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Abstract: Other Test Method (OTM) 33A has been used to quantify emissions from natural gas sites 10 
since it was introduced by the Environmental Protection Agency (EPA). The method relies on point 11 
source Gaussian (PSG) assumptions to estimate emissions rates from a targeted site or source. 12 
However, the method often results in low accuracy (typically ±70% even under conducive 13 
conditions). These accuracies have been verified with controlled release experiments. Typically, 14 
controlled releases were performed for short periods (15-20 minutes) under atmospheric conditions 15 
that were ideal for effective plume transport. We examined three methane release rates from three 16 
distances over various periods of time ranging from seven hours to seven days. Data were recorded 17 
continuously from a stationary tower. Atmospheric conditions were highly variable and not always 18 
conducive to conventional OTM 33A calculations. OTM 33A estimates were made for 20-minute 19 
periods when the mean wind direction corresponded to ±90° of the direction from the controlled 20 
release to the tower. Further analyses were performed by varying the frequency of the data, the 21 
length of the individual OTM 33A periods, and the size of the wind angle used to filter data. The 22 
results suggested that different (than conventionally used) period lengths, wind filters, data 23 
acquisition frequencies, and data quality filters impacted the accuracy of OTM 33A when applied 24 
to long term measurements.  25 

Keywords: OTM 33A; methane emissions; indirect quantification; indirect measurement; natural 26 
gas; controlled methane release; atmospheric dispersion 27 

 28 

1. Introduction 29 

After the boom of the previous decade, natural gas has reestablished itself as a valuable resource 30 
for years to come in the United States (US). The increased use of natural gas has resulted in more 31 
infrastructure and more potential for methane losses along the supply chain from producers to 32 
consumers. These losses have serious environmental consequences as the main component of natural 33 
gas is methane, a greenhouse gas (GHG) with a higher global warming potential (GWP) than carbon 34 
dioxide (CO2). The International Panel on Climate Change (IPCC) determined that the GWP of 35 
methane was 28 over 100 years and 84 over 20 years [1]. According to the Environmental Protection 36 
Agency (EPA), methane made up over 10% of all US GHG emissions from human activities and over 37 
16% of all global GHGs in 2017 on a CO2 equivalent basis [2]. The International Energy Agency (IEA) 38 
estimated that there were 79 million tonnes of methane emissions from the oil and gas industry in 39 
2018 worldwide [3].  40 

Several studies have raised issues with these national inventories, as they tend to underestimate 41 
emissions. Miller et al. [4] estimated that US methane emissions reported by the EPA were up to 1.5 42 
times lower than actual values. Brandt et al. [5] conducted an extensive review of published estimates 43 
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in 2011 and concluded that emissions from the natural gas infrastructure were 1.25-1.75 times higher 44 
than EPA estimates. National estimates of emissions have typically relied on a small number of direct 45 
quantification measurements intended to be representative of a national population. Direct 46 
quantification techniques may have relatively low measurement uncertainty but have high personnel 47 
and monetary costs, require site access, and only represent emissions at a single point in time. The 48 
latter resulting in uncertainties because emissions are known to vary temporally [6,7]. As such, 49 
measurements made during direct quantification efforts may not be representative of long-term 50 
averages. If the prescribed emissions factors or measurements were not representative at the time of 51 
measurement, then errors were propagated to national estimates. Recent works have focused on 52 
improved technologies for methane measurement and methods for quantification. The Department 53 
of Energy’s (DOE) Advanced Research Projects Agency – Energy (ARPA-E) invested in the 54 
development of commercially viable solutions for accurate methane measurement [8,9]. Recent 55 
research has also focused on the development of more accurate, indirect measurement methods for 56 
continuous emissions monitoring [10-13]. Improvements in technologies and methods would allow 57 
for more accurate quantification of emissions, long-term, on a site level with reduced time, cost, and 58 
labor. While these measurements may not be available at every site, a better understanding of average 59 
site variation, can improve models and estimates, in combination with periodic measurements. These 60 
methods often rely on continuous monitoring from stationary points. Other Test Method (OTM) 33A 61 
is one such method [14,15]. It has been widely used to estimate methane emissions indirectly from 62 
natural gas sites [15-17].  63 

