
Applied Categorical Structures (2020) 28:669–716
https://doi.org/10.1007/s10485-020-09594-x

Recognizing Quasi-Categorical Limits and Colimits
in Homotopy Coherent Nerves

Emily Riehl1 · Dominic Verity2

Received: 28 December 2018 / Accepted: 14 February 2020 / Published online: 6 March 2020
© Springer Nature B.V. 2020

Abstract
In this paper we prove that various quasi-categories whose objects are∞-categories in a very
general sense are complete: admitting limits indexed by all simplicial sets. This result and
others of a similar flavor follow from a general theorem in which we characterize the data
that is required to define a limit cone in a quasi-category constructed as a homotopy coherent
nerve. Since all quasi-categories arise this way up to equivalence, this analysis covers the
general case. Namely, we show that quasi-categorical limit cones may be modeled at the
point-set level by pseudo homotopy limit cones, whose shape is governed by the weight for
pseudo limits over a homotopy coherent diagram but with the defining universal property up
to equivalence, rather than isomorphism, of mapping spaces. Our applications follow from
the fact that the (∞, 1)-categorical core of an ∞-cosmos admits weighted homotopy limits
for all flexible weights, which includes in particular the weight for pseudo cones.
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1 Introduction

Previous work [14–19] has shown that much of the fundamental theory of (∞, 1)-categories
may be developed in a natively model-independent fashion by applying techniques of formal
category theory to the categorical universes in which (∞, 1)-categories live as objects. Our
approach is “synthetic” in the sense that our proofs do not depend on precisely what these
(∞, 1)-categories are, but rather rely upon a relatively sparse axiomatisation of the universe
in which they live. To describe an appropriate “universe,” we introduce the notion of an ∞-
cosmos, a (large) quasi-categorically enriched category K satisfying certain axioms recalled
in Definition 2.1.1: roughly, these ask that an ∞-cosmos is an “(∞, 2)-category with flexible
limits” about which we will have more to say below. In contrast with the work of [4,22],
the axioms for an ∞-cosmos do not characterize “categories whose objects are (∞, 1)-
categories.” Nonetheless, so that our statements about ∞-cosmoi suggest their most natural
interpretation, we refer to the objects of any ∞-cosmos as ∞-categories.

The prototypical example of an ∞-cosmos is the ∞-cosmos whose objects are quasi-
categories, a model of (∞, 1)-categories as simplicial sets satisfying theweakKan condition,
and whose function complexes are the quasi-categories of functors between them; this
example is reviewed in Example 2.1.3. But there are other ∞-cosmoi whose objects are
complete Segal spaces, Segal categories, or 1-complicial sets, each of these being models of
(∞, 1)-categories. These∞-cosmoi are biequivalent toQCat , meaning that the “underlying
quasi-category functor FunK(1,−) : K → QCat is surjective on objects up to equivalence
and induces a local equivalence on functor spaces.

The axioms of an ∞-cosmos are not intended to only describe categorical universes for
(∞, 1)-categories; several models of (∞, n)-categories form the objects of an ∞-cosmos
for instance.1 In this work, we will make use of various “exotic” ∞-cosmoi that can be
constructed from a given∞-cosmosK, including the slice categoryK/B over an∞-category
in B, two ∞-cosmoi of arrows that we introduce for the first time in Propositions 2.1.6 and
2.1.10, and the ∞-cosmos of groupoidal “spaces” in K established in Proposition 2.2.3.

Using only the axioms of an ∞-cosmos, we can develop a fairly comprehensive theory of
limits and colimits of diagrams valued in an ∞-category, defining these notions in a variety
of equivalent ways and proving, for instance, that right adjoints preserve limits. But when it
comes to constructing examples of (∞, 1)-categories or computing limits or colimits therein,
“analytic” techniques associated to a specific model of (∞, 1)-categories are appropriate. As
most practitioners already believe, and a future paper will justify, it makes no essential
difference which model of (∞, 1)-categories is chosen as long as the associated ∞-cosmos

1 Known ∞-cosmoi of (∞, n)-categories include θn -spaces, iterated complete Segal spaces, n-complicial
sets, and n-quasi-categories.
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K is biequivalent to the ∞-cosmos for quasi-categories. For simplicity we choose to work in
QCat itself.

At the conclusion of the previous work in this series [19], we show that any quasi-category
C is equivalent to the homotopy coherent nerve of a Kan-complex-enriched category C,
namely, the homotopy coherent nerve of the full simplicial subcategory of QCat/C spanned
by the representable cartesian fibrations p0 : C ↓ c � C indexed by its elements c : 1 → C.
So in this paper we answer the question of constructing limits and colimits of diagrams
valued in a quasi-category f : X → C by considering the corresponding homotopy coherent
diagram F : CX → C valued in a Kan-complex-enriched category. Our main theorem gives
a condition that characterizes quasi-categorical limits or colimits in this context.
6.1.4, 6.2.7 Theorem. For any Kan-complex-enriched category C and simplicial set X , if
a homotopy coherent diagram D : C[X ] → C admits a pseudo homotopy limit in C, then
the corresponding limit cone C[�0 � X ] → C transposes to define a limit cone over the
transposed diagram d : X → C in the homotopy coherent nerve of C. Conversely, if the
diagram d admits a limit in the quasi-category C, then the limit cone�0 � X → C transposes
to define a pseudo homotopy limit cone over D in C.

Consequently, the quasi-category C is complete if and only if C admits pseudo homotopy
limits for all simplicial sets X .

The statement requires some explanation. The limit notions appropriate to simplicially
enriched category theory are weighted by a particular functor, which describes the “shape”
of cones over the given diagram; the idea is that in the context of an ambient simplicial
enrichment, these cone legs may contain higher dimensional simplices. If the weight is “fat
enough,” then the corresponding weighted limit notion is homotopically well behaved. For
instance, we show in Proposition 4.1.5 that every ∞-cosmos admits all limits with flexible
weights, and such limits are invariant under pointwise equivalence between diagrams.

The quasi-category K of ∞-categories in an ∞-cosmos K is defined not as the homotopy
coherent nerve of the ∞-cosmos itself but rather as the homotopy coherent nerve of its
(∞, 1)-categorical core. The inclusion of the (∞, 1)-categorical core creates those flexible
limits whose weights are valued in Kan complexes but does not create those flexible limits
whose weights are valued in general simplicial sets, at least not strictly. But if we relax the
defining universal property of a weighted limit to demand an equivalence rather than an
isomorphism of quasi-categories, then the (∞, 1)-categorical core of an ∞-cosmos admits
all flexible weighted homotopy limits, as we demonstrate in Corollary 4.2.7. Similarly, the
full subcategory of fibrant-cofibrant objects in a simplicial model category admits all flexible
weighted homotopy limits or colimits.

The pseudo homotopy limits in the statement of Theorem 6.1.4 refer to a flexible weighted
homotopy limit with a particular weight, namely the weight WX for pseudo cones over a
homotopy coherent diagram of shape X , which we define in 5.2.8. Since∞-cosmoi and their
(∞, 1)-categorical cores admit pseudo-weighted homotopy limits, we deduce the following
completeness results as corollaries of Theorem 6.1.4
6.2.1 Proposition. For any ∞-cosmos K, the large quasi-category K of ∞-categories in K
is small complete.
6.2.2 Proposition. For any ∞-cosmos K, the large quasi-category SK of groupoidal ∞-
categories in K is small complete and closed under small limits in the quasi-category K.
6.2.3 Proposition. IfM is a simplicial model category then the quasi-categoryM, defined as
the homotopy coherent nerve of the full simplicial subcategory of fibrant-cofibrant objects,
is small complete and cocomplete.
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672 E. Riehl, D. Verity

The last of these corollaries recovers a result first proven byBarnea et al. in [3, 2.5.9], while
Szumiło [21] proves a result similar to the first pair of results in the context of (unenriched)
cofibration categories.

This paper contains all of the background needed to fill in the details of this outline,
with the proofs of these results appearing in Sect. 6. To concisely cite previous work in this
program, we refer to the results of [14–19] as I.x.x.x., II.x.x.x, III.x.x.x, IV.x.x.x, V.x.x.x,
or VI.x.x.x respectively, though the statements of the most important results are reproduced
here for ease of reference. When an external reference accompanies a restated result, this
generally indicates that more expository details can be found there.

In Sect. 2 we review the axioms of an ∞-cosmos and construct several new examples of
∞-cosmoi that will be used in this paper. We also introduce and investigate the∞-cosmos of
groupoidal objects or “spaces” in an ∞-cosmos and explore the construction of the (∞, 1)-
categorical core of an ∞-cosmos. In Sect. 3, we review the synthetic theory of limits in an
∞-cosmos, presenting only the minimal details that we will require here to prove our main
theorem. In Sect. 4 we introduce the class of flexible weighted limits and flexible weighted
homotopy limits, proving the existence results mentioned above. In Sect. 5, we develop
the technical tools needed to prove our main theorems. We review the homotopy coherent
nerve functor and its left adjoint, homotopy coherent realisation, which describes the shape
of homotopy coherent diagrams. We also define the weight for pseudo limits of homotopy
coherent diagrams as a collage, a simplicial category that indexes pseudo limit cones. With
this theory in place, the proof of Theorem 6.1.4 in Sect. 6 is just a matter of following one’s
nose.

Apaper on the subject of computing limits and colimits in quasi-categoriesmight have lead
the reader to anticipate construction results of a different flavor, reducing limits or colimits
of arbitrary shaped diagrams to simpler ones. In a sequel [20], which depends in a crucial
way on Theorem 6.1.4, we prove a dual pair of such results, reducing limits indexed by a
simplicial set X to products and pullbacks. Using Yoneda lemma techniques, we liberate
ourselves from the ∞-cosmos of quasi-categories and prove these results in the fully general
context of ∞-categories in any ∞-cosmos.

The reader will note that a number of the results in this paper are well known in one form or
another. In particular, this includes our main theorem, a close analogue of which was proven
by Lurie in [10, 4.2.4.1]. The novelty of our narrative is that our constructions of these limits
and colimits are concrete and direct, in that we compute the required universal properties
via direct analysis of homotopy coherent structures, rather than by constructing appropriate
model structures on diagram categories. We find it aesthetically pleasing that the formulation
of this result given here directly transposes a diagram f : X → C and a quasi-categorical
cone into a homotopy coherent diagram F : C[X ] → C and a pseudo cone and observes
that these cones enjoy corresponding universal properties, without needing to “straighten”
a quasi-categorical into an equivalent functor between Kan-complex-enriched categories;
see [10, 4.2.4.7]. These technical details are helpful when we apply Theorem 6.1.4 to the
meta-theory of our ∞-cosmos framework, a topic we expand upon further in the immediate
sequel to this paper.

For us a further motivation arises from the theory of (nee. weak) complicial sets [23,
24]. The concrete arguments presented here generalise routinely to apply in the complicial
context; all they require is a certain delicacy in tracking themarkings (or stratification) placed
on simplices in our homotopy coherent structures. In that way, we obtain constructions
of higher (∞,∞)-limit types in the homotopy coherent nerves of complicially enriched
categories. When we first started thinking about such issues, we went looking for a concrete
presentation of the corresponding results in the quasi-categorical literature. We were unable
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Recognizing Quasi-Categorical Limits in Homotopy Coherent Nerves 673

to find one that generalised easily to complicial sets; hence the current paper. We could
have proceeded directly to give the fully complicial arguments but felt it prudent, from an
expository perspective, to expose the simpler unmarked case first.

1.1 Size Conventions

The quasi-categories defined as homotopy coherent nerves are typically large.All other quasi-
categories or simplicial sets, particularly those used to index homotopy coherent diagrams,
are assumed to be small. In particular, when discussing the existence of limits and colimits
we shall implicitly assume that these are indexed by small categories, and correspondingly,
completeness and cocompleteness properties will implicitly reference the existence of small
limits and small colimits. Here, as is typical, “small” sets will usually refer to those members
of a Grothendieck universe defined relative to a fixed inaccessible cardinal.

Our intent here is simply to provide a size classification which allows us state and prove
results that require such a distinction for non-triviality, principally those of the form “such and
such a large category admits all small limits”. Our arguments mostly comprise elementary
constructions, so in applications this size distinction need not invoke the full force of a
Grothendieck universe, indeed it might be as simple as that between the finite and the infinite.
At the other extreme it might involve the choice of two Grothendieck universes to prove
results about large categories. One such result is Theorem 6.2.7 which, on interpreting its size
distinction relative to a second larger Grothendieck universe, provides a result which applies
to large simplicial categories. Indeed, with a little more care, the proof of that result may be
adapted to apply to large and locally small simplicial categories without the introduction of a
second universe (by restricting arguments only to accessible simplicial presheaves) although
we choose not to worry the reader with such arcana here.

Weuse a common typeface—e.g.,C,K,— to differentiate small and large quasi-categories
from generic ∞-categories A and simplicial sets X . Throughout, we attempt to distinguish
between enriched and unenriched categorical settings. In particular, we write S Set for the
cartesian closed (and thus simplicially enriched) category of simplicial sets and sSet for the
underlying 1-category of simplicial sets and simplicial maps.

2 ∞-Cosmoi

An∞-cosmos is a type of (∞, 2)-category satisfying a very sparse list of axioms appropriate
for the “universe” in which ∞-categories live as objects. In Sect. 2.1, we briefly review this
notion and then construct a number of new ∞-cosmoi from a given ∞-cosmos K that we
will make use of here and elsewhere.

In Sect. 2.2, we consider two relevant substructures of an ∞-cosmos. The first is the full
subcategory of “spaces” in K, objects that satisfy a condition of being groupoidal that we
introduce in several equivalent forms. The second construction is of the maximal (∞, 1)-
category contained within an ∞-cosmos, this having the same objects but with the quasi-
categorical homs replaced by their maximal Kan complex “groupoid cores.”

2.1 ∞-Cosmoi and their Homotopy 2-Categories

An∞-cosmos is a categoryK whose objects A, B we call∞-categories and whose function
complexesFunK(A, B) are quasi-categories of functorsbetween them.Thehandful of axioms
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674 E. Riehl, D. Verity

imposed on the ambient quasi-categorically enriched category K permit the development of
a general theory of ∞-categories “synthetically,” i.e., only in reference to this axiomatic
framework. We work in an ∞-cosmos K with all objects cofibrant, in contrast to the more
general notion first introduced in §IV.2.

Definition 2.1.1 (∞-Cosmos) An ∞-cosmos is a simplicially enriched category K whose

• Objects we refer to as the ∞-categories in the ∞-cosmos, whose
• Hom simplicial sets FunK(A, B) are quasi-categories,

and that is equipped with a specified subcategory of isofibrations, denoted by “�”, satisfying
the following axioms:

(a) (Completeness) As a simplicially enriched category, K possesses a terminal object 1,
small products, cotensors AU of objects A by all small simplicial sets U , inverse limits
of countable sequences of isofibrations, and pullbacks of isofibrations along any functor.

(b) (Isofibrations) The class of isofibrations contains the isomorphisms and all of the functors
! : A � 1 with codomain 1; is stable under pullback along all functors; is closed under
inverse limit of countable sequences; and if p : E � B is an isofibration in K and
i : U ↪→ V is an inclusion of simplicial sets then the Leibniz cotensor i ̂� p : EV �
EU ×BU BV is an isofibration. Moreover, for any object X and isofibration p : E � B,
FunK(X , p) : FunK(X , E) � FunK(X , B) is an isofibration of quasi-categories.

For ease of reference, we refer to the limit types listed in axiom (a) as the cosmological
limit types, these referring to diagrams of a particular shape with certain maps given by
isofibrations.

Remark 2.1.2 As is revealed by our previous papers in this series, and suggested by the
constructions appearing in Sect. 3.1, for much of the development of the formal theory
of ∞-categories only finite flexible weighted limits are needed. For this reason, the origi-
nal definition of an ∞-cosmos only asks for the finite instances of 2.1.1(a). In the present
treatment, we find it convenient to allow for cotensors with all simplicial sets, not just the
finitely presented ones, and employ inductive arguments, such as appearing in the proof of
Proposition 4.1.5, that make use of arbitrary small products and countable inverse limits of
sequences of isofibrations, but we trust that the reader will have no difficulty adapting these
results to their finite or countable variants in an ∞-cosmos admitting a more restricted class
of weighted limits.

The underlying category of an∞-cosmosK has a canonical subcategory of representably-
defined equivalences, denoted by “ ∼−−→”, satisfying the 2-of-6 property: a functor f : A → B
is an equivalence just when the induced functor FunK(X , f ) : FunK(X , A) → FunK(X , B)

is an equivalence of quasi-categories for all objects X ∈ K. The trivial fibrations, denoted by
“ ∼−�”, are those functors that are both equivalences and isofibrations. These axioms imply
that the underlying 1-category of an ∞-cosmos is a category of fibrant objects in the sense
of Brown. Consequently, many familiar homotopical properties follow from (a) and (b). In
particular it follows, from 2.1.1(b), that if p : E ∼−� B is a trivial fibration in K then for all
objects A the simplicial map FunK(A, p) : FunK(A, E) → FunK(A, B) is a trivial fibrations
of quasi-categories. Consequently we have:
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Recognizing Quasi-Categorical Limits in Homotopy Coherent Nerves 675

(c) (Cofibrancy) All objects are cofibrant, in the sense that they enjoy the left lifting property
with respect to all trivial fibrations in K.

