s (0.1269 s for each inner iteration on 
average). At the end of the 20 outer iterations, ‖z‖∞ = 5.69 × 10−4 remains high. 
This is due to the large value of the penalty parameter values (above 210 ), which fun-
damentally limits the speed of convergence.

Fig. 2   Results of the ELL algorithm for the camshape problem. Colors from blue to red correspond to 
increasing outer iterations. (Color figure online)
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By observing Fig. 2, for ELLA we decide to reset the final tolerances to coarser 
values �1 = �2 = �4 = 10−4 , �3 = 10−3 since it appears difficult for the solver to prac-
tically reach lower precisions. We let �k,r

1
= �k,r

2
= 10−1∕2k−1 , �5 = 10−4 , �6 = 10−4 . 

The barrier parameter is set as bk = �6(�
k
3
∕�3)

2 . The total number of inner itera-
tions needed to converge is 151 in 11 outer iterations, with a computational time of 
14.38 s. In contrast, ELL achieves these tolerances in 7 outer iterations, which takes 
317 inner iterations and 33.67 s. Hence, ELLA needs 47.6% less iterations and 57.3 
% less computational time than ELL to reach solutions with the same level of toler-
ances. On average for each inner iteration, 10.3 % of computational time is saved 
compared to ELL. In ELLA, the behaviors of the barrier augmented Lagrangian Lb 
and �k,r

1,2,3
 , as shown in Fig. 3, are similar to that of ELL.

Finally we seek to decrease the number of inner iterations needed by using 
ELLADA. The Anderson acceleration-related parameters are tuned as �w = 0.001 , 
� = 0.001 , � = 0.1 , �L = 5 , 𝜂w̃ = 1 , and M = 3 . After acceleration, the total number 
of inner iterations needed becomes 84, 44.4% lower than ELLA. Within these inner 
iterations, 72 iterations are under Anderson acceleration. The resulting computa-
tional time is 8.1010 s, 43.7% lower than that of ELLA. It is noted from Fig. 4 that 
under ELLADA, the curves of �k,r

1,2,3
 becomes more kinky and larger deviations from 

monotonicity. Such phenomena highlight the necessity of safeguarding techniques to 
curb the behavior of Anderson acceleration as well as careful tuning of the relevant 
parameters.

Fig. 3   Results of the ELLA algorithm for the camshape problem. Colors from blue to red correspond 
to increasing outer iterations. (Color figure online)



1 3

Fast and stable nonconvex constrained distributed…

5 � Implementation on distributed nonlinear MPC

Consider a nonlinear discrete-time dynamical system

where x(t) ∈ ℝ
n and u(t) ∈ ℝ

m are the vectors of states and inputs, respectively, for 
t = 0, 1, 2,… , and f∶ℝn ×ℝ

m → ℝ
n . Suppose that at time t we have the current 

states x = x(t) , then in MPC, the control inputs are determined by the following opti-
mal control problem:

(46)x(t + 1) = f (x(t), u(t))

(47)

min J =

t+T−1∑
𝜏=t

�(x̂(𝜏), û(𝜏)) + �
f(x̂(t + T))

s.t. x̂(𝜏 + 1) = f (x̂(𝜏), û(𝜏)), 𝜏 = t,… , t + T − 1

p(x̂(𝜏), û(𝜏), 𝜏) ≤ 0, 𝜏 = t,… , t + T − 1

q(x̂(𝜏), û(𝜏), 𝜏) = 0, 𝜏 = t,… , t + T − 1

x̂(t) = x.

Fig. 4   Results of the ELLADA algorithm for the camshape problem. Colors from blue to red corre-
spond to increasing outer iterations. (Color figure online)
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In the above formulation, the optimization variables x̂(𝜏) and û(𝜏) represent the pre-
dicted states and inputs in a future horizon {t, t + 1,… , t + T} with length T ∈ ℕ . 
The predicted trajectory is constrained by the dynamics (46) as well as some addi-
tional path constraints p, q such as the bounds on the inputs and states or Lyapunov 
descent to enforce stability. Functions � and �f are called the stage cost and termi-
nal cost, respectively. By solving (47), one executes u(t) = û(t) . For simplicity it is 
assumed here that the states are observable; otherwise, the states can be estimated 
using an optimization formulation such as moving horizon estimation (MHE). For 
continuous-time systems, collocation techniques can be used to discretize the result-
ing optimal control problem into a finite-dimensional one.

Now suppose that the system (46) is large-scale with its states and outputs 
decomposed into n subsystems: x =

[
x⊤
1
, x⊤

2
,… , x⊤

n

]⊤ , u =
[
u⊤
1
, u⊤

2
,… , u⊤

n

]⊤ , and 
that the optimal control problem should be solved by the corresponding n agents, 
each containing the model of its own subsystem:

where 
{
xji, uji

}
 stands for the states and inputs in subsystem j (i.e., components of 

xj and uj ) that appear in the arguments of fi , which comprise of the components of 
f corresponding to the ith subsystem. Pi is the collection of subsystems j that has 
some inputs and outputs influencing subsystem i. We assume that the cost functions 
and the path constraints are separable:

5.1 � Formulation on directed and bipartite graphs

Graphs or networks are systematic tools to visualize distributed control/optimiza-
tion problems and allow the practitioners of distributed MPC to construct and 
configure their specific problem of interest in a structured manner, by using net-
work decomposition methods to automatically generate subsystems (Daoutidis 
et  al. 2019) and associating the subsystems and their interactions with a graph 
topology (Jalving et  al. 2019). To better illustrate the application of ELLADA 
on the distributed solution of the optimal control problem (47) reformulated into 
the form of (21), we introduce some graph-theoretic representations of optimiza-
tion problems. For problem (47), we first define a directed graph (digraph), which 
is a straightforward characterization of the mutual impacts among the subsystem 
models.

