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Physical limits to sensing material properties
Farzan Beroz 1✉, Di Zhou 1, Xiaoming Mao1 & David K. Lubensky1

All materials respond heterogeneously at small scales, which limits what a sensor can learn.

Although previous studies have characterized measurement noise arising from thermal

fluctuations, the limits imposed by structural heterogeneity have remained unclear. In this

paper, we find that the least fractional uncertainty with which a sensor can determine a

material constant λ0 of an elastic medium is approximately δλ0=λ0 �
ðΔ1=2

λ =λ0Þðd=aÞD=2ðξ=aÞD=2 for a ≫ d ≫ ξ, λ0 � Δ1=2
λ , and D > 1, where a is the size of the

sensor, d is its spatial resolution, ξ is the correlation length of fluctuations in λ0, Δλ is the local

variability of λ0, and D is the dimension of the medium. Our results reveal how one can

construct devices capable of sensing near these limits, e.g. for medical diagnostics. We use

our theoretical framework to estimate the limits of mechanosensing in a biopolymer network,

a sensory process involved in cellular behavior, medical diagnostics, and material fabrication.
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A fundamental way of learning about a material is by
observing how it responds to external stimuli. The func-
tional dependence of a response on a stimulus is known as

a constitutive relation. The most basic example of such a relation
is Hooke’s law F = kX for the deformation response X of a linear
elastic solid to a force stimulus F, where k is a material constant
that is a characteristic property of the solid1,2. This linearity is a
generic feature of material response for small enough stimuli, as it
requires only that the constitutive relation be analytic and non-
vanishing to first order. Linear constitutive relations have proven
useful for characterizing a broad range of physical systems,
including dielectric materials3, diffusion4, friction5, geomaterials6,
Newtonian fluids7, piezoelectric materials8, thermoelectric mate-
rials9, and even abstract entities such as financial markets10,11.

Material constants of linear constitutive relations are typically
inferred by comparing the known value of an applied stimulus
to the measured response produced by the stimulus. For the case
of a homogeneous elastic solid, the material constant is simply
given by k = F/X. In reality, however, all materials are hetero-
geneous on a small enough scales12–15. This heterogeneity serves
as a source of measurement noise that becomes significant for
systems that operate at the microscale, such as miniature elec-
tronic devices16–19, medical microrobots20–23, and biological
sensors24–30.

Previous studies of sensing in random media have focused on
remote sensing or communication via traveling waves31–36. The
inference of material properties at small scales has been studied in
microrheology37–39 and for chemical sensing40–43. In these con-
texts, the measurement noise due to thermal fluctuations has been
characterized using fluctuation–dissipation theorems41,44. How-
ever, thermal fluctuations are fundamentally different from
structural heterogeneities: the former arise uniformly in space and
vary in time, and the latter vice versa. Although methods are
available to probe heterogeneous materials on small scales, it is
not known how precisely this process can be done13,45–48. What
are the limits to sensing the properties of heterogeneous mate-
rials, and how can a physical device be designed to achieve these
limits?

To quantify the limits of sensing constitutive relations, we
investigate a simple model of a localized sensor that probes a
heterogeneous medium to estimate a global material constant.
Specifically, we consider a continuous medium with a material
constant given by a uniform average value λ0 plus a spatially
varying fluctuation δλ(r) with short-ranged correlations. We treat
the sensor as a spherical device that can probe λ0 by applying an
external stimulus field and measuring the resulting response field
in equilibrium.

In what follows, we show that this inference process admits an
optimal (minimum-variance unbiased) measurement protocol.
Surprisingly, the optimal protocol depends qualitatively on both
the spatial resolution of the sensor and also on whether it can
perform multiple probes. For a single probe, the optimal protocol
is remarkably complex, because the modes applied to the medium
can interfere with each other in a geometrically frustrated man-
ner, akin to the spins of a spin-glass. In contrast, the optimal
protocol for multiple probes is comparatively simpler, because it
avoids unnecessary interference effects. We exploit this simplicity
to determine the total amount of information that the sensor can
extract by probing a given region of the medium. Physically,
optimal performance is achieved by decoding the results of a
sequence of probes that penetrate into the surrounding medium
to varying extents. This strategy can allow the sensor to effectively
average the material constant over a volume that grows with the
spatial resolution of the sensor. Finally, we use our theoretical
framework to bound the precision of mechanosensing in a
biopolymer network, a sensory process that regulates cellular

behavior in decisive ways28,49–51 and is used for medical diag-
nostics and material fabrication52–54.

Results
Probing a Winkler foundation. To gain insight into sensing
material properties in physical space, we explore a minimal model
that consists of a spherical sensor embedded in a heterogeneous
medium (Fig. 1). In this section, we start by taking the medium to
be the simplest heterogeneous material: a disordered Winkler
foundation55. This medium corresponds to an array of decoupled
springs in the continuum limit. The internal energy of the
Winkler foundation is given by:

E ¼ 1
2

Z
λðrÞuðrÞ2dr; ð1Þ

where λ(r) is a spatially varying material constant and u(r) is the
response field at position r. We assume λ(r) = λ0 + δλ(r), where
λ0 is a fixed, uniform field and δλ(r) ≪ λ0 is a Gaussian random
field with zero mean and spatial correlations given by:

hδλðrÞδλðr0Þi ¼ Δλ

ð2πÞD=2
e�ðr�r0Þ2=ξ2 ; ð2Þ

where Δλ � λ20 is the local variability of λ(r), D is the spatial
dimension, and ξ is the correlation length of the fluctuations in λ
(r). For simplicity, we assume ξ is small enough that these cor-
relations can be approximated by:

hδλðrÞδλðr0Þi ¼ Δλξ
Dδðr � r0Þ: ð3Þ

The quenched disorder δλ(r) in the material constant limits the
precision with which a physical sensor can infer λ0. To determine
these limits, we consider an idealized sensor that probes λ0 by first
applying a stimulus field f(r). This field perturbs the energy of the
system as follows:

δE ¼ �
Z

f ðrÞuðrÞdr: ð4Þ

After applying this stimulus, the sensor measures the response of
the medium in equilibrium. In particular, we assume that the
sensor records an integrated response m:

m ¼
Z

wðrÞuðrÞdr; ð5Þ

where w(r) is a weight field. Taken together, the probe fields f(r)
and w(r) define the measurement protocol of the sensor. For any
physical sensor, these fields must be localized in space. We
impose this locality by constraining the probe fields to obey f

a

 

�� (r)
  

Fig. 1 Sensing in a heterogeneous medium. Schematic illustration of
sensing model, showing an idealized, spherical sensor of radius a (green)
embedded inside a medium with a spatially varying material constant field λ
(r) (background). The sensor can learn about λ(r) by applying an arbitrary
stimulus and recording an arbitrary weighted response within its volume.
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(r) = 0 and w(r) = 0 for r > a, where r is the radial coordinate
and a is the radius of the sensor.