E

∼

A

∃

B

which was asserted as a (redundant) axiom in Definition V.2.1.1.

Example 2.1.3 (∞-Cosmos of quasi-categories) The prototypical example is the ∞-cosmos
QCat of quasi-categories, with function complexes defined to be the exponential objects
in the cartesian closed category of simplicial sets. An isofibration is an inner fibration that
has the right lifting property with respect to the inclusion 1 ↪→ I of either endpoint of the
(nerve of the) free-standing isomorphism. That is, a map f : A → B of quasi-categories is an
equivalence just when there exists a map g : B → A together with maps A → AI and B → BI

that restrict along the vertices of I to the maps idA, g f , f g, and idB respectively:

f : A ∼−−→ B iff ∃g : B ∼−−→ A and

A

A

idA

g f

AI

p0

p1

A

and

B

B

f g

idB

BI

p0

p1

B

Remark 2.1.4 The ∞-cosmos of quasi-categories can also be described using the language
of model categories. It is the full subcategory of fibrant objects, with the isofibrations and
equivalences respectively the fibrations and weak equivalences between fibrant objects, in
a model category that is enriched over the Joyal model structure on simplicial sets and in
which all fibrant objects are cofibrant. It is easy to verify that any category of fibrant objects
arising in this way defines an ∞-cosmos (see Lemma IV .2.2.1). This is the source of many
of our examples, which are described in Sect. IV.2.

For any ∞-category A in any ∞-cosmos K, the strict slice category K/A of isofibrations
over A is again an∞-cosmos. It follows that all of our theorems in this axiomatic framework
immediately have fibred analogues.

Proposition 2.1.5 (Sliced∞-cosmoi, V.2.1.6) IfK is any∞-cosmos and A ∈ K is any object,
then there is an ∞-cosmos K/A, the sliced ∞-cosmos of K over A, whose:

• Objects are isofibrations p : E � A with codomain A;
• Functor space from p : E � A to q : F � A is defined by taking the pullback

in simplicial sets;
• isofibrations, equivalences, and trivial fibrations are created by the forgetful functor

K/A → K;

123



676 E. Riehl, D. Verity

and in which the simplicial limits are defined in the usual way for sliced simplicial categories.

We may assemble the sliced ∞-cosmoi into a single ∞-cosmos K2:

Proposition 2.1.6 (∞-Cosmoi of isofibrations) For any ∞-cosmosK, there is an ∞-cosmos
K which has:

• Objects all isofibrations p : E � A in K;
• Functor space from p : E � A to q : F � B defined by taking the pullback

in simplicial sets so, in particular, the 0-arrows from p to q are commutative squares

E
p

g
F
q

A
f

B

(2.1.7)

in K;
• equivalences those squares (2.1.7)whose components f and g are equivalences inK and

isofibrations (resp. trivial fibrations) those squares for which the map f and the induced
map E ��� A ×B F (and thus also g) are isofibrations (resp. trivial fibrations) in K.

The simplicial limits of 2.1.1(a) are defined object-wise in K, or in other words are jointly
created by the domain and codomain projections dom, cod : K2 → K.

If the reader is comfortable thinking of ∞-cosmoi as categories of fibrant objects arising
from model categories with the form described in Remark 2.1.4 and is sufficiently well-
acquainted with the model category literature, then this result is more or less obvious. Note
that the definitions of equivalences, isofibrations, and trivial fibrations inK2 coincidewith the
Reedyweak equivalences, Reedy fibrations, andReedy trivial fibrationswhen2 is considered
as an inverse category. Such readers are encouraged to skip to Proposition 2.1.10. For those for
whom this sort of abstract homotopy theory is less familiar,we give the following justification.

Proof As the proof will reveal, it is judicious to separate the simplicially enriched aspects
of the axioms 2.1.1(a)–(b) from the unenriched aspects. To start, observe that the cotensor
axioms are easy. If p : E � A is an object of K2, that is to say an isofibration in K, then the
map pX : EX � AX induced between cotensors by a simplicial set X inK is an isofibration,
by axiom 2.1.1(b), and is easily seen to be the required cotensor in K2.

The other limit types are a matter of unenriched category theory, so for the remainder of
this proof we identifyKwith its underlying category.We shall temporarily adopt the notation
K̄2 for the category whose objects are all arrows in K and whose arrows are commutative
squares.

The pair of projections dom, cod : K̄2 → K jointly create limits simply because K̄2 is
a category of functors. In particular, if F : D → K2 is a diagram of one of the conical
cosmological limit types discussed in 2.1.1(a)—a pullback, product or countable tower in
which certain maps are asked to be isofibrations in the sense described in the statement—then
the projected diagrams dom F, cod F : D → K are also of that kind in the ∞-cosmos K,
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Recognizing Quasi-Categorical Limits in Homotopy Coherent Nerves 677

so they admit limits which extend in the usual way to give a limit of the diagram F in the
functor category K̄2.

Our task now is twofold, first we must demonstrate that the limit we have constructed in
K̄2 is an isofibration, which suffices to show that it gives a limit for the diagram F in the full
subcategory K2. Then we must also show that the maps in its limit cone that are required
to be isofibrations by 2.1.1(b) are indeed isofibrations in K2 of the kind described in the
statement. We do this using a modicum of fibred category theory.

The codomain projection cod : K2 → K is a cartesian fibration of categories; its carte-
sian lifts are constructed by taking pullbacks of isofibrations in K. Note, however, that the
expanded codomain functor cod : K̄2 → K is not itself a cartesian fibration, becauseK does
not admit all pullbacks; but the fact that the cartesian maps of cod : K2 → K are given as
pullbacks in K can equally well be stated as posting that the full inclusion K2 ⊂ K̄2 carries
them to cartesian maps for cod : K̄2 → K.

Wemay now rephrase the definition of the equivalences, isofibrations, and trivial fibrations
ofK2 in this language. Specifically we know that the total category of any cartesian fibration
admits a factorisation of its arrows into a composite of an arrow in a fibre (sometimes called
a vertical arrow) and a cartesian arrow (sometimes called a horizontal arrow) which is
unique up to unique vertical isomorphism. In this case, given an arrow in the total space
of cod : K2 → K as depicted in (2.1.7) its horizontal factor is simply the universal square
associated with the pullback A ×B F and its vertical factor is the induced comparison map
E ��� A×B F in the slice K/A, this being the fibre of cod : K2 → K over A. It follows that
such an arrow is an isofibration (resp. trivial fibration, equivalence) in K2 iff its codomain
component cod(g, f ) = f is an isofibration (resp. trivial fibration, equivalence) in K and
its vertical factor is an isofibration (resp. trivial fibration, equivalence) in the sliced cosmos
K/A.

It is clear from the ∞-cosmos axioms that for any arrow f : A → B in K the pullback
functor f ∗ : K/B → K/A preserves isofibrations and trivial fibrations. This result and some
basic facts relating horizontal-vertical factorisations of maps to those of their composites
suffices to prove that the class of isofibrations in K2 is closed under composition and is
stable under pullback along all arrows.

It remains to verify that the appropriate components of the limits constructed above in
K̄2 are isofibrations and define limits in K2. We do this in Proposition 2.1.9 by applying an
abstract result from fibred category theory recalled in Lemma 2.1.8. This will complete the
proof. 
�
Lemma 2.1.8 Suppose that P : E → B is a functor of categories and that F : D → E is a
diagram which admits a limit E ∈ E displayed by a limit cone π : �E ⇒ F. Furthermore
assume that this limit is preserved by the functor P and that the limit cone Pπ : �PE ⇒ PF
admits a P-cartesian lift χ : F ′ ⇒ F: a natural transformation with Pχ = Pπ whose
components are P-cartesian arrows. Then we may factor the cone π through the P-cartesian
lift χ to give a cone π ′ : �E ⇒ F ′ in the fibre EPE of P over PE, which displays E as a
limit of the diagram F ′ in the fibre EPE .

Proof Given a cone α : �E ′ ⇒ F ′ in EPE we have that the universal property of the limiting
cone π : �E ⇒ F applied to the composite cone χ · α : �E ′ ⇒ F induces a unique arrow
f : E ′ → E for which χ ·α = π ·� f . Now, on applying P to that defining equation for f , we
obtain the equation Pπ ·�P f = Pχ ·�P f = P(χ ·� f ) = P(χ ·α) = Pχ ·Pα = Pχ = Pπ

in which the penultimate step follows because α is a cone in the fibre EPE ; so the uniqueness
portion of the universal property of the limit cone Pπ implies that P f = idPE and thus
that f is an arrow of the fibre EPE . It is clear now that f is the unique such arrow, thereby
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completing our verification that the cone π ′ : �E ⇒ F ′ has the required universal property
in the fibre EPE . 
�

We’ll apply this result to the codomain-projection functor cod : K2 → K. Since K has
pullbacks of isofibrations, this functor is a Grothendieck fibration, with cod-cartesian arrows
in K2 given by pullback squares.

Proposition 2.1.9 Suppose that F : D → K2 is a diagram of one of the conical cosmological
limit types described in 2.1.1(a) with respect to the class of isofibrations specified in the
statement of Proposition 2.1.6. Then K2 is closed in the category of all arrows in K under
the limit for this diagram and the various components of the limiting cone that are required
to be isofibrations under 2.1.1(b) are members of the specified class of isofibrations in K2.

Proof Recall that the limit of the given diagram is created in the category K̄2 of all arrows in
K by the pair of projections dom, cod : K̄2 → K. Suppose that this limit lim(F) is displayed
by a limit cone π : �lim(F) ⇒ F . Let B := cod(lim(F)) and consider the projected limit
cone cod π : �B ⇒ cod F which admits a cartesian lift χ : F ′ ⇒ F along the projection
cod : K2 → K. Since cod-cartesian arrows are pullback squares, the diagram F ′ is formed
by pulling back the arrows in the diagram F along the codomain components of the limit
cone. We may factor π through χ to give a cone π ′ : �lim(F) ⇒ F ′ in the fibre K̄/B , and on
application of Lemma 2.1.8, we see that this is a limit cone in that extended slice.

Observe now that if k : d ′ → d is an arrow in D then the arrow F ′k in the fibre K/B

is otherwise obtained as a pullback of the vertical factor of Fk, which lies in the slice over
cod(Fd), along the projectionπd : B → cod(Fd). These pullback functors between slice∞-
cosmoi preserve isofibrations, so it follows that if Fk is an isofibration of the form described
in Proposition 2.1.6 then its vertical factor is an isofibration in the slice K/ cod(Fd) as is its
pullback F ′k in K/B . Consequently F ′ is a cosmological limit type diagram in the sliced
∞-cosmosK/B because F is a diagram of that kind relative to the class of isofibrations given
in the statement Proposition 2.1.6. We know, however, that the slice K/B is closed in the
extended slice K̄/B under the cosmological limits, so it follows that lim(F) is an object of
K/B , and thus ofK2, and that those components of the limit cone π ′ : �lim(F) ⇒ F ′ that are
expected to be isofibrations by axiom 2.1.1(b) are such in the slice K/B .

Consequently, the limit cone π : �lim(F) ⇒ F restricts to the subcategory K2 ⊂ K̄2.
Suppose further that d is an object ofD for which axiom 2.1.1(b) asks that the corresponding
component πd of this limiting cone is an isofibration. That projection factors as a composite
πd = χdπ

′
d in which π ′

d is an isofibration in the slice K/B , by the comment at then end
of the last paragraph, and is thus an isofibration in K2. Furthermore, by definition χd is a
cod-cartesian lift of the limit projection cod πc : B → cod(Fd)which is an isofibration in the
∞-cosmos K; however, any such cod-cartesian lift of an isofibration in K is an isofibration
in K2. Consequently their composite πd = χdπ

′
d is an isofibration in K2 as required. 
�

Proposition 2.1.10 (The ∞-cosmos of trivial fibrations) Let K be an ∞-cosmos.

(i) For any ∞-category A in K, the full simplicial subcategory K�
/A ↪→ K/A spanned by

the trivial fibrations in K is an ∞-cosmos, with limits, isofibrations, equivalences, and
trivial fibrations created by the inclusion, and with all functors in K�

/A equivalences.

(ii) The full simplicial subcategory K2� ↪→ K2 spanned by the trivial fibrations defines an
∞-cosmos, with limits, isofibrations, equivalences, and trivial fibrations created by the
inclusion.
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Proof The full simplicial subcategoryK�
/A of the sliceK/A is easily seen to be closed inK/A

under the limit types named in the ∞-cosmos axioms. Consequently K�
/A inherits an ∞-

cosmos structure from K/A, and in there all functors are equivalences by the 2-of-3 property
in K. Furthermore this result allows us to apply the proof of Proposition 2.1.9 to show that
the full simplicial subcategoryK2� ofK2 spanned by the trivial fibrations is also closed under
the limits named in the ∞-cosmos axioms and thus inherits an ∞-cosmos structure from
K2. 
�
Definition 2.1.11 A cosmological functor is a simplicial functor that preserves the classes of
isofibrations and each of the limits specified in Definition 2.1.1(a).

Example 2.1.12 Cosmological functors include:

(i) The representable functor FunK(X ,−) : K → QCat for any object X ∈ K;
(ii) As a special case, the underlying quasi-category functor FunK(1,−) : K → QCat ;
(iii) The simplicial cotensor (−)U : K → K with any simplicial set U ;
(iv) The pullback functor f ∗ : K/B → K/A for any functor f : A → B ∈ K; and
(v) The domain and codomain projections dom, cod : K2 → K and dom, cod : K2� → K.

among others.

We refer to the n-simplices of the functor space FunK(A, B) of an∞-cosmos as n-arrows.
Each ∞-cosmos has an underlying 1-category whose objects are the ∞-categories of that
∞-cosmos and whose morphisms, which we call ∞-functors or more often simply functors,
are the 0-arrows (the vertices) of the functor spaces. Any∞-cosmos has as quotient homotopy
2-category that is built from this same underlying 1-category by adding 2-cells, which are
represented by 1-arrows in the corresponding functor space up to a suitable equivalence
relation.

Definition 2.1.13 (The homotopy 2-category of an ∞-cosmos) The homotopy 2-category of
an ∞-cosmos K is a strict 2-category h∗K so that

• The objects of h∗K are the objects of K, i.e., the ∞-categories;
• The 1-cells f : A → B of h∗K are the vertices f ∈ FunK(A, B) in the functor spaces

of K, i.e., the ∞-functors;

• A 2-cell A

f

g

⇓α B in h∗K is represented by a 1-arrow α : f → g ∈ FunK(A, B),

where a parallel pair of 1-arrows in FunK(A, B) represent the same 2-cell if and only if
they bound a 2-arrow whose remaining outer face is degenerate.

Put concisely, the homotopy 2-category is the 2-category h∗K defined by applying the
homotopy category functor h : QCat → C at , the left adjoint to the nerve embedding
C at ↪→ QCat , to the functor spaces of the ∞-cosmos. We write hFunK(A, B) for the
hom-category of arrows from A to B in the 2-category h∗K.

Proposition IV.3.1.8 proves that the equivalences between ∞-categories admit another
important characterisation: they are precisely the equivalences in the homotopy 2-category
of the ∞-cosmos. The upshot is that equivalence-invariant 2-categorical constructions are
appropriately “homotopical,” characterising ∞-categories up to equivalence, and that we
may use the term “equivalence” unambiguously in both the quasi-categorically enriched and
2-categorical contexts.
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Similarly, the reason we have chosen the term “isofibrations” for the designated class of
∞-functors A � B is because these maps define isofibrations in the homotopy 2-category.
An isofibration in a 2-category is a 1-cell that has a lifting property for isomorphisms with
one chosen endpoint; see IV.3.1.3 and IV.3.1.4.

Definition 2.1.14 (Dual∞-cosmoi) For any∞-cosmosK, writeKco for the∞-cosmos with
the same objects but with the opposite functor spaces

FunKco(A, B) := FunK(A, B)op

defined by applying the product preserving dual functor (−)op : sSet → sSet, which in turn
is obtained by precomposing with the functor (−)◦ : ´ → ´ that reverses the ordering of
the elements in each ordinal [n]. The homotopy 2-category of Kco is the “co” dual of the
homotopy 2-category ofK, reversing the 2-cells but not the 1-cells. This explains our notation.

Any quasi-categorically enriched category K also has an opposite category Kop with the
same objects but with

FunKop(A, B) := FunK(B, A).

However, ifK is an∞-cosmos thenKop need not be an∞-cosmos; see Observation IV.2.2.2
however.

