
1188 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 2, FEBRUARY 2021

Client Selection and Bandwidth Allocation in
Wireless Federated Learning Networks:

A Long-Term Perspective
Jie Xu , Member, IEEE, and Heqiang Wang

Abstract— This paper studies federated learning (FL) in a
classic wireless network, where learning clients share a common
wireless link to a coordinating server to perform federated model
training using their local data. In such wireless federated learn-
ing networks (WFLNs), optimizing the learning performance
depends crucially on how clients are selected and how bandwidth
is allocated among the selected clients in every learning round,
as both radio and client energy resources are limited. While
existing works have made some attempts to allocate the limited
wireless resources to optimize FL, they focus on the problem in
individual learning rounds, overlooking an inherent yet critical
feature of federated learning. This paper brings a new long-
term perspective to resource allocation in WFLNs, realizing
that learning rounds are not only temporally interdependent
but also have varying significance towards the final learning
outcome. To this end, we first design data-driven experiments
to show that different temporal client selection patterns lead to
considerably different learning performance. With the obtained
insights, we formulate a stochastic optimization problem for joint
client selection and bandwidth allocation under long-term client
energy constraints, and develop a new algorithm that utilizes
only currently available wireless channel information but can
achieve long-term performance guarantee. Experiments show
that our algorithm results in the desired temporal client selection
pattern, is adaptive to changing network environments and far
outperforms benchmarks that ignore the long-term effect of FL.

Index Terms— Federated learning (FL), client selection,
resource allocation, wireless networks.

I. INTRODUCTION

MOBILE devices nowadays generate a massive amount
of data each day. This rich data has the potential to

power a wide range of machine learning (ML)-based appli-
cations, such as learning the activities of smart phone users,
predicting health events from wearable devices or adapting to
pedestrian behavior in autonomous vehicles. Due to the grow-
ing storage and computational power of mobile devices as well
as privacy concerns associated with uploading personal data,
it is increasingly attractive to store and process data directly on
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each mobile device. The aim of “federated learning” (FL) [1]
is to enable mobile devices to collaboratively learn a shared
ML model with the coordination of a central server while
keeping all the training data on device, thereby decoupling the
ability to do ML from the need to upload/store the data in the
cloud.

This paper focuses on FL in a classic wireless network
setting where the clients, e.g., mobile devices, share a com-
mon wireless link to the server. We call this system a
wireless federated learning network (WFLN). The network
operates for a number of learning rounds as follows: in each
round, the clients download the current ML model from
the server, improve it by learning from their local data,
and then upload the individual model updates to the server
via the wireless link; the server then aggregates the local
updates to improve the shared model. Similar to a traditional
throughput-oriented wireless network, the limited wireless net-
work resources require the WFLN to determine in each round
which clients access the wireless channel to upload the model
updates and how much bandwidth is allocated to each client.
However, due to the specific application in consideration,
namely FL, the resource allocation objective and consequently
the outcome can be very different from, e.g., throughput
maximization.

Optimizing WFLNs faces unique challenges compared to
optimizing either FL or the traditional wireless networks.
On the one hand, the wireless network sets resource constraints
on performing FL as the finite wireless bandwidth limits the
number of clients that can be selected in each round, and
the selection must be adaptive to the highly variable wireless
channel conditions. On the other hand, FL is likely to change
the way wireless networks should be optimized as model
training is a complex long-term process where decisions across
rounds are interdependent and collectively decide the final
training performance. Further, since mobile devices often have
finite energy budgets due to, e.g., a finite battery, the number
of rounds each individual mobile device can participate during
the entire course of FL is also limited. An extremely crucial
yet largely overlooked question is: does learning in different
rounds contribute the same or differently to the final learning
outcome and hence should the wireless resources be allocated
discrepantly across rounds? Without a good understanding
of its answer, conventional wireless network optimization
approaches that treat each time slot independently and equally
may lead to considerably suboptimal FL performance.
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This paper aims to formalize this fundamental problem
of client selection and bandwidth allocation in WFLNs and
derive critical knowledge to enable the efficient operation of
these networks. We study how resources (i.e., bandwidth and
energy) should be allocated among clients in each learning
round as well as across rounds given finite client energy bud-
gets in a volatile network environment. Our main contributions
are summarized as follows.

• While existing works [2], [3] have shown that selecting
more clients generally improves the FL performance,
there is little understanding of how this improvement
depends on different learning rounds. If the total number
of selected clients during the entire course of FL is fixed,
should client selection be uniform across rounds or biased
toward the early/late FL rounds? Through experiments,
we show in two representative ML tasks, namely image
classification and text generation, a general “later-is-
better” phenomenon in terms of higher accuracy, lower
training loss and better robustness. This finding, to our
best knowledge, is the first that relates the temporal client
selection pattern to the final FL performance.

• With “later-is-better”, we formulate a long-term client
selection and bandwidth allocation problem for a finite
number of FL rounds under finite energy constraints of
individual clients. To deal with time-varying but unpre-
dictable wireless channel conditions, a new Lyapunov-
based online optimization algorithm called OCEAN is
proposed, where in each FL round, a new Set Expansion
Algorithm (SEA) is developed to efficiently solve the per-
round problem. We prove that OCEAN demonstrates an
[O(1/V ), O(

√
V )] learning-energy tradeoff where V is

an algorithm parameter.
• We characterize the structure of the client selection and

bandwidth allocation outcome. In each FL round, clients
are selected according to a priority metric, which is the
ratio of the client’s current energy deficit queue length
and its current wireless channel state. However, among
the selected ones, more bandwidth is allocated to clients
with a lower priority (i.e., worse channel and larger
energy deficit queue length). This is in stark contrast to
a traditional throughput-oriented wireless network where
more bandwidth is allocated to clients with a better
channel condition in order to maximize throughput.

II. RELATED WORK

Since the proposal of FL [1], [4], a lot of research
effort has been devoted to tackling various challenges in
this new distributed machine learning framework, including
developing new optimization and model aggregation algo-
rithms [5]–[7], handling non-i.i.d. and unbalanced datasets
[8]–[10], and preserving model privacy [11]–[15] etc. Among
these challenges, improving the communication efficiency of
FL has been a key challenge due to the tension between
uploading a large amount of data for model aggregation and
the limited network resource to support this transmission.
In this regard, a strand of literature focuses on modifying
the FL algorithm itself to reduce the communication burden

on the network, e.g., updating clients with significant training
improvement [16], compressing the gradient vectors via quan-
tization [17], or accelerating training using sparse or struc-
tured updates [1], [18]. Hierarchical FL networks [19]
have also been proposed where multiple edge servers per-
form partial model aggregation first, whose outputs are fur-
ther aggregated by a cloud server. Recognizing the unique
physical property of wireless transmission, [2], [20]–[22]
propose analog model aggregation over the air, provided that
a very stringent synchronization is available.