Finally, upon recording the integrated response m, the sensor
produces an estimate for λ0. In what follows, we will determine
the optimal estimator λ̂0 perturbatively to leading order in δλ(r).
In this approximation, the integrated response is:

m ¼
Z

1
λ0

� δλðrÞ
λ20

 !
ψðrÞdr; ð6Þ

where we have defined the probe intensity ψ(r) ≡ f(r)w(r), a
function of the probe fields that captures how strongly the probe
senses a given location of space. For a fixed choice of ψ(r), along
with prior knowledge of the model parameters other than λ0, the
optimal estimator of λ0 based on the outcome of m is
(Supplemental Material, Supplementary Note 1):

λ̂0 ¼
s
m
; ð7Þ

where s is a normalizing constant chosen such that the estimator
λ̂0 yields an unbiased estimate of λ0:

s ¼
Z

ψðrÞdr: ð8Þ

Equation (7) is a mesoscopic generalization of Hooke’s law
k = F/X. By computing the estimate λ̂0, the sensor obtains a
weighted spatial average of λ(r):

λ̂0 ¼
R

ψðrÞλðrÞdrR
ψðrÞdr ; ð9Þ

to leading order in δλ(r). This estimator is optimal in that it has a

lower standard deviation δλ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðλ̂0 � λ0Þ

2i
q

than any other
unbiased estimator for a fixed choice of ψ(r). Therefore, the
optimal measurement protocol can be determined by minimizing
δλ20 with respect to the probe intensity ψ(r). Inserting Eq. (3) into
the definition of the variance yields:

δλ20 ¼ Δλξ
D

R
ψ rð Þ2drR
ψðrÞdr� �2 : ð10Þ

This variance is invariant with respect to an overall rescaling of
ψ(r). To eliminate this redundancy, we constrain ∫ ψ(r)dr to be a
fixed constant. Furthermore, we must enforce ψ(r) = 0 in the
exterior of the sensor (r > a) to satisfy the constraints imposed by
the finite size of the sensor. Thus, the minimum of δλ20 is
determined by the configuration of ψ(r) that extremizes the
following action S:

S ¼
Z

Rint

1
2
ψ rð Þ2 � γψðrÞ

� �
dr; ð11Þ

where the integral is taken over the interior Rint of the sensor
(r < a) and γ is a Lagrange multiplier that fixes ∫ψ(r)dr. This
action is extremized by any measurement protocol with a probe
intensity ψ(r) that is uniform over Rint. The optimal measure-
ment protocol is, therefore:

ψðrÞ ¼ γ; r < a:

0; r > a:

�
ð12Þ

Inserting Eq. (12) into Eq. (10) yields:

δλ20 ¼ Δλξ
DV�1; ð13Þ

where V is the volume of the sensor. Thus, the fractional
uncertainty of the estimator λ̂0, defined as the standard deviation

δλ0 divided by the mean λ0, scales as:

δλ0
λ0

� Δλ

λ20

 !1=2
ξ

a

� �D=2

; ð14Þ

which can be interpreted as the familiar 1=
ffiffiffiffi
N

p
scaling of

measurement uncertainty for N independent samples. In this
analogy, the sample size N ~ (a/ξ)D corresponds to the number of
effectively independent subvolumes probed by the sensor.

Probing an elastic sheet. For the Winkler foundation, our model
sensor could not induce a response beyond its volume. In con-
trast, many other types of elastic media are coupled in space and
thereby respond to stimuli nonlocally. To understand how such
nonlocality affects a sensor’s ability to infer material properties,
we now turn to conventional, linear elasticity. For simplicity, we
will first focus on an isotropic, two-dimensional elastic sheet
characterized by a single material constant, and in section “The
precision of biomechanical sensing”, we will generalize our the-
oretical framework to a three-dimensional elastic medium char-
acterized by a material constant tensor.

For the elastic sheet, we consider the deformation response u(r)
to force stimuli f(r) oriented perpendicular to the plane of the
sheet. Thus, the sheet’s internal energy depends on the gradient
∇u(r) of the response field as follows:

E ¼ 1
2

Z
λðrÞ∇uðrÞ � ∇uðrÞdr: ð15Þ

Here, as in the previous section, we take λ(r) to be a Gaussian
random field with mean λ0, variance Δλ � λ20, and spatial
correlations over a scale ξ. As before, we take the sensor to
interact with the medium within a radius a by first applying a
stimulus field f(r) as in Eq. (4), and then measuring an integrated
response m as in Eq. (5).

To leading order in δλ(r), the sensor can again compute λ̂0 ¼
s=m to obtain a spatial average of λ(r) weighted by a probe
intensity ψ(r), as in Eq. (9) (Supplemental Material, Supplemen-
tary Note 2). However, for the elastic sheet, ψ(r) is now:

ψðrÞ ¼ ∇�ð Þ�1f ðrÞ � ∇�ð Þ�1wðrÞ; ð16Þ
where (∇⋅)−1 is the inverse divergence operator (Supplementary
Note 2). This probe intensity is a nonlocal function of the probe
fields and thereby allows the sensor to probe distant regions
beyond its boundary.

Intuitively, probing a greater extent of the medium should yield
a more accurate estimate of λ0. To that end, the greatest possible
extent of a probe is achieved by probe potentials with a ~1/r
radial dependence in the far-field limit. For the elastic sheet, this
decay profile is not produced by monopoles (which yield
pathological, non-decaying potentials), but rather by dipoles.
The simplest possible measurement protocol with dipole probe
fields is described by:

f ðrÞ � δðr � aÞ cosðθÞ; ð17Þ

wðrÞ � δðr � aÞ cosðθÞ: ð18Þ
These probe fields cast a probe intensity ψ(r) that is uniform in

the interior of the sensor and isotropically decaying in the
exterior:

ψðrÞ ¼
γ; r < a:

γ a
r

� �4
; r > a:

(
ð19Þ
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Inserting Eq. (19) into Supplementary Equation 31 yields the
following variance:

δλ20 ¼
1
3
Δλξ

DV�1; ð20Þ
for D = 2. As expected from dimensional analysis, this expression
has the same dependence on the model parameters as for the
Winkler foundation (cf. Eq. (13)). Importantly, however, its
prefactor is smaller. Thus, our example illustrates how a sensor
can harness a long-ranged response function to perform at a
higher precision by effectively averaging λ(r) over a larger region
of space.