OTM 33A was developed by the EPA under the Office of Research and Development (ORD) as 64 
a general guide for geospatial measurement of air pollution (GMAP). The emissions quantification 65 
(EQ) assessment method under OTM 33A was developed for application to emissions sources that 66 
were near ground level, relatively small in area, and within 150 meters (m) of the measurement 67 
location. The OTM 33A EQ method is addressed in our research and is simply referred to as OTM 68 
33A herein. In the design of the method, the developers assumed that the instrumentation used for 69 
measurement was mounted to a vehicle and because of this, best practices were defined with respect 70 
to road (rather than site) access. Several factors required for effective use of OTM 33A included:  71 

1. An accessible downwind roadway from the source. 72 
2. A relatively consistent wind condition blowing from the source to the point of measurement. 73 
3. Zero or few obstructions between the source and the measurement point. 74 
4. A source near ground level. 75 
5. Little or no other nearby sources in addition to the target source [14].  76 

OTM 33A required measurements of 3-D wind speed, typically with a sonic anemometer, gas 77 
concentration measurement with parts per billion (ppb) granularity, and atmospheric pressure and 78 
temperature. A concentration measurement instrument (CMI) should sample at a point close to the 79 
wind speed measurement location. The method recommended collecting data at a rate of at least 1 80 
Hertz (Hz) and prescribed multiple measurements be taken under these conditions, each ranging in 81 
time from 15-20 minutes [14]. A range finder was recommended to estimate the distance from the 82 
source to the measurement location, as a distance estimate was necessary for calculations [16].  83 

Several studies have examined the accuracy of OTM 33A with controlled release experiments. 84 
The controlled releases of the studies presented here used methane as the controlled release. The 85 
initial releases, performed by the EPA, took place alongside the development of the method. The 86 
original test matrix consisted of 107 observations each spanning 20 minutes. Releases were conducted 87 
in flat open fields at various locations. The bulk of the measurements were made with sensor and 88 
source heights of 2.7 m and 3.1 m, respectively. The release rates of the study ranged from 0.19 g/s to 89 
1.2 g/s. The majority of the releases (59%) were 0.6 g/s. Distances varied between 18 m and 179 m and 90 
the average distance from release to sensor was approximately 70 m. The method produced an initial 91 
accuracy that ranged from -84% to 184% [16]. After periods of data that did not meet the primary 92 
data quality indicators (DQI) were removed, 74% of measurements remained. The errors of these 93 
measurements ranged from -60% to 52%, however, 71% of measurements were within ±30% of the 94 
actual release rate [17].  95 
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Robertson et al. [17] performed controlled release experiments at Christman Airfield (CAF) in 96 
Fort Collins, CO. This series of experiments consisted of 23 tests with distances between 30 m and 97 
175 m and release rates ranging from 0.03 g/s to 0.56 g/s. Nineteen of the 23 data periods met the DQI 98 
requirements. Robertson et al. combined their results with those from the EPA, which yielded a 99 
dataset of 119 tests. These data had a 2σ error of ±56%, a 1σ error of ±28%, and around a 10% low 100 
bias.  101 

A more recent study by Edie et al. [18] further investigated the controlled release experiments of 102 
Robertson et al. [17], along with new data collected at the Methane Emissions Technology Evaluation 103 
Center (METEC) in Fort Collins, CO. Where the CAF data set focused on the effectiveness of OTM 104 
33A in an open area with a single known source location. The METEC set was conducted with the 105 
potential for multiple releases from different components at a mock natural gas production site. The 106 
study observed that across both test sets wind speed, number of sources, and release height had no 107 
major impact on estimate accuracy. Table 1 contains the details of these two studies. 108 

Table 1. Comparison of controlled releases analyzed by Edie et al. [18]  109 

Author Robertson et al. [17]  Edie et al. [18]  

Year 2014 2017 

Location Fort Collin, CO Fort Collins, CO 

Facility Christman Airfield METEC 

Description 
Open flat field with 

single source 

Mock natural gas site 

with multiple sources 

Number of Tests 23 34 

Number Passing 

DQI 
19 24 

Release Rates (g/s) 0.03-0.56 0.04-0.6 

Distances (m) 34-174 N/A 

Wind Speeds (m/s) 2-8 2-9 

PGIs 2-6 3-6 

Total Error Range 

(%) 
-75% to 50% -60% to +170% 

68th Percentile 

Error ±28% ±38% 

Tests within ±50% 85% 85% 

 110 
An ordinary least squares regression analysis confirmed the 10% low bias seen by Robertson et al. 111 
and a propensity to overestimate smaller releases. Edie et al. concluded that OTM 33A measurements 112 
had a 2σ error of ±70% with a slight negative bias [18].  113 