As wireless networks are the envisioned main deploy-
ment scenario of FL, how to optimally allocate the limited
bandwidth and energy resources for FL has also received
much attention. Many existing works [23]–[26] study the
inherent trade-off between local model update and global
model aggregation, e.g., to adapt the frequency of global
aggregation [23] or to optimize uplink transmission power/rate
and the local update CPU frequency [25], [26]. In all these
works, all clients participate in every FL round. Although
both empirical studies [2], [3] and theoretical analysis [27]
show that including more clients improves the FL convergence
speed, the limited bandwidth of wireless networks cannot
support many clients to upload their local updates at the same
time. For FL at scale, client scheduling policies, which select
only a subset of clients in every round, are necessary. In [28],
the convergence performance of FL under three basic schedul-
ing policies, namely random, round-robin and proportional
fair, is analyzed. Different types of joint bandwidth allocation
and client scheduling policies, e.g., [3], [29]–[33], have been
proposed to either minimize the learning loss or the training
time. However, their optimization problems are formulated by
considering individual FL rounds separately or treating every
FL round equally, and hence the same network resources are
allocated across learning rounds. Our paper differs from these
works in that we explicitly consider the varying significance
of FL rounds and study a long-term bandwidth allocation and
client selection problem under long-term energy constraints
and with uncertain wireless channel information.

In our experiments, an empirical “later-is-better” conver-
gence phenomenon is observed. A thorough theoretical con-
vergence analysis of this phenomenon seems a very difficult
task, and likely would require techniques beyond those used in
existing convergence analysis for FL, e.g., [34], [35], as they
do not explicitly differentiate the effects of different learning
rounds. A possible direction is to relate the approximation
error of the gradient estimate to the number of selected clients
in every learning round, which shares a similar principle
to stochastic gradient descent with adaptive batches [36].
The theoretical convergence analysis is beyond the scope of
the current paper, and represents an important future work
direction.

III. SYSTEM MODEL

Consider a WFLN with one server and K clients, indexed by
the set K = {1, . . . , K}. Each participating client k ∈ K has
a local dataset Dk. In the supervised learning case, Dk defines
the collection of data samples given as a set of input-output
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pairs {xi, yi}Dk
i=1, where xi ∈ R

d is a d-dimensional input
feature vector, and yi ∈ R is the ground-truth output label.
This data can be generated through the usage of the client
via mobile applications and can be employed for various ML
tasks, e.g., user activity prediction or health event prediction.

FL iterates between two steps: 1) the server updates the
global model by aggregating local models transmitted over
a multi-access channel by the clients; 2) the clients update
their local models using the global model broadcasted by
the server. We call each iteration a learning round. WFLN
has to decide in each round which clients upload their local
model updates depending on their wireless channel condition
and remaining battery to maximize the learning performance.
We use at

k ∈ {1, 0} to denote whether or not client k is
selected in round t, and at = (at

1, . . . , a
t
K) collects the overall

client selection decisions.

A. Client Energy Consumption

For a selected client k in round t (i.e., at
k = 1), it incurs

energy consumption due to local training and uploading the
local updates to the edge server via the wireless channel. For
each client k, let Etr

k denote its local training energy consump-
tion in every round, which depends on its computing archi-
tecture, hardware and dataset. We consider a specific wireless
multi-access scheme, i.e., orthogonal frequency-division mul-
tiple access (OFDMA) for local model uploading with a total
bandwidth B. Let bt

k ∈ [0, 1] be the bandwidth allocation ratio
for client k in round t, and hence its allocated bandwidth
is bt

kB. Let bt = (bt
1, . . . , b

t
K). Bandwidth allocation must

satisfy
∑

k∈K bt
k = 1, ∀t. Clearly, if at

k = 0, namely client k
is not selected in round t, then it is the best not to allocate
any bandwidth to this client, i.e., bt

k = 0. On the other hand,
if at

k = 1, then we require that at least a minimum bandwidth
bmin is allocated to client k, i.e., bt

k ≥ bmin. This is because
practical systems cannot assign an arbitrarily small bandwidth
to an individual client due to, e.g., a finite resource block
size. In addition, a close-to-zero bandwidth allocation will
require an extremely high transmit power and hence result
in an extremely high energy consumption to achieve a target
transmission rate. To make the problem feasible, we assume
bmin ≤ 1/K .

Let pt
k denote the transmission power (in Watt/Hz) of client

k in round t. The achievable rate (in bit/s), denoted by rt
k, can

be written according to the Shannon’s formula as

rt
k = bt

kB log2

(
1 +

pt
k(ht

k)2

N0

)
(1)

where N0 is the variance of the complex white Gaussian
channel noise and ht

k is the channel state of client k in
round t. Let L denote the data size of the adopted machine
learning model (in bit), then the time needed to upload the
local model update to the edge server is τk = L/rt

k. For a
target upload time deadline τ̄ , the required transmission power
can be derived using (1) and hence the transmission energy
consumption of client k is

Etx(at
k, bt

k|ht
k) =

τ̄N0Bbt
k

(ht
k)2

(
2

L

τ̄Bbt
k − 1

)
at

k (2)

The total energy consumption of client k is therefore

E(at
k, bt

k|ht
k) =

[
τ̄N0Bbt

k

(ht
k)2

(
2

L

τ̄Bbt
k − 1

)
+ Etr

k

]
at

k (3)

B. System Learning Performance

Existing works [2], [3] have shown that the FL performance
can be improved by selecting more clients in each round.
However, selecting more clients is not always possible if each
client is subject to a long-term energy constraint due to, e.g.,
a finite battery: selecting more clients in early learning rounds
depletes the battery of the clients and hence fewer clients can
be selected in later learning rounds. Hence, even with the
same average number of selected clients, the temporal pattern
can be considerably different, yet there is little understanding
of how the temporal pattern affects the final FL outcome.
In this subsection, we design experiments for two tasks
(i.e., image classification and text prediction) on three datasets
(i.e., MNIST, CIFAR-10 and Shakespeare) to show that the
temporal client pattern indeed has a considerable impact on
the final FL performance. In all experiments, we consider FL
on 20 clients and investigate three temporal selection patterns:
Uniform – in each round, 10 clients are randomly selected to
participate in FL; Ascend – the number of selected clients
gradually increases from 1 to 20 with an average number
of 10 clients selected per round; Descend – the number of
selected clients gradually decreases from 20 to 1 with an
average number of 10 clients selected per round. All exper-
iments are conducted using the TensorFlow Federated (TFF)
framework [37] and the datasets have been pre-processed as
non-i.i.d. federated datasets.