2.2 Groupoidal Objects and the (∞, 1)-Core of an∞-Cosmos

An object E in an ∞-cosmos K is groupoidal if the following equivalent conditions are
satisfied:

Lemma 2.2.1 For any object E in an ∞-cosmos K the following are equivalent:

(i) E is a groupoidal object in the homotopy 2-category h∗K, that is, every 2-cell with
codomain E is invertible.

(ii) For each X ∈ K, the hom-category hFunK(X , E) is a groupoid.
(iii) For each X ∈ K, the functor space FunK(X , E) is a Kan complex.
(iv) The isofibration E I � E2, induced by the inclusion of the walking arrow into the

walking isomorphism 2 ↪→ I, is a trivial fibration.

Proof Here (ii) is an unpacking of (i). The equivalence of (ii) and (iii) is awell-known result of
Joyal [8, 1.4].Condition (iv) is equivalent to the assertion thatFunK(X , E)I � FunK(X , E)2

is a trivial fibration between quasi-categories for all X . If this is a trivial fibration, then
surjectivity on vertices implies that every 1-simplex in FunK(X , E) is an isomorphism,
proving (iii). As 2 ↪→ I is a weak homotopy equivalence, (iii) implies (iv). 
�

A common theme is that ∞-categorical definitions that admit “internal” characterisations
in an ∞-cosmos are also preserved by cosmological functors. For instance:

Corollary 2.2.2 Cosmological functors preserve groupoidal objects.

Proof A cosmological functor preserves simplicial cotensors and trivial fibrations, so this
follows directly from the characterisation of Lemma 2.2.1(iv). 
�
Proposition 2.2.3 (the ∞-cosmos of groupoidal objects) The full simplicial subcategory
Kgr ↪→ K of groupoidal objects in an ∞-cosmos K defines an ∞-cosmos with limits,
isofibrations, equivalences, and trivial fibrations created by the inclusion. Moreover, all of
the functor spaces in Kgr are Kan complexes.
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Proof To prove the claimed result, we need only demonstrate that the full simplicial sub-
category Kgr ↪→ K is closed under the cosmological limit types. For this observe from
Lemma 2.2.1(iv) that the category Kgr is defined by the pullback

where E : K → K2 is the simplicial functor defined on objects by A �→ (AI � A2). The
functor E : K → K2 is cosmological, preserving the cosmological limits of 2.1.1(a), and by
Proposition 2.1.10, the inclusion K2� ↪→ K2 creates the cosmological limits. Both vertical
inclusions are replete—meaning that any object inK that is equivalent to a groupoidal object
is itself groupoidal—and fully faithful, so it follows from the fact that K2� ↪→ K2 creates
the cosmological limits and E preserves them that Kgr ↪→ K also creates the cosmological
limits. Thus Kgr inherits an ∞-cosmos structure from K as claimed. 
�
Example 2.2.4 (The ∞-cosmos of Kan complexes) A quasi-category is a groupoidal object
in the ∞-cosmos QCat if and only if it is a Kan complex. This follows from the fact that
a natural transformation of functors of quasi-categories is an isomorphism iff its compo-
nents are isomorphisms and that a quasi-category is a Kan complex iff all of its edges are
invertible. So the subcategory QCat gr spanned by the groupoidal objects in the ∞-cosmos
of quasi-categories is simply the enriched category Kan of Kan complexes, which we see
by Proposition 2.2.3 defines an ∞-cosmos.

Example 2.2.4 encourages us to think of the groupoidal objects in an ∞-cosmos K as
being the spaces in that universe.

An ∞-cosmos is a type of (∞, 2)-category since it is a category enriched over a model
of (∞, 1)-categories. We now introduce the (∞, 1)-categorical core of an ∞-cosmos:

Definition 2.2.5 (Groupoid cores of a quasi-category) We use the notation gA to denote the
groupoid core of a quasi-category A, this being the maximal Kan complex it contains. More
explicitly, gA is the largest simplicial subset of A spanning its invertible edges.

Functors of quasi-categories preserve isomorphisms, so a functor f : A → B restricts to
a functor f : gA → gB; in this way the groupoidal core construction acts functorially on
the underlying category of QCat and it is indeed right adjoint g : QCat → Kan to the
inclusion Kan ↪→ QCat in the unenriched sense. In particular it preserves finite products,
so we may apply it to the functor spaces of a quasi-categorically enriched category K to
construct a Kan-complex-enriched subcategory that we now introduce:

Definition 2.2.6 ((∞, 1)-Core of an ∞-cosmos) For any ∞-cosmos K, write g∗K ⊆ K for
the subcategory with the same objects and with homs defined to be the groupoid cores of the
functor spaces of K. We refer to g∗K as the (∞, 1)-core of K and think of it as being the
core (∞, 1)-category inside this (∞, 2)-category.

The construction of Definition 2.2.6 applies equally to construct the (∞, 1)-core of any
quasi-categorically enriched category, whether or not it defines an ∞-cosmos.

Remark 2.2.7 We note that the groupoid core functor does not admit a simplicial enrich-
ment with respect to the usual enrichment of QCat over itself. To understand this failure,
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observe that a natural transformation between functors of quasi-categories will only restrict
to groupoid cores if each of its components is invertible.

This does, however, lead us to the conclusion that, so long as we are willing to consider
only invertible natural transformations, the groupoid core functor does admit a canonical
enrichment to a simplicial functor g : g∗QCat → Kan and this is right adjoint to the
inclusion Kan ↪→ g∗QCat in the simplicially enriched sense:

g∗QCat
g

⊥ Kan

3 Limits and Colimits in an∞-Category

In this section, we review the relevant aspects of the synthetic theory of limits and colimits
of diagrams valued in an ∞-category, and connect them back to the more familiar “analytic”
definitions of Joyal in the ∞-cosmos of quasi-categories. The presentation we give here is
much sparser than the full story presented in §I.5, as we save ourselves time by presenting
only the definition that we will require in Sect. 6, rather than its many equivalent forms.
Limits and colimits are defined in Sect. 3.2 using arrow and comma ∞-categories, which we
first review in Sect. 3.1.

3.1 Arrow and Comma Constructions

The axioms of an ∞-cosmos permit us to construct arrow and comma ∞-categories as
particular simplicially enriched limits. In this section, we briefly review these constructions
and their associated homotopical properties.

Definition 3.1.1 (Arrow ∞-categories) For any ∞-category A, the simplicial cotensor

A2 := A�1 (p1,p0)
A∂�1 ∼= A × A

defines the arrow ∞-category A2, equipped with an isofibration (p1, p0) : A2 � A × A,
where p1 : A2 � A denotes the codomain projection and p0 : A2 � A denotes the domain
projection.

Using the simplicially enriched pullbacks of isofibrations that exist by virtue of
axiom 2.1.1(a), arrow ∞-categories can be used to define a general comma ∞-category
associated to a cospan of functors.

Definition 3.1.2 (Comma ∞-categories) Any pair of functors f : B → A and g : C → A in
an∞-cosmosK has an associated comma∞-category, constructed by the following pullback
in K:

Note that, by construction, the map (p1, p0) : f ↓ g � C × B is an isofibration.
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Example 3.1.3 (Comma and slice quasi-categories) An object (or perhaps better element) of
an ∞-category can be represented by a functor a : 1 → A. When paired with the identity,
the comma construction gives rise to a pair of isofibrations

p1 : a ↓ A � A and p0 : A ↓ a � A

which should be thought of as the codomain and domain projections from the sub ∞-
categories of the arrow ∞-category consisting of those arrows whose source or target,
respectively, is a.

In the ∞-cosmos of quasi-categories, these comma quasi-categories are equivalent over
A to the slice quasi-categories introduced by Joyal

a ↓ A � a/A and A ↓ a � A/a .

See Lemma I.4.4.6 for a proof.

Proposition 3.1.4 (maps between commas, I.3.3.17) A natural transformation of co-spans
on the left of the following display gives rise to the diagram of pullbacks on the right

in which the uniquely induced dashed map completing the commutative cube is denoted

↓(b, a, c) : f ↓ g → f ′ ↓ g′.

Moreover, ↓(b, a, c) is an isofibration (resp. trivial fibration, equivalence) whenever the
components a, b and c are all maps of that kind.

Proof The result of Lemma I.3.3.17 is stated only for quasi-categories but its proof applies in
any∞-cosmos.Alternatively, the comma construction is a particular kind of flexible weighted
limit, using a notion to be introduced in Definitions 4.1.1 and 4.1.4, where the weight is given
by the cospan of simplicial sets

�0 {1}
�1 �0{0}

so we may apply Proposition 4.1.5(iii), to show that ↓(b, a, c) is an isofibration (resp. trivial
fibration, equivalence) whenever the components a, b and c are all maps of that kind. 
�

3.2 Limits and Colimits in an∞-Category

Definition 3.2.1 (Terminal elements, I.4.4.7) An element t : 1 → A defines a terminal ele-
ment of the ∞-category A if and only if the domain projection p0 : A ↓ t � A is a trivial
fibration. Dually, i : 1 → A defines an initial element of the ∞-category A if and only if the
codomain projection p1 : i ↓ A � A is a trivial fibration.

Equivalently, terminal and initial elements, respectively, define right and left adjoints to
the unique functor ! : A → 1; see §I.4.2.
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Example 3.2.2 (Terminal objects in a quasi-category) IfA is a quasi-category, the equivalence
A↓t � A/t ofExample 3.1.3 provides another characterisation of terminal objects, the original
one due to Joyal. The defining lifting property for trivial fibrations of quasi-categories

∂�n A/t

p0

�n A

for n ≥ 0 transposes to

�{n+1}
t

∂�n+1 A

�n+1

i.e., a vertex t ∈ A is terminal if and only if any sphere in Awhose final vertex is t has a filler.

Via the nerve embedding, diagrams indexed by small categories are among the diagrams
indexed by small simplicial sets. The simplicial cotensors of axiom 2.1.1(a) are used to define
∞-categories of diagrams.

Definition 3.2.3 (Diagram ∞-categories) If J is a (small) simplicial set and A is an ∞-
category, then the ∞-category AJ is naturally thought of as being the ∞-category of J -
indexed diagrams in A.

For any ∞-category A and simplicial set J , the constant diagram functor � : A → AJ is
constructed by applying the contravariant functor A(−) to the unique simplicialmap J → �0.

Definition 3.2.4 (∞-Categories of cones) For any diagram d : 1 → AJ of shape J in an
∞-category A, the ∞-category of cones over d is the comma ∞-category p0 : � ↓ d � A
formed by the pullback

Dually, the ∞-category of cones under d is the comma ∞-category p1 : d ↓ � � A.

Definition 3.2.5 (Limits and colimits in an ∞-category, I.5.2.6) For a diagram d : 1 → AJ

of shape J in an ∞-category A, the following are equivalent and define what it means for d
to have a limit in A.

(i) The ∞-category of cones � ↓ d has a terminal element λ : 1 → � ↓ d . The element
� := p0λ : 1 → A is then the limit object, while λ is the limit cone.

(ii) There exists an element � : 1 → A and an equivalence A ↓ � � � ↓ d over A.

Dually, d : 1 → AJ has a colimit if and only if the ∞-category of cones d ↓ � has an
initial element, or equivalently, if there exists an element � : 1 → A and an equivalence
� ↓ A � d ↓ � over A.
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Example 3.2.6 (Limits in quasi-categories) In the ∞-cosmos of quasi-categories, the quasi-
category of cones�↓d over a diagram d : 1 → AJ is equivalent over A to the Joyal slice A/d

of A over the transposed map d : J → A; see Lemma I.5.2.7. For any � : 1 → A, it is easy to
see thatA↓� admits a terminal object, induced by the identity 2-cell at �; see Example I.4.2.2.
The equivalence A↓ � � �↓ d of Definition 3.2.5 then implies that the limit cones defines a
terminal object in � ↓ d � A/d . Proposition I.5.2.8 proves the converse, demonstrating that
the general notion of limits introduced here specialises to recapture precisely the notion of
limits and colimits for quasi-categories introduced by Joyal in [8, 4.5].

4 Flexible Homotopy Limits in an∞-Cosmos and its (∞, 1)-Categorical
Core

In this section, we demonstrate that an ∞-cosmos permits a large variety of limit construc-
tions, namely those with flexible weights. These flexible weighted limits are introduced in
Sect. 4.1. The weighted limit for a fixed flexible weight is defined up to isomorphism but the
construction is appropriately homotopical, as we prove in Proposition 4.1.5, our main result.
This leads us to consider a weaker notion of homotopy weighted limit in an ∞-cosmos,
whose defining universal property expresses an equivalence, rather than an isomorphism of
quasi-categories. The reason for our interest in this weaker notion is revealed in Sect. 4.2,
where we prove that flexibly weighted homotopy limits in the groupoidal core g∗K of an
∞-cosmos are computed as limits inKweighted by the pointwise Kan complex replacement
of the original flexible weight.

4.1 Flexible Homotopy Limits

The basic simplicially-enriched limit notions enumerated in axiom 2.1.1(a) imply that an
∞-cosmos K possesses a much larger class of weighted limits, which we now describe. A
more comprehensive introduction to the theory of weighted limits in simplicially enriched
categories can be found in Chapter 3 of Kelly [9] or Chapter 7 of Riehl [12]. We’ll apply
these notions in an arbitrary simplicially enriched category C with hom-spaces denoted by
MapC(X , Y ).

Definition 4.1.1 A weight for a diagram indexed by a small simplicial category A is a sim-
plicial functor W : A → S Set . A W -cone over a diagram F : A → C in a simplicial
category C is comprised of an object L ∈ C together with a simplicial natural transformation
� : W → MapC(L, F−). Such a cone displays L as a W -weighted limit of F if and only if
for all X ∈ C the simplicial map

MapC(X , L)
∼=

MapS SetA(W ,MapC(X , F−)) (4.1.2)

given by post-composition with � is an isomorphism, in which case the limit object L is
typically denoted by {W , F}A or simply {W , F}. In this notation, the universal property
(4.1.2) of the weighted limit asserts an isomorphism

MapC(X , {W , F}A)
∼= {W ,MapC(X , F−)}A.

The dual notion of weighted colimit is definable for any weight W : A → S Set and dia-
gram F : Aop → C; note in the colimit case that the weight and the diagram have contrasting
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variance. A W -cone under a diagram F is comprised of an object C ∈ C together with a
simplicial natural transformation � : W → MapC(F−,C) and displays C as a W -weighted
colimit of F if and only if for all X ∈ C the simplicial map

MapC(C, X)
∼= {W ,MapC(F−, X)}A.

is an isomorphism. In this case, the colimit object C is typically denoted by W �A F of
W � F .

Observation 4.1.3 Suppose that A and B are small simplicial categories, that W : Bop →
S SetA is a diagram of weights, and thatU : B → S Set is another weight. Then the weighted
colimitU �B W exists in S SetA and is computed level-wise in S Set by the coend formula:

U �B W ∼=
∫ B∈B

UB × W (B,−)

Now suppose that F : A → C is a diagram and that for each object B ∈ B the weighted limit
{W (B,−), F}A exists in C. Then these limits assemble into a diagram {W , F}A : B → C
and there exists an isomorphism

{U �B W , F}A ∼= {U , {W , F}A}B
when these limits exist. Indeed, the limit on one side of this isomorphism exists if and only if
the limit on the other side exists. This result expresses the sense in which the weighted limit
construction is cocontinuous in its weight.

Definition 4.1.4 (Flexible weights and projective cell complexes) For a small simplicial cat-
egory A and pair of objects [n] ∈ ´ and A ∈ A, the projective n-cell associated with A is
the simplicial natural transformation:

∂�n × MapA(A,−) ↪→ �n × MapA(A,−).

We say that a monomorphism V ↪→ W in S SetA is a projective cell complex if it may be
expressed as a countable composite of pushouts of coproducts of projective cells. A weight
W : A → S Set is said to be a flexible weight if the inclusion ∅ ↪→ W is a projective cell
complex.

We shall let F lexA denote the full simplicial subcategory of S SetA spanned by the
flexible weights. Adapting the arguments of Propositions II.5.2.2 and II.5.2.6 to the general
∞-cosmos context, it follows that flexible weighted limits exist in any ∞-cosmos admitting
the limits axiomatised in 2.1.1(a) and moreover such limits are appropriately “homotopical”:

Proposition 4.1.5 Let K be an ∞-cosmos and let A be a small simplicial category.

(i) For any diagram F : A → K and flexible weight W : A → S Set , the weighted limit
{W , F} exists in K.

(ii) For any diagram F : A → K, flexible weights W ,W ′ : A → S Set , and projective cell
complex i : W ↪→ W ′, the induced map {i, F} : {W ′, F} → {W , F} is an isofibration.
It follows that we may extend the construction of these flexible limits to a simplicial
bifunctor

(F lexA)op × KA {−,−}A K
which carries projective cell complexes to isofibrations.
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(iii) If κ : F ⇒ G is a simplicial natural transformation between two such diagrams whose
components are equivalences, isofibrations, or trivial fibrations inK and W is a flexible
weight, then the induced map

{W , F} {W ,κ} {W ,G}
is an equivalence, isofibration, or trivial fibration (respectively) in K.