Probe-field interference limits the channel capacity of sensing.
Given that a probe of the elastic sheet can access nonlocal
information, what limits its precision? To answer this question,
we start by considering the simpler case of a sensor that can only
apply probe fields on its boundary. For such boundary probes, the
most general probe fields are of the form:

f ðrÞ � δðr � aÞ
X
k

Bðf Þ
k eikθ; ð21Þ

wðrÞ � δðr � aÞ
X
k

BðwÞ
k e�ikθ; ð22Þ

where Bðf Þ
k and BðwÞ

k are complex coefficients that satisfy Bðf Þ
�k ¼

Bðf Þ�
k and BðwÞ

�k ¼ BðwÞ�
k to ensure that the probe fields are real, and

we assume k > 0 to avoid pathological, non-decaying interactions
caused by monopoles. This measurement protocol casts the fol-
lowing probe intensity:

ψ ± ðrÞ ¼
X
k;l

Bklðkl þ jkjjljÞ r
a

� 	± jkj± jlj�2
eiðk�lÞθ; ð23Þ

where ψ+(r) and ψ−(r) are probe intensities that correspond to
the interior (r < a) and the exterior (r > a) of the sensor,

respectively, and Bkl � Bðf Þ
k BðwÞ

l . Inserting ψ±(r) into the definition
of the variance and performing the spatial integrals yields:

δλ20 ¼ Δλξ
D
X
k;l;m;n

BklBmnTklmn; ð24Þ

where Tklmn is a highly structured, fourth-order tensor:

Tklmn ¼ 4πa2
δk�lþm�n;0xklmnyklmn

ðxklmn þ 2Þðxklmn � 2Þ : ð25Þ

Here, δi,j is the Kronecker delta function,
xklmn ¼ kj j þ lj j þ mj j þ nj j, and yklmn ¼ ðkl þ klj jÞðmnþ mnj jÞ.
In Eq. (24), we have normalized ψ±(r) such that ∫ψ(r)±dr = 1,
which implies that Bkl must obey:X

k

4πa2jkjBkk ¼ 1: ð26Þ

To gain insight into the optimal measurement protocols for
boundary probes, we used the Nelder–Mead algorithm to

numerically minimize δλ0/λ0 over Bðf Þ
k and BðwÞ

k (see “Methods”
section). To that end, we imposed a cutoff on the system by
truncating the sums in Eqs. (24) and (26) at a maximum absolute
mode number kmax. Physically, this parameter corresponds to the
spatial resolution of the sensor, which we define as:

d ¼ 2π
kmax

� �
a: ð27Þ

For all choices of kmax, we studied, this algorithm converged to
basins of minima dominated by the dipole modes (k = 1), which

makes intuitive sense given that these modes probe the largest
extent of the medium. Interestingly, however, as we increased
kmax, we found that at certain special values, the optimal probe
fields shifted and picked up additional higher-order modes,
resulting in a smaller minimum fractional uncertainty δλ0;min=λ0
(Fig. 2a).

The higher-order modes contribute with smaller amplitudes
and nontrivial relative phase shifts (Fig. 2b). These complex
configurations arise because different terms in Eq. (24) can
provide conflicting contributions to δλ20 depending on the relative
phases of the modes. This geometrical frustration greatly
suppresses modes beyond the dipole-dipole and quadrupole-
quadrupole pairs, which for 2≤ kmax ≤ 12 appear together with
amplitudes and phase relations that maximize the extent of ψ(r)
while preserving its isotropy. Including three or more mode pairs
must break isotropy, analogous to how three or more anti-
ferromagnetic spins cannot simultaneously minimize their
interaction energies (Supplementary Note 3). Nevertheless, for
kmax > 12, the optimal measurement protocols contain additional
higher-order modes that cause small wrinkles in ψ(r) (Fig. 2c).
Although these wrinkles break the isotropy of ψ(r), they also
smoothen out its profile in the radial direction, which results in a
greater overall uniformity throughout space and thus a higher
precision.

To better understand the asymptotic behavior of δλ0;min=λ0 for
large kmax, we imagine relaxing the constraints on δλ20 by allowing
Bkl to be an arbitrary matrix satisfying B�k;�l ¼ B�

kl . This
relaxation expands the space of possible ψ(r) to include all real
configurations that can be generated by Eq. (23), some of which
cannot be cast by a physical probe. Importantly, this relaxation is
a convex function of Bkl, and thus has a unique minimum δλ0,low/
λ0 that provides a theoretical lower bound on δλ0/λ0. Specifically,
in the limit kmax ! 1, we find that δλ0;low=λ0 	 ξDΔλV

�1=
ffiffiffi
π

p
,

which provides a close lower bound on the values obtained via
numerical minimization (Fig. 2a and Supplementary Note 4).

A simple argument based on symmetry reveals that this lower
bound must be a strict inequality for kmax>2. This argument
follows from observing that for all kmax, the unique optimal
configuration of ψ(r) for the relaxation is isotropic, in contrast to
the configurations we found by minimizing Eq. (24) for kmax > 12
(Supplementary Note 4). This broken isotropy must persist for all
higher values of kmax, and therefore a boundary probe can never
cast a configuration of ψ(r) that performs as well as the optimal ψ
(r) for the convex relaxation of δλ0/λ0. This example illustrates
how interferences between the probe fields limit the information
that can be gleaned from a single probe, i.e. the channel capacity
of sensing. In the following section, we will show how a sensor
can overcome this limit by performing multiple probes, and then
we will generalize our results to a sensor that can apply arbitrary
probe fields in its volume.

Sensory multiplexing can significantly improve the precision of
sensing. The interferences in the previous section occur because
all of the modes applied by a probe interrogate the medium
simultaneously. In principle, however, each mode couples to a
different spatial extent of the medium and therefore should carry
independent information about λ0. Such information could
potentially be accessed by performing separate measurements
with distinct spectra.

To test this notion, we determine the optimal estimator for a
sensor that can perform multiple probes with varying measure-
ment protocols. We label each probe by an integer k and
constrain their probe fields to be zero for r > a. In this case, the
minimum-variance unbiased estimator of λ0 is again given by a
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weighted spatial average of λ(r):

λ̂0 ¼
R

ΨðrÞλðrÞdrR
ΨðrÞdr : ð28Þ

Here, Ψ(r) is an effective probe intensity created by the optimally
weighted sum of the probe intensities ψk(r) for the individual
probes:

ΨðrÞ ¼
X
k

pk
ψkðrÞR
ψkðrÞdr

; ð29Þ

where pk ¼
P

lC
�1
kl with Ckl � hðλ̂0;k � λ0Þðλ̂0;l � λ0Þi defined as

the covariance matrix of the estimators λ̂0;k for the individual

probes (Supplementary Note 5). The variance of λ̂0 is:

δλ20 ¼
X
k;l

C�1
kl

 !�1

: ð30Þ

For simplicity, we start by considering a sensor that applies a
sequence of probe fields:

f kðrÞ � δðr � aÞ cosðkθÞ; ð31Þ

wkðrÞ � δðr � aÞ cosðkθÞ: ð32Þ
from an initial mode number k = 1 up to a maximum mode
number k ¼ kmax, which corresponds to the spatial resolution d
of the sensor defined by Eq. (27). By varying k, the sensor

modulates the range of ψk(r) in the exterior at the cost of
simultaneously modulating ψk(r) in the interior:

ψkðrÞ �
r
a

� �2k�2
; r < a:

r
a

� ��2k�2
; r > a:

(
ð33Þ

Interestingly, this collection of boundary probes does not
achieve a significant improvement over a single optimal boundary
probe. Instead, as kmax is increased, the fractional uncertainty
approaches δλ0=λ0 	 ξDΔλV

�1=
ffiffiffi
π

p
, as we found for the convex

relaxation in section “Probe-field interference limits the channel
capacity of sensing”. This agreement is not a mere coincidence:
for boundary probes, the possible configurations of Ψ(r) are
mathematically equivalent to the possible configurations of ψ(r)
for the convex relaxation of a single probe (Supplementary Note
6). However, unlike the convex relaxation, the collection of
boundary probes reveals an additional physical effect that can
limit the precision of a sensor. That is, for multiple probes, the
overlapping configurations of ψk(r) in the interior correlate the
probes and thereby suppress the amount of information that can
be extracted from the exterior. These correlations are reflected in
the structure of the covariance matrix:

Ckl ¼
1
4
Δλξ

2V�1 kl
kþ l � 1

þ kl
kþ l þ 1

� �
: ð34Þ

In this expression, the first and second fractions are
contributed by overlaps in the interior and exterior, respectively.

a b

c

Fig. 2 Probe-field interference can limit the information that a sensor can glean from a single probe. a Fractional uncertainty δλ0;min=λ0 in units of
η = ξDΔλV−1 for numerically optimal boundary probes versus maximum absolute mode number kmax included in the multipole expansions of the probe
fields (see section “Probe-field interference limits the channel capacity of sensing”). Red point corresponds to kmax ¼ 1, green point to kmax ¼ 2, and blue
points to kmax> 2. Dashed gray line indicates the optimum δλ0;low=λ0 � η=

ffiffiffi
π

p
attained in the limit kmax ! 1 for the convex relaxation of δλ0/λ0 described

in section “Probe-field interference limits the channel capacity of sensing”. Inset: δλ0;min=λ0 � η=
ffiffiffi
π

p
in units of η versus kmax on a logarithmic scale.

b Absolute values of the weight field coefficients jBðwÞk j versus the absolute values of the stimulus field coefficients jBðfÞk j for an example measurement
protocol obtained via numerical optimization for kmax ¼ 16, showing dipole modes (red), quadrupole modes (green), and higher-order modes (blue).
Dashed gray line shows jBðwÞk j ¼ jBðfÞk j. Inset: phases of BðfÞk and BðwÞk for the same measurement protocol as in the main panel. Lines connect the coefficients
that correspond to the same value of k. Colors same as in the main panel. c Probe intensity ψ(r) for the same measurement protocol as in b versus spatial
coordinate r. Left inset: ψ(r) at the boundary of the sensor (r = a) versus angular coordinate θ. Right inset: larger view of the region indicated by the black
rectangle in the main panel, showing small wrinkles in ψ(r).
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To compensate for the superfluous contributions from the
interior, the sensor must employ probe fields that are nonzero
within its volume. One way to perform this compensation is by
pairing each probe k with a companion probe described by
(Supplementary Note 6):

~ψkðrÞ �
r
a

� �2k�2
; r < a:

0; r > a:

(
ð35Þ

Pairing these companion probes with the original probes
using Eq. (29) with appropriate values of pk yields effective
probe intensities Ψk(r) that are zero in the interior (Supplemen-
tary Note 6):

ΨkðrÞ �
0; r < a:

r
a

� ��2k�2
; r > a:

(
ð36Þ

Finally, the sensor may include an additional unpaired
companion probe ~ψkðrÞ with k = 1 to uniformly sample λ(r) in
its interior. With these adjustments, the resulting all-inclusive
effective probe intensity Ψ(r) exhaustively decodes the informa-
tion that can be extracted by probing the region r < a using any
combinations of probe fields (Supplementary Note 7). In this
case, the covariances among the paired probes Ψk(r) and the
unpaired probe ~ψ1ðrÞ are given by:

Ckl ¼ Δλξ
2V�1 δk;0δl;0 þ

kl
kþ l þ 1

� �
; ð37Þ

for k, l ≥ 0, where k, l = 0 correspond to the unpaired probe.
Inserting the inverse of this matrix into Eq. (30) yields:

δλ20 ¼ Δλξ
2V�1 1

kmax þ 1

� �2

: ð38Þ

This variance decreases with kmax because each additional
probe increases the uniformity of Ψ(r) over space (Fig. 3). In the
limit of fine resolution kmax � 1 (d ≪ a), the fractional
uncertainty of the sensor’s estimate scales as:

δλ0
λ0

� Δλ

λ20

 !1=2
d
a

� �D=2 ξ

a

� �D=2

; ð39Þ

for D = 2. Thus, simultaneously varying both probe fields
throughout the volume of the sensor can allow a significant

amount of additional information to be transmitted across
the sensory channel. We refer to the strategy of performing
multiple measurements with varying probe fields as “sensory
multiplexing.”

Sensory multiplexing can be generalized to D = 3 by taking the
probe fields to be pairs of spherical harmonics. In this case, δλ0/λ0
still obeys the asymptotic scaling in Eq. (39) (Supplementary Note
8). Moreover, this scaling is robust to the omission of a finite
number of modes (Supplementary Note 9). Taken together, our
results reveal that for d ≪ a, sensory multiplexing can improve
the fractional uncertainty of a sensor by a factor proportional to
the number (a/d)D of distinct subvolumes that it can resolve
simultaneously for D = 2 and D = 3.

Notably, this level of precision can never be attained by a single
probe, even if the sensor is permitted to apply an arbitrary pair of
probe fields within its volume. This limitation occurs due to
probe-field interference, as before in section “Probe-field inter-
ference limits the channel capacity of sensing”. That is, including
more than three pairs of boundary modes breaks the isotropy of ψ
(r), and a sensor can always improve upon an anisotropic ψ(r) by
performing multiple rotated copies of the probe and combining
the results using Eq. (28). Moreover, numerical optimization
suggests that Eq. (38) does not provide a close bound on the
precision of a single volume probe, even if the sensor is allowed to
separately optimize ψ(r) in the interior and the exterior (Fig. 3a
and Supplementary Note 10). In sum, we conclude that the
optimal sensing strategy involves combining the results of
multiple different measurements that probe the medium with
different multipole symmetries.