Figure 2 illustrates the test accuracy of MNIST, CIFAR-10
and Shakespeare, respectively. As can be seen, although the
average number of selected clients is the same, different
temporal patterns result in different test accuracy by the end of
training. In particular, Ascend results in the best performance
compared to Uniform and Descend. There is a good reason
behind such a “later-is-better” phenomenon: early learning
rounds are “easy” rounds where the learning performance is
less sensitive to the number of selected clients. Therefore, even
if Ascend selects fewer clients in the early rounds, learning
speed is minimally affected. However, the later learning rounds
are the more “difficult” rounds, and to push accuracy even
higher requires more clients to update the shared model using
their data. In fact, not only Ascend wins in training loss and
accuracy, but also it is often much more robust as the standard
deviation is much smaller. This is again because more clients
participate in model updating towards the end of learning,
which can smooth out abrupt changes in the learned model
of individual clients.

Based on the empirical “later-is-better” observation,
we introduce the following metric to describe the FL perfor-
mance in round t:

U t(at) = ηt
K∑

k=1

Dkat
k (4)

where ηt is a temporal weight to capture the varying signifi-
cance of selecting more clients in different learning rounds.
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Fig. 1. Test accuracy on MNIST, CIFAR-10 and Shakespeare datasets.

An increasing sequence of ηt often results in better FL
performance as more clients are likely to be selected in later
rounds of learning.

We note, however, although the above metric will facilitate
our subsequent resource allocation, it does not exactly charac-
terize the FL speed or accuracy, which is extremely difficult,
if not impossible, to model due to the complex and non-convex
nature of many ML algorithms.

C. Problem Formulation

As we emphasize the long-term performance and final
outcome of FL, the goal is to maximize the weighted sum of
selected clients defined in (4) for a total number of T learning
rounds while satisfying the long-term energy budget con-
straints of individual clients, through joint client selection at

and bandwidth allocation bt in every round t = 0, . . . , T − 1.
Although the performance metric defined in (4) is artificial,
we will relate it to the actual FL performance in experiments.
Formally, the problem that we aim to solve is

P1 max
a0,b0,...,aT−1,bT−1

T−1∑
t=0

U t(at) (5)

s.t.
T−1∑
t=0

E(at
k, bt

k|ht
k) ≤ Hk, ∀k (6)

bmin ≤ bt
k ≤ 1, ∀k, ∀t,

K∑
k=1

bt
k = 1, ∀t (7)

at
k ∈ {0, 1}, ∀k, ∀t (8)

Constraint (6) requires that the total energy consumption over
the T rounds for each client k does not exceed an energy
budget Hk (e.g., battery capacity or energy limit set by
the client). Constraint (7) is the feasibility condition on the
bandwidth allocation. Constraint (8) is the feasibility condition
on the client selection.

So far we have formulated a long-term optimization problem
for client selection and bandwidth allocation in WFLNs.
However, several challenges impede the derivation of the opti-
mal solution to P1. The first is the lack of future information:
optimally solving P1 requires complete offline information
(i.e., channel conditions) over the entire FL period (i.e., T
learning rounds) that is very difficult to accurately predict in
advance. Furthermore, P1 belongs to mixed-integer nonlinear

programming and is difficult to solve, even if the long-term
future information is accurately known a priori. Thus, these
challenges demand an online approach that can efficiently
make joint client selection and bandwidth allocation decisions
without foreseeing the far future.

D. Offline Benchmark: R-Round Lookahead Algorithm

Before we propose the online algorithm, we first introduce
an offline algorithm with R-round lookahead information
(i.e., the channel information in the next R learning rounds are
assumed to be known) as a benchmark. Specifically, we divide
the entire FL period into M ≥ 1 frames, each having R ≥ 1
learning rounds such that T = MR, and present the following
problem formulation:

P2 : max
a0,b0,...,aT−1,bT−1

(m+1)R−1∑
t=mR

U t(at) (9)

s.t.
(m+1)R−1∑

t=mR

E(at
k, bt

k|ht
k) ≤ Hk/M, ∀k

Constraints (7), (8) (10)

Essentially, P2 defines a family of offline algorithms para-
meterized by the lookahead window size R. Clearly, there
exists at least one sequence of joint client selection and band-
width allocation decisions that satisfies all constraints of P2
(e.g., no client is selected in any round in each frame).
We denote the optimal learning performance for the m-
th frame by U∗

m, for m = 0, . . . , M − 1, considering all
the decisions that satisfy the constraints and have perfect
information over the frame. Thus, the optimal long-term learn-
ing performance achieved by the oracle’s optimal R-round
lookahead algorithm is given by

∑M−1
m=0 U∗

m.
We note that because of the assumed lookahead information,

the R-round lookahead algorithms are impractical (unless
R = 1). The purpose of introducing these algorithms is only
to use them as a benchmark for our practical online algorithm
to be proposed in the next section.

IV. ONLINE CLIENT SELECTION AND

BANDWIDTH ALLOCATION

In this section, we develop the Online Client sElection and
bAndwidth allocatioN algorithm, called OCEAN, and then
characterize its structural properties. We also prove that it
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is efficient compared to the optimal offline algorithm with
R-round lookahead information. Our OCEAN algorithm has
an input parameter R related to the lookahead window size,
so the R-round lookahead algorithms are natural benchmarks.

A. The OCEAN Algorithm

A major challenge of directly solving P1 is that the
long-term energy constraint of the clients couples the client
selection and bandwidth allocation decisions across different
learning rounds: selecting more clients in the current round
reduces the bandwidth allocated to each individual client,
thereby increasing the energy consumption of these clients;
furthermore, more energy consumption in the current round
potentially reduces the energy budget available for future
FL rounds, and yet the decisions have to be made without
foreseeing the future. To address this challenge, we leverage
the Lyapunov technique and construct a virtual energy deficit
queue qk(t) for each client k to guide the client selection and
bandwidth allocation decisions to follow the long-term energy
constraint. The virtual energy queue of client k starts with
qk(0) = 0, ∀k, and is updated at the end of each round t as
follows

qk(t + 1) = [E(at
k, bt

k|ht
k) − Hk/T + qk(t)]+ (11)

where [·]+ = max{·, 0}. Hence, qk(t) is the queue length
indicating the deviation of the current energy consumption of
client k from its long-term energy constraint Hk. Let q(t) =
(q1(t), q2(t), . . . , qK(t)) collect the energy deficit queues for
all clients.