Robertson et al. and Brantley et al. have used the OTM 33A to estimate emissions from well pads 114 
in various natural gas basins [16, 17]. Both studies employed bootstrapping methods to attempt to 115 
enhance the confidence of estimates made from the method. Robertson et al.’s measurements were 116 
compared to onsite, direct measurements by Bell et al. using a variance weighted least squares 117 
(VWLS) approach [19]. The average distance of these measurements was 46 ± 24 m. The study 118 
concluded that OTM 33A underestimated emissions based on the VWLS approach applied to sites 119 
where the onsite estimate was composed primarily of direct measurements, although estimates by 120 
onsite measurements and OTM 33A were within uncertainties at 65% of sites. 121 

The purpose of this study was to investigate the potential to use OTM 33A as a long-term 122 
monitoring method and improve the mechanistic understanding of results obtained from such a 123 
method. 124 

2. Data Acquisition and Analysis 125 

In our work OTM 33A data were collected continuously while several controlled methane 126 
releases were performed. The data were evaluated using various data collection rates, period lengths, 127 
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and wind filters (WF). OTM 33A calculations were then performed on contiguous periods with 128 
known release rates and distances.  129 

Measurements were conducted at the West Virginia University JW Ruby Research Farm [20]. 130 
The farm was selected due to its openness and lack of high canopy vegetation or building 131 
interference. The release experiments took place in an open grass field that was normally used for 132 
cattle grazing. The farm was not perfectly flat, with slight rolling hills, which resulted in differences 133 
in altitude based on positioning. While cattle were not present in the field of the setup, there were 134 
cattle in the area which may have contributed to elevated background methane emissions. 135 

Assessment of the OTM 33A method was performed with controlled release experiments. 136 
Previous studies on indirect mobile quantification used controlled release test distances between 5 m 137 
and 179 m [16-18]. The controlled release distances of this work were designed to be representative 138 
of a deployment of the system at an active well site. Distances were estimated on site using a range 139 
finder but were later calculated based on more accurate GPS coordinates and ranged from 42 to 119 140 
m. Release rates from previous studies ranged from 0.03 g/s to 1.2 g/s [16-18]. The controlled release 141 
rates of this work were 0.04 g/s, 0.12 g/s, and 0.24 g/s. Tables S1 and Table S2 provide the details of 142 
the entire controlled release matrix including calculated distances from GPS coordinates. 143 

Methane releases were produced from a three-bottle manifold of Technical to High Purity 144 
methane (98-99% composition by volume) connected in parallel to a mass flow controller (MFC). The 145 
MFC was stored in a trailer on-site and was powered with a 12V battery. The MFC was capable of 146 
controlling methane flow up to 0.24 g/s ± 0.0024 g/s [21]. The outlet of the MFC was at atmospheric 147 
pressure and was connected to a length of tubing with an inner diameter of 25 mm that was attached 148 
to the top of the trailer, simulating a release from an onsite blunt body, such as a tank. This yielded a 149 
methane release height of approximately 2.3 m.  150 

The data acquisition (DAQ) equipment used for measurements consisted of a LICOR LI-7700 151 
CH4 analyzer for methane concentration, temperature, and pressure and a Gill® WindMaster 3-axis 152 
sonic anemometer for wind speed. The LI-7700 was open path and utilized Wavelength Modulation 153 
Spectroscopy (WMS) to measure methane concentrations from 0-40 ppm with a resolution of 5 ppb 154 
[22]. The WindMaster was a 3-axis sonic anemometer capable of measuring wind speed from 0 to 50 155 
m/s with a resolution of 0.01 m/s in three directions corresponding to a standard rectangular 156 
coordinate system [23]. Additional system components included a LICOR LI-7500DS CO2/H2O 157 
analyzer, an Omega iBTHx, and a LICOR LI-220R pyranometer [24-26]. Methane and wind speed 158 
measurements were recorded at a rate of 10 Hz. Table S3 presents complete specifications of the 159 
instruments. 160 