(48)xi(� + 1) = fi

(
xi(�), ui(�),

{
xji(�), uji(�)

}
j∈P(i)

)
.

(49)

�(x̂, û) =

n∑
i=1

�i

(
x̂i, ûi

)
,�f(x̂) =

n∑
i=1

�
f
i

(
x̂i
)
,

p(x̂, û, 𝜏) =
[
p1
(
x̂1, û1, 𝜏

)⊤
,… , pn

(
x̂n, ûn, 𝜏

)⊤]⊤
,

q(x̂, û, 𝜏) =
[
q1
(
x̂1, û1, 𝜏

)⊤
,… , qn

(
x̂n, ûn, 𝜏

)⊤]⊤
.
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Definition 1  (Digraph) The digraph of system (46) under the decomposi-
tion x =

[
x⊤
1
, x⊤

2
,… , x⊤

n

]⊤ and u =
[
u⊤
1
, u⊤

2
,… , u⊤

n

]⊤ is G1 =
{
V1, E1

}
 with nodes 

V1 = {1, 2,… , n} and edges E1 = {(j, i)|j ∈ P(i)} . If (i, j) ∈ E1 , i.e., j ∈ P(i) , we say 
that j is a parent of i and i is a child of j (denoted as i ∈ C(j)).

Then under the decomposition, (47) can be written as

We denote the variables of the ith agent as

in which the variables related to the jth subsystem are denoted as �ji . Since �ji is a 
part of the predicted states and inputs from subsystem j, i.e., some components of �j , 
the interactions between the parent j and the child i be captured by a matrix ��⃗Dji with 
exactly one unit entry (“1”) on every row: 𝜉ji = ��⃗Dji𝜉j , where the right arrow repre-
sents the impact of the parent subsystem j on the child subsystem i. By denoting the 
model and path constraints in agent i as �i ∈ Ξi , the optimal control problem (46) is 
expressed in a compact way as follows:

This is an optimization problem defined on a directed graph. An illustration for a 
simple case when E1 = {(1, 2), (2, 3), (3, 1)} is shown in Fig. 5a.

Although it is natural to represent the interactions among the subsystems in 
a digraph, performing distributed optimization on digraphs where the agents 
communicate among themselves without a coordinator can be challenging. For 
example, it is known that the ADMM algorithm, which behaves well for distrib-
uted optimization with 2 blocks of variables, can become divergent when directly 
extended to multi-block problems (Chen et al. 2016). Hence we construct such a 
2-block architecture by using a bipartite graph.

Definition 2  (Bipartite graph) The bipartite graph of system (46) G2 is 
constructed from the digraph G1 by taking both the nodes and edges as 
the new nodes, and adding an edge between i ∈ V1 and e ∈ E1 if i is the 

(50)

min
∑
i∈V1

Ji =
∑
i∈V

t+T−1∑
𝜏=t

�i

(
x̂i(𝜏), ûi(𝜏)

)
+ �

f
i

(
x̂i(t + T)

)

s.t. x̂i(𝜏 + 1) = fi

(
x̂i(𝜏), ûi(𝜏),

{
x̂ji(𝜏), ûji(𝜏)

}
j∈P(i)

)
,

pi
(
x̂i(𝜏), ûi(𝜏), 𝜏

)
≤ 0, 𝜏 = t,… , t + T − 1, i ∈ V1

qi
(
x̂i(𝜏), ûi(𝜏), 𝜏

)
= 0, 𝜏 = t,… , t + T − 1, i ∈ V1

x̂i(t) = xi, i ∈ V1,

(51)
𝜉i =

[
x̂i(t)

⊤, ûi(t)
⊤,… , x̂i(t + T − 1)⊤, ûi(t + T − 1)⊤, x̂i(t + T)⊤,

{
x̂ji(t)

⊤, ûji(t)
⊤
}
j∈P(i)

,… ,
{
x̂ji(t + T − 1)⊤, ûji(t + T − 1)⊤

}
j∈P(i)

]⊤
,

(52)min
∑
i∈V1

Ji
(
𝜉i
)

s.t.𝜉i ∈ Ξi, i ∈ V1, 𝜉ji = ��⃗Dji𝜉j, (j, i) ∈ E1.
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head or tail of e in the digraph, i.e., G2 =
(
V2, E2

)
 with V2 = V1 ∪ E1 , 

E2 =
{
(i, e)|i ∈ V1, e ∈ E1, e = (i, j), j ∈ C(i) or e = (j, i), j ∈ P(i)

}
.