Algorithm 1 OCEAN

1: Input: qk(0) = 0, ∀k and R
2: for t = 1, 2, . . . , T do
3: if t = mR, ∀m = 1, . . . , M − 1 then
4: qk(t) ← 0, ∀k and V ← Vm

5: end if
6: Observe the current channel state ht

k, ∀k
7: Solve P3
8: Update energy queue according to (11)
9: end for

We now present OCEAN in Algorithm 1. OCEAN is
purely online and requires only the currently available chan-
nel state information as inputs (i.e. hk(t), ∀k). We use
V0, V1, . . . , VM−1 to denote a sequence of positive control
parameters to dynamically adjust the tradeoff between maxi-
mizing the number of selected clients and minimizing energy
consumption over the M frames, each having R communica-
tion rounds. The importance of the control parameters will be
revisited in Section IV.C. In every round t, we aim to solve
the following per-round problem:

P3 max
at,bt

V · U t(at) −
K∑

k=1

qk(t)E(at
k, bt

k|ht
k) (12)

s.t. (7), (8) (13)

By considering the additional term
∑K

k=1 qk(t)E(at
k, bt

k|ht
k),

the system takes into account the energy deficit of the clients

during the current round’s client selection and bandwidth
allocation. As a consequence, when qk(t) is larger, minimiz-
ing the energy deficit is more critical. Thus, our algorithm
works following the philosophy of “if violate the energy
constraint, then use less energy”, and the energy deficit queue
maintained without foreseeing the future guides the system
towards meeting the energy constraints of the clients. OCEAN
decomposes the long-term optimization problem into a series
of per-round problems P3. For a more rigorous derivation of
this decomposition, please refer to the proof of Theorem 1.
Now, to complete OCEAN, it remains to solve P3, which
however is still very difficult.

B. Solving the Per-Round Problem

The per-round problem P3 is a difficult mixed-integer prob-
lem. To see more clearly how the objective function depends
on at and bt, we write it out and rearrange it as follows

K∑
k=1

[
V ηtDk − qk(t) ·

(
τ̄N0Bbt

k

(ht
k)2

(
2

L

τ̄Bbt
k − 1

)
+ Etr

k

)]
at

k

e� W (at, bt) (14)

Notice that at
k is a binary integer variable and bt

k is a contin-
uous variable in [bmin, 1]. In general, mixed-integer problems
are difficult to solve and often there is no polynomial-time
optimal algorithm. In what follows, we develop an efficient
algorithm to solve P3. To simplify the notations, we drop the
index t in this subsection.

Our algorithm to solve P3, called SEA (Set Expansion
Algorithm), incrementally adds clients into the selection set
S based on a metric ρk � qk(t)

(ht
k)

2 , which we call the selection
priority (the lower value, the higher priority). Initially, all
clients with ρk = 0 (which also means qk(t) = 0 as (ht

k)2

is always positive) are added into S. We denote this initial set
by S0. Then, clients with ρk > 0 are added into S one by one
in the ascending order of ρk, and for each possible selection
set, the corresponding bandwidth allocation is computed by
solving the following optimization problem

P4 max
{bt

k}k∈S−S0

∑
k∈S−S0

(
V ηtDk

−ρkN0τ̃Bbk

(
2

L
τ̃Bbk − 1

)
− qk(t)Etr

k

)
(15)

s.t.
∑

k∈S−S0

bt
k = 1 − |S0| · bmin (16)

bk ≥ bmin, ∀k ∈ S − S0 (17)

Let b∗(S) be the optimal bandwidth allocation for a given
selection set S, and W ∗(S) be the optimal value. Clearly, for
the initial set S0, W ∗(S0) = ηt|S0| as ρk = 0, ∀k ∈ S0. The
number of selection sets that can possibly emerge following
the above set expanding rule, which are collected in S, is at
most K . Finally, the implemented optimal selection is S∗ =
argmaxS∈S W ∗(S) and the implemented optimal bandwidth
allocation is b∗ = b∗(S∗).

Because there are K clients and in every iteration, one
more client is added into S, we ensure that the algorithm only
needs to solve at most K optimization problems P4 to return
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Algorithm 2 Set Expansion Algorithm (SEA)

1: Input: qk(0) = 0, ∀k
2: Rank the clients according to ρ. Hence we have ρ1 ≤ ρ2 ≤

. . . ≤ ρK

3: Set S0 = {k : ρk = 0}, S = S0, and S = {S0}.
4: for k = |S0| + 1, . . . , K do
5: Update S = S ∪ {k}
6: Solve P4 and obtain b∗(S) and W ∗(S)
7: if V ηt − ρkN0τ̃Bbt

k

(
2

L
τ̃Bbk − 1

)
< 0 then

8: Stop iteration
9: else

10: Add S to S, i.e. S = S ∪ {S}
11: end if
12: end for
13: Find S∗ = arg maxS∈S W ∗(S)
14: Return a∗ where a∗

k = 1{k ∈ S∗}, ∀k and b∗ = b∗(S∗)

the optimal solution. In fact, we can reduce the number of
times for solving P4 by adding a termination condition: if
for some S, its optimal bandwidth allocation b∗(S) results

in V ηtDk − ρkN0τ̃Bbk

(
2

L

τ̃Bbt
k − 1

)
− qk(t)Etr

k < 0 for

the last added client k, then the algorithm stops adding
more clients into the selection set. This termination condition
can significantly reduce the number of convex optimization
problems to be solved when K is large. The pesudocode of
SEA is given in Algorithm 2.

Now, we analyze the optimality of SEA. To this end, we first
define Δ-optimality.
Definition 1: A joint client selection and bandwidth alloca-

tion action (a†, b†) is Δ-optimal if W (a†, b†) ≥ W (a∗, b∗)−
Δ, where Δ is some positive constant and (a∗, b∗) is the
optimal joint client selection and bandwidth allocation action.
Theorem 1: SEA returns an Δ-optimal solution to the per-

round problem P3 by solving at most K convex optimization
problems, where Δ = K ·maxk1,k2(V η|Dk1−Dk2 |+|qk1E

tr
k1
−

qk2E
tr
k2
|).

Proof: See Appendix A. �
The following corollary is straightforward by relaxing the

heterogeneity of dataset size and the local training energy
consumption so that Δ = 0.
Corollary 1: Assume that all clients have the same local

data size, i.e., Dk1 = Dk2 , ∀k1 	= k2, and the local training
energy consumption is negligible, i.e., Etr

k → 0, ∀k, then SEA
returns the optimal solution to the per-round problem P3 by
solving at most K convex optimization problems.
Remark: The complexity of SEA is determined by two

factors: the number of times to solve P4; the time complexity
to solve each P4. First, SEA solves P4 at most K times,
but the termination condition can significantly reduce the
actual number of times to solve P4. Secondly, since P4 is a
convex optimization problem, many efficient algorithms [38]
and mature software tools (such as CVX [39] and SciPy [40])
exist to solve it with low complexity. In addition, since SEA
for round t can run while the parameter server is aggregating
local models for round t − 1, it has a minimal impact on the

training complexity of FL. Numerical results are reported in
Section VI. D.

C. Structural Results and Performance Analysis

In this subsection, we first investigate the structure of the
optimal solution produced by SEA in every round, and then
characterize the performance of OCEAN.