The DAQ equipment was attached to a 4 m high tower that was mounted on a towable trailer. 161 
The absolute sample height was approximately 4.5 m. DAQ setups of this kind have been used for a 162 
method of gas flux measurement known as Eddy Covariance. The equipment was powered by a 163 
rechargeable battery bank maintained by two solar panels, also mounted on the trailer. The system 164 
is presented in Figure S1.  165 

Data were recorded over the course of 114 days between May 21, 2019 and September 11, 2019. 166 
During this time, useful data were recorded on 92 of the days. The days that did not include data 167 
collection were due to analyzer replacement, equipment failure, and logistical conflictions. Of the 92 168 
days there were 42 containing some period with a controlled methane release present. Days in which 169 
no release was performed (50) were considered “background”. Data loss during these 92 days was 170 
due to natural phenomenon that inhibited the open path analyzer operation; including rain, fog, or 171 
other path interference and was considered “functional data loss”. 172 

The emissions rate calculated from OTM 33A was governed by a Gaussian curve fit of average 173 
concentrations binned by wind direction. This inverse quantification technique is commonly referred 174 
to as point source Gaussian (PSG). To determine the Gaussian fit, the methane concentration data 175 
were grouped by wind direction bins of 10° increments and data in each bin were averaged. The bin 176 
with the maximum concentration was shifted to the center for curve fitting. The average background 177 
concentration (defined as the lowest 5% of data measured during the period) was subtracted from 178 
each bin to produce an average elevated concentration. The horizontal and vertical dispersion 179 
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coefficients were determined from the atmospheric stability indicator (ASI), defined as a value 180 
between 1 and 7. These stability indicators were similar to the classic Pasquill stability classes and 181 
were determined by a combination of the turbulence intensity (TI) and standard deviation of the 182 
horizontal wind direction [16]. TI was defined as the standard deviation of the vertical wind speed 183 
divided by the average horizontal wind speed. The details of the calculations were found in the 184 
source code for OTM 33A as available online [14]. OTM 33A estimations were calculated with a script 185 
written in Python 3.6 [27]. This code was based on a 2015 version of the published OTM 33A 186 
MATLAB® code (120415_Histcount.m) [14,28]. The Python results were validated with 10 Hz data 187 
collected by the EPA [14]. The only difference was that 3-D sonic anemometer local wind speed 188 
averages were used (this analysis) rather than a local meteorological station’s 2-D wind data (original 189 
OTM analysis) for the purpose of stability classification. This change was made because there were 190 
no continuous data available from a weather station near the data collection site. The change affected 191 
results in 4 of the 20 original cases evaluated. The differences were due to a change in identified 192 
stability class. Table S4 presents the differences in the two calculations. Two of the four results had a 193 
difference greater than 40% because of this change. This analysis demonstrated the sensitivity of such 194 
methods to minor changes in variables used to determine stability class. While the method for 195 
estimating stability class may not impact most measurements (75%), different methodologies have 196 
the potential to change estimated emissions rates by up to 50%. This sensitivity to stability class was 197 
also noted during the original development of OTM 33A [14].  198 

3. Results 199 

The results presented here were determined based on the data collection previously described. 200 
Baseline OTM 33A results used a period length of 20 minutes and a data collection rate of 10 Hz, as 201 
is recommended by the EPA. OTM 33A also suggested binning parameters which include bin size, 202 
bin angle cut limit, bin percent cut limit, background percentage, and wind speed limit. For the 203 
purpose of the analyses performed here these values were kept at their recommended default values 204 
of 10, 60, 2, 5, and 0, respectively. 205 

To reduce data from 10 Hz to various other frequencies a forward averaging technique was 206 
applied. For example, the first point of a 1 Hz period was an average of the first ten measurements of 207 
10 Hz data. During data collection there were a total of 1451 20-minute periods in which OTM 33A 208 
estimates were calculated and a controlled release was present. Without any wind filter (all data were 209 
included whether the mean wind direction was “release to tower” or not) the root mean squared 210 
error (RMSE) of the dataset was 0.139 g/s and the normalized root mean square deviation (NRMSD) 211 
was 177%. The definitions of these values are presented in Equations S1 and S2. However, this dataset 212 
had little value for the purpose of the current analysis, as it included periods when the wind was 213 
blowing from “tower to release”, pushing the released gas away from the measurement point. To 214 
eliminate these periods, the data was filtered to include only those periods that had a mean wind 215 
direction within ±90° of the direction from the controlled release to the DAQ tower. This would be 216 
representative of placing a vehicle downwind of the site when using the traditional OTM 33A 217 
method. The wind filter is presented visually in Figure S2 and the mathematically in Equation S3. 218 
This reduced the number of periods evaluated to 921, the RMSE to 0.121 g/s and the NRMSD to 148%. 219 
This was “the baseline dataset” as it was the most simplified version of data that could be considered 220 
to have any validity. All evaluations performed were also performed with a ±90° wind filter, except 221 
when the filter itself was varied. No other exclusions were made. Data are presented in Figure 1 along 222 
with controlled release rate. 223 
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Figure 1. Scatter plot of various data filters and controlled release rates. 225 