Proof We prove (i) and (ii) simultaneously with the former serving as the base case for the
latter. Note in the latter case, the hypothesis that {W , F} exists, andW ↪→ W ′ is a projective
cell complex will imply that {W ′, F} exists, if we did not know this already.

We start by observing that i : W ↪→ W ′ may be built up as a countable composite
of pushouts of coproducts of projective cells and, by observation 4.1.3, these are carried
to the corresponding limit notions by {−, F} whenever those limits exist in K. Note, by
the Yoneda lemma, that for a simplicial set U and object A ∈ A the weighted limit
{U × MapA(A,−), F} exists and is isomorphic to the U -cotensor of the object FA ∈ K;
consequently, the map {�n ×MapA(A,−), F} → {∂�n ×MapA(A,−), F} induced by the
projective n-cell associated with A is simply the isofibration FA�n � FA∂�n

. It follows
that {i, F} : {W , F} → {W ′, F} exists and may be expressed as a countable inverse limit of
pullbacks of products of isofibrations FA�n � FA∂�n

so long as each one of those particu-
lar limits exist in K. This fact is, however, assured by Definition 2.1.1(b), which implies that
products of isofibrations exist and are again isofibrations, that in turn pullbacks of those exist
and are again isofibrations, and that the sequence of those admits a countable inverse limit
which is again an isofibration as posited. This completes our proof of (i) and (ii) as soon as
we observe that the limit {∅, F} weighted by the empty weight exists and is isomorphic to
the terminal object of K.

For (iii), suppose that the natural transformation κ : F ⇒ G has the property that each of
its components is an isofibration inK. Then it may equally well be regarded as being a single
diagram K : A → K2 in the ∞-cosmos of isofibrations introduced in Proposition 2.1.6. So
we may apply the result of part (i) to show that the flexible weighted limit {W , K } exists in
K2. Furthermore we know, from Proposition 2.1.9, that the products, pullbacks and limits of
towers used in that construction are jointly created by the projections dom, cod : K2 → K
and so the same holds true for the flexible limit {W , K }. In other words, the object {W , K } in
K2 is simply the induced map {W , κ} : {W , F} � {W ,G} inK which is thus an isofibration
as postulated. The corresponding result for trivial fibrations follows by applying the same
argument in the∞-cosmos of trivial fibrationsK2� of Proposition 2.1.10. Now we may apply
the argument of Ken Brown’s lemma [1], which tells us that in the presence of a suitable
functorial factorization, constructed in this case using the cylinder object in KA formed
by the level-wise cotensor with the free-living isomorphism I, then the desired result for
component-wise equivalences follows from the result for trivial fibrations. 
�
Remark 4.1.6 The limit types named in the∞-cosmos axioms are all constructed inQCat by
taking the corresponding limits at the level of simplicial sets. It follows, from the construction
of Proposition 4.1.5, that the flexible weighted limits ofQCat are computed as in S Set and
thus that these may be given by the familiar end formula

{W , F}A ∼=
∫

a∈A
FaWa ∼= eq

⎛

⎝

∏

a∈A
FaWa ∏

a,a′∈A
Fa′MapA(a,a′)×Wa

⎞

⎠

(4.1.7)
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in there, which in turn may be expressed as an equaliser of products of functor spaces in the
underlying category of simplicial sets, and thus in its full subcategory of quasi-categories.

When working in a quasi-category enriched categoryK it is often the case that we are only
interested in weighted (co)limits that are defined up to equivalence rather than isomorphism.
To that end we have the following definition:

Definition 4.1.8 (Flexible weighted homotopy limits) Suppose that W : A → S Set is a
flexible weight and that F : A → K is a diagram in a quasi-category enriched category
K. We say that a W -cone � : W → FunK(L, F−) displays an object L ∈ K as a flexible
weighted homotopy limit of F weighted by W if for all objects X ∈ K the map

FunK(X , L) {W , FunK(X , F−)}A. (4.1.9)

induced by post-composition with � is an equivalence of quasi-categories,2 in which case
we denote the limit object by {W , F}�A.

Proposition 4.1.5(iii) implies that flexible weighted homotopy limits in an ∞-cosmos
are appropriately homotopical: a natural equivalence κ : F ⇒ G of diagrams induces an
equivalence

{W , F}� ∼−−→ {W ,G}�.

Definition 4.1.10 We say that K admits a functorial choice of flexible weighted homotopy
limits if there exists a simplicial bifunctor

(F lexA)op × KA {−,−}�A K
and a family of weighted cones �W ,F : W → FunK({W , F}�A, F−) which is simplicially
natural in F and W and such that each �W ,F displays {W , F}�A as a W -weighted homotopy
limit of F .

4.2 Homotopy Limits in the (∞, 1)-Core of an∞-Cosmos

As an example of our use of flexibleweighted homotopy limits we offer the following study of
their construction in the (∞, 1)-core of an∞-cosmos introduced inDefinition 2.2.6.Ourmain
result, Proposition 4.2.6, will give an explicit construction of the flexible weighted homotopy
limit of any diagram valued in the (∞, 1)-core of an ∞-cosmos, which demonstrates in
particular that such limits exist for any flexible weight.

We start with the following observation. Despite the fact observed in Remark 2.2.7 that
the groupoid core functor g : QCat → Kan is not simplicially enriched, it still preserves
certain flexible weighted limits:

Lemma 4.2.1 Consider a flexible weight W : A → S Set , taking values in the subcategory
Kan ⊂ S Set of Kan copmlexes, and a diagram F : A → QCat , which factors through
g∗QCat ⊂ QCat . On taking flexible limits in QCat we obtain a canonical comparison
g{W , F} → {W , gF} of Kan complexes, and this is an isomorphism.

2 Here we show that the codomain of the comparison map in (4.1.9) is a quasi-category by applying Propo-
sition 4.1.5 in the ∞-cosmos of quasi-categories.
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Proof From (4.1.7) we know that the flexible weighted limit {W , F} (respectively {W , gF})
may be constructed as an un-enriched limit of functor spaces in the underlying category of
quasi-categories. The groupoid core construction is right adjoint as a functor on underlying
categories, and so it preserves those un-enriched limits. Furthermore, if A is a quasi-category
and X is a Kan-complex then g(AX) ∼= (gA)X, a fact which follows from the observations
that any functor f : X → A lands in the groupoid core gA and that a natural transformation is
invertible in AX iff its components all lie in gA; see Remark 2.2.7. From these facts, it follows
that we have the following sequence of natural isomorphisms

g{W , F} ∼= g

(∫

a∈A
FaWa

)

∼= eq

⎛

⎝

∏

a∈A
(gFa)Wa ∏

a,b∈A
(g(FbMapA(a,b)))Wa

⎞

⎠

Now ifMapA(a, b) is not a Kan complex, then (gFb)MapA(a,b) may be a proper subspace of
g(FbMapA(a,b)). However, since the diagram F takes values in g∗QCat the images of both
of the maps

∏

a∈A
(gFa)Wa ∏

a,b∈A
((gFb)MapA(a,b))Wa ⊂ ∏

a,b∈A
(g(FbMapA(a,b)))Wa

factor through this subspace. Hence, we have further isomorphisms

∼= eq

⎛

⎝

∏

a∈A
(gFa)Wa ∏

a,b∈A
(gFb)MapA(a,b)×Wa

⎞

⎠

∼= {W , gF}
whose composite is the comparison map of the statement. 
�

Observation 4.2.2 When W : A → S Set is a weight and F : A → g∗K is a diagram in the
(∞, 1)-core of a quasi-category enriched category K then cones μ : W → Fung∗K(X , F−)

in g∗K correspond to cones in K whose components μA : W A → FunK(X , FA) send every
edge in W A to an invertible edge. This latter condition is, however, vacuous whenever all
of the edges in W A are themselves invertible, since functors preserve isomorphisms. So in
the case where W : A → S Set is valued in Kan complexes, it follows that the W -weighted
limit of F inK provides the correspondingW -weighted limit in g∗K. This and the simplicial
functor g : g∗QCat → Kan of Remark 2.2.7 give the fundamental justification for the result
of Lemma 4.2.1.

So our approach to building W -weighted limits in g∗K for a general flexible weight W
will be to first complete the weight to some weightW ′ whose values are Kan complexes, and
whose edges are thus all invertible, and show that a W ′-weighted limit of F in K provides
us with a W -weighted homotopy limit in g∗K in the sense of Definition 4.1.8. Under this
construction it is only reasonable to hope for a homotopy limit, rather than a strict enriched
limit, because the replacementW ↪→ W ′ is given by the following homotopical construction:

Lemma 4.2.3 (i) Any weight W ∈ S SetA admits a level-wise Kan complex replacement
W ′, related via a projective anodyne extension W ↪→ W ′.

(ii) If the weight W is flexible then so is the associated weight W ′.

123



690 E. Riehl, D. Verity

(iii) This construction can be given by a simplicial functor (−)′ : F lexA → F lexA and a
simplicially natural family of projective anodyne extensions uW : W ↪→ W ′.

Proof We may apply Quillen’s small object argument in the category of weights S SetA to
the following set of projective horns

{

�n,k × MapA(A,−) ↪→ �n × MapA(A,−)

∣

∣

∣ n ≥ 0 and 0 ≤ k ≤ n
}

(4.2.4)

built from all horns. In that way we obtain a weak factorisation system which factorises each
simplicial natural transformation w : U → V of weights into a composite w = v ◦ u where:

• The map u is a countable composite of pushouts of coproducts of projective cells in the
set in display (4.2.4), or in other words a projective anodyne extension, and

• The map v is level-wise Kan fibration.

It follows that any weight W : A → S Set has a replacement W ′ : A → S Set which is
a level-wise Kan complex equipped with a projective anodyne extension uW : W ↪→ W ′.
Since horn inclusions are build as composites of pushouts of sphere boundary inclusions,
any projective anodyne extension is, in particular, a relative cell complex, so it follows that
if W is a flexible weight then so is its replacement W ′.

Indeed, by applying the simplicially enriched variant of the small object argument dis-
cussed in Chapter 13 of [12], we may construct a factorisation system which is functorial in
the simplicially enriched sense. Consequently, this replacement constructionmay be assumed
to deliver a simplicial functor (−)′ : F lexA → F lexA and a simplicially natural family of
projective anodyne extensions uW : W ↪→ W ′. 
�
Lemma 4.2.5 Suppose that u : U ↪→ W is a projective anodyne extension of weights in
S SetA and that F : A → Kan is a diagram valued in Kan complexes. Then the induced
simplicial map {u, F} : {W , F} → {U , F} is a trivial fibration.

Proof Our argument follows that of the proof of Proposition 4.1.5, but this time we start
from the observation that the the map {�n ×MapA(A,−), F} → {�n,k ×MapA(A,−), F}
induced by the projective horn �n,k × MapA(A,−) ↪→ �n × MapA(A,−) is simply the
trivial fibration FA�n � FA�n,k

. 
�
Combining the results of this section, we now compute the flexible weighted homotopy

limit of anydiagram F : A → g∗K valued in the (∞, 1)-core of a quasi-categorically enriched
category K that admits flexible weighted limits. The following result reveals that for any
flexible weightW : A → S Set the homotopy limit object may be computed as the homotopy
weighted limit of F : A → Kweighted by the level-wise Kan complex replacementW ′ ofW ,
and the W -weighted homotopy limit cone may similarly be extracted from the W ′-weighted
homotopy limit cone.

Proposition 4.2.6 Suppose that W : A → S Set is a flexible weight and that uW : W ↪→ W ′
is its replacement by a level-wise Kan complex. Consider a diagram F : A → g∗K in the
(∞, 1)-core of a quasi-category enriched category K. Any cone �′ : W ′ → FunK(L, F−)

which displays L as a W ′-weighted homotopy limit in K factors through the inclusion
Fung∗K(L, F−) ⊆ FunK(L, F−), and the composite cone

� = W
uW

W ′ �′
Fung∗K(L, F−)

displays L as a W-weighted homotopy limit of F in the (∞, 1)-core g∗K.
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Proof The cone �′ factors as stated because each W ′(A) is a Kan complex, so its compo-
nent �′

A : W ′(A) → FunK(L, FA) factors through the groupoid core gFunK(L, FA) =
Fung∗K(L, FA). For the remainder consider the following composite:

gFunK(X , L)
�

g{W ′, FunK(X , F−)} ∼= {W ′, gFunK(X , F−)} � {W , gFunK(X , F−)}
Here the left-hand map is constructed by taking the equivalence induced by post-composi-
tion with homotopy limiting cone �′ in K and restricting it to groupoid cores. We infer that
it is an equivalence by appealing to the fact that equivalences of quasi-categories restrict
to equivalences of their groupoid cores. The middle isomorphism arises by application
of Lemma 4.2.1 and the right-hand trivial fibration by application of Lemma 4.2.5 to the
replacement uW : W ↪→ W ′. Now observe that this composite equivalence is simply the map
obtained by post-composing with the composite cone � in g∗K and the stated result follows.


�
Putting together the results of this section, we conclude that for any flexible weight W ,

the (∞, 1)-core of an ∞-cosmos admits a simplicially functorial choice of flexible weighted
homotopy limits, formed by taking a simplicially functor levelwise Kan replacement W ′ of
the flexible weight as in Lemma 4.2.3, forming the strict W ′-weighted limit as permitted by
Lemma 4.2.1, and applying Proposition 4.2.6.

Corollary 4.2.7 If K is a quasi-categorically enriched category which admits a simplicially
functorial choice of flexible homotopy limits, then so does its (∞, 1)-core g∗K. In particular,
the (∞, 1)-core of an∞-cosmos admits a simplicially functorial choice of flexible homotopy
limits.

Proof The result follows directly from Lemma 4.2.1, Propositions 4.1.5 and 4.2.6 and
Lemma 4.2.3(iii). 
�

5 Homotopy Coherent Realisation, Simplicial Computads, and Collages

Many interesting examples of large quasi-categories arise as homotopy coherent nerves of
Kan complex enriched categories. In this section, we develop tools that will be used in
Sect. 6.1 to prove that appropriately-defined homotopy limits in a Kan complex enriched
category descend to limits in the quasi-category defined as its homotopy coherent nerve.

We can probe the homotopy coherent nerve of aKan complex enriched category bymaking
use of the homotopy coherent realisation functor

sSet-Cat
N

⊥ sSet
C

which is left adjoint to the homotopy coherent nerve functor of Cordier [5]. This left adjoint
takes values in the subcategory of “freely generated” simplicial categories, which go by
the name of simplicial computads.3 By adjointness, an X -shaped diagram in a homotopy
coherent nerve transposes to define a simplicial functor whose domain is the simplicial
computad CX , and the “freeness” implies that such diagrams are specified by relatively little

3 The simplicial computads are the cofibrant objects [12, §16.2] in themodel structure on simplicial categories
due to Bergner [2].
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data, enumerated in Proposition 5.1.12. This analysis gives us a more explicit presentation
of the generating data of a so-called homotopy coherent diagram CX → C than is widely
known.

In this section, we briefly review the notions needed here. A more leisurely account
with considerably more details appears as §VI.4. Simplicial computads and the homotopy
coherent realisation functor are defined in Sect. 5.1. These techniques are applied in Sect. 5.2
to construct a particularweightWX : CX → S Set associated to homotopy coherent diagrams
of shape X via a simplicial computad that defines the collage ofWX and dictates the shape of
WX -cones over a diagram. Finally, in Sect. 5.3,we compute the homotopy coherent realisation
C[X � Y ] of the join of two simplicial sets, a result which will be needed in Sect. 6.

5.1 Simplicial Computads and Homotopy Coherent Realisation

Let Graph denote the presheaf category of reflexive graphs and graphmorphisms.We identify
the category of graphs with the essential image of the free category functor free : Graph ↪→
Cat. The objects in the essential image are computads, those categories in which every arrow
admits a unique factorisation into atomic4 arrows that admit no non-trivial factorisations, and
the morphisms in the essential image are computad functors, that preserve atomic arrows (or
send them to identities).

Recall that a simplicial categoryAmay be regarded as a simplicial object [n] �→ An in the
category of categories with a common set of objects obA and identity-on-objects functors.
The arrows of An are referred to as n-arrows of A.

Definition 5.1.1 (The category of simplicial computads VI.4.1.7, VI.4.1.11) The category of
simplicial computads sSet-Cptd is defined by the intersection of the sub-categories sSet-Cat

and Cptd´
op
epi of Cat´

op
epi :

which is to say that a simplicial category A is a simplicial computad if and only if each
category An of n-arrows is freely generated by the reflexive directed graph of atomic n-
arrows and degenerate images of atomic arrows are atomic.A simplicial functor is a simplicial
computad morphism if it preserves atomic arrows (or send them to identities).