In Theorem 1, we have already proven a thresholding result
on the client selection, namely only clients whose selection
priority ρk is below a threshold are selected to participate
in a FL round. Proposition 1 characterizes how bandwidth is
allocated among the selected clients and their incurred energy
consumption.
Proposition 1: In any learning round t, the allocated band-

width bt,∗
k of a selected client k and its weighted energy

consumption qk(t)Et
k(bt,∗

k ) are non-decreasing with ρt
k.

Proof: See Appendix B. �
Theorem 1 and Proposition 1 together show that a client

with a smaller energy deficit qk(t) and a better channel
condition (ht

k)2 (and hence a smaller ρt
k) is more likely to

be selected to participate in the current FL round; however,
among the selected clients, a client with a smaller ρt

k is allo-
cated with less bandwidth. This is because although allocating
more bandwidth to client k with a smaller ρt

k reduces the
energy consumption and deficit of this client, it reduces the
bandwidth that can be allocated to clients with larger ρ, which
leads to even higher increased energy consumption and deficit
of those clients. Moreover, in the optimal solution, the overall
effect of energy deficit and consumption, namely qk(t)Et

k(b∗k),
is still increasing in ρt

k.
Next, we prove the performance guarantee of OCEAN. The

key idea of our proof relies on the drift-plus-penalty technique
in Lyapunov analysis [41]. The biggest difference is that our
formulation considers a finite number of T learning rounds,
while standard Lyapunov analysis assumes T → ∞. This leads
to a different proof and result as shown in Theorem 2.
Theorem 2: For any R ∈ Z

+ and M ∈ Z
+ such that T =

MR, when comparing OCEAN with the R-round lookahead
algorithm, the following statements hold:
(a) The energy constraint of every client k is approximately

satisfied with a bounded deviation:
T∑

t=0

Ek(at
k, bt

k|ht
k) ≤ Hk +

M−1∑
m=0

√
2(VmηtK + C1)

R
, ∀k

(18)

where C1 � K(Emax − Hmin/T )2/2.
(b) The federated learning performance satisfies:

T−1∑
t=0

U(at) ≥
M−1∑
m=0

U∗
m − C2

M−1∑
m=0

1
Vm

(19)

where C2 � C1 R + R(R−1)K
2 (Emax)2 and U∗

m is the
optimal value achieved by the R-round lookahead algorithm
in frame m.

Proof: See Appendix C. �
Theorem 2 shows that, given a fixed value of R and M ,

OCEAN is O(1/V )-optimal with respect to the FL perfor-
mance against the optimal R-lookahead policy, while the

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 22,2021 at 01:17:37 UTC from IEEE Xplore.  Restrictions apply. 



1194 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 2, FEBRUARY 2021

energy consumption is guaranteed to be approximately sat-
isfied with a bounded factor O(

√
V ). Thus, OCEAN demon-

strates an [O(1/V ), O(
√

V )] learning-energy tradeoff. Note
that when R = T , the T -lookahead benchmark has complete
future information of the entire T rounds. Even in this case,
the [O(1/V ), O(

√
V )] tradeoff still holds.

V. SIMULATION RESULTS

In this section, we simulate a WFLN to evaluate the
performance of OCEAN.
Federated Dataset: To simulate FL, we leverage the

TensorFlow Federated (TFF) framework and the MNIST
dataset for hand-written digit classification. Each client’s local
dataset is keyed by the original writer of the digits. Since
each writer has a unique style, this dataset exhibits the kind
of non-i.i.d. behavior expected of federated datasets. We use
the first 10 clients in the MNIST dataset to conduct our
simulation with each client having about 100 training data
samples. Because clients have a similar local dataset size,
we take Dk = 1, ∀k after normalization for simplicity. Since
the hand-written digit classification is a relatively easy image
classification task, we follow TFF’s tutorial to construct a
simple three-layer neural network with the first layer being
input, the second containing 10 neurons and the third per-
forming the softmax operation. This neural network’s model
size is L = 3.4 × 105 bits. FedAvg [1] is used as the learning
algorithm.
Wireless Network: To simulate the wireless network,

we consider an OFDMA system where the total bandwidth
B = 10 MHz. Each client’s wireless channel gain is modelled
as independent free-space fading with average path loss 36dB.
The variance of the complex white Gaussian channel noise is
set as N0 = 10−12 W. To ensure timely model update, we set
the target uploading time in each round to be τ̄ = 300 ms. The
minimal bandwidth bmin is set as 2 × 105 Hz. For ch client
k, the energy budget is set as Hk = 0.15 J. The network runs
for T = 300 rounds.

A. Benchmarks

We compare the performance of OCEAN with the following
three benchmark algorithms.

• Select-All: All 10 clients are selected in every learning
round. Bandwidth is allocated to minimize the total
energy consumption while satisfying the upload deadline
requirement.

• Static Myopic Optimal (SMO): In every learning round,
SMO uses only currently available information indepen-
dently across rounds (which is equivalent to the 1-Round
Lookahead algorithm) to solve

max
at,bt

∑
k

at
k (20)

s.t. E(at
k, bt

k|ht
k) ≤ Hk/T, ∀k

Constraints (7), (8) (21)

This problem is easy to solve: for each client k, first
compute the required bandwidth b†k ≥ bmin so that using

Fig. 2. Temporal client selection patterns of OCEAN and benchmarks.

Hk/T energy can meet the upload time target τ̄ ; then
rank b†k in the ascending order and select clients until
the total required bandwidth exceeds B. SMO mimics
existing approaches that solves bandwidth allocation and
client selection independently across learning rounds.

• Adaptive Myopic Optimal (AMO): SMO has a clear
deficiency which can result in energy under-utilization:
when a client is not selected in a round, its energy
Hk/T is wasted and will not be used in future rounds.
To address this issue, we also consider a modified version
of SMO, which recycles previously unused energy budget
for future rounds. In particular, the energy budget for
client k in round t is modified to (Hk − ∑t−1

τ=0 Et
k)/

(T − t).
• Weighted Sum Static Myopic Optimal (WS-SMO):

This is the formulation adopted in [3], which aims to
minimize

∑
k E(at

k, bt
k|ht

k)−λ
∑

k at
k in every FL round.

For OCEAN, we let R = T and hence the
sequence V1, . . . , VM becomes a single scalar V . Moreover,
we implement three variants using different temporal impor-
tance sequences ηt: Ascending (OCEAN-a); Descending
(OCEAN-d); and Uniform (OCEAN-u).

B. Performance Comparison

Figure 2 shows the number of selected clients in every
round for different approaches, which is obtained by averaging
over 10 runs. As the name suggests, Select-All selects all
10 clients in every round, resulting in the ideal optimal client
selection for FL. SMO selects much fewer clients due to the
hard energy budget allocation in every round. Many clients
do not get to upload their local model updates due to the bad
channel state that they are experiencing. Likewise, WS-SMO
also does not select sufficiently many clients because the used
λ = 0.2 is small. Note that choosing an appropriate λ requires
a careful retrospective tuning, which is impractical. AMO
starts with selecting few clients due to the same reason as
SMO. However, as time goes on, energy budget not used
in the previous rounds accumulates. This allows the client
to transmit at the desired rate using a higher transmission
power in later rounds, especially in those towards the very
end, thereby countering the effects of bad channel states.
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Fig. 3. Temporal client selection patterns of OCEAN variants.