To determine the optimal wind filter, various angles were evaluated. The wind filter used to 226 
determine the data used in evaluations was varied to determine an optimal range. Results of the 227 
evaluation indicated that a ±60° limit may be the optimal filter for the difference in wind direction 228 
and release-to-tower direction. This wind filter was applied to the dataset during the other 229 
evaluations performed and when applied to all baseline results reduced the RMSE to 0.117 g/s. Note 230 
that OTM 33A stated that an important DQI was that the fitted concentration within ±30° of the source 231 
direction. However, this is a different filter than that used in the DQI. The maximum concentration 232 
bin could be within ±30° of the source direction even if the mean wind direction during that time was 233 
outside ±30°. Table 2 presents the results of the various wind filters.  234 

The analysis conducted on period length and data frequency were filtered by the ±60° wind 235 
filter. The data were evaluated based on different period lengths. OTM 33A recommended a period 236 
of 15-20 minutes. Period lengths used for evaluation included 10, 15, 20, 25, 30, 45, and 60 minutes. 237 
The same wind filter was applied to the data and other binning parameters remained constant. Table 238 
3 presents the results of the period length evaluation and indicates that based on RMSE the most 239 
effective period length was 25 minutes which resulted in a RMSE of 0.111 g/s. Data frequency effects 240 
were also evaluated. Seven different data rates were used in the evaluation. Raw data were collected 241 
at a rate of 10 Hz, but window averaged values were used to reduce the data processing frequency. 242 
It should be noted that the down-sampling method could impact results, using an average of the 243 
window will have a general “smoothing” effect on the data, whereas selecting every nth point would 244 
not. Future research will explore the effects of different down-sampling methodologies. Table 4 245 
presents the results of the data frequency evaluation and indicates that a 0.2 Hz or 5-second-average 246 
frequency was the most effective with an RMSE of 0.106 g/s. Results separated by controlled release 247 
rate are presented in Tables S5-S7.  248 

 249 
 250 
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Table 2. Effect of wind filter on OTM 33A results. 251 

Period 

Length 

(min) 

Data 

Frequency 

(Hz) 

Wind Filter 

Angle (±°) 

# 

Evaluated 

% of 

Periods 

RMSE 

(g/s) 

20 10 180 1451 100% 0.140 

20 10 120 1166 80% 0.139 

20 10 90 969 67% 0.121 

20 10 60 713 49% 0.117 

20 10 30 376 26% 0.122 

20 10 20 250 17% 0.125 

20 10 10 130 9% 0.143 

Table 3. Effect of period length on OTM 33A results. 252 

Period 

Length 

(min) 

Data 

Frequency 

(Hz) 

Wind Filter 

Angle (±°) 

# 

Evaluated 

% of 

Periods 

RMSE 

(g/s) 

10 10 60 1378 31% 0.116 

15 10 60 938 31% 0.148 

20 10 60 713 32% 0.117 

25 10 60 580 32% 0.111 

30 10 60 475 32% 0.130 

45 10 60 333 33% 0.122 

60 10 60 248 33% 0.141 

Table 4. Effect of data frequency on OTM 33A results. 253 

Period 

Length 

(min) 

Data 

Frequency 

(Hz) 

Wind Filter 

Angle (±°) 

# 

Evaluated 

% of 

Periods 

RMSE 

(g/s) 