Lemma 5.1.2 (VI.4.1.11) sSet-Cptd is closed under colimits in sSet-Cat.

Proof Both of these subcategories sSet-Cat and Cptd´
op
epi are closed under colimits in Cat´

op
epi

andCptd´
op
epi is replete in there, so it follows that sSet-Cptd is closed under colimits in sSet-Cat

and in Cptd´
op
epi . 
�

Example 5.1.3 For any simplicial set X , we write 2[X ] for the simplicial computad with two
objects, denoted − and +, and a single non-trivial hom-space Map2X (−,+) := X .

4 For bookkeeping reasons it is convenient to adopt the convention that atomic arrows are not identities, though
in a simplicial computad the identities will also admit no non-trivial factorisations. With this convention, an
identity arrow factors uniquely as an empty composite of atomic arrows.
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Definition 5.1.4 (Relative simplicial computads VI.4.1.9)

(i) For simplicial computads A and B, a simplicial computad morphism F : A → B is a
simplicial subcomputad inclusion if and only if its image under the functor sSet-Cptd →
Graph´

op
epi is a monomorphism, i.e., if and only if it is injective on objects and faithful.

(ii) For simplicial categoriesA andB, a simplicial functor F : A → B is a relative simplicial
computad if it is expressible as a sequential composition of pushouts of coproducts of
the maps

∅ ↪→ 1 and 2[∂�n] ↪→ 2[�n] for n ≥ 0.

We leave it to the curious reader to verify that ifA is a simplicial computad, then F : A →
B is a simplicial subcomputad inclusion if and only if it is a relative simplicial computad.

Lemma 5.1.5 (VI.4.1.13) Simplicial subcomputads are stable under pushout, coproduct, and
colimit of countable sequences in sSet-Cptd.

Proof The category Graph´
op
epi is a presheaf category, in which colimits and monomorphisms

are determined pointwise in Set, so the desired result follows from the fact that it clearly
holds for monomorphisms in Set. 
�

Notation 5.1.6 (Cubes, boundaries, and cubical horns)

• We shall adopt the notation 
�k for the simplicial cube (�1)×k for each k ≥ 0.
• We write ∂
�k ⊂ 
�k for the boundary of the cube, formed as the domain of the iterated

Leibniz product (∂�1 ⊂ �1)
̂×k .5 That is, an r -simplex of 
�k , represented as a k-tuple

of maps (ρ1, . . . , ρk) with each ρi : [r ] → [1], is a member of ∂
�k if and only if there is
some i for which ρi : [r ] → [1] is constant at either 0 or 1 (in which case ρi defines an
r -simplex in ∂�1 ⊂ �1).

• We also define the cubical horn 

k, j
e ⊂ 
�k , for 1 ≤ j ≤ k and e ∈ {0, 1}, to be the

domain of the following Leibniz product:

(∂�1 ⊂ �1)
̂×( j−1)

̂× (�{e} ⊂ �1) ̂× (∂�1 ⊂ �1)
̂×(k− j)

So an r -simplex (ρ1, . . . , ρk) of 
�k is in 

k, j
e if and only if ρi is a constant operator for

some i �= j or ρ j is the constant operator which maps everything to e.

Example 5.1.7 (Homotopy coherent simplices as simplicial computads; §VI.4.2) Recall the
simplicial category C�n whose objects are integers 0, 1, . . . , n and whose mapping spaces
are the cubes

MapC�n (i, j) =

⎧

⎪

⎨

⎪

⎩


� j−i−1 i < j


�0 i = j

∅ i > j

For i < j , the vertices of MapC�n (i, j) are naturally identified with subsets of the closed
interval [i, j] = {i ≤ t ≤ j} containing both endpoints, a set whose cardinality is j − i − 1;
more precisely, MapC�n (i, j) is the nerve of the poset with these elements, ordered by

5 For more details about the Leibniz or “pushout-product” construction see [13, §4].
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inclusion. Under this isomorphism, the composition operation corresponds to the simplicial
map

MapC�n (i, j) × MapC�n ( j, k)
◦

∼ =

MapC�n (i, j)

∼ =


�×( j−i−1) × 
�×(k− j−1) 
�×(k−i−1)

which maps the pair of vertices T ⊂ [i, j] and S ⊂ [ j, k] to T ∪ S ⊂ [i, k].
Again for i < j , an r -arrow T • in MapC�n (i, j) corresponds to a sequence

T 0 ⊂ T 1 ⊂ · · · ⊂ T r

of subsets of [i, j] = {i ≤ t ≤ j} and is non-degenerate if and only if each of these inclusions
are proper. The composite of a pair of r -arrows T • : i → j and S• : j → k is the level-wise
union T • ∪ S• : i → k of these sequences.

From this description, it is easy to see that the simplicial category C�n is a simplicial
computad (Lemma VI.4.2.5), in which an r -arrow T • from i to j is atomic if and only if
the set T 0 = {i, j}; the only atomic r -arrows from j to j are identities. Geometrically, the
atomic arrows in each functor space MapC�n (i, j) ∼= 
� j−i−1 are precisely those simplices
that contain the initial vertex in the poset whose nerve defines the simplicial cube.

The homotopy coherent simplices define a cosimplicial object in sSet-Cat from which
one defines the homotopy coherent realisation and homotopy coherent nerve functors first
studied by Cordier [5].

Definition 5.1.8 (Homotopy coherent realizationand the homotopy coherent nerve)Applying
Kan’s construction [12, 1.5.1] to the functor C�• : ´ −→ sSet-Cat yields an adjunction

sSet-Cat
N

⊥ sSet
C

the right adjoint of which is called the homotopy coherent nerve and the left adjoint of which,
defined by pointwise left Kan extension along the Yoneda embedding:

´ �•

C�•
∼=

sSet

C
sSet-Cat

we refer to as homotopy coherent realisation. An n-simplex of a homotopy coherent nerve
NC is simply a simplicial functor c : C�n → C and the action of an operator β : [m] → [n]
on that simplex is given by precomposition with C�β : C�m → C�n .

Our aim is now to concretely describe the simplicial categories CX arising as homotopy
coherent realisations. The objects of CX are the vertices of X ; a complete description of
these simplicial computads is given in Proposition 5.1.12. To build up to this result, we start
by considering the case where X is a simplicial subset of �n . It follows from Lemma 5.1.5
that:

Lemma 5.1.9 (VI.4.3.9) For any inclusion i : X ↪→ Y of simplicial sets, the induced simpli-
cial functor Ci : CX ↪→ CY is a simplicial subcomputad.
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Lemma 5.1.9 tells us that if X ⊂ �n then its homotopy coherent realisation CX is a
simplicial subcomputad of C�n containing only those atomic arrows of C�n that are in
the image of the simplicial functor C�α : C�m ↪→ C�n for some non-degenerate face
α : [m] ↪→ [n] in X . It follows, in particular, that the homotopy coherent realisations of
boundaries and horns have a simple description.

Example 5.1.10 (Homotopy coherent nerves of sub-simplices; VI.5.1.10) Consider the fol-
lowing simplicial subsets of �n .

(i) Boundaries The inclusion C∂�n ↪→ C�n is the identity on objects. The only non-
degenerate simplex in �n that is not present in its boundary ∂�n is the top dimensional
n-simplex. Thus, an atomic r -arrow T • of C�n is not in C∂�n if and only if it has
T r = [0, n]; in particular each of these missing atomic arrows

{0, n} = T 0 ⊂ T 1 ⊂ · · · ⊂ T n = [0, n]
lies in the functor space MapC�n (0, n) and MapC∂�n (i, j) = MapC�n (i, j) for all but
that particular functor space. The inclusion

MapC∂�n (0, n)

∼ =

MapC�n (0, n)
∼ =

∂
�n−1 
�n−1

is isomorphic to the cubical boundary inclusion.
(ii) Outer horns The inclusion C�n,n ↪→ C�n is also the identity on objects. The only non-

degenerate simplices in �n that are not present in the horn �n,n are the top dimensional
n-simplex and its nth face. In the former case, the missing atomic r -arrows are ele-
ments of MapC�n (0, n), and in the latter case they are elements of MapC�n (0, n − 1);
so MapC�n,n (i, j) = MapC�n (i, j) for all but those two functor spaces. Under the
isomorphism of Example 5.1.7 the inclusions

MapC�n,n (0, n − 1)

∼ =

MapC�n (0, n − 1)

∼ =

∂
�n−2 
�n−2

MapC�n,n (0, n)

∼ =

MapC�n (0, n)

∼ =



n−1,n−1
0 
�n−1

are isomorphic to the cubical boundary and cubical horn inclusions.

Definition 5.1.11 (Bead shapes)We shall call those atomic arrows T • : 0 → n ofC�n which
are not members of C∂�n bead shapes. By Examples 5.1.7 and 5.1.10, an r -dimensional
bead shape T • : 0 → n is given by a sequence of subsets

{0, n} = T 0 ⊂ T 1 ⊂ · · · ⊂ T r = [0, n]
with T 0 = {0, n} and T r equal to the full interval [0, n] = {0 ≤ t ≤ n}.
Proposition 5.1.12 (CX as a simplicial computad; VI.4.4.7) The homotopy coherent realisa-
tion CX of a simplicial set X is a simplicial computad with

• Objects the vertices of X and
• Non-degenerate atomic r-arrows given by pairs (x, T •), wherein x is a non-degenerate

n-simplex of X for some n > r and T • : 0 → n is an r-dimensional bead shape.

The domain of (x, T •) is the initial vertex x0 of x and its codomain is the terminal vertex xn.

�
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The pairs (x, T •) appearing in Proposition 5.1.12 called beads in X . As a consequence
of this result we find that r -simplices of CX correspond to sequences of abutting beads,
structures which are called necklaces in the work of Dugger and Spivak [6] and Riehl [11]. In
this terminology,CX is a simplicial computad in which the atomic arrows are those necklaces
that consist of a single bead with non-degenerate image.

5.2 Collages ofWeights

In this section we explore an alternate presentation of a simplicial weight W : A → S Set
as a simplicial category we refer to as the collage of the weight. The idea is that coll(W )

describes the shape ofW -cones over a diagram. The main result is that a weightW is flexible
if and only if 1+A ↪→ coll(W ) is a relative simplicial computad. The main example will be
the collage that defines the shape of pseudo limit cones over a homotopy coherent diagram,
a weight that will feature prominently in the the main theorem of Sect. 6.

A simplicial functor W : A → S Set may otherwise be described as comprising a family
of simplicial sets {Wa}a∈A along with left actions

Wa × MapA(a, a′) ∗
Wa′ (5.2.1)

of the hom-spaces ofA that must collectively satisfy the customary axiomswith respect to the
identities and composition of A. This description leads us to define a simplicially enriched
category coll(W ), called the collage of W .

Definition 5.2.2 (Collages) For any weight W : A → S Set , the collage of W is a simplicial
category coll(W ) that contains A as a full simplicial subcategory along with precisely one
extra object⊥whose endomorphism space is the point. The simplicial setsMapcoll(W )(a,⊥)

are all taken to be empty and we define:

Mapcoll(W )(⊥, a) := Wa for objects a ∈ A.

The composition operations between hom-spaces with domain ⊥ and hom-spaces in A are
given by the actions depicted in (5.2.1).

Proposition 5.2.3 (the collage adjunction)

(i) The collage construction defines a fully faithful functor

sSetA coll 1+A/sSet-Cat

from the category of A-indexed weights to the category of simplicial categories under
1+ A whose essential image is comprised of those simplicial functors F : 1+ A → C
that are bijective on objects, fully faithful when restricted to A and 1, and have the
property that any arrow with codomain F⊥ is the identity.

(ii) The collage functor admits a right adjoint

1+A/sSet-Cat
wgt

⊥ sSetA
coll

which carries a simplicial functor F : 1 + A → C to the following weight:

A MapC(F⊥,F−) S Set
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Here sSetA denotes the underlying category of the simplicially enriched category S SetA.

Proof The subcategory inclusion of A into coll(W ) together with the functor 1 → coll(W )

mapping the unique object of 1 to ⊥ define a functor 1 + A ↪→ coll(W ). Extending this
construction to simplicial natural transformations in the obviouswaywe obtain a fully faithful
functor

sSetA coll 1+A/sSet-Cat

From this vantage point, the characterisation of the essential image is clear.
Given a map of weights � : W → MapC(F⊥, F−), we may construct a simplicially

enriched functor F� : coll(W ) → C which carries ⊥ to F⊥, acts as F on the subcategory
A, and which acts on the hom-space Mapcoll(W )(⊥, a) = Wa in the way given by the
component�a : Wa → MapC(F⊥, Fa). The simplicial functoriality of F� is an immediate
consequence of the simplicial naturality of �. Conversely given a simplicial functor

1 + A
F

coll(W )
G

C

in 1+A/sSet-Cat we may construct a map of weights �G : W → MapC(F⊥, F−)

whose component at an object a ∈ A is simply the action of G on the hom-space
Mapcoll(W )(F⊥, Fa) = Wa. These operations are clearly mutually inverse, thereby demon-
strating the postulated right adjointness property of the weightMapC(F⊥, F−) with respect
to the collage construction; see also Observation II.5.3.2. 
�

This adjunction has a useful and important interpretation, when read in light of Defini-
tion 4.1.1:

Corollary 5.2.4 The collage coll(W ) realises the shape of W-cones, in the sense that simpli-
cial functors G : coll(W ) −→ C with domain coll(W ) stand in bijection to W-cones with
apex G(⊥) over the restricted diagram G : A → C. 
�
Notation 5.2.5 From hereon we shall tend to blur the distinction between W -cones in C
and the simplicial functors coll(W ) → C to which they correspond. Consequently we will
generally use the term “weighted cone” to mean either structure interchangeably.

We have the following recognition principle for flexible weights on simplicial computads,
a mild variant of Proposition II.5.3.5.

Theorem 5.2.6 (Flexible weights and collages) A natural transformation α : V ↪→ W
betweenweights in sSetA is a projective cell complex if and only if coll (α) : coll V ↪→ collW
is a relative simplicial computad. In particular, W is a flexible weight if and only if
1 + A ↪→ collW is a relative simplicial computad.

Proof If α : V ↪→ W is a projective cell complex, then it can be presented as a countable
composite of pushouts of coproducts of projective cells of varying dimensions indexed by the
objects a ∈ A. Since the collage construction is a left adjoint, it preserves these colimits, and
hence the map coll (α) : coll V ↪→ collW as a sequential composite of pushouts of coprod-
ucts of simplicial functors coll (∂�[n] × A(a,−)) ↪→ coll (�[n] × A(a,−)) in the category
1+A/sSet-Cat. This composite colimit diagram is connected—note coll ∅ = 1+A—so this
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cell complexpresentation is also preservedby the forgetful functor1+A/sSet-Cat → sSet-Cat
and the simplicial functor coll (α) : coll V ↪→ collW can be understood as a countable com-
posite of pushouts of coproducts of coll (∂�[n] × A(a,−)) ↪→ coll (�[n] × A(a,−)) in
sSet-Cat.

This is advantageous because there is a pushout square in sSet-Cat displayed below left
corresponding to the maps of simplicial sets displayed below right

2[∂�[n]] coll (∂�[n] × A(a,−)) ∂�[n] ∂�[n] × A(a, a)

2[�[n]] coll (�[n] × A(a,−)) �[n] �[n] × A(a, a)
� �

ida

ida

(5.2.7)

whose horizontals sends the two objects − and + of the simplicial computads defined
in Example 5.1.3 to � and a and act on the non-trivial hom-spaces via the inclusions
whose component in A(a, a) is constant at the identity element at a. To verify that
coll (∂�[n] × A(a,−)) ↪→ coll (�[n] × A(a,−)) is a pushout of 2[∂�[n]] ↪→ 2[�[n]],
observe from the adjunction of Proposition 5.2.3 and the Yoneda lemma that a commutative
triangle of simplicial functors as below left-transposes to a commutative triangle of simplicial
maps as below-right

coll (∂�[n] × A(a,−)) ∂�[n]

coll (�[n] × A(a,−)) C �[n] MapC(F⊥, Fa)

�

where F : 1 + A ↪→ coll (�[n] × A(a,−)) → C is the composite functor. Thus, we
see that to extend a simplicial functor coll (∂�[n] × A(a,−)) → C along the inclusion
coll (∂�[n] × A(a,−)) ↪→ coll (�[n] × A(a,−)) is to attach an n-simplex to an n-simplex
boundary in a particular hom-space in C, i.e., to extend a functor 2[∂�[n]] → C along
2[∂�[n]] ↪→ 2[�[n]]. From this we see that coll (α) : coll V ↪→ collW is a transfinite
composite of pushouts of coproducts of simplicial functors 2[∂�[n]] ↪→ 2[�[n]], which
proves that this map is a relative simplicial computad.