The precision of biomechanical sensing. In this section, we
extend our modeling framework to a scenario in which structural
heterogeneity is known to play a significant role: cellular
mechanosensing. Certain types of eukaryotic cells actively probe
and respond to the stiffness of their surroundings, which has been
shown to guide their behavior in decisive ways24,56–60. The
importance of such mechanosensing invites the question of how
precisely cells exploit the mechanical information available to
them. In what follows, we present numerical evidence suggesting
that some cells make optimal use of this information.

In connective tissue, a cell’s mechanical environment primarily
consists of a disordered biopolymer network that serves as a
scaffold on which the cell lives and moves28,29,61,62. To quantify
what a cell can learn by interacting with such a network, we
generalize our sensing model to a three-dimensional, isotropic
elastic medium characterized by a shear modulus μ and a
Poisson’s ratio σ (Supplementary Note 11). For simplicity, we take
σ to be a fixed, uniform field and μ to be the sum of a fixed,
uniform field μ0 and a spatially-varying random field δμ(r) with
short-ranged correlations as in Eq. (3).

We determined the parameters in our model for a recon-
stituted collagen network, an in vitro system that closely
resembles in vivo cellular environments28,29,49,50. For a collagen
network prepared from a c ~ 0.2 μg/mL solution of collagen type-
I monomers, previous studies suggest μ0 ~ 0.3 Pa, σ ~ 0.4,
Δμ ~ 0.1 Pa2, and ξ ~ 5 μm (Supplementary Note 11). For these
values, the ratio Δ1=2

μ =μ0 � 1 lies outside the strict regime of
validity of our perturbative approach; nevertheless, we expect our
results to qualitatively describe how δμ0/μ0 depends on the model
parameters to the right order of magnitude.

Eukaryotic cells can sense stiffness by attaching to biopolymer
networks via transmembrane protein complexes called focal
adhesions28,56,63,64. For D = 3, the simplest cellular probe
consists of isotropic dipolar shells of radius a (Supplementary
Note 11). Taking a = 10 μm leads to δμ0/μ0 ~ 0.15, which

a b

Fig. 3 Sensory multiplexing can greatly improve the precision of sensing.
a Colored points show the smallest attainable fractional uncertainty δλ0/λ0
in units of η = ξDΔλV−1 for a sensor that can perform sensory multiplexing
up to a maximum absolute mode number kmax (see section “Sensory
multiplexing can significantly improve the precision of sensing”). Gray
circles show a lower bound δλ0,low/λ0 on the fractional uncertainty for each
value of kmax for a single volume probe, obtained via numerical
minimization (Supplementary Note 10). b All-inclusive effective probe
intensities Ψ(r) for sensory multiplexing versus radial coordinate r in units
of the sensor radius a for the same values of kmax as in a (correspondence
indicated by matching colors). Inset shows Ψ(r) on a lin-log scale.
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supports the notion that cells could use mechanical information
to reliably distinguish between different connective tissue
environments, including brain (μ0 ~ 1 kPa), muscle
(μ0 ~ 10 kPa), and bone (μ0 ~ 100 kPa)28,57–60. Such
mechanosensing could be tested in experiment by using
micropatterned materials to explore the effect of substrate
heterogeneity on intracellular signaling dynamics. Interestingly,
previous work in which cells were seeded on two-dimensional
patterned substrates found that increases in either the average
stiffness or in the spatial uniformity of substrate heterogeneities
both resulted in increased intracellular signal transduction27. This
agreement is consistent with Eq. (39), which suggests that
increasing μ0 and decreasing ξ should both have the same sign of
influence on cellular precision.

A cell could further reduce δμ0/μ0 via sensory multiplexing.
Indeed, cells have been known to modulate the forces they exert
in order to vary the modes they apply, consistent with our
predictions for behavior during sensory multiplexing65. A cell’s
spatial resolution is limited by the maximum number of focal
adhesions that it can simultaneously apply to the network. Cells
have been observed to display more than ~100 focal adhesions66,
which could allow a 10 μm cell to probe the network on scales
smaller than ξ. Taking d ~ ξ yields δμ0/μ0 ~ 0.05, which is
comparable to the smallest relative differences in bulk stiffness
that elicit significant changes in cellular motility and differentia-
tion on homogeneous substrates67. This suggests that cellular
mechanosensing may operate near the fundamental bounds on
precision established in this paper.

An alternative strategy that cells could use to collect additional
mechanical information is to perform multiple measurements by
actively moving to different locations67–69. It is then natural to
ask when this approach is preferable to remaining in one place
and multiplexing probes with different symmetries. To determine
the effectiveness of this strategy, we considered a cell that moves
in a straight line and executes an isotropic dipolar probe every
body length (Supplementary Note 12). For a 10 μm cell, we find
that a cell must move about eight body lengths before δμ0/μ0
becomes smaller than 0.05, the corresponding value for a
stationary cell from the previous paragraph. Thus, we expect
that a cell would prefer to exert multiple probes in a single
location if this could be done in less than the time it takes to move
eight body lengths. Indeed, the precision of sensing improves
more rapidly with the number of measurements for a stationary
sensor than for a moving sensor (Supplementary Note 12). This
suggests that cells should choose to stay put and probe their
environment to the full extent permitted by their resolution d,
after which they have no choice but to begin moving.

The precision of active microrheology. In this section, we apply
our modeling framework to active microrheology in disordered
polymeric systems and other soft materials. Active microrheology
can be used for medical diagnostics, such as monitoring the
progression of a cancer52, and also for quality control during
material fabrication53,54. Although previous studies have shown
that active microrheology can be used to probe the properties of
small systems47, it has remained unclear what this technique can
learn about heterogeneous materials. What is the fractional
uncertainty of active microrheology, and what is the best strategy
to estimate the average stiffness of a material using this approach?

To be concrete, we consider active microrheology that
harnesses an engineered device to apply a static force and
measure displacement at a single location inside an elastic
medium (corresponding to the low-frequency limit of a general,
frequency-dependent microrheology measurement). In contrast
to our considerations regarding cells, such a device may exert a

net force on the medium, e.g., by manipulating a bead using
magnetic tweezers47. Thus, to explore what such a device can
learn beyond what a cell is capable of discerning, we focus on a
measurement protocol that consists of a monopole stimulus field
and a monopole weight field applied to an elastic network. Such
probe fields induce diverging deformations at the points of
application. We account for these unphysical divergences by
taking the measurement protocol to include a spherical cutoff of
radius ξ equal to the mesh size of the network (Supplementary
Note 13). For the reconstituted collagen network we considered
in the previous section, we used numerical integration to compute
the fractional uncertainty of this measurement protocol and
found δμ0/μ0 ~ 0.2. This value is small enough to reliably identify
the presence of a cancer70, which suggests that even one-particle
active microrheology could be an effective tool for medical
diagnostics.