20 0.1 60 696 35% 0.112 

20 0.2 60 702 35% 0.106 

20 0.5 60 704 35% 0.120 

20 1 60 697 35% 0.114 

20 10 60 713 32% 0.117 

20 2 60 695 35% 0.114 

20 5 60 697 35% 0.115 

 254 
The findings here suggested that the optimal evaluation would be a period length of 25 minutes and 255 
a data frequency of 0.2 Hz, filtered by a wind angle difference of ±60°. Results of this optimized 256 
dataset are presented in Table 5. The data in Table 5 is also separated by controlled release rate and 257 
the NRMSD is presented. 258 
 259 
 260 
 261 
 262 
 263 
 264 
 265 
 266 
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Table 5. Optimized (25 min, 0.2 Hz, ±60° wind filtered) OTM 33A results. 267 

Period 

Length 

(min) 

Data 

Frequency 

(Hz) 

Wind Filter 

Angle (±°) 

Controlled 

Release Rate 

(g/s) 

# 

Evaluated 

% of 

Periods 

RMSE 

(g/s) 

NRMSD 

(%) 

25 0.2 60 All 574 100% 0.093 105% 

25 0.2 60 0.04 324 56% 0.051 141% 

25 0.2 60 0.12 172 30% 0.110 93% 

25 0.2 60 0.24 78 14% 0.160 67% 

 268 
Typically, OTM 33A evaluations were filtered by a DQI less than 10. The baseline dataset was 269 

filtered by this DQI value, reducing the sample size to 260 periods. The DQI filtered data are 270 
presented in Figure 1. DQI filtering caused an increase in RMSE from 0.121 to 0.134 g/s. The RMSE 271 
only decreased in four of the nine individual scenarios in the controlled release matrix, when 272 
compared to the baseline dataset. DQI filtering did improve the RMSE on average at the two higher 273 
release rates of 0.12 and 0.24 g/s. Robertson et al. [17] used a category rating system to distinguish 274 
between levels of DQI acceptability. They stated that a DQI less than five was considered “Category 275 
1” or the best evaluations. The periods with a DQI value below five were limited to 110 and resulted 276 
in a RMSE of 0.124 g/s. When comparing DQI filters, those periods with a rating less than five had a 277 
lower RMSE on average across all release rates than those with a rating less than 10. Periods with a 278 
rating less than five again decreased RMSE in six of the nine scenarios. However, when evaluating 279 
the entire dataset, the ±60° wind filter alone produced a lower RMSE (0.117 g/s), than “Category 1” 280 
DQI periods (RMSE = 0.124 g/s). When applying both the optimal wind filter and a DQI limit of ten 281 
to the entire dataset, the number of periods available was reduced to 217, but caused an increase in 282 
RMSE to 0.141 g/s, worse than the DQI or wind filtering alone. The optimized dataset (presented in 283 
Table 5) resulted in a lower RSME (0.093 g/s) than any other evaluated dataset filtered from the 284 
baseline dataset. The number of periods evaluated and their respective RMSE values for the 285 
discussed scenarios are presented in Table 5. Figure 2 presents box and whisker plots of the scenarios 286 
discussed. 287 

 288 

Figure 2. Comparison of percent error of wind filter (WF) and DQI scenarios with low RMSE. 289 

Red dotted lines in Figure 2 represent median values, blue dashed lines represent mean values, 290 
the box represents the upper and lower quartiles and the whiskers represent the 5th and 95th 291 
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percentiles of the data. Note that those filters that included DQI tended to give a positive percent 292 
error (overestimate), while using wind filter alone tended to underestimate release rates. 293 

Table 5. Wind Filter and DQI compared scenarios. 294 

Dataset 
Period 

Length (min) 

Data 

Frequency 

(Hz) 

Wind Filter 

Angle (±°) 
DQI Filter 

# 

Evaluated 

RMSE 

(g/s) 

Baseline 20 10 90 None 969 0.121 

DQI < 10 20 10 90 10 260 0.134 

DQI < 5 (Cat1) 20 10 90 5 110 0.124 

Wind Filter (±60°) 20 10 60 None 713 0.117 

Wind Filter (±60°), 

DQI < 10 
20 10 60 10 217 0.141 

 295 
 Some trends were observed during the analysis of periods, data rates, and wind filters with 296 
respect to distance. The trends were analyzed by distance rather than release rate due to the fact that 297 
in a real world scenario, the user could obtain estimates of distance to potential fugitive emissions a 298 
priori, but would have no insight into the mass rate of those emissions. Estimated distance had a near 299 
linear relationship with OTM 33A estimates (R2= 0.97), across all evaluations. This was because 300 
estimated distance was a direct multiplier in the standard PSG equation. 301 