Fig. 4. Per-client energy consumption comparison.

As a (fortunate) by-product, AMO also achieves an ascending
pattern of client selection. Our proposed algorithm, OCEAN-a,
is able to select many more clients than SMO because it
uses energy as needed without imposing a hard per-round
energy constraint. Compared to AMO, it is able to fine-tune
the temporal pattern of client selection by using different
sequences of temporal weights η. As can be seen in Figure 3,
OCEAN-a results in an increasing number of selected clients,
OCEAN-d results in a decreasing number of selected clients,
while OCEAN-u keeps the number of selected clients almost
the same across rounds.

Figure 4 shows the actual energy consumption of individ-
ual clients by the end of 300 learning rounds for different
approaches in a particular run. Because Select-All completely
ignores the energy budgets of the clients, it results in a very
large energy consumption, far exceeding the energy budgets.
On the other hand, SMO and WS-SMO didn’t fully utilize
the client’s energy budget because in many learning rounds
the client is not selected. Both AMO and OCEAN-a incur
a total energy consumption close to the given energy budget
(i.e. 0.15) for individual clients.

As our ultimate goal is to improve the FL performance,
we show the test accuracy for different approaches in Figure 5.
Select-All, as expected, results in the best FL performance,
with the highest accuracy and the fastest convergence among
all approaches. Due to the insufficient selection of clients

Fig. 5. Test accuracy of OCEAN-a and benchmarks.

Fig. 6. Client selection of scenario 1.

in the course of learning, SMO’s learning performance is
considerably inferior to all other approaches. Thanks to the
fortunate by-product of AMO, AMO’s FL performance is
comparable to OCEAN-a in this specific setting, which is close
to the ideal case Select-All. However, we will show in the next
set of experiments that AMO’s “luck” does not extend to other
more complex network environments.

C. Adaptability to Varying Network Condition

Although the performance of AMO seems comparable to
OCEAN-a in the last experiment, it is achieved in a relatively
easy network, where the wireless channel is relatively stable.
In this set of experiments, we simulate more challenging net-
work environments where the wireless channel can vary con-
siderably due to, e.g., client mobility. In particular, we simulate
two scenarios. In Scenario 1, the average path loss gradually
increases from 32 dB to 45 dB, mimicking a scenario where
clients move away from the server over time. In Scenario 2,
the average path loss gradually decreases from 45 dB to 32 dB,
mimicking a scenario where clients move towards the server
over time.
Scenario 1: Figure 6 shows the number of selected clients

over 300 rounds for OCEAN-a and AMO and Figure 7 shows
the their FL accuracy. In the early rounds when the wireless
channel is good, AMO selects some clients. However, as the
channel gain degrades, AMO is not able to adapt to this change
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Fig. 7. Test accuracy of scenario 1.

Fig. 8. Client selection of scenario 2.

as the pre-allocated energy budget (even if the unused budget
from the previous rounds is incorporated) cannot support even
a single client to finish uploading the local model before the
deadline τ̄ . Only in the rounds towards the very end does the
energy budget become sufficient and hence, some clients again
are selected to upload their local model updates. Because of
the long idle period in the middle when no clients are selected,
the learning performance of AMO is significantly worse than
OCEAN.
Scenario 2: Figure 8 shows the number of selected clients

over 300 rounds for OCEAN-a and AMO and Figure 9
shows the their federated learning accuracy. In this scenario,
the channel state in the early rounds is bad and hence, hardly
any client can be selected to upload its local model update due
to insufficient energy budget in AMO. As the channel state
improves, AMO starts to select some clients but it becomes
too late to do so.

In both scenarios, OCEAN is able to adapt its client
selection decision because of its soft per-round energy bud-
get allocation, yet the total consumed energy is still made
close to the total energy budget. The per-client total energy
consumption of OCEAN-a is shown in Figure 10 for the two
considered scenarios.

D. Features of OCEAN

1) Client Selection and Bandwidth Allocation Outcomes:
To have a deeper understanding of how OCEAN works,

Fig. 9. Test accuracy of scenario 2.

Fig. 10. Energy consumption of OCEAN-a for the two scenarios.

Fig. 11. Client selection and bandwidth allocation outcomes.

we illustrate, in one specific round, how clients are selected
and bandwidth is allocated depending on the clients’ channel
condition and energy deficit queue in that round. In Figure 11,
the top subplot shows the current channel condition and energy
deficit queue for each client. The middle subplot shows the
computed selection priority ρ, with shaded bars indicating
the selected clients. The bottom subplot shows the bandwidth
allocation among the selected clients. As can be seen, a better
channel condition and a larger deficit queue result in a higher
priority (i.e., a smaller value of ρ). However, among the
selected clients, more bandwidth is allocated to clients of a
lower priority (i.e., a larger value of ρ).
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Fig. 12. Tradeoff between learning and energy.

Fig. 13. Actual number of times needed to solve P4 v.s. the number of
clients K.

TABLE I

COMPUTATIONAL COMPLEXITY FOR SOLVING P4

2) Learning - Energy Tradeoff: Next, we show the impact
of the algorithm parameter V on achieving different learning
v.s. energy tradeoff of OCEAN. Figure 12 shows the number
of selected clients, the learning accuracy and the per-client
energy consumption violation as a function of V . As can be
seen, a larger V emphasizes more on the learning performance,
resulting in more selected clients and higher accuracy. On the
other hand, a smaller V emphasizes more on the energy
consumption, resulting in a smaller violation (if any) on the
total energy budget.
3) Complexity of SEA: Finally, we show numerical results

on the complexity of SEA. Figure 13 shows the actual number
of times needed to solve P4 for different K with different
number of total clients. In our implementation, we used the
SLSQP algorithm [42] to solve each P4. Table I shows the
number of iterations, the number of function evaluations,
the number of gradient evaluations and the wall clock time

to solve a single P4 for different tolerated gap values. (Wall
clock time is obtained on a computer with Intel Core i5-9400
2.9GHz CPU with 16GB memory).

VI. CONCLUSION

Resource allocation in wireless networks is an old topic,
but it also faces constantly changing new challenges as new
applications emerge. With FL being the trending new wireless
network application, the old mindset of resource allocation
for traditional applications such as file downloading or video
streaming must be changed. This paper identifies a key prop-
erty of FL, namely the temporal dependency and varying
significance of learning rounds, that may significantly reshape
how wireless resources should be allocated for optimized
network and learning performance, yet is largely overlooked in
the literature. While our formulation and algorithm have shown
superior performance in real-world FL experiments, there are
several future research directions that may extend the impact
of this work. For example, we showed that an ascending client
selection pattern is generally desired, but it is still not clear
what the optimal pattern is. A theoretical understanding of
why “later-is-better” is an important future research direction.