Conventionally, active microrheology is done by probing the
response of a material in a single direction. In a homogeneous
material, this method yields results that do not depend on the
direction of the probe. However, an anisotropic probe applied to a
heterogeneous material generically yields a response that varies
with the direction of the probe. In this case, a more precise
measurement could be obtained by probing in different directions
and combining the results via sensory multiplexing. Intuitively,
the amount of information obtained by these probes may be
maximized by spreading out their directions as much as possible.
We found that δμ0/μ0 does indeed decrease with the number of
samples taken, but with negligible improvements beyond δμ0/
μ0 ~ 0.15 (Supplementary Note 13). The precision saturates to a
non-zero value because monopoles couple to a fixed spatial extent
of the medium regardless of orientation. Thus, the best strategy to
probe μ0 by one-particle microrheology is to perform three
probes in orthogonal directions, which allows a ~25% improve-
ment in precision over a single monopole probe.

Discussion
An understanding of fundamental bounds on sensing precision
and information transmission has a long history of spurring
advances in the sciences and engineering, ranging from
improvements in telephony driven by Shannon’s initial for-
mulation of information theory to investigations of cell signaling
and chemotaxis growing out of the Berg-Purcell limit on con-
centration sensing40–42,71. Studies of the limits of sensor perfor-
mance are valuable both because they imply design constraints
that engineered and evolved systems must satisfy and because
determining the optimal performance often uncovers strategies to
reach this optimum that can be used to improve performance
even if the optimum cannot be attained.

Here, in the spirit of these earlier studies, we have quantified
what a physical sensor can learn by probing a heterogeneous
material. For media with long-ranged response functions, the
smallest possible fractional uncertainty in estimating an average
material constant is δλ=λ0 � ðΔ1=2

λ =λ0Þðd=aÞD=2ðξ=aÞD=2 for
a ≫ ξ ≫ d, λ0 � Δ1=2

λ , and D > 1. Remarkably, this relation
implies that a finite-sized sensor applied to a standard elastic
medium can achieve arbitrarily high precision—in effect, aver-
aging the material constant field λ(r) over an arbitrarily large
volume—provided that it can perform multiple measurements
down to small enough scales d. This “sensory multiplexing”
provides a novel design principle for engineering high precision
sensors that would be well-suited for applications on the micro-
scopic scale16–23,72.

In practical terms, our results imply that material properties
can be estimated most precisely by making several measurements
that each impose different multipole symmetries. Importantly,
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one does not have to do a very large number of measurements to
benefit from this strategy, as simply employing dipole and
quadrupole probes can yield substantial improvements. These
conclusions have implications both for the design of engineered
sensors and for the behavior of living cells. In particular, cells can
obtain additional information about the stiffness of their envir-
onment by applying multiple probes using forces that vary in
space and time. Interestingly, such regulation of probes has been
found to influence cellular differentiation73, and cells in culture
have recently been observed to vary the spatial symmetries of
forces they exert65.

For simplicity, we focused primarily on spherical sensors
embedded inside a medium. However, our framework can also be
used to study different sensory geometries and motile sensors.
Many sensors operate on the boundary of media, including cells
grown on flat surfaces27. Moreover, cells in connective tissue can
become highly elongated66 and undergo directed migration74,
both of which may serve as strategies for overcoming spatial
correlations. Future experimental studies will be important to
investigate the tradeoffs that cells employ between migrating and
varying the angular distribution of their focal adhesions.

Throughout the main text, we assumed a vanishingly small
material correlation length ξ, which holds provided that d ≫ ξ.
Our approach can be readily extended to account for a finite
correlation length ξ (Supplementary Note 14). Moreover,
although we have focused mostly on a simple scalar version of
elasticity, we expect our scaling results to hold for a broad range
of media with long-ranged response functions, including the
elastic medium in section “The precision of biomechanical sen-
sing”. For short-ranged response functions, the smallest possible
fractional uncertainty is δλ0=λ0 � ðΔ1=2

λ =λ0Þðξ=aÞD=2 for a ≫ ξ

and λ0 � Δ1=2
λ , which can be interpreted as the familiar 1=

ffiffiffiffi
N

p
scaling of measurement uncertainty for N independent samples,
where N ~ (a/ξ)D corresponds to the number of effectively
independent subvolumes probed by the sensor (Supplementary
Note 14). Finally, we assumed that the elastic properties of the
medium within the sensing volume are not significantly mis-
matched from those of the exterior. Extending our model to
account for more complicated constitutive relations and other
distributions of the disorder are important directions for future
research.

We have focused on athermal materials. For thermal materials,
the quantities measured by the sensor fluctuate in time. These
fluctuations provide an additional source of temporal noise to the
inference process, as well as additional response configurations
that can be observed by the sensor. Generalizing our approach to
account for these effects would provide a comprehensive physical
limit to sensing the properties of materials.

In summary, we have elucidated the perception of material
properties in physical space. On small scales, structural hetero-
geneities place limits on the precision of sensing. We modeled
these limits for biopolymer networks and found that they are
comparable to the bounds observed for cells in experiment67.
Going forward, our theory will guide the design of the next
generation of sensors that will be capable of probing materials at
the fundamental limits of spatial resolution.

Methods
Numerical minimization of δλ0/λ0. To determine the optimal measurement
protocol for a sensor that can apply arbitrary probe fields on its boundary, we used
Mathematica’s NMinimize function to search for a global minimum of δλ0/λ0.

We performed this minimization over the coefficients Bðf Þ
k and BðwÞ

k using the built-
in Nelder–Mead method. The accuracy and precision goals were both chosen to be
ϵ = 8, and we took the maximum number of iterations to be Nmax ¼ 1000. To
explore different local minima, we introduced stochasticity by repeating the
minimization for 25 random initial seeds for each choice of the parameter kmax. For

each value of kmax, the minimum fractional uncertainty δλ0;min=λ0 reported was
taken to be the minimum of the values found among the 25 trials.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
We have made the Mathematica notebook used to minimize δλ0/λ0 available freely on
GitHub (https://github.com/farzanb/sensing-in-random-media).

Received: 24 June 2019; Accepted: 25 August 2020;

References
1. Hooke, R. Lectures de Potentia Restitutiva, Or of Spring Explaining the Power

of Springing Bodies (John Martyn, 1678).
2. Landau, L. D. Theory of Elasticity (Elsevier LTD, Oxford, 2004).
3. Hippel, A. R. V. Dielectric Materials and Applications (Artech House

Microwave Library) (Artech House on Demand, 1995).
4. Fick, A. Ueber diffusion. Ann. der Phys. und Chem. 170, 59 (1855).
5. Amontons, G. De la resistance causee dans les machines, tant par les

frottemens des parties qui les composent, que par roideur des cordes quon y
employe, & la maniere de calculer l’un & l’autre, Histoire de l’Academie royale
des sciences (1699).

6. Darve, F. & Servant, G. Fundamentals of Constitutive Equations for
Geomaterials in Degradations and Instabilities in Geomaterials 1–33 (Springer,
Vienna, 2004).