Fig. 5   Graphical illustrations of the problem structure of distributed MPC
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Such a graph is bipartite since any edge is between a node of V1 and a node of E1.
We note that the last line of (52) corresponds to the digraph edges E1 . In the 

bipartite graph, these edges should become nodes and hence new groups of vari-
ables should be associated with them. For this purpose, we simply need to pull out 
�ji as overlapping variables 𝜉ji , and add the constraint that 𝜉ji are some selected com-
ponents of �i : 𝜉ji = �⃖�Dji𝜉i:

In (53), variables �i ( i ∈ V1 ) and 𝜉ji ( (j, i) ∈ E1 ) are defined on the nodes of the bipar-
tite graph, and the constraints captured by the matrices ��⃗Dji and �⃖�Dji correspond to the 
bipartite edges (j, (j, i)) and (i, (j, i)), respectively. We may also write the last line of 
(53) as

Therefore (53) is an optimization problem on the bipartite graph. An illustration is 
given in Fig. 5b. Under this reformulation, the problem structure becomes a 2-block 
one—distributed agents i = 1,… ,N manage the decision variables �i , V1 in parallel 
without interference, and the coordinator regulates the agents by using overlapping 
variables 𝜉e , e ∈ E1.

5.2 � Reformulation with slack variables

It is known that a key condition for distributed optimization in the context of the 
ADMM algorithm to converge is that one block of variables can always be made 
feasible given the other block (Wang et al. 2019). Unfortunately this condition is not 
always met by the problem (53). For example, given �1 and �2 , there may not be a 𝜉12 
satisfying both 𝜉12 = ��⃗D12𝜉1 and 𝜉12 = �⃖�D12𝜉2 . To deal with this issue, it was proposed 
to associate with each linear constraint in (53), namely each edge in the bipartite 
graph, a slack variable �ie (e.g., Sun and Sun 2019):

Similar to the notation for D, we write �ie as �⃗𝜁 ij if e = (i, j) and �⃖𝜁 ij if e = (j, i) . Such a 
problem structure is graphically illustrated in Fig. 5c.

Finally, we stack all the subscripted variables into � , 𝜉 , � in a proper ordering 
of i ∈ V1 , e ∈ E1 , and (i, e) ∈ E2 . The matrices Die are stacked in a block diagonal 
pattern in the same ordering of (i, e) ∈ E2 into A. The appearance of 𝜉e in the equal-
ity constraints is represented by a matrix B (satisfying B⊤B = 2I ). We write the 

(53)min
∑
i∈V1

Ji
(
𝜉i
)

s.t. 𝜉i ∈ Ξi, i ∈ V1, 𝜉ji = ��⃗Dji𝜉j = �⃖�Dji𝜉j, (j, i) ∈ E1

(54)𝜉e = Die𝜉i, (i, e) ∈ E2.

(55)

min
∑
i∈V1

Ji(𝜉i)

s.t. 𝜉i ∈ Ξi, i ∈ V1

Die𝜉i − 𝜉e + 𝜁ie = 0, (i, e) ∈ E2

𝜁ie = 0, (i, e) ∈ E2.
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objective function as J(�) , and the set constraints Ξi are lumped into a Cartesian 
product Ξ = ×i∈V1

Ξi . Finally, we reach a compact formulation for (55):

Such an architecture is represented by the graphs in Fig. 5d, e. The variables 𝜉 and � 
belong to the coordinator (marked in red), and � is in the distributed agents. Clearly, 
the optimal control problem formulated as (55) with the afore-mentioned graph rep-
resentations is now a special form of (21), with � , 𝜉 and � rewritten as x, x̄ and z, 
respectively, and g(x̄) = 0 , X̄  equal to the entire Euclidean space.

5.3 � Implementation of ELLADA

As long as the cost function J is lower bounded (e.g., a quadratic cost), it follows 
from Theorem 1 that Algorithm 3 is applicable to (55), where the operations on x̄ , z, 
y are performed by the coordinator, and the operations on x is handled by the distrib-
uted agents. Specifically,

•	 The update steps of x̄, z, y (Lines 10–13, 15, 16) and the entire Anderson acceler-
ation (Lines 17–26) belong to the coordinator. The updates of penalty parameters 
and outer-layer dual variables � (Lines 31) should also be performed by the coor-
dinator. The conditions for �k

1
, �k

2
, �k

3
 and �1, �2, �3 are checked by the coordinator.

•	 The distributed agents are responsible for carrying out a trial x-update step for 
the Anderson acceleration (Line 9) as well as the plain x-update (Line 14). The 
conditions and updates for �k,r

4
, �k,r

5
 , �k

4
, �k

5
 , and �4, �5, �6 are checked by the agents.

When executing the updates, the agents need the values of Bx̄ + z + y∕𝜌 to add to 
Ax, and the coordinator needs the value of Ax from the agents. When the variables x 
are distributed into agents x1,… , xn , and the equality constraints between the agents 
and the coordinator is expressed on a bipartite graph:

the communication of Ax and Bx̄ + z + y∕𝜌 takes place in a distributed and parallel 
way, i.e., the ith agent obtains the information of −x̄e + zie + yie∕𝜌 for all e such that 
(i, e) ∈ E2 from the coordinator. The coordinator, based on inter-subsystem edges e 
in the digraph, obtains the information of Diexi for all related agents i. When the 
objective function and X  are separable f (x) =

∑n

i=1
fi(xi) , X = X1 ×⋯ × Xn , based 

on such distributed and parallel communication, the optimization problem

in an x-update step can be solved in a distributed and parallel manner:

(56)min J(𝜉) s.t.𝜉 ∈ Ξ,A𝜉 + B𝜉 + 𝜁 = 0, 𝜁 = 0

(57)Diexi − x̄e + zie = 0, (i, e) ∈ E2,

(58)
min f (x) − b

C𝜙∑
c=1

ln
(
−𝜙c(x)