The same analysis as described above was used. To evaluate results sorted by the distance from 302 
the releases to the DAQ tower. It is important to note that the results compared at various distances 303 
were not the same data with a different distance measurement but were completely different data 304 
periods. Since wind directions during various distance measurements varied, the sample size of the 305 
data analyzed were different for each scenario. The three approximate distances analyzed were ~50, 306 
75, and 120 m. The exact distances are presented in Table S1. Some noteworthy trends by distance 307 
included the following: 308 
 309 
1. Across all analyses, the RMSE tended to increase linearly with distance on average (R2=0.92). 310 
2. DQI filtering (<10) showed few trends across distances. DQI filtered data only improved RMSE 311 

compared to the baseline dataset at the middle distance. “Category 1” improved RMSE at the 312 
shortest distance (<60m) by 4% but resulted in a 32% increase in RMSE at the furthest distance 313 
(~120m). 314 

3. When analyzing period length, the default 20-minute length did not produce the lowest RMSE 315 
at any distance. 316 

4. For the nearest distances (<60 m) tighter wind filters (±30°, ±20°) and longer periods (45, 60 min) 317 
gave the smallest RMSEs. 318 

 319 
The optimal parameters for various distances are presented in Table 6. A complete matrix of 320 

distance sorted data is presented in Table S5. 321 

Table 6. Optimal OTM 33A parameters based on distance RMSE analysis. 322 

Approximate Distance (m) 50 75 120 

Data Frequency (Hz)  1 0.5 0.2 

Period Length (min) 45 60 25 

Wind Filter (°) 30 90 60 

4. Optimized Dataset Discussion 323 

It is noteworthy that the overall optimal combination of period length, wind filter, and data 324 
frequency occurred at the maximum distance. This could be because larger distances from source to 325 
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measurement location have greater potential to produce more erroneous results. Comparisons were 326 
made by varying one parameter at a time and evaluating the dataset based on RMSE. When 327 
evaluating the effect of period length, RMSE was minimized with the use of 25-minute periods across 328 
the full range of scenarios evaluated. When evaluating data rate, a frequency of 0.2 Hz produced the 329 
lowest RMSE. When different wind filters were applied to the complete dataset, RMSE was 330 
minimized by filtering out all periods where the difference between the “release to tower” and mean 331 
wind directions was greater than ±60°. OTM 33A results with these three parameters were evaluated 332 
and produced a RMSE of 0.093 g/s. This was lower than any other RMSE evaluated in from the 333 
baseline analyses of Tables 2, 3, and 4.   334 

Delving deeper into the optimized dataset presented different trends than those of the default 335 
dataset. The RMSE of the ±60° wind filter of the optimized dataset was greater than that of using the 336 
baseline ±90° and a ±30° wind filters by 3.2% and 2%, respectively with the optimal period length and 337 
data rate. While this difference is minor it suggests that the optimal wind filter could be dependent 338 
upon other variables. The DQI results were more positive on the optimized dataset. The standard 339 
DQI filter of ten did not improve the RMSE of the optimized dataset without combining it with a 340 
wind filter. However, when the DQI filter was used in combination with the ±60° wind filter the 341 
resultant RMSE of 130 evaluations was 0.084 g/s. Category 1 DQI filtering (DQI < 5) without a wind 342 
filter resulted in a RMSE of 0.077 g/s but limited the number of evaluations to 70. This suggests that 343 
when searching for optimal parameters they may differ for various distances, emission rates, and 344 
atmospheric conditions. There was concern over whether the reduction in RMSE of these scenarios 345 
was due to the fact that the number of evaluations was reduced, however, across all evaluations 346 
performed in this work, presented in Tables 2, 3, and 4, there was no discernable correlation between 347 
the number of evaluations and RMSE (21 evaluations, R2 < 0.001). Overall, the optimized dataset with 348 
a ±60° wind filter allowed for 50% of periods to be evaluated and produced a RMSE of 0.093 g/s and 349 
NRMSD of 105%. This is an improvement in all aspects compared to standard OTM 33A period, 350 
frequency and DQI below ten, which allowed only 18% of periods to be evaluated and produced a 351 
RMSE of 0.134 g/s and a NRMSD of 122%. 352 