APPENDIX A
PROOF OF THEOREM 1

The key is to prove that there exists at least one Δ-optimal
solution that has the following thresholding structure: there
is one k† so that a†

k = 1, ∀k ≤ k† and a†
k = 0, ∀k > k†.

Next, we prove this by contradiction. Suppose all Δ/2-optimal
solutions do not have a thresholding structure. Otherwise,
the above is already true because Δ/2 < Δ. Consider any
particular Δ/2-optimal solution (a†, b†), then there must exist
some L ≤ K and k−

L < . . . < k−
1 < k+

1 < . . . , k+
L so that

a†
k−

l

= 0 and a†
k+

l

= 1, and by swapping the decision for k−
l

and k+
l for all l, the solution becomes a thresholding solution.

Let us study this thresholding solution (ã, b̃) after the swap.
Specifically,

ãk−
l

= a†
k+

l

= 1, b̃k−
l

= b†
k+

l

(22)

ãk+
l

= a†
k−

l

= 0, b̃k+
l

= b†
k−

l

(23)

Since the decisions for clients other than k−
1 , . . . , k−

L and
k+
1 , . . . , k+

L remain the same, the difference in the objective
function value satisfies

W (a∗, b∗) − W (ã, b̃)
= W (a∗, b∗) − W (a†, b†) + W (a†, b†) − W (ã, b̃)
≤ Δ/2 + W (a†, b†) − W (ã, b̃)

= Δ/2 +
L∑

l=1

[V η(Dk−
l
− Dk+

l
)

+(ρk−
l
− ρk+

l
)N0τ̃Bf(b†

k+
l

)

+(qk−
l
Etr

k−
l

− qk+
l
Etr

k+
l

)]

≤ Δ/2 + K · max
k1,k2

(V η|Dk1 − Dk2 |
+|qk1E

tr
k1

− qk2E
tr
k2
|) = Δ (24)
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where the last inequality is because ρk−
l
− ρk+

l
< 0. There-

fore, we proved that at least one Δ-optimal solution has
the thresholding structure. Hence, by checking sequentially
the thresholding solutions, SEA must return a Δ-optimal
solution.

Next, we prove that the termination condition is correct.
Let i∗ be the first client with V ηDi∗ − ρi∗N0τ̃Bf(b∗i∗ [i

∗]) −
qi∗E

tr
i∗ < 0 where we use b∗k[i] to denote the optimal band-

width allocation for the selection set S = {1, . . . , i}. Clearly,
when only clients {1, . . . , i∗ − 1} are selected, we obtain a
higher total utility because each client has more bandwidth.
Adding more clients into the selection set only reduces the
total utility. This proves the correctness of the termination
condition.

Finally, we remain to prove that P4 is a convex optimization
problem. This is easy to check because the function f(x) =
x(2

β
x − 1) where β > 0 is decreasing and convex in x ∈

(0,∞).

APPENDIX B
PROOF OF PROPOSITION 1

It suffices to consider the following optimization problem
with two clients

min
b1,b2

ρ1f(b1) + ρ2f(b2) (25)

s.t. b1 + b2 = δ, b1, b2 ≥ bmin (26)

where δ is any constant in (2 bmin, 1]. Let ρ1 < ρ2. Suppose
the optimal bandwidth allocation satisfies b∗1 > b∗2, then
by Lemma 1, we know f(b∗1) < f(b∗2). Let us construct
a different bandwidth allocation solution b̃ where b̃1 = b∗2
and b̃2 = b∗1. In other words, the bandwidth allocation
decisions are swapped. This solution also satisfies all con-
straints. We compare the respective objective values and
have

ρ1f(b∗1) + ρ2f(b∗2) − (ρ1f(b̃1) + ρ2f(b̃2))
e= (ρ1 − ρ2)(f(b∗1) − f(b∗2)) > 0 (27)

This contradicts the optimality of b∗. Therefore, we must have
b∗1 ≤ b∗2.

To prove ρ1 f(b∗1) ≤ ρ2 f(b∗2), let b2 = δ−b1 and ignore the
constraint that b1, b2 ≥ bmin for now. The first-order condition
requires

ρ1df(b1)/db1 + ρ2df(b2)/db2 · db2/db1 = 0 (28)

This leads to

ρ1f
′(b∗1) = ρ2f

′(b∗2) (29)

Because f ′(x) < 0, we can instead prove f(b∗1)/f ′(b∗1) ≥
f(b∗2)/f ′(b∗2). Let us define g1(x) � f(x)/f ′(x). Since we
have proven b∗1 ≤ b∗2 in the above, we only need to prove
that g1(x) is a non-increasing function in x > 0. To this end,
consider the first order derivative of g1(x),

g′1(x) =
(f ′(x))2 − f(x)f ′′(x)

(f ′(x))2
(30)

Let g2(x) � (f ′(x))2 − f(x)f ′′(x). We have to prove
g2(x) ≤ 0 for x > 0.

g2(x)

=
(

2
β
x

(
1 − ln 2 · β

x

)
− 1

)2

− x(2
β
x − 1) · (ln 2)22

β
x

β2

x3

= (2
β
x − 1)2 − 2(2

β
x − 1)2

β
x ln 2 · β

x
+ (ln 2)22

β
x

β2

x2
(31)

To simplify notations, we use a change of variable by letting
y = β/x. Then proving g2(y) ≤ 0 for y > 0 is equivalent to
proving g2(x) ≤ 0 for x > 0. We rewrite g2(y) below:

g2(y)�(2y−1)2−2(2y−1)2y ln 2 · y+(ln 2)22yy2 (32)

Clearly, g2(0) = 0. In order to prove g2(y) ≤ 0, we prove
g2(y) is decreasing in y ≥ 0.

g′2(y) = −(ln 2)2y2y (4(2y − 1) − ln 2 · y) (33)

It is easy to verify that g3(y) � 4(2y−1)−ln 2·y is increasing
in y > 0 and g3(0) = 0, which means g3(y) ≥ 0 for y ≥ 0.
Hence, g′2(y) < 0 for y > 0. This concludes the proof for
ρ1 f(b∗1) ≤ ρ2 f(b∗2) by ignoring the constraint b1, b2 ≥ bmin.