7. Landau, L. D. & Lifshitz, E. M. Fluid Mechanics (Pergamon International
Library of Science, Technology, Engineering & Social Studies) Vol. 6
(Pergamon, 2013).

8. Curie, J. & Curie, P. Developpement par compression de lelectricite polaire
dans les cristaux hemiedres a faces inclinees. Bull. de. la Soc. Mineral. de. Fr. 3,
90 (1880).

9. Rowe, D. M. Thermoelectrics Handbook: Macro to Nano (CRC Press, 2005).
10. Iyetomi, H. et al. Fluctuation-dissipation theory of input-output

interindustrial relations. Phys. Rev. E 83, 016103 (2011).
11. Bouchaud, J.-P. et al. Black was right: price is within a factor 2 of value. SSRN

Electron. J. https://doi.org/10.2139/ssrn.3070850 (2017).
12. Ossi, P. M. Disordered Materials (Springer, 2002).
13. DiDonna, B. A. & Lubensky, T. C. Nonaffine correlations in random elastic

media. Phys. Rev. E 72, 066619 (2005).
14. Torquato, S. Random Heterogeneous Materials: Microstructure and

Macroscopic Properties (Interdisciplinary Applied Mathematics) Vol. 16
(Springer, 2005).

15. Kurt Binder, W. K. Glassy Materials and Disordered Solids: An Introduction to
Their Statistical Mechanics Revised (World Scientific Publishing Company,
2011).

16. Fahlbusch, S. & Fatikow, S. Micro-force sensing in a micro-robotic system, in
Proc. 2001 ICRA. IEEE International Conference on Robotics and Automation
(Cat. No.01CH37164) (IEEE, 2001).

17. Cullinan, M. A., Panas, R. M., DiBiasio, C. M. & Culpepper, M. L. Scaling
electromechanical sensors down to the nanoscale. Sens. Actuators A Phys. 187,
162 (2012).

18. Jing, W. & Cappelleri, D. J. Incorporating in-situ force sensing capabilities in a
magnetic microrobot. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (2014).

19. Wallace, R. M. In Springer Handbook of Electronic and Photonic Materials
(Springer International Publishing, 2017).

20. Bhat, A. Nanobots: the future of medicine. Int. J. Eng. Manag. Sci. 5, 44–49
(2004).

21. Nelson, B. Microrobotics in medicine. Int. J. Robot. Res. 25, 527 (2006).
22. Ornes, S. Inner workings: medical microrobots have potential in surgery,

therapy, imaging, and diagnostics. Proc. Natl Acad. Sci. USA 114, 12356
(2017).

23. Simaan, N., Yasin, R. M. & Wang, L. Medical technologies and challenges of
robot-assisted minimally invasive intervention and diagnostics. Annu. Rev.
Control, Robot. Autonomous Syst. 1, 465 (2018).

24. Discher, D. E., Janmey, P. & Wang, Y.-l Tissue cells feel and respond to the
stiffness of their substrate. Science 310, 1139 (2005).

25. Arlett, J., Myers, E. & Roukes, M. Comparative advantages of mechanical
biosensors. Nat. Nanotechnol. 6, 203 (2011).

26. Skedung, L. et al. Feeling small: exploring the tactile perception limits. Sci. Rep.
3, 2617 (2013).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18995-4

8 NATURE COMMUNICATIONS |         (2020) 11:5170 | https://doi.org/10.1038/s41467-020-18995-4 | www.nature.com/naturecommunications

https://github.com/farzanb/sensing-in-random-media
https://doi.org/10.2139/ssrn.3070850
www.nature.com/naturecommunications


27. Yang, C. et al. Spatially patterned matrix elasticity directs stem cell fate. Proc.
Natl Acad. Sci. USA 113, E4439 (2016).

28. Doyle, A. D. & Yamada, K. M. Mechanosensing via cell-matrix adhesions in
3d microenvironments. Exp. Cell Res. 343, 60 (2016).

29. Beroz, F. et al. Physical limits to biomechanical sensing in disordered fibre
networks. Nat. Commun. 8, 16096 (2017).

30. Petridou, N. I., Spiro, Z. & Heisenberg, C.-P. Multiscale force sensing in
development. Nat. Cell Biol. 19, 581 (2017).

31. Zuniga, M. & Kong, J. A. Active remote sensing of random media. J. Appl.
Phys. 51, 74 (1980).

32. Barbour, R. L., Graber, H. L., Aronson, R., & Lubowsky, J. In Time-Resolved
Spectroscopy and Imaging of Tissues (ed. Chance, B.) (SPIE, 1991).

33. Kravtsov, Y. A. New effects in wave propagation and scattering in random
media (a mini review). Appl. Opt. 32, 2681 (1993).

34. Ishimaru, A. Wave Propagation and Scattering in Random Media (IEEE/OUP
Series on Electromagnetic Wave Theory) (IEEE Publications, USA, 1997).

35. Moustakas, A. L. Communication through a diffusive medium: coherence and
capacity. Science 287, 287 (2000).

36. Rees, W. G. Physical Principles of Remote Sensing (Cambridge University
Press, 2016).

37. Mason, T. G. & Weitz, D. A. Optical measurements of frequency-dependent
linear viscoelastic moduli of complex fluids. Phys. Rev. Lett. 74, 1250 (1995).

38. Schnurr, B., Gittes, F., MacKintosh, F. C. & Schmidt, C. F. Determining
microscopic viscoelasticity in flexible and semiflexible polymer networks from
thermal fluctuations. Macromolecules 30, 7781 (1997).

39. Weihs, D., Mason, T. G. & Teitell, M. A. Bio-microrheology: a frontier in
microrheology. Biophysical J. 91, 4296 (2006).

40. Berg, H. & Purcell, E. Physics of chemoreception. Biophysical J. 20, 193 (1977).
41. Bialek, W. & Setayeshgar, S. Physical limits to biochemical signaling. Proc.

Natl Acad. Sci. USA 102, 10040 (2005).
42. Endres, R. G. & Wingreen, N. S. Accuracy of direct gradient sensing by single

cells. Proc. Natl Acad. Sci. USA 105, 15749 (2008).
43. Kaizu, K. et al. The berg-purcell limit revisited. Biophysical J. 106, 976 (2014).
44. Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255 (1966).
45. Bausch, A. R., Moller, W. & Sackmann, E. Measurement of local viscoelasticity

and forces in living cells by magnetic tweezers. Biophys. J. 76, 573 (1999).
46. Helfer, E. et al. Microrheology of biopolymer-membrane complexes. Phys.

Rev. Lett. 85, 457 (2000).
47. Levine, A. J. & Lubensky, T. C. One- and two-particle microrheology. Phys.