Conversely, if coll (α) : coll V ↪→ collW is a relative simplicial computad, then it can
be presented as a countable composite of pushouts of coproducts of simplicial functors
2[∂�[n]] ↪→ 2[�[n]]; since this inclusion is bijective on objects the inclusion ∅ ↪→ 1 is
not needed. Since the only arrows of collW that are not present in coll V have domain �
and codomain a ∈ A, the characterisation of the essential image of the collage functor of
Proposition 5.2.3(i) allows us to identify each stage of the countable composite

coll V coll (W 1) · · · coll (Wi ) coll (Wi+1) · · · collW

as the collage of some weight Wi : A → S Set . Each attaching map 2[∂�[n]] → collWi

in the cell complex presentation acts on objects by mapping − and + to � and a for
some a ∈ A, and hence factors through the top horizontal of the pushout square (5.2.7).
Hence, the inclusion coll (Wi ) ↪→ coll (Wi+1) is a pushout of a coproduct of the maps
coll (∂�[n] × A(a,−)) ↪→ coll (�[n] × A(a,−)), one for each cell 2[∂�[n]] ↪→ 2[�[n]]
whose attaching map sends + to a ∈ coll (Wi ). As the collage functor is fully faithful,
we have now expressed coll (α) : coll V ↪→ collW as a countable composite of pushouts
of coproducts of simplicial functors coll (∂�[n] × A(a,−)) ↪→ coll (�[n] × A(a,−)). A
fully faithful functor that preserves colimits also reflects them, so in this way we see that
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α : V ↪→ W is a countable composite of pushouts of coproducts of projective cells, proving
that it is a projective cell complex as claimed. 
�

We now apply Proposition 5.2.3 and Theorem 5.2.6 to identify a flexible weight for
homotopy coherent diagrams of shape X by means of its collage.

Definition 5.2.8 (Weights for pseudo limits) For any simplicial set X , the coherent realisation
of the canonical inclusion �0 + X ↪→ �0 � X defines a collage 1 + CX ↪→ C[�0 � X ].
Hence, via the counit isomorphism of the collage adjunction Proposition 5.2.3(i), this sim-
plicial category is isomorphic to the collage of its corresponding weight which we denote by
WX : CX → S Set and call the weight for the pseudo limit of a homotopy coherent diagram
of shape X . The WX -weighted limit of a homotopy coherent diagram of shape X is then
referred to as the pseudo limit of that diagram.

Since the left adjoint of the collage adjunction is fully faithful, its unit is an isomorphism,
and this permits us to define the weight WX explicitly: for a vertex x ∈ X ,

WX (x) := C[�0 � X ](⊥, x).

So the functor

CX
WX S Set is given by WX (x) := C[�0 � X ](⊥, x).

Lemma 5.2.9 For all simplicial sets X the weight WX : CX → S Set for homotopy limits of
diagrams of shape CX is a flexible weight.

Proof The collage of WX is 1 + CX ∼= C[�0 + X ] ↪→ C[X � �0], which is a simplicial
computad inclusion by Lemma 5.1.9, so this result follows from Theorem 5.2.6. 
�

By Corollary 5.2.4, a simplicial functor F : C[�0 � X ] → C defines a WX -shaped cone
over the restricted diagram F : C[X ] → C. In the case where F encodes a weighted limit
cone, we refer to the simplicial functor as the pseudo limit cone over F . We call WX the
weight for a “pseudo” limit because we anticipate considering homotopy coherent diagrams
valued in Kan-complex enriched categories, C in which all arrows in positive dimension
are automatically invertible. If we were to consider diagrams valued in quasi-categorically
enriched categories, it would be more appropriate to refer toWX as the weight for lax limits,
since in that context the 1-arrows of C[�0 � X ] will likely map to non-invertible morphisms.

5.3 Homotopy Coherent Realisation of Joins

Our aim in this section is to establish a characterisation of the homotopy coherent realisation
C[X � Y ] of the join of two simplicial sets. By Proposition 5.1.12, the objects in C[X � Y ]
are vertices in either X or Y , and there are no n-arrows in C[X � Y ] from a vertex in Y to a
vertex in X . In this way, we have a canonical functor C[X � Y ] → 2 so that C[X ] is the fibre
over 0 and C[Y ] is the fibre over 1. It remains, then, to identify those n-arrows whose source
is a vertex in X and whose target is a vertex in Y . In Theorem 5.3.19, which we state more
precisely at the end of this section, we will establish a natural isomorphism of simplicial
computads

C[X � Y ] ∼= C[X � �0] ×2 C[�0 � Y ].
We start by formalising our analysis of the construction just given.
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Lemma 5.3.1 There is a canonical bifunctor

sSet × sSet
C[−�−]

sSet-Cptd/2 (5.3.2)

which preserves connected colimits in each variable independently.

Proof Given a pair of simplicial sets X andY , we promote the arrow category2 = {0 → 1} to
a trivially enriched simplicial category and define a canonical simplicial functor PX ,Y : C[X �

Y ] → 2 uniquely determined by the stipulation that it maps objects arising from vertices
of X to the object 0 and those arising from vertices of Y to the object 1. Note that this is
a functor of simplicial computads, since any simplicial functor from a computad into 2 is
necessarily a functor of simplicial computads.

Corresponding observations reveal that if f : X → X ′ and g : Y → Y ′ are simplicial
maps, then the corresponding functor C[ f � g] : C[X �Y ] → C[X ′ �Y ′] makes the following
triangle commute:

C[X � Y ] C[ f �g]

PX ,Y

C[X ′ � Y ′]
PX ′,Y ′2

In this way we have shown that the construction (X , Y ) �→ C[X � Y ] extends naturally to
give a bifunctor:

sSet × sSet
C[−�−]

sSet-Cat/2 (5.3.3)

The join of simplicial sets preserves connected colimits in each variable independently [8,
3.2] and the homotopy coherent realisation functor is a left adjoint so it preserves all colimits.
Furthermore colimits in the slice sSet-Cat/2 are constructed as in sSet-Cat, so it follows
that this bifunctor also preserves connected colimits in each variable independently. Since
the homotopy coherent realisation functor C factors through the subcategory sSet-Cptd ↪→
sSet-Cat, by Lemma VI.4.3.6, and that inclusion creates colimits, by Lemma 5.1.2. It follows
that we can restrict the codomain of (5.3.3) to define the bifunctor of the statement which
preserves connected colimits in each variable independently. 
�
Remark 5.3.4 By specialising the bifunctor (5.3.2) we obtain a pair of functors

sSet
C[−��0]

sSet-Cat/2 sSet
C[�0�−]

sSet-Cat/2 (5.3.5)

and these give rise to a bifunctor

sSet × sSet
C[−��0]×C[�0�−]

sSet-Cat/2 × sSet-Cat/2
−×2−

sSet-Cat/2

(5.3.6)

where the functor labelled−×2− is the binary product (pullback over2) of the slice category
sSet-Cat/2.

On applying the bifunctor C[− � −] to the unique map ! : Y → �0 (respectively ! : X →
�0) we obtain a family of simplicial projection functors C[X�!] : C[X � Y ] → C[X � �0]
natural in X ∈ sSet (respectively C[! �Y ] : C[X �Y ] → C[�0 �Y ] natural in Y ∈ sSet) in the
slice sSet-Cat/2. As a consequence of the uniqueness of maps into the terminal simplicial
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set �0 these families of functors are also natural in their second variable, in the sense that
the following triangles commute:

C[X � Y ] C[X�g]

C[X�!]
C[X � Y ′]

C[X�!]
C[X � �0]

C[X � Y ] C[ f �Y ]

C[!�Y ]
C[X ′ � Y ]

C[!�Y ]
C[�0 � Y ]

These projection maps induce a comparison map

�X ,Y := (C[X�!],C[! � Y ]) : C[X � Y ] −→ C[X � �0] ×2 C[�0 � Y ]
and the naturality properties of the projections discussed above imply that these are natural
in X and Y . It follows that these comparisons assemble into a natural transformation

sSet × sSet

C[−�−]

C[−��0]×2C[�0�−]

⇓� sSet-Cat/2 (5.3.7)

between the bifunctors introduced here and in Lemma 5.3.1.

While we made a point of observing that the bifunctor introduced in Lemma 5.3.1 landed
in the subcategory of computads in sSet-Cat/2 we have, as yet, made no such claim for the
corresponding bifunctor introduced in Remark 5.3.4. This result will be proven as Corol-
lary 5.3.15, but it requires a little justification, as provided in the following sequence of
lemmas:

Given an object A → 2 of Cat/2 or sSet-Cat/2 we shall use the notation Ai to denote its
fibre over the object i ∈ 2, the subscript already being taken.

Observation 5.3.8 Suppose thatA → 2 is an object of Cat/2 (respectively sSet-Cat/2). Then
any arrow that is not contained in one of its fibres must have domain in A0 and codomain in
A1. So an arrow in one of those fibres cannot be factored through an object in the other fibre.
It follows that an arrow in a fibre Ai is atomic (respectively has a unique decomposition as
a composite of atomic arrows) in there if and only if it is atomic (respectively has a unique
atomic decomposition) in A itself.

Recall we identify Graph with the essential image of the free category functor Graph ↪→
Cat and refer to free categories as computads.

Lemma 5.3.9 Suppose that A → 2 and B → 2 are objects of Graph/2 with A1 ∼= 1 and

B0 ∼= 1. Then the fibred product A ×2 B in Cat is contained in the subcategory Graph and
defines the fibred product in that subcategory.

When A1 ∼= 1 and B0 ∼= 1, we use the notation � (respectively ⊥) to denote the unique
object of A1 (respectively B0).

Proof We have that (A ×2 B)0 = A0 × B0 ∼= A0 and (A ×2 B)1 = A1 × B1 ∼= B1, but
Observation 5.3.8 tells us that the fibresA0 andB1 are computads and that the fibre inclusions
(A×2 B)i ↪→ A×2 B preserve atomic arrows. So an arrow ( f , id⊥) (respectively (id�, g))
is atomic inA×2B if and only if f is atomic inA (respectively g is atomic in B). The unique
atomic decomposition of a general such arrow ( f , id⊥) (respectively (id�, g)) is obtained
by taking the atomic decomposition of f in A (respectively g in B). This establishes the
required atomic decomposition result for arrows in the fibres of A ×2 B.
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Observe now that the arrows of A ×2 B which are not in one of its fibres are of the
form ( f , g) : (A,⊥) → (�, B) with A ∈ A0 and B ∈ B1. Clearly, such an arrow factors
through some object (A′,⊥) in A ×2 B if and only if f factors through A′ as a composite
f2 ◦ f1 in A, and that decomposition uniquely determines a corresponding decomposition
( f , g) = ( f2, g) ◦ ( f1, id⊥). Dual comments apply to factorisations of ( f , g) through some
object (�, B ′); it follows easily that the map ( f , g) is atomic in A ×2 B if and only if f is
atomic inA and g is atomic inB. To decompose a general suchmap ( f , g) into atomic arrows
we form the atomic decompositions f = fn ◦· · ·◦ f1 inA and g = gm ◦· · ·◦g1 inB andwrite
down the manifest atomic decomposition ( f , g) = (id�, gm)◦ · · · ◦ ( fn, g1)◦ · · · ◦ ( f1, id⊥)

which is easily seen to be the unique such.
Having shown that A ×2 B is a computad, it remains only to check that it possesses the

universal property of the fibred product in Graph. However, our analysis ofA×2 B actually
showed that its graph of atomic arrows is the fibred product of the graphs of the atomic arrows
of A and B. 
�
Lemma 5.3.10 Suppose that A → 2 and B → 2 are objects of sSet-Cptd/2 with A1 ∼= 1
and B0 ∼= 1. Then the subcategory sSet-Cptd is closed in sSet-Cat under the fibred product
A ×2 B.
Proof By Definition 5.1.1, sSet-Cptd = sSet-Cat ∩ Graph´

op
epi , with the intersection formed

in Cat´
op
epi . The subcategory sSet-Cat is closed in Cat´

op
epi under all limits, in particular it is

closed under the fibred product A ×2 B. Furthermore, we have that A and B satisfy the
condition given in the statement if and only if for all n ∈ N their categories An and Bn of
n-arrows satisfy the conditions of Lemma 5.3.9. It follows that Graph is closed in Cat under

the fibred productAn ×2 Bn for each n ∈ N and thus that Graph´
op
epi is also closed in Cat´

op
epi

under the fibred productA×2 B. In this way we have shown thatA×2 B and its projections

are in sSet-Cptd = sSet-Cat∩Graph´
op
epi ; a routine argument demonstrates that it also has the

desired universal property in there, using the fact that it does so in each of the subcategories

sSet-Cat and Graph´
op
epi . 
�

Definition 5.3.11 Let sSet-Cat⊥
/2 (respectively sSet-Cat�

/2) denote the full subcategory of

sSet-Cat/2 spanning thoseA → 2whose fibreA0 (respectivelyA1) is isomorphic to 1. Also
let sSet-Cptd⊥

/2 := sSet-Cptd/2 ∩ sSet-Cat⊥
/2 and sSet-Cptd�

/2 := sSet-Cptd/2 ∩ sSet-Cat�
/2.

Lemma 5.3.12 The subcategories sSet-Cat⊥
/2 and sSet-Cat�

/2 are closed in sSet-Cat/2 under

connected colimits, and similarly the subcategories sSet-Cptd⊥
/2 and sSet-Cptd�

/2 are closed
in sSet-Cptd/2 under connected colimits.

Proof Note that the fibre functor (−)0 : sSet-Cat/2 → sSet-Cat, which carries an object
A → 2 to its fibre over 0 ∈ 2, has a right adjoint and so preserves all colimits. Specifically,
that right adjoint carriesB to the objectB� → 2whereB� is the simplicial category obtained
by adjoining an terminal object � to B and its projection to 2 is determined by the object
mappings B �→ 0 for objects B ∈ B ⊂ B� and � �→ 1. Now observe that (−)0 maps
the colimit C of a connected diagram in sSet-Cat⊥

/2 to the colimit of a constant connected
diagram at the terminal simplicial category 1, but that colimit is isomorphic to 1 so we have
that C0 ∼= 1 and thus that C is in the full subcategory sSet-Cat⊥

/2. This establishes the stated

result for the full subcategory sSet-Cat⊥
/2 and the manifest dual argument also establishes it

for sSet-Cat�
/2. The second clause follows because sSet-Cptd/2 is closed in sSet-Cat/2 under

all colimits. 
�
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Proposition 5.3.13 The fibred product functor on sSet-Cat/2 restricts to give a bifunctor

sSet-Cptd�
/2 × sSet-Cptd⊥

/2
−×2−

sSet-Cptd/2 (5.3.14)

which preserves connected colimits in each variable independently.

Proof Lemma 5.3.10 shows that the fibred product functor on sSet-Cat restricts to a bifunctor

as displayed in (5.3.14). Note, however, that sSet-Cat is closed in Graph´
op
epi under pullbacks

and that sSet-Cptd is closed in Graph´
op
epi under all colimits. Consequently the fibred product

bi-functor (5.3.14) is computed as in Graph
´op

epi

/2 , as are the connected colimits of sSet-Cptd�
/2,

sSet-Cptd⊥
/2 and sSet-Cptd/2. Now Graph´

op
epi is a presheaf category, so it follows that the

slice Graph
´op

epi

/2 is cartesian closed and thus that its fibred product bifunctor preserves colimits
in each variable independently. So the desired result follows since the bifunctor and colimits

discussed in the statement are computed as in Graph´
op
epi . 
�

Corollary 5.3.15 The bifunctor introduced in (5.3.6) takes values in simplicial computads
and the component �X ,Y of the natural transformation displayed in (5.3.7) is a simplicial
computad morphism. In other words, the natural transformation in (5.3.7) restricts along
sSet-Cptd/2 ↪→ sSet-Cat/2 to give a natural transformation:

sSet × sSet

C[−�−]

C[−��0]×2C[�0�−]

⇓� sSet-Cptd/2 (5.3.16)

Proof Wemay now return to Remark 5.3.4 and observe that the functors in (5.3.5) restrict to
give functors:

sSet
C[−��0]

sSet-Cptd�
/2 sSet

C[�0�−]
sSet-Cptd⊥

/2

landing in the categories defined in Definition 5.3.11. We know that the original functors
in (5.3.5) preserved connected colimits and Lemma 5.3.12 reveals that the subcategories
sSet-Cptd�

/2 and sSet-Cptd⊥
/2 are closed under connected colimits in sSet-Cptd/2. It follows,

therefore, that the functors in the last display preserve connected colimits.
As a consequence we may apply Proposition 5.3.13, to show that the bifunctor introduced

in (5.3.6) restricts to a bifunctor:

sSet × sSet
C[−��0]×C[�0�−]

sSet-Cptd�
/2 × sSet-Cptd⊥

/2
−×2−

sSet-Cptd/2

What is more the preservation results for connected colimits established in the last paragraph
and in Proposition 5.3.13 together imply that this restricted bifunctor preserves connected
colimits independently in each variable.