When the constraint b1, b2 ≥ bmin is considered, there are
two cases. In the first case, bmin ≤ b∗1 ≤ b∗2. In this case,
the constraint is automatically satisfied and hence, our above
conclusion holds. In the second case, b∗1 ≤ bmin ≤ b∗2. In this
case, the optimal allocation is modified to b̃∗1 = bmin ≥ b∗1
and b̃∗2 = 1− bmin ≤ b∗2. Since f(x) is a decreasing function,
ρ1 f(b̃∗1) ≤ ρ1 f(b∗1) ≤ ρ2 f(b∗2) ≤ ρ2 f(b̃∗2). This completes
the proof.

APPENDIX C
PROOF OF THEOREM 2

We define the quadratic Lyapunov function L(q(t)) �
1
2

∑K
k=1 q2k(t). Let Δ1(t) be the 1-round Lyapunov drift

yielded by some control decisions over one round: Δ1(t) �
L(q(t + 1)) − L(q(t)). Similarly, let ΔR(t) be the R-round
Lyapunov drift: ΔR(t) � L(q(t + R)) − L(q(t)). Based on
the queue dynamics, we have

1
2

K∑
k

q2k(t + 1) ≤ 1
2

K∑
k=1

[Ek(at
k, bt

k|ht
k) − Hk/T + qk(t)]2

Then, it can be easily show that

Δ1(t) ≤ C1 +
K∑

k=1

qk(t) · [Ek(at
k, bt

k|ht
k) − Hk/T ] (34)

where C1 is a constant satisfying C1 ≥ 1
2

∑K
k=1(E

max −
Hmin/T )2, ∀t, which is finite due to the boundedness of the
channel condition ht

k and the minimum bandwidth allocation
requirement bmin. Next, it is straightforward that ∀m and
∀t = mR, . . . , (m + 1)R − 1

Vm · U(at) − Δ1(t)

e≥ Vm · U(at) −
K∑

k=1

qk(t) · [Ek(at
k, bt

k|ht
k) − Hk] − C1

(35)
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As we can see, by solving P3, SEA actually maximizes a lower

bound of Vm ·U(at)−Δ1(t). Let â0, b̂
0
, . . ., âT−1, b̂

T−1
be

the sequence of decisions derived by the online algorithm.
(a) Consider a specific sequence of decisions where ãt

k =
0, ∀t, k. Clearly, in this case, U(ãt) = 0 and Ek(ãt

k, b̃t
k|ht

k)−
Hk/K = −Hk/K . Because ât, b̂ maximizes the right-hand
side of (35), we have

Vm · U(ât) − Δ1(t) ≥ Vm · 0 +
K∑

k=1

q̃k(t)Hk − C1 ≥ −C1

Therefore, Δ1(t) ≤ Vm · U(ât) + C1 ≤ VmηtK + C1.
As enforced by the online algorithm,

ΔR(mR) = 1
2

∑K
k=1(q

2
k(mR + R) − q2k(mR))

= 1
2

∑K
k=1 q2k(mR + R) (36)

is the R-round drift calculated after the m-th rest but before the
(m+1)-th reset of the energy deficit queue (so qk(mR) = 0).
Thus, before the (m + 1)-th reset of the energy deficit queue:

K∑
k=1

q2k(mR + R) = 2ΔR(mR)

e= 2
mR+R−1∑

t=mR

Δ1(t) ≤ 2R(VmηtK + C1) (37)

Therefore, ∀k,

qk(mR + R) ≤
√

2R(VmηtK + C1) (38)

On the other hand, according to (11), we have

qk(t + 1) − qk(t) ≥ Ek(at
k, bt

k|ht
k) − Hk/T (39)

Summing both sides over the rounds in the m-th frame, namely
t = mR, . . . , (m + 1)R − 1, and dividing by R, we have

1
R

(m+1)R−1∑
t=mR

(Ek(at
k, bt

k|ht
k) − Hk/T )

e≤ qk((m + 1)R) − qk(mR)
R

=
qk((m + 1)R)

R
(40)

Plugging (38) into (40), we have

1
R

(m+1)R−1∑
t=mR

(Ek(ât
k, b̂t

k|ht
k) − Hk/T ) ≤

√
2(VmηtK + C1)

R

Considering all M frames, we obtain

T∑
t=0

Ek(ât
k, b̂t

k|ht
k) ≤ Hk +

M−1∑
m=0

√
2(VmηtK + C1)

R
, ∀k

(b) Consider R-round weighted learning utility minus drift:

Vm

mR+R−1∑
t=mR

U(at) − ΔR(mR)

≥ Vm

mR+R−1∑
t=mR

U(at) − C1R

−
mR+R−1∑

t=mR

K∑
k=1

qk(t) · [Ek(at
k, bt

k|ht
k) − Hk/T ] (41)

Because â0, b̂
0
, . . . , âT−1, b̂

T−1
explicitly maximizes the

right-hand side of the above equation, the following must also
hold

Vm

mR+R−1∑
t=mR

U(ât) − ΔR(mR) (42)

≥ Vm

mR+R−1∑
t=mR

U(a∗,t) − C1R

−
mR+R−1∑

t=mR

K∑
k=1

qk(t) · [Ek(a∗,t
k , b∗,t

k |ht
k) − Hk/T ] (43)

≥ Vm

mR+R−1∑
t=mR

U(a∗,t) − C1R

−
mR+R−1∑

t=mR

K∑
k=1

(t−mR)Emax · [Ek(a∗,t
k , b∗,t

k |ht
k)−Hk/T ]

−
K∑

k=1

qk(mR)
mR+R−1∑

t=mR

[Ek(a∗,t
k , b∗,t

k |ht
k) − Hk/T ] (44)

≥ Vm

mR+R−1∑
t=mR

U(a∗,t)

−
K∑

k=1

qk(mR)
mR+R−1∑

t=mR

[Ek(a∗,t
k , b∗,t

k |ht
k) − Hk/T ]

−
(

C1R +
R(R − 1)K

2
(Emax)2

)
(45)

≥ Vm

mR+R−1∑
t=mR

U(a∗,t) −
(

C1R +
R(R − 1)K

2
(Emax)2

)

(46)

where in â∗,0, b̂
∗,0

, . . . , â∗,T−1, b̂
∗,T−1

is the optimal decision
that solves the R-round lookahead problems. Notice that qk(t)
in the above equation is still derived by SEA. The first
inequality holds because SEA maximizes the lower bound.
The last inequality holds because qk(mR) is reset to zero as
enforced by SEA.

Noting ΔR(mR) ≥ 0 and dividing both sides by Vm yields:

mR+R−1∑
t=mR

U(ât)

≥
mR+R−1∑

t=mR

U(a∗,t) − 1
Vm

(
C1R +

R(R − 1)K
2

(Emax)2
)

(47)

By summing over m = 0, . . . , M − 1, we have
T−1∑
t=0

U(ât) ≥
M−1∑
m=0

U∗
m − C2

M−1∑
m=0

1
Vm

(48)

where C2 � C1R + R(R−1)K
2 (Emax)2.
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