Rev. Lett. 85, 1774 (2000).
48. Rigato, A., Miyagi, A., Scheuring, S. & Rico, F. High-frequency microrheology

reveals cytoskeleton dynamics in living cells. Nat. Phys. 13, 771 (2017).
49. Zaman, M. H. et al. Migration of tumor cells in 3d matrices is governed by

matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl
Acad. Sci. USA 103, 10889 (2006).

50. Guo, Q. et al. Modulation of keratocyte phenotype by collagen fibril
nanoarchitecture in membranes for corneal repair. Biomaterials 34, 9365
(2013).

51. Thievessen, I. et al. Vinculin is required for cell polarization, migration, and
extracellular matrix remodeling in 3d collagen. FASEB J. 29, 4555 (2015).

52. Kalli, M. & Stylianopoulos, T. Defining the role of solid stress and matrix
stiffness in cancer cell proliferation and metastasis. Front. Oncol. 8, 55 (2018).

53. Morais, D. T. S. & Avila, A. F. A methodology for quality control evaluation
for laminated composites manufacturing. J. Braz. Soc. Mech. Sci. Eng. 27,
248–254 (2005).

54. Kim, D. D.-W., Hennigan, D. J. & Beavers, K. D. Effect of fabrication
processes on mechanical properties of glass fiber reinforced polymer
composites for 49 meter (160 foot) recreational yachts. Int. J. Nav. Architect.
Ocean Eng. 2, 45 (2010).

55. Winkler, E. Die Lehre von der Elasticitaet und Festigkeit: mit besonderer
Rucksicht auf ihre Anwendung in der Technik, fur polytechnische Schulen,
Bauakademien, Ingenieure, Maschinenbauer, Architecten, etc, Die Lehre von
der Elastizitat und Festigkeit mit besonderer Rucksicht auf ihre Anwendung in
der Technik: fur polytechnische Schulen, Bauakademien, Ingenieure,
Maschinenbauer, Architecten, etc (Dominicius, 1868).

56. Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell
functions. Nat. Rev. Mol. Cell Biol. 7, 265 (2006).

57. Lo, C. M., Wang, H. B., Dembo, M. & Wang, Y. L. Cell movement is guided by
the rigidity of the substrate. Biophys. J. 79, 144 (2000).

58. Isenberg, B. C., DiMilla, P. A., Walker, M., Kim, S. & Wong, J. Y. Vascular
smooth muscle cell durotaxis depends on substrate stiffness gradient strength.
Biophys. J. 97, 1313 (2009).

59. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs
stem cell lineage specification. Cell 126, 677 (2006).

60. Guilak, F. et al. Control of stem cell fate by physical interactions with the
extracellular matrix. Cell Stem Cell 5, 17 (2009).

61. Frantz, C., Stewart, K. M. & Weaver, V. M. The extracellular matrix at a
glance. J. Cell Sci. 123, 4195 (2010).

62. Head, D. A., Levine, A. J., & MacKintosh, F. C. Mechanical response of
semiflexible networks to localized perturbations. Phys. Rev. E 72, 061914 (2005).

63. Fletcher, D. A. & Mullins, R. D. Cell mechanics and the cytoskeleton. Nature
463, 485 (2010).

64. Trichet, L. et al. Evidence of a large-scale mechanosensing mechanism for cellular
adaptation to substrate stiffness. Proc. Natl Acad. Sci. USA 109, 6933 (2012).

65. Messi, Z., Bornert, A., Raynaud, F., & Verkhovsky, A. Traction forces control
cell-edge dynamics and mediate distance sensitivity during cell polarization.
Curr. Biol. 30, 1762 (2020).

66. Prager-Khoutorsky, M. et al. Fibroblast polarization is a matrix-rigidity-
dependent process controlled by focal adhesion mechanosensing. Nat. Cell
Biol. 13, 1457 (2011).

67. Hadden, W. J. et al. Stem cell migration and mechanotransduction on linear
stiffness gradient hydrogels. Proc. Natl Acad. Sci. USA 114, 5647 (2017).

68. Cox, T. R. & Erler, J. T. Remodeling and homeostasis of the extracellular matrix:
implications for fibrotic diseases and cancer. Dis. Models Mech. 4, 165 (2011).

69. Franz, A., Wood, W. & Martin, P. Fat body cells are motile and actively migrate
to wounds to drive repair and prevent infection. Dev. Cell 44, 460 (2018).

70. Acerbi, I. et al. Human breast cancer invasion and aggression correlates with
ECM stiffening and immune cell infiltration. Integr. Biol. 7, 1120 (2015).

71. Petkova, M. D., Tkačik, G., Bialek, W., Wieschaus, E. F. & Gregor, T. Optimal
decoding of cellular identities in a genetic network. Cell 176, 844 (2019).

72. Maex, K. et al. Low dielectric constant materials for microelectronics. J. Appl.
Phys. 93, 8793 (2003).

73. Hu, Y., Lu, J., Xu, X., Lyu, J., & Zhang, H. Regulation of focal adhesion
turnover in sdf-1-stimulated migration of mesenchymal stem cells in neural
differentiation. Sci. Rep. 7, 10013 (2017).

74. Wu, P.-H., Giri, A., Sun, S. X. & Wirtz, D. Three-dimensional cell migration
does not follow a random walk. Proc. Natl Acad. Sci. USA 111, 3949 (2014).

Acknowledgements
We thank Aris Alexandradinata, Masud Beroz, William Bialek, Chase Broedersz, Judith
Höller, David Huse, Tim (Hou Keong) Lou, Yigal Meir, Joshua Shaevitz, Ian Tobasco,
and Ned Wingreen for insightful comments and discussions. This work was supported in
part by the National Science Foundation Grants DMR-1056456 (to D.K.L.), DMR
1609051 (to X.M.), and EFRI-1741618 (to D.Z. and X.M.), a Margaret and Herman Sokol
Faculty Award (to D.K.L.), and a Michigan Life Sciences fellowship (to F.B.).

Author contributions
F.B. conceived the research. F.B. and D.Z. performed all simulations and analysis. All
authors contributed to the interpretation of data and manuscript preparation.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-18995-4.

Correspondence and requests for materials should be addressed to F.B.

Peer review information Nature Communications thanks Michael Klatt and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18995-4 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5170 | https://doi.org/10.1038/s41467-020-18995-4 | www.nature.com/naturecommunications 9

https://doi.org/10.1038/s41467-020-18995-4
https://doi.org/10.1038/s41467-020-18995-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Physical limits to sensing material properties
	Results
	Probing a Winkler foundation
	Probing an elastic sheet
	Probe-field interference limits the channel capacity of sensing
	Sensory multiplexing can significantly improve the precision of sensing
	The precision of biomechanical sensing
	The precision of active microrheology

	Discussion
	Methods
	Numerical minimization of δλ0/λ0

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