)
+

𝜌

2

‖‖‖‖Ax + Bx̄ + z +
y

𝜌

‖‖‖‖
2

s.t. 𝜓(x) = 0
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Similarly, the x̄-update with the G-mapping is in parallel for its components e, if X̄  
is separable, i.e., if X̄  is a closed hypercube (whether bounded or unbounded), and if 
g is also separable. That is, x̄-update can be expressed as

The z and y updates are in parallel for the edges (i, e) on the bipartite graph.
In Algorithm 3, the procedures are written such that in each iteration, the update 

steps are carried out in sequence. This requires a synchronization of all the agents 
i and the coordinating elements e and (i, e). For example, for the x-update, every 
distributed agent needs to create a “finish” signal after solving xi in (59) and send 
it to the coordinator. Only after the coordinator receives the “finish” signals from 
all the distributed agents can the x̄-update be carried out. Due to the possible com-
putational imbalance among the agents and the coordinator, such synchronization 
implies that faster updates must idle for some time to wait for slower ones. In fact, 
the convergence properties of the ELLADA algorithm do not rely on the synchroni-
zation. Even when the inner iterations are asynchronous, the update steps still con-
tribute to the convergence of the barrier augmented Lagrangian and hence result in 
convergence to KKT conditions. The only exception is that under Anderson accel-
eration, the steps for generating the candidate of accelerated updates are allocated to 
another coordinator and another set of distributed agents, and they should communi-
cate to make the decision on executing the accelerations.

6 � Application to a quadruple tank process

The quadruple tank process is a simple benchmark process for distributed model 
predictive control (Johansson 2000) with 4 states (water heights in the 4 tanks) and 
2 inputs (flow rates from the reservoir). The dynamic model is written as follows:

Other parameter values and the nominal steady state are given in Table 1.
The process is considered to have 2 subsystems, one containing tanks 1 and 4 

and the other containing tanks 2 and 3. Each subsystem has 2 states, 1 input and 1 

(59)

minxi fi
�
xi
�
− b

∑C𝜙,i

c=1
ln
�
−𝜙c,i(xi)

�
+

𝜌

2

∑
{e�(i,e)∈E2}

���Diexi − x̄e + zie +
yie

𝜌

���
2

s.t. 𝜓i

�
xi
�
= 0

⎫⎪⎬⎪⎭
∕∕ for i.

(60)
minx̄i gi

�
x̄i
�
+

𝜌

2

∑
{i�(i,e)∈E2}

���Diexi − x̄e + zie +
yie

𝜌

���
2

s.t. x̄i ∈ X̄i

⎫
⎪⎬⎪⎭
∕∕ for e.

(61)

ḣ1 = −
a1

A1

√
h1 +

a3

A1

√
h3 +

𝛾1k1
A1

v1, ḣ2 = −
a2

A2

√
h2 +

a4

A2

√
h4 +

𝛾2k2
A2

v2

ḣ3 = −
a3

A3

√
h3 +

�
1 − 𝛾2

�
k2

A3

v2, ḣ4 = −
a4

A4

√
h4 +

�
1 − 𝛾1

�
k1

A4

v1.
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upstream state. We first design a centralized MPC with quadratic objective function 
for each tank, and bounds on the inputs 2.5 ≤ v1, v2 ≤ 3.5 . We first decide through 
the simulation of centralized MPC that a receding horizon of T = 400 with sampling 
time �t = 10 is appropriate. The computations are performed using the Python mod-
ule pyomo.dae with an IPOPT solver (Nicholson et al. 2018).

The closed-loop trajectories under the traditional MPC controllers, including a 
centralized MPC (black), a semi-centralized MPC where the inputs are iteratively 
updated based on predictions over the entire process (green), a decentralized MPC 
(blue), and a distributed MPC with only state feedforwarding among the agents 
(purple), are shown in Fig. 6. It was observed that a semi-centralized MPC based 
on system-wide prediction maintains the control performance, yielding trajectories 
overlapping with those of the centralized MPC. However, the state-feedforward dis-
tributed MPC without sufficient coordination accounting for the state interactions 
results in unsatisfactory control performance, whose ultimate deviation from the 
steady state is even larger than the decentralized MPC without any communication 
between the controllers.

Table 1   Parameters and nominal steady state

Parameter Value Parameter Value

A
1
 , A

3
28 a

1
 , a

3
3.145

A
2
 , A

4
32 a

2
 , a

4
2.525

�
1

0.43 k
1

3.14
�
2

0.34 k
2

3.29

Input Value Input Value

v
1

3.15 v
2

3.15

State Value State Value

h
1

12.44 h
2

13.17
h
3

4.73 h
4

4.99

Fig. 6   Closed-loop trajectories under traditional MPC controllers for the quadruple tank process
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Next we use the proposed ELLADA algorithm for distributed nonlinear MPC of 
the process. We first examine the basic ELL algorithm (Algorithm  1) by solving 
the corresponding distributed MPC problem at a state with h1 = 12.6 , h2 = 12.4 , 
h3 = 5.0 , h4 = 4.5 , where we set � = 0.75 , � = 2 , � = −� = 10 (in an element-wise 
sense) and �k

1
= �k

2
= 10−2∕2k−1 , �k

3
= 10−1∕2k−1 , �1 = �2 = 10−4 , �3 = 10−3 as a 

baseline that seeks to terminate only when a highly precise solution is reached. The 
solution results in terms of the variation of the augmented Lagrangian Lk,r , the vio-
lations to the KKT conditions �k,r

1,2,3
 , and penalty parameters �k throughout the inner 

and outer iterations are presented in Fig. 7, where the rainbow colormap from blue 
to red colors stand for increasing outer iteration number. In accordance to the con-
clusion of Lemma 1, the augmented Lagrangian is monotonically decreasing in each 
outer iterations and remains upper bounded, which guarantees the convergence of 
the algorithm. Using the ELL algorithm for the afore-mentioned closed-loop MPC 
simulation, the resulting trajectories are found identical to those of the centralized 
control, which corroborates the theoretical property of the algorithm of converging 
to the set of stationary solutions.