While inconclusive from this work alone, the distance-based results suggest that different 353 
parameters may be optimal at different distances. When the distance between the release and the 354 
point of data collection is less than 60 m it may be better to use longer periods for analysis and a 355 
tighter wind filter. Such an approach may lead to improved confidence but a smaller number of 356 
evaluations (N). Some fields of study such as Eddy Covariance base their averaging time on 357 
atmospheric conditions. The differing optimal period lengths may not be a function of distance but 358 
instead of the conditions experienced during measurement. Further investigation into period length 359 
in combination with other binning parameters, wind filters and data rating systems may produce 360 
different optimal parameters for different atmospheric conditions.  361 

In addition, there was no investigation here into the binning parameters used in the OTM 33A 362 
analysis. The variables of bin size, bin angle cut limit, bin percent cut limit, and methane background 363 
percentage all impact the Gaussian curve fit used to estimate the release rate. The wind speed limit 364 
could eliminate periods where there were insignificant atmospheric conditions for effective plume 365 
transport, which is critical to the success of PSG methods. These variables should be investigated. 366 
There is also the potential that optimization of parameters is inter-dependent. If this is the case, the 367 
optimized combinations of the parameters evaluated, as well as the binning parameters may improve 368 
results. The optimization of parameters could also depend on other factors such as the general time 369 
of year, stability class, or other atmospheric conditions. Future research will explore the possibilities 370 
of optimized parameters under different atmospheric conditions. 371 

5. Conclusions 372 

Better understanding of methane emissions from the natural gas sector requires more 373 
knowledge of temporal variability. This knowledge is difficult to obtain through direct 374 
measurements. Continuous monitoring has the potential to fill gaps in data, provided that methods 375 
can be improved, and uncertainty reduced. Optimizing a method of data evaluation may produce 376 
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results with less uncertainty. Contiguous data analysis with an optimized method could reduce the 377 
uncertainty of individual measurements and give more confidence to researchers and industry 378 
seeking to better understand the temporal nature of emissions. 379 

The purpose of the analyses performed here was to evaluate the use of OTM 33A as a continuous 380 
monitoring method. Optimization of parameters can enhance the mechanistic understanding of using 381 
PSG methods for long term data collection.  382 

The results here suggested that different period lengths, wind filters, data acquisition 383 
frequencies, and data quality filters impacted method accuracy when applied to long term 384 
measurements. DQI tended to improve results for optimized scenarios, however, there may be cases 385 
when a simple wind filter is more effective in eliminating deficient data. Optimal period length and 386 
data frequency may be a function of transport variables such as wind speed and distance. For 387 
example, this study suggested that when data collection was performed at distances less than 70 m 388 
that longer averaging periods may be useful. Down-sampling data may result in smoother averages 389 
for PSG curve fitting which may enhance periods of data with consistent atmospheric conditions. It 390 
was also clear that parameters must be optimized concurrently. While some parameters can improve 391 
results when others are held constant, the optimized dataset (25-minute periods, 0.2 Hz frequency, 392 
±60° wind filter) produced a higher RMSE (0.093 g/s) than using the same period and frequency and 393 
the baseline ±90° wind filter (RMSE=0.090 g/s). To optimize variables globally a more extensive matrix 394 
of release rate and distance scenarios should be evaluated. Another important variable was the 395 
atmospheric conditions of the site being measured. For example, the atmospheric conditions during 396 
this data collection period allowed a ±60° wind filter to capture 50% of available periods. Filtering by 397 
DQI less than ten only captured 18% of available periods. Evaluation of period length, data rate, wind 398 
filter, data quality filter, and OTM 33A binning parameters simultaneously will allow for higher 399 
confidence of these long-term measurements. This in turn may enable improved methods and 400 
understanding of temporal variability of methane emissions. 401 
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acquisition setup, Table S1. Controlled release test matrix, Table S2. Details of data acquisition locations, 403 
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differences, Equation S1. Root Mean Squared Error, Equation S2. Normalized Root Mean Square Deviation, 405 
Figure S2. 90° Wind filter of 20-minute period, 10 Hz analysis, Equation S3. Mathematical Representation 406 
of the Wind Filter, Table S5. Wind filtered 20 min, 10 Hz data by release rate, Table S6. Varying period 407 
length at 10 Hz by release rate, Table S7. Varying data frequency of 20-minute periods by release rate, Table 408 
S8. RMSE (g/s) and number of periods analyzed by distance 409 
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