Finally, the component �X ,Y of the natural transformation displayed in (5.3.7) is induced
by a pair of simplicial computad morphisms C[X�!] and C[!�Y ] under the universal property
of the fibred product C[X ��0]×2C[�0 �Y ] in sSet-Cat/2. Lemma 5.3.10 tells us, however,
that the subcategory sSet-Cptd/2 is closed in sSet-Cat/2 under that fibred product, so it
follows that the induced map �X ,Y is actually a simplicial computad morphism as claimed.


�
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We shall extend our notation for standard simplices slightly by letting �−1 denote the
empty simplicial set.

Proposition 5.3.17 For all n,m ≥ −1 the simplicial computad morphism

��n ,�m : C[�n � �m] → C[�n � �0] ×2 C[�0 � �m]
is an isomorphism.

Proof The morphism �n,m := ��n ,�m has domain and codomain isomorphic to C�n+m+1

and C�n+1 ×2 C�m+1 respectively. By definition C�n+1 is the full simplicial subcategory
of C�n+m+1 spanning its objects 0, . . . , n + 1 and we shall simplify our notation in the
following argument by identifying C�m+1 with the full simplicial subcategory of C�n+m+1

spanning its objects n, . . . , n+m+1. Wemight note here that under these identifications the
homotopy coherent simplex C�n+m+1 is fibred over 2 by the unique functor which acts on
objects to map 0, . . . , n �→ 0 and n + 1, . . . , n +m + 1 �→ 1, and that the full subcategories
C�n+1 and C�m+1 are fibred by restricting that functor.

To describe the component �n,m with respect to these presentations, we introduce a pair
of simplicial operators α, β : [n + m + 1] → [n + m + 1] defined by:

α(i) =
{

i if i ≤ n, and

n + 1 if i ≥ n + 1
β(i) =

{

n if i ≤ n, and

i if i ≥ n + 1.

Observe that the derived simplicial computad morphisms C[α],C[β] : C�n+m+1 →
C�n+m+1 map all objects into the respective full subcategories C�n+1 and C�m+1 under
the specified renumbering of the vertices of the latter. Consequently the induced morphism

C�n+m+1 (C[α],C[β])
C�n+m+1 ×2 C�n+m+1

factors through the subcategory C�n+1 ×2 C�m+1 and the resulting morphism is �n,m . We
can make the action of�n,m more explicit by recalling that if k and l are objects of C�n+m+1

with k ≤ l then 0-arrows U : k → l correspond to subsets U ⊆ [k, l] = {i ∈ N | k ≤ i ≤ l}
with {k, l} ⊆ U , and that r -arrowsU • : i → j correspond to ordered sequencesU 0 ⊆ U 1 ⊆
· · · ⊆ Ur of 0-arrows. The functors C[α] and C[β] act on the 0-arrowU : k → l by mapping
it to α(U ) = {α(i) | i ∈ U } and β(U ) = {β(i) | i ∈ U } respectively and it is easily checked,
from the definitions of the operators α and β, that we have:

α(U ) =
{

U if l ≤ n, and

(U ∩ [0, n]) ∪ {n + 1} if l ≥ n + 1,

β(U ) =
{

U if k ≥ n + 1, and

{n} ∪ (U ∩ [n + 1, n + m + 1]) if k ≤ n.

(5.3.18)

The objects of C�n+1 ×2 C�m+1 are pairs of integers of the form (i, n) for i = 0, . . . , n or
(n + 1, j) for j = n + 1, . . . , n + m + 1 and its 0-arrows are pairs (S, T ) of 0-arrows of
C�n+m+1 of one of the following three forms:

• (S, T ) : (i, n) → (i ′, n), in which case S : i → i ′ is a 0-arrow with 0 ≤ i ≤ i ′ ≤ n and
T = {n} : n → n (the identity 0-arrow on n),

• (S, T ) : (i, n) → (n + 1, j), in which case S : i → n + 1 is a 0-arrow with 0 ≤ i ≤ n
and T : n → j is a 0-arrow with n + 1 ≤ j ≤ n + m + 1, or
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• (S, T ) : (n + 1, j) → (n + 1, j ′), in which case T : j → j ′ is a 0-arrow with n + 1 ≤
j ≤ j ′ ≤ n + m + 1 and S = {n + 1} : n + 1 → n + 1 (the identity 0-arrow on n + 1).

Given such a 0-arrow (S, T ) inC�n+1×2C�m+1 define a set S⊕T := (S\{n+1})∪(T \{n})
and then for each of the cases adumbrated above it is easily checked that S ⊕ T is a 0-arrow
of C�n+m+1. Arguing case-by-case, it is also routine to apply the formulae in (5.3.18) to
establish the equalities α(S ⊕ T ) = S and β(S ⊕ T ) = T and to show that for all 0-
arrows U of C�n+m+1 we have U = α(U ) ⊕ β(U ). In this way we have demonstrated that
S ⊕ T is the unique 0-arrow of C�n+m+1 which is mapped by �n,m to the 0-arrow (S, T ) of
C�n+1×2C�m+1. Finally observe that the r -arrows ofC�n+m+1 andC�n+1×2C�m+1 are
uniquely determined by the ordered sequences of 0-arrows that comprise their vertices and
that α, β and⊕ all preserve the subset inclusion ordering between 0-arrows. So we may infer
from the fact that �n,m acts bijectively on 0-arrows that it also acts bijectively on r -arrows,
and thus that it is an isomorphism of simplicial computads as required. 
�

We now extend the result of Proposition 5.3.17 to show that �X ,Y is an isomorphism
for all pairs of simplicial sets X , Y . As one might expect, we do this by expressing X
and Y as colimits of standard simplices �n . We will, however, need to be careful to use
representing colimits that are connected since we will need them to be preserved by the
bifunctors in (5.3.16).

Theorem 5.3.19 For all simplicial sets X , Y ∈ sSet the simplicial computad morphism

�X ,Y : C[X � Y ] → C[X � �0] ×2 C[�0 � Y ]
is an isomorphism.

Proof Given a simplicial set Z , let el(Z) denote its category of elements and recall that
the Yoneda lemma implies that we may canonically present Z as a colimit of the diagram

dZ : el(Z)
proj−→ ´

�•−→ sSet of standard simplices. Indeed we may express Z as a connected
colimit of standard simplices. To do so, form a connected category el(Z)⊥ by adjoining an
initial object ⊥ to el(Z) and extend the diagram dZ to a diagram on el(Z)⊥ by mapping ⊥ to
the initial object �−1 = ∅ in sSet. Now observe that, since �−1 is initial, any cocone under
the original diagram extends uniquely to a cocone under the extended diagram, consequently
the colimit of the original and extended diagrams coincide; they are both isomorphic to Z .

In thisway, the simplicial sets X andY maybe expressed as connected colimits of diagrams
dX : el(X)⊥ → sSet and dY : el(Y )⊥ → sSet of standard simplices. Composing these with
the natural transformation in (5.3.16) we obtain a natural transformation

el(X)⊥ × el(Y )⊥

C[dX (−)�dY (−)]

C[dX (−)��0]×2C[�0�dY (−)]

⇓�dX (−),dY (−) sSet-Cptd/2 (5.3.20)

whose components are instances of the morphisms analysed in Proposition 5.3.17 and are
thus all isomorphisms.

Now the bifunctors in (5.3.16) preserve connected colimits in each variable independently
and colimits commute with colimits. So it follows that in (5.3.20) the colimit of the upper
functor is isomorphic toC[X�Y ] and the colimit of the lower functor isC[X��0]×2C[�0�Y ].
What is more, it is a consequence of the naturality of � that the morphism induced between
those colimits by the isomorphic transformation in (5.3.20) is is the component�X ,Y , which
is thus an isomorphism as postulated. 
�
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The form of the simplicial category C[X � �0] ×2 C[�0 � Y ] appearing on the right-hand
side of the isomorphism of Theorem 5.3.19 admits a simplified concrete description that we
shall exploit in the next section:

Remark 5.3.21 For any A in sSet-Cat�
/2 and B in sSet-Cat⊥

/2, we have that (A ×2 B)0 ∼= A0

and (A1 ×2 B1) ∼= B1, and it follows that we can give the following simplified concrete
description of A ×2 B, it has:
• Objects the disjoint union of the sets of objects of A0 and of B1,
• Hom spaces

MapA×2B(a′, a) := MapA(a′, a) MapA×2B(b, b′) := MapB(b, b′)
MapA×2B(a, b) := MapA(a,�) × MapB(⊥, b)

with all others empty, and
• Composites computed in the manifest way in A or B.

6 Complete and Cocomplete Quasi-Categories

Any quasi-category is equivalent to the homotopy coherent nerve of a Kan-complex-enriched
category, so when discussing limits or colimits in a quasi-category C, it suffices to consider
the case where C = NC for a Kan-complex-enriched category C. In Sect. 6.1, we give a
condition for a diagram d : Y → C to admit a limit (or dually a colimit): namely, C needs to
admit a pseudo homotopy limit, a homotopy weighted limit in the sense of Definition 4.1.8
for the weight WY of Definition 5.2.8, of the corresponding diagram D : CY → C. This is
Theorem 6.1.4.

In particular, if C is the homotopy coherent nerve of a Kan-complex-enriched category C
that admits all flexible weighted homotopy limits then this condition holds for any diagram,
and we conclude that the quasi-category C is complete. Several families of examples of this
form are established in Sect. 6.2.

One example we consider is the projectively fibrant and cofibrant simplicial presheaves
indexed by a small Kan-complex-enriched category C, which gives rise to a complete and
cocomplete quasi-category Ĉ. By analysing the simplicially enriched Yoneda embedding
Y : C → Ĉ, we see that the sufficient condition for a diagram valued in C to admit a limit
or colimit is also necessary, as we show in Theorem 6.2.7. Together Theorems 6.1.4 and
6.2.7 recover Lurie’s [10, 4.2.4.1], but our proof is somewhat more explicit. In the proof
below, we employ a very particular model for the point-set level homotopy limit cone in a
Kan-complex-enriched category, the data of which precisely translates to a limit cone in the
quasi-category defined as the homotopy coherent nerve.

6.1 Computing (Co)Limits in Homotopy Coherent Nerves

In this subsection let C denote a (locally small)Kan-complex-enriched category, that is to say
a simplicially enriched category that is “locally Kan” in the sense that each of its mapping
spaces MapC(A, B) is a Kan complex. Let C denote the quasi-category obtained as the
homotopy coherent nerve of C. For any small simplicial set Y and a diagram d : Y → C
our aim will be to develop a condition on the corresponding homotopy coherent diagram
d : CY → C which ensures that C admits a limit of the given diagram.
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Example 3.2.6 tells us that the diagram d : Y → C admits a limit in C if and only if there
exists some cone λ over d as depicted in diagram below-left, which enjoys the lifting property
below-right:

Y
d

C �0 � Y

λ

{n}�Y ∂�n � Y
f

C

�0 � Y
λ

�n � Y

(6.1.1)

for all n ≥ 1 and all f : ∂�n � Y → C with f |{n}�Y = λ. Taking transposes under the
homotopy coherent nerve � realisation adjunction, we obtain a cone � : C[�0 �Y ] → C and
an equivalent lifting property:

C[Y ] D C C[�0 � Y ]
�

C[{n}�Y ] C[∂�n � Y ]
F

C

C[�0 � Y ]
�

C[�n � Y ]

(6.1.2)

Recall from Corollary 5.2.4 that every simplicial functor � : C[�0 � Y ] → C gives rise to
a WY -weighted cone

μ� := WY = C[�0 � Y ](⊥,−)
�⊥,−

MapC(�⊥,�−) (6.1.3)

with apex �⊥ over the restricted diagram C[Y ] ⊂ C[�0 � Y ] �−→ C, where WY is the
weight whose collage is C[�0 �Y ] introduced in Definition 5.2.8. This construction provides
a bijection between simplicial functors � : C[�0 � Y ] → C and pairs (�Y , μ�) comprising
a diagram �Y : C[Y ] → C and a WY -weighted cone μ� over that diagram. Henceforth, we
refer to the simplicial natural transformation (6.1.3) and the associated simplicial functor
� : C[�0 � Y ] → C equally as pseudo weighted cones.

We are now prepared to state our main theorem:

Theorem 6.1.4 For any Kan-complex-enriched category C, simplicial set Y , and homotopy
coherent diagram D : C[Y ] → C, if D admits a pseudo homotopy limit in C then the WY -
weighted limit cone� : C[�0 �Y ] → C transposes to define a limit cone over the transposed
diagram d : Y → C := NC in the homotopy coherent nerve of C. Consequently if C admits
pseudo homotopy limits for all simplicial sets Y then the quasi-category C admits all limits.

To prove Theorem 6.1.4, we show that the extension (6.1.2) can be constructed whenever
the cone � : C[�0 � Y ] → C is a pseudo homotopy limit cone, satisfying the condition of
Definition 4.1.8 for the weightWY for pseudo limits. The next result gives a first step towards
analysing such situations:

Proposition 6.1.5 If C admits the WY -weighted limit of a diagram FY : CY → C, then simpli-
cial functors F : C[X �Y ] → C that extend FY : C[Y ] → C stand in bijective correspondence
to simplicial functors FX : C[X � �0] → C that map � to the weighted limit {WY , FY }.
Proof Under the isomorphism�X ,Y : C[X �Y ] ∼= C[X ��0]×2C[�0�Y ] of Theorem 5.3.19
and the description ofC[X��0]×2C[�0�Y ] given inRemark 5.3.21,we find that a simplicial
functor F : C[X � Y ] → C is uniquely determined by giving the following data:
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(i) a pair of simplicial functors FX : C[X ] → C and FY : C[Y ] → C, and
(ii) a family of simplicial maps

C[X � �0](x,�) × MapC[�0�Y ](⊥, y)
Fx,y

MapC(FX x, FY y) (6.1.6)

that is simplicially natural in x ∈ CX and y ∈ CY .

Transposing the family of maps in (6.1.6) and taking the manifest end with respect to y ∈ CY
reduces it to a family of simplicial maps

C[X � �0](x,�)
Fx,∗ ∫

y∈CY MapC(FX x, FY y)C[�0�Y ](⊥,y) =: {WY ,MapC(FX x, FY−)}
(6.1.7)

which is simplicially natural in x ∈ CX . In the particular case where C admits aWY -weighted
limit of the diagram FY : CY → C, the codomain of the family in (6.1.7) is, by definition,
isomorphic to MapC(FX x, {WY , FY }). So then simplicial functors F : C[X � Y ] → C that
extend FY : C[Y ] → C stand in bijective correspondence to simplicial functors FX : C[X �

�0] → C that map � to the limit {WY , FY }. 
�

With this result in hand, we may return to analysing the lifting problem (6.1.2). The next
result characterises solutions to lifting problems generalising those of the form (6.1.2).