With the preserved control performance of the ELL algorithm, we seek to 
improve its computational efficiency with the ELLA and ELLADA algorithms 
(Algorithms 2 and 3). In ELLA, the tolerances for approximate NLP solution are 
tuned to �1 = �2 = �4 = 103�3 = 1 , �k

1
= �k

2
= 103�k

3
= �k

4
= 100∕2k−1 , 

�k,r
4

= 103�k,r
5

= max
(
�k
4
, 40

(
�k,r
1

)2)
 . The barrier constants are updated throughout 

outer iterations according to ‖z‖ according to 
bk+1 = min

(
10−1, max

(
10−4, 25

(
�k
3

)2)) . Compared to ELL, the accumulated num-
ber of iterations and computational time of ELLA are reduced by over an order of 
magnitude. To seek for better computational performance, we apply the ELLADA 
algorithm, where we set M = 10 , � = 1 , 𝜂L = 𝜂w̃ = 0.01 , �� = 0.5 , �w = 0.05 . This 
further reduces the number of iterations and computational time. These results are 
shown in Fig. 8.

Compared to the basic ELL algorithm, ELLADA achieves acceleration by 
approximately 18 times in terms of iterations and 19 times in computational time for 
the entire simulation time span. These improvements are more significant when the 

Fig. 7   Solution results of the ELL algorithm for the quadruple tank process
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states are far from the target steady state (43 and 45 times, respectively, for the first 
1/6 of the simulation). We note that the improvement from ELLA to ELLADA by 
using the Anderson scheme is not an order-of-magnitude one mainly because each 
outer iteration needs only a few number of inner iterations, leaving little space for 
further acceleration (e.g., for the first sampling time, 12 outer iterations including 
only 102 inner iterations are needed in ELLA, and in ELLADA, 61 inner iterations 
are needed). Under the accelerations, ELLADA returns the identical solution to the 
centralized optimization, thus preserving the control performance of the centralized 
MPC.

7 � Conclusions and discussions

We have proposed a new algorithm for distributed optimization allowing nonconvex 
constraints, which simultaneously guarantees convergence under mild assumptions 
and achieves fast computation. Specifically, convergence is established by adopting 
a two-layer architecture. In the outer layer, the slack variables are tightened using 
the method of multipliers, and the inequalities are handled using a barrier tech-
nique. In the inner layer, ADMM iterations are performed in a distributed and coor-
dinated manner. Approximate NLP solution and Anderson acceleration techniques 
are integrated into inner iterations for computational acceleration. A large-scale 
optimization problem from a NLP benchmark library is used to show the numerical 

Fig. 8   Iteration and computational time under ELL, ELLA and ELLADA algorithms for the quadruple 
tank process
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advantages of using the proposed ELLADA algorithm compared to the basic con-
vergent algorithms ELL (Algorithm 1) and ELLA (Algorithm 2).

Distributed nonlinear MPC, as an challenging problem in process control, is an 
important application of such an algorithm. The advantages of applying ELLADA 
to distributed nonlinear MPC include:

•	 Arbitrary input and state couplings among subsystems are allowed. No specific 
pattern is required a priori.

•	 The convergence property of the algorithm towards a stationary point is theoreti-
cally guaranteed, and its performance can be monitored throughout iterations.

•	 Equality-constrained NLP solvers can be used only as a subroutine. No internal 
modification of solvers is needed, and the choice of any appropriate solver is 
flexible.

•	 Asynchronous updates are allowed without affecting the convergence properties.
•	 Although motivated with a nominal optimal control problem, the algorithm 

could be suitable for more intricate MPC formulations such as stochastic/robust 
MPC or sensitivity-based advance-step MPC.

The application of the ELLADA algorithm on the distributed nonlinear MPC of a 
quadruple tank process has already shown its improved computational performance 
compared to ELL and ELLA, and improved control performance compared to the 
decentralized MPC and distributed MPC without accounting for state interactions. 
Of course, due to the small size of the specific benchmark process, the control can 
be realized easily with a centralized MPC. A truly large-scale control problem is 
more suitable to demonstrate the effectiveness of our algorithm, and this shall be 
presented in an upcoming separate paper.

Acknowledgements  This work was supported by National Science Foundation (NSF-CBET). The 
authors would also like to thank Prof. Qi Zhang for his constructive opinions.

Appendix 1: Proof of Lemma 1

We first prove that

for r = 0, 1, 2,… . First, since xk,r+1 is chosen as the minimizer of the augmented 
Lagrangian with respect to x (Line 9, Algorithm  1), the update of x leads to a 
decrease in L:

Then consider the decrease resulted from x̄-update:

(62)
L
(
xk,r+1, x̄k,r+1, zk,r+1, yk,r+1

)
≤ L

(
xk,r, x̄k,r, zk,r, yk,r

)

− 𝛽k
‖‖‖Bx̄

k,r+1 − Bx̄k,r
‖‖‖
2

−
𝛽k

2

‖‖‖z
k,r+1 − zk,r

‖‖‖
2

(63)L
(
xk,r+1, x̄k,r, zk,r, yk,r

)
≤ L

(
xk,r, x̄k,r, zk,r, yk,r

)
.
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The minimization of x̄ (Line 10, Algorithm 1) should satisfy the optimality condition

i.e., there exist vectors v1 ∈ 𝜕g
(
x̄k,r+1

)
 and v2 ∈ NX̄

(
x̄k,r+1

)
 with

Since v1 ∈ 𝜕g
(
x̄k,r+1

)
 and g is convex, v⊤

1

(
x̄k,r − x̄k,r+1

)
≤ g

(
x̄k,r

)
− g

(
x̄k,r+1

)
 . And 

v2 ∈ NX̄

(
x̄k,r+1

)
 implies v⊤

2

(
x̄k,r − x̄k,r+1

)
≤ 0 . Hence

Substituting the above inequality in (64), we obtain

Third, we consider the decrease resulted from z- and y-updates:

(64)

L
(
xk,r+1, x̄k,r+1, zk,r, yk,r

)
− L

(
xk,r+1, x̄k,r, zk,r, yk,r

)

= g
(
x̄k,r+1

)
− g

(
x̄k,r

)
+ yk,r⊤

(
Bx̄k,r+1 − Bx̄k,r

)

+
𝜌k

2

‖‖‖Ax
k,r+1 + Bx̄k,r+1 + zk,r

‖‖‖
2

−
𝜌k

2

‖‖‖Ax
k,r+1 + Bx̄k,r + zk,r

‖‖‖
2

= g
(
x̄k,r+1

)
− g

(
x̄k,r

)
−

𝜌k

2

‖‖‖Bx̄
k,r+1 − Bx̄k,r

‖‖‖
2

− 𝜌k
(
x̄k,r − x̄k,r+1

)⊤
B⊤

(
Axk,r+1 + Bx̄k,r+1 + zk,r +

yk,r

𝜌k

)
.

(65)0 ∈ 𝜌kB⊤

(
Axk,r+1 + Bx̄k,r+1 + zk,r +

yk,r

𝜌k

)
+ 𝜕g

(
x̄k,r+1

)
+NX̄

(
x̄k,r+1

)
,

(66)𝜌kB⊤

(
Axk,r+1 + Bx̄k,r+1 + zk,r +

yk,r

𝜌k

)
= −v1 − v2.

(67)

𝜌k
(
x̄k,r − x̄k,r+1

)⊤
B⊤

(
Axk,r+1 + Bx̄k,r+1 + zk,r +

yk,r

𝜌k

)

= −v⊤
1

(
x̄k,r − x̄k,r+1

)
− v⊤

2

(
x̄k,r − x̄k,r+1

)

≥ −
(
g
(
x̄k,r

)
− g

(
x̄k,r+1

))
.

(68)
L
(
xk,r+1, x̄k,r+1, zk,r, yk,r

)
≤ L

(
xk,r+1, x̄k,r, zk,r, yk,r

)

−
𝜌k

2

‖‖‖Bx̄
k,r+1 − Bx̄k,r

‖‖‖
2

.
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Since 𝜐(z;𝜆, 𝛽) = 𝜆⊤z + 𝛽

2
‖z‖2 is a convex function, whose gradient is 

∇�(z;�, �) = � + �z,

From Line 11 of Algorithm 1 it can be obtained

Substituting into (69), we obtain

From (71),

Then (72) becomes

Summing up the inequalities (63), (68) and (74), we have proved the inequality (62).

(69)

L
(
xk,r+1, x̄k,r+1, zk,r+1, yk,r+1

)
− L

(
xk,r+1, x̄k,r+1, zk,r, yk,r

)

= 𝜆k⊤
(
zk,r+1 − zk,r

)
+

𝛽k

2

(‖‖‖z
k,r+1‖‖‖

2

−
‖‖‖z

k,r‖‖‖
2
)

+ yk,r+1⊤
(
Axk,r+1 + Bx̄k,r+1 + zk,r+1

)

− yk,r⊤
(
Axk,r+1 + Bx̄k,r+1 + zk,r

)

+
𝜌k

2

‖‖‖Ax
k,r+1 + Bx̄k,r+1 + zk,r+1

‖‖‖
2

−
𝜌k

2

‖‖‖Ax
k,r+1 + Bx̄k,r+1 + zk,r

‖‖‖
2

.

(70)𝜐
(
zk,r+1;𝜆k, 𝛽k

)
− 𝜐

(
zk,r;𝜆k, 𝛽k

)
≤
(
𝜆k + 𝛽kzk,r+1

)⊤(
zk,r+1 − zk,r

)
,

(71)�k + �zk,r+1 = −yk,r+1.