Proposition 6.1.8 Solutions to lifting problems of the form

C[∂�n � Y ] F C
P

C[�n � Y ]
G

L
D

(6.1.9)

correspond bijectively to a pair of lifts making the following diagram commute:

C[�n+1,n+1](0, n) MapC(F0, Fn)

C[�n+1,n+1](0, n + 1) {WY ,MapC(F0, F−)}

C[�n+1](0, n) MapD(G0,Gn)

C[�n+1](0, n + 1) {WY ,MapD(G0,G−)}

(6.1.10)

Proof Under the isomorphism established in Theorem 5.3.19 the vertical inclusion at the left
of (6.1.9) is isomorphic to the inclusion

C[∂�n � �0] ×2 C[�0 � Y ] ↪→ C[�n � �0] ×2 C[�0 � Y ].
Furthermore the canonical isomorphism �n ��0 ∼= �n+1 restricts to an isomorphism ∂�n �

�0 ∼= �n+1,n+1, so this inclusion is in turn isomorphic to that obtained by applying the
functor − ×2 C[�0 � Y ] to the inclusion C�n+1,n+1 ↪→ C�n+1. Also Example 5.1.10(ii)
tells us that the simplicial subcategory C�n+1,n+1 differs from C�n+1 only in as much as its
functor spaces C�n,n(0, n) and C�n,n(0, n + 1) are proper sub-spaces of the corresponding
functor spaces of C�n+1. On combining this fact with the description of simplicial functors
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with domain C[X �Y ] given in Proposition 6.1.5, we find that each lift in (6.1.9) corresponds
to a pair consisting of a solution to the lifting problems

C�n+1,n+1(0, n)
F0,n

MapC(F0, Fn)

P

C�n+1(0, n)
G0,n

L0,n

MapD(G0,Gn)

C�n+1,n+1(0, n + 1)
F0,∗ {WY ,MapC(F0, F−)}

{WY ,P}
C�n+1(0, n + 1)

L0,∗

G0,∗
{WY ,MapD(G0,G−)}

together satisfying the condition that the following square commutes:

C�n+1(0, n)
{n,n+1}◦−

L0,n

C�n+1(0, n + 1)

L0,∗

MapC(F0, Fn)
�F◦− {WY ,MapC(F0, F−)}

Here the horizontal map at the bottom of this square is that induced by post-composition with
theWY -weighted cone�F : WY → MapC(Fn, F−) determined by the composite simplicial
functor

C[�0 � Y ] C[{n}�Y ]
C[∂�n � Y ] F C

as in Corollary 5.2.4. 
�
The unpacked lifting property of Proposition 6.1.8 may be simplified once we replace the

function spaces on the left of the lifting problem (6.1.10) with their explicit presentations
discussed in Example 5.1.10, as follows:

C�n+1,n+1(0, n)
{n,n+1}◦−

C�n+1,n+1(0, n + 1)

C�n+1(0, n) {n,n+1}◦− C�n+1(0, n + 1)

∼=
∂
�n−1 

n,n

0


�n−1


�n−1×{1}

�n

This leads us to the following technical lemma:

Lemma 6.1.11 There exists a bijective correspondence between lifting problems, and their
solutions, of the forms depicted in the following display:

∂
�n−1 A
h

p


n,n
0 B

q
�n−1


�n−1×{1}

C
k


�n D

�

∂
�n−1 B ↓ h

↓(B,q,p)


�n−1 q ↓ k

(6.1.12)

Proof Recall that 
�n ∼= 
�n−1 × �1 which restricts to sub-spaces to give isomorphisms


n,n
0

∼= ∂
�n−1×�1∪
�n−1×�{0}; furthermorewe also have that ∂
�n−1×�1∩
�n−1×�{0} =
∂
�n−1×�{0}. So the left-hand vertical of the front square of the cube in (6.1.12) is simply the
Leibniz product (∂
�n−1 ↪→ 
�n−1)̂× (�{0} ↪→ �1). The Leibniz exponential of�{0} ↪→ �1

with q : B → D defines the map ↓(B, q, q) of Proposition 3.1.4, so transposing across
the two variable adjunction between Leibniz products and Leibniz exponential gives us a
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bijective correspondence between the lifting problem at the front of the cube in (6.1.12) and
the transposed lifting problem on the left of the following display:

∂
�n−1 B2

↓(B,q,q)


�n−1 q ↓ D


�n−1 B2

p1

A
h

B

Under this transposition, the square on the right re-expresses the commutativity of the square
within the cube on the left of (6.1.12) comprised of the dashed lifts and themaps between their
(co)domains. This is the only compatibility condition required of those lifts, so taking the
pullback in that square we reduce those lifts and their compatibility condition to a single lift

�n−1 ��� B ↓ h. In a similar fashion, the commutativity of the squares comprising the lower
and upper faces of the cube in (6.1.12) transpose to conditions that posit the commutativity
of squares


�n−1 q ↓ D

p1

C
k

D

and

∂
�n−1 B2

p1

A
h

B

respectively. Taking pullbacks in these squares, we again see that they correspond to maps

�n−1 → q ↓ k and ∂
�n−1 → B ↓ h. It is now a routine matter to see that the commutativity
conditions encapsulated in the sides of the cube on the left of (6.1.12) correspond to the
commutativity of the square on its right in which the maps going from its left-vertical to the
right-vertical are those just constructed. 
�

Note that the lifting problem on the right of (6.1.12) can be solved whenever the map
↓(B, q, p) : B ↓ h → q ↓ k is a trivial fibration. The following lemma characterises those
squares for which this is the case.

Lemma 6.1.13 Consider a commutative square whose verticals are Kan fibrations between
Kan complexes:

A
h

p

B
q

C
k

D

Then the induced map ↓(B, q, p) : B↓ h → q ↓ k is a trivial fibration if and only if the given
square is a homotopy pullback, in the sense that the map A ∼−−→ B ×D C is an equivalence.

Proof Under conditions of the statement, Proposition 3.1.4 applied in the ∞-cosmos of Kan
complexes of Example 2.2.4 demonstrates that the map ↓(B, q, p) : B ↓ h → q ↓ k is a Kan
fibration between Kan complexes. Now B and D are Kan complexes so it follows that the
comma objects B ↓ h and q ↓ k are homotopy pullbacks of top and bottom cospans of the
diagram

A
h

p

B

q

B

C
k

D B
q
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respectively. The right-hand legs of those cospans are Kan fibrations, so their pullbacks are
also homotopy pullbacks and those pullback squares induce equivalences A ∼−−→ B ↓ h and
B×D C ∼−−→ q ↓ k. By the universal properties that define these maps, these equivalences fit
into a commutative square

A
(h,p)

�
B ×D C

�
B ↓ h ↓(B,q,p)

q ↓ k

fromwhich the stated result followsby application of the lawsof composition and cancellation
of equivalences. 
�

Combining these results, we conclude

Corollary 6.1.14 If P : C → D is a simplicial functor between Kan-complex-enriched cate-
gories that is a levelwise Kan fibration, then a lifting problem

C[∂�n � Y ] F C
P

C[�n � Y ]
G

L
D

has a solution under the condition that the square

MapC(F0, Fn)

P

�F◦− {WY ,MapC(F0, F−)}
{WY ,P}

MapD(G0,Gn)
�G◦− {WY ,MapD(G0,G−)}

(6.1.15)

is a homotopy pullback of Kan complexes.

Proof Proposition 6.1.8 shows that the lifting problem in (6.1.9) has a solution if and only
if a lifting problem of the kind analysed in Lemma 6.1.11 with right hand square (6.1.15)
has a solution. Note also that WY is a flexible weight so it follows, by Proposition 4.1.5, that
the weighted limits on the right of (6.1.15) are Kan complexes and the map between them
is a Kan fibration. Consequently we may apply Lemma 6.1.13 to conclude that this latter
lifting problem has a solution so long as the square (6.1.15) is a homotopy pullback of Kan
complexes as stated. 
�

As a special case, we now have a criterion which allows us to solve the lifting problem
(6.1.2):

Corollary 6.1.16 Suppose that C is a Kan-complex-enriched category and that Y is a simpli-
cial set. A lifting problem

C[�0 � Y ]
�F

C[{n}�Y ]C[∂�n � Y ]
F

C

C[�n � Y ]

(6.1.17)

has a solution whenever the cone �F presents Fn as the pseudo homotopy limit of the
restricted diagram F : CY → C.
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Proof In the case of the unique simplicial functor ! : C → 1, the square (6.1.15) reduces to

MapC(F0, Fn)
�F◦− {WY ,MapC(F0, F−)}

1 1

which is a homotopy pullbackwhen its upper horizontal map is an equivalence. By definition,
however, this happens precisely when the cone�F presents Fn as the pseudo homotopy limit
of F : CY → C as required. 
�

Corollary 6.1.16 proves Theorem 6.1.4. For the reader’s convenience, we summarise the
argument just given.

Proof of Theorem 6.1.4 The lifting property characterising the limit of d : Y → C in (6.1.1)
is dual to the lifting property in (6.1.17) under the homotopy coherent nerve / realisation
adjunction. Furthermore Corollary 6.1.16 tells us that this latter lifting property pertains so
long as the cone �D : C[�0 � Y ] → C displays its apex as a pseudo homotopy limit of the
simplicial functor D : CY → C. 
�

The dual statement, recognizing quasi-categorical colimits in homotopy coherent nerves,
is proven similarly or can be deduced by applying the previous result to the Kan-complex-
enriched category Cop withMapCop(A, B) := MapC(B, A) and its homotopy coherent nerve
Cop.

6.2 Complete and Cocomplete Quasi-Categories

Applying Theorem 6.1.4 and its dual we can prove directly that certain quasi-categories
constructed as homotopy coherent nerves are complete and/or cocomplete.

For any ∞-cosmos K, we write K := N (g∗K) for the homotopy coherent nerve of its
(∞, 1)-core g∗K and refer to it as the quasi-category of ∞-categories in K.

Proposition 6.2.1 (completeness of the quasi-category associated with an ∞-cosmos) For
any ∞-cosmos K, the large quasi-category K of ∞-categories in K is small complete.

Proof Given an ∞-cosmos K, the associated Kan-complex enriched category g∗K ⊂ K,
constructed by taking groupoidal cores of functor spaces as in Definition 2.2.5, admits all
flexible weighted homotopy limits by Corollary 4.2.7. It follows, from Theorem 6.1.4, that
its homotopy coherent nerve K := N (g∗K) is complete. 
�

Our next result considers the sub ∞-cosmos of groupoidal objects Kgr ↪→ K of Propo-
sition 2.2.3. Motivated by the fact that the Kan complexes define the groupoidal objects of
QCat , we might call the large quasi-category of groupoidal ∞-categories in K the quasi-
category SK := N (Kgr) of spaces in K.

Proposition 6.2.2 (completeness of the quasi-category of spaces in an ∞-cosmos) For any
∞-cosmosK, the large quasi-category SK of groupoidal ∞-categories inK is complete and
closed under all small limits in the quasi-category K.

Proof Proposition 2.2.3 tells us that the full simplicial category Kgr of groupoidal objects in
an ∞-cosmos K is closed in there under flexible weighted limits. So Theorem 6.1.4 applies
to show that its nerve, the quasi-category SK := N (Kgr) of spaces in K, is closed under all
limits in the complete quasi-category K. 
�
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Proposition 6.2.3 If M is a simplicial model category then the quasi-category M :=
N (Mcf ), defined as the homotopy coherent nerve of the full simplicial subcategory of fibrant-
cofibrant objects, is small complete and cocomplete.

A similar result, under the additional hypothesis thatM is combinatorial, appears as [10,
4.2.4.8]. At the present level of generality, this result was first proven by Barnea, Harpaz,
Horel [3, 2.5.9].

Proof In any simplicial model categoryM, the full subcategoryMcf spanned by the fibrant-
cofibrant objects is Kan complex enriched.

By the argument of Proposition 4.1.5, strictly defined limits of diagrams weighted by
flexible weights exist in the simplicial subcategory of fibrant objectsMf ; see also [7]. But the
limit objectmight not be cofibrant. So ifW : A → sSet is a flexibleweight and D : A → Mcf

is a diagram of fibrant-cofibrant objects then the weighted limit {W , D} exists in Mf and
we may take its cofibrant replacement to give an object {W , D}c in Mcf . Notice, however,
that for each cofibrant C inM the representableMapM(C,−) is a right Quillen functor, so
Ken Brown’s argument applies to demonstrate that it maps the cofibrant replacement map
e : {W , D}c ∼−−→ {W , D}, which is a weak equivalence of fibrant objects, to an equivalence
of Kan complexes:

MapM(C, {W , D}c)MapM(C,e)

� MapM(C, {W , D}) ∼= {W ,MapM(C, D(−))}
This suffices to demonstrate that {W , D}c is aW -weighted homotopy limit of the diagram D
inMcf . In particular, given any simplicial set X and any diagram d : X → N (Mcf ) we may
deduce the existence of the pseudo homotopy limit of the dual diagram D : C[X ] → Mcf

featured in the statement of Theorem 6.1.4. It follows, by application of that theorem, that
the object {WX , D}c provides a limit for the diagram d in the quasi-category N (Mcf ), and
thus that N (Mcf ) admits all limits.

To prove the dual statement about colimits, simply observe that the homotopy coherent
nerve of the dual simplicial categoryMop

cf is isomorphic to the (simplicial) dual of the quasi-
category N (Mcf ). Consequently, the stated result providing for the existence of colimits in
N (Mcf ) follows by applying the argument just given to the dual model category Mop. 
�
Example 6.2.4 Suppose that C is a small Kan-complex-enriched category. We equip the sim-
plicial functor categoryS Set C

op
with the projectivemodel structure, relative to theKanmodel

structure on S Set , and observe that this makes it into a simplicial model category. Its weak
equivalences, fibrations, and fibrant objects are given pointwise in the Kan model structure,
and the projective cells of Definition 4.1.4 provide a generating set for its cofibrations. We
shall use the notation Ĉ to denote the full simplicial subcategory of S Set C

op
spanning its

projective fibrant-cofibrant objects. Proposition 6.2.3 then applies to show that its homotopy
coherent nerve Ĉ := N Ĉ is a complete and cocomplete quasi-category.

Each representable functor on C is both projective cofibrant, by definition, and projective
fibrant, since the hom-spaces ofC areKan complexes, so it follows that theYoneda embedding
restricts to a simplicial functor Y : C → Ĉ, which, by the simplicial Yoneda lemma is fully
faithful. Now suppose that e : F → G is a simplicial natural transformation in Ĉ for which
MapĈ(Yc, e) : MapĈ(Yc, F) → MapĈ(Yc,G) is an equivalence of Kan complexes for
all objects c ∈ C. By the simplicial Yoneda lemma that latter map is isomorphic to the
component ec : Fc → Gc, so the given condition simply posits that each component of the
natural transformation e is an equivalence of Kan complexes. In other words, it is a weak
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equivalence between fibrant and cofibrant objects in the projective model structure and is
thus an equivalence in Ĉ.

The following definitions give names for these properties:

Definition 6.2.5 Suppose that F : C → D is a simplicial functor between Kan-complex-
enriched categories. We say that F is

(i) Homotopically fully-faithful if its action F : MapC(A, B) → MapD(FA, FB) on each
hom-space is an equivalence of Kan complexes, and

(ii) Homotopically strongly generating if a 0-arrow e : A → B inD is an equivalence if and
only if for all objectsC in C the mapMapD(FC, e) : MapD(FC, A) → MapD(FC, B)

is an equivalence of Kan complexes.

Remark 6.2.6 These concepts are related to, but not the same as, the simplicially enriched
variants of the usual fully-faithfulness and strong generation properties: these homotopical
notions insist or infer that certain maps are equivalences, whereas their simplicially enriched
cousins ask for those maps to be isomorphisms. While it is certainly the case that any fully-
faithful simplicial functor is also homotopically fully-faithful, it is not however the case,
in general, that a strongly generating functor is homotopically strongly generating (or vice
versa).

Since the Yoneda functor Y : C → Ĉ is homotopically fully faithful and homotopically
strongly generating it follows that the homotopy coherent nerve Y : C → Ĉ of the Yoneda
functor is a fully faithful and strongly generating functor of quasi-categories, see [10, 5.1.3.1]
or [20, 5.1.9]. This defines an embedding of the homotopy coherent nerve of any small
Kan-complex-enriched category into a (small) complete and cocomplete quasi-category. In
general, any fully faithful and strongly generating functor of∞-categories preserves all limits
known to exist in both the domain or codomain—see [20, 5.2.9]—but we don’t need the full
strength of that result, so we don’t take time to prove this here. We apply these observations
to provide the following converse to Theorem 6.1.4.

Theorem 6.2.7 Suppose that C is a small Kan-complex-enriched category, that X is a sim-
plicial set and that d : X → C is a diagram in the associated quasi-category C := NC. If the
diagram d admits a limit in C then the transposed diagram D : CX → C admits a pseudo
homotopy limit in C.

Proof Let L denote the pseudo homotopy limit of the diagram YD : CX → Ĉ, whose
existence in Ĉ is guaranteed by Proposition 6.2.3 applied to Example 6.2.4, as displayed by a
pseudo cone� : WX → MapĈ(L,YD−). Let � denote the limit of the diagram d : X → C in
the quasi-category C, equipped with an equivalence C↓� � �↓d over C, which pulls back to
define an equivalence c↓� � �c↓d for any object c ∈ C considered as c : 1 → C. Applying
Y : C → Ĉ, there is a canonical cone with summit Y� over the diagram Yd : X → Ĉ. As
Theorem 6.1.4 shows that the pseudo homotopy limit L gives a limit of the diagram Yd in
Ĉ, this cone induces a comparison map f : Y� → L in Ĉ as well as an equivalence Ĉ ↓ L �
�↓Yd over Ĉ, which pulls back along Yc : 1 → Ĉ to an equivalence Yc↓ L � �Yc↓Yd .
By Corollary VI.7.1.9, the internal mapping spaces in the homotopy coherent nerve of a
Kan-complex-enriched category are equivalent to the simplicial mapping spaces. Thus, by
fully faithfulness of the simplicial Yoneda embedding Y : C → Ĉ,

MapĈ(Yc,Y�) � MapC(c, �) � c ↓ � � �c ↓ d � �Yc ↓ Yd � Yc ↓ L � MapĈ(Yc, L).
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Now we may pre-compose the pseudo cone by the arrow f to give the following commu-
tative square

WX
�

∃!�̄
MapĈ(L,YD−)

−◦ f

MapC(�, D−)
Y

∼=
MapĈ(Y�,YD−)

in which the unique existence of the pseudo cone on the left is guaranteed by the fact that the
simplicial Yoneda embedding at the bottom is fully-faithful. To see that �̄ presents � as the
pseudo homotopy limit of D in C, we must verify that the map induced by post-composition
with �̄

MapC(c, �) {WX ,MapC(c, D−)}C[X ].

is an equivalence. By construction this is equivalent to the map

MapY C(Yc, L) {WX ,MapĈ(Yc,YD−)}C[X ].

induced by post-composition with the pseudo homotopy limit cone�, and hence is an equiv-
alence as desired. 
�
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