(72)

L
(
xk,r+1, x̄k,r+1, zk,r+1, yk,r+1

)
− L

(
xk,r+1, x̄k,r+1, zk,r, yk,r

)

≤
(
yk,r+1 − yk,r

)⊤(
Axk,r+1 + Bx̄k,r+1 + zk,r

)

+
𝜌k

2

‖‖‖Ax
k,r+1 + Bx̄k,r+1 + zk,r+1

‖‖‖
2

−
𝜌k

2

‖‖‖Ax
k,r+1 + Bx̄k,r+1 + zk,r

‖‖‖
2

=
𝜌k

2

(
Axk,r+1 + Bx̄k,r+1 + zk,r+1

)⊤(
Axk,r+1 + Bx̄k,r+1 + zk,r

)

+
𝜌k

2

‖‖‖Ax
k,r+1 + Bx̄k,r+1 + zk,r+1

‖‖‖
2

−
𝜌k

2

‖‖‖Ax
k,r+1 + Bx̄k,r+1 + zk,r

‖‖‖
2

= −
𝜌k

2

‖‖‖z
k,r+1 − zk,r

‖‖‖
2

+ 𝜌k
‖‖‖Ax

k,r+1 + Bx̄k,r+1 + zk,r+1
‖‖‖
2

(73)Axk,r+1 + Bx̄k,r+1 + zk,r+1 =
1

𝜌k

(
yk,r+1 − yk,r

)
= −

𝛽k

𝜌k

(
zk,r+1 − zk,r

)
.

(74)

L
(
xk,r+1, x̄k,r+1, zk,r+1, yk,r+1

)
− L

(
xk,r+1, x̄k,r+1, zk,r, yk,r

)

≤ −

(
𝜌k

2
−

(
𝛽k
)2

𝜌k

)
‖‖‖z

k,r+1 − zk,r
‖‖‖
2

= −
𝛽k

2

‖‖‖z
k,r+1 − zk,r

‖‖‖
2

.
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Next, we show that the augmented Lagrangian is lower bounded, and hence is 
convergent towards some Lk ∈ ℝ . We note that �(z;�, �) is a convex function of 
modulus � , it can be easily verified that

for any z′ , i.e.,

Let z� = −
(
Axk,r + Bx̄k,r

)
 and remove the last term on the right-hand side. Then

Hence

Since 𝜐(z) = 𝜆⊤z + 𝛽

2
‖z‖2 ≥ −‖𝜆‖2∕(2𝛽) , � is bounded in 

[
�, �

]
 , �k ≥ �1 , and f and g 

are bounded below, L has a lower bound.
Taking the limit r → ∞ on the both sides of inequality (62), it becomes obvi-

ous that Bx̄k,r+1 − Bx̄k,r and zk,r+1 − zk,r converge to 0. Due to (73), we have 
Axk,r + Bx̄k,r + zk,r → 0 . Hence there must exist a r such that (22) is met. At this 
time, the optimality conditions for xk,r+1 is written as

According to the update rule of yk,r , the above expression is equivalent to

i.e.,

(75)
𝜐
(
zk,r;𝜆k, 𝛽k

)
+
(
𝜆k + 𝛽kzk,r

)⊤(
z� − zk,r

)

+
𝜌k

2

‖‖‖z
� − zk,r

‖‖‖
2

≥ 𝜐
(
z�;𝜆k, 𝛽k

)

(76)𝜐
(
zk,r;𝜆k, 𝛽k

)
+ yk,r⊤

(
zk,r − z�

)
≥ 𝜐

(
z�;𝜆k, 𝛽k

)
−

𝜌k

2

‖‖‖z
� − zk,r

‖‖‖
2

.

(77)
𝜐
(
zk,r;𝜆k, 𝛽k

)
+ yk,r⊤

(
Axk,r + Bx̄k,r + zk,r

)

≥ 𝜐
(
−
(
Axk,r + Bx̄k,r

)
;𝜆k, 𝛽k

)
.

(78)

L
(
xk,r, x̄k,r+1, zk,r, yk,r

)

= f
(
xk,r

)
+ g

(
x̄k,r

)
+ 𝜐

(
zk,r;𝜆k, 𝛽k

)

+ yk,r⊤
(
Axk,r + Bx̄k,r + zk,r

)
+

𝜌k

2

‖‖‖Ax
k,r + Bx̄k,r + zk,r

‖‖‖
2

≥ f
(
xk,r

)
+ g

(
x̄k,r

)
+ 𝜐

(
−
(
Axk,r + Bx̄k,r

)
;𝜆k, 𝛽k

)
.

(79)0 ∈ 𝜕f
(
xk,r+1

)
+NX

(
xk,r+1

)
+ A⊤yk,r + 𝜌kA⊤

(
Axk,r+1 + Bx̄k,r + zk,r

)
.

(80)
0 ∈𝜕f

(
xk,r+1

)
+NX

(
xk,r+1

)
+ A⊤yk,r+1 − 𝜌kA⊤

(
Bx̄k,r+1 + zk,r+1 − Bx̄k,r − zk,r

)
,

(81)
𝜌kA⊤

(
Bx̄k,r+1 + zk,r+1 − Bx̄k,r − zk,r

)
∈ 𝜕f

(
xk,r+1

)

+ NX

(
xk,r+1

)
+ A⊤yk,r+1.
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According to the first inequality of (22), the norm of the left hand side above is not 
larger than �k

1
 , which directly implies the first condition in (23). In a similar manner, 

the second condition in (23) can be established. The third one follows from (71) and 
the fourth condition is obvious.

Appendix 2: Proof of Lemma 2

We first consider the situation when �k is unbounded. From (78), we have

Since f and g are both lower bounded, as �k → ∞ , we have Axk+1 + Bx̄k+1 → 0 . 
Combined with the first two conditions of (23) in the limit of �k

1
 , �k

2
 , �k

3
↓ 0 , we have 

reached (25).
Then we suppose that �k is bounded, i.e., the amplification step �k+1 = ��k is exe-

cuted for only a finite number of outer iterations. According to Lines 17–21 of Algo-
rithm 1, expect for some finite choices of k, ‖‖zk+1‖‖ ≤ �‖‖zk‖‖ always hold. Therefore 
zk+1 → 0 . Apparently, (25) follows from the limit of (23).

Appendix 3: Proof of Lemma 3

From Lemma 1 one knows that within R inner iterations

Then

For the kth outer iteration, its inner iterations are terminated when (22) is met, which 
is translated into the following relations:

where the last relation uses (73) with �k = 2�k . Therefore

At the end of the kth iteration, suppose that Lines 19–20 and Lines 
17–18 of Algorithm  1 have been executed for k1 and k2 times, 

(82)L ≥ f
(
xk+1

)
+ g

(
xk+1

)
− 𝜆k⊤

(
Axk+1 + Bx̄k+1

)
+

𝛽k

2

‖‖‖Ax
k+1 + Bx̄k+1

‖‖‖
2

.

(83)
L − Lk

𝛽k
≥

R∑
r=1

(‖‖‖Bx̄
k,r+1 − Bx̄k,r

‖‖‖
2

+
1

2

‖‖‖z̄
k,r+1 − zk,r

‖‖‖
2
)
.

(84)���Bx̄
k,R+1 − Bx̄k,R

���,
���z

k,R+1 − zk,R
��� ∼ O

�
1∕

√
𝛽kR

�
.

(85)
O
�
�k∕

√
�kRk

�
≤ �k

1
, �k

2
∼ O

�
�k
�
,

O
�
1∕

√
�kRk

�
≤ �k

3
∼ O

�
�k∕�k

�
.

(86)Rk ∼ O
(
�k∕�2k

)
.
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respectively ( k1 + k2 = k ). Then the obtained zk+1 satisfies ‖‖zk+1‖‖ ∼ O
(
�k1

)
 , and ‖‖Axk+1 + Bx̄k+1 + zk+1‖‖ ≤ 𝜖k

3
∼ O

(
𝜗k∕𝛽k

)
 , which imply

From (82),

Substituting (88) into (86), we obtain

When � ≤ � , �k ≤ �k ≤ �k1�k2 , and hence �k2�k ≤ �k1 , i.e., �k1 dominates over 
�k∕�k , leading to

For K outer iterations, the total number of inner iterations is

The number of outer iterations needed to reach an �-approximate stationary point is 
obviously K ∼ O

(
log� �

)
 . Then

Appendix 4: Proof of Lemma 6

Through the inner iterations, only Anderson acceleration might lead to an increase in 
the barrier augmented Lagrangian. Combining Assumptions 3, 5, and the safeguarding 
criterion (41), we obtain

Together with Assumptions  1 and  2, Lbk is also bounded below. Therefore Lbk is 
bounded in a closed interval and must have converging subsequences. Therefore we 
can choose a subsequence converging to the lower limit L . For any 𝜀 > 0 there exists 
an index R of inner iteration in this subsequence, such that L̃0𝜂L

∑∞

r=R
r−(1+𝜎) < 𝜀∕2 

and Lbk
(
xk,r+1, x̄k,r+1, zk,r+1, yk,r+1

)
< L + 𝜀∕2 for any r ≥ R on this subsequence. It 

then follows that for any r ≥ R , whether on the subsequence or not, it holds that

(87)
‖‖‖Ax

k+1 + Bx̄k+1
‖‖‖ ≤ O

(
𝜗k∕𝛽k

)
+O

(
𝜔k1

)
.

(88)𝛽k
‖‖‖Ax

k+1 + Bx̄k+1
‖‖‖
2

∼ 𝛽k
(
O
(
𝜗k∕𝛽k

)
+O

(
𝜔k1

))2
∼ O(1).

(89)Rk ∼ O

(
1

�2k
1(

O
(
�k∕�k

)
+O

(
�k1

))2
)
.

(90)Rk ∼ O
(
1∕�2k�2k1

)
∼ O

(
1∕�2k�2k

)
.

(91)R =

K∑
k=1

Rk ∼ O

(
K∑
k=1

1

�2k�2k

)
∼ O

(
1

�2K�2K

)
.

(92)R ∼ O
(
�−2(1+�)

)
.

(93)Lbk
(
xk,r+1, x̄k,r+1, zk,r+1, yk,r+1

)
≤ L + L̃0𝜂L

∞∑
r=0

1

r1+𝜎
< +∞,
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Hence the upper limit is not larger than L + � . Due to the arbitrariness of 𝜀 > 0 , the 
lower limit coincides with the upper limit, and hence the sequence of barrier aug-
mented Lagrangian is convergent.

The convergence of the barrier augmented Lagrangian implies that as r → ∞,

Suppose that r is not an accelerated iteration, then since this quantity does not exceed 
−𝛽k‖‖Bx̄k,r+1 − Bx̄k,r‖‖2 −

(
𝛽k∕2

)‖‖zk,r+1 − zk,r‖‖2 , we must have Bx̄k,r+1 − Bx̄k,r → 0 
and zk,r+1 − zk,r → 0 . Otherwise if inner iteration r is accelerated, the convergence of 
Bx̄k,r+1 − Bx̄k,r and zk,r+1 − zk,r are automatically guaranteed by the second criterion 
(42) of accepting Anderson acceleration. The convergence properties of these two 
sequences naturally fall into the paradigm of Lemma 1 for establishing the conver-
gence to approximate KKT conditions of the relaxed problem.
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