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ABSTRACT

We advocate a new resource allocation
framework, which we call resource rationing, for
wireless federated learning (FL). Unlike existing
resource allocation methods for FL, resource
rationing focuses on balancing resources across
learning rounds so that their collective impact on
FL performance is explicitly captured. This new
framework can be integrated seamlessly with
existing resource allocation schemes to optimize
the convergence of FL. In particular, a novel “lat-
er-is-better” principle is at the front and center of
resource rationing and is validated empirically in
several instances of wireless FL. We also point out
technical challenges and research opportunities
that are worth pursuing. Resource rationing high-
lights the benefits of treating the emerging FL as a
new class of service that has its own characteris-
tics, and designing communication algorithms for
this particular service.

INTRODUCTION

Federated learning (FL) is an emerging distrib-
uted machine learning (ML) paradigm that has
many attractive properties. In particular, FL caters
to the growing trend that a massive amount of
real-world data is generated at the edge devic-
es, and the combination of growing storage and
computational power of devices and the increas-
ing concern over transmitting private information
to a central server has made it attractive to store
data and train ML models locally on each device.
The power of FL has been realized in commercial
devices (e.g., Pixel 2 uses FL to train ML models to
personalize user experience) and ML tasks (e.g.,
Gboard uses FL for keyboard prediction) [1].
Despite being recognized as one of the pri-
mary bottlenecks of FL since its inception [2],
research on the communication aspect in the FL
pipeline has not been on par with the learning
component. Early research on communication-ef-
ficient FL largely focused on reducing the amount
of information to be transmitted, and did not
touch on the actual communication algorithm and
protocol design [3, 4]. More recent research start-
ed to fill this void from a wireless communication
and networking point of view [5-12]. In general,
the principle is to balance learning performance
and communication efficiency via, for example,
device selection, bandwidth allocation, and power
control. It has been shown that combining (com-
munication-oriented) adaptive resource allocation

with (ML-oriented) efficient model representation
leads to a better overall implementation, in par-
ticular for wireless FL, which is envisioned to be
among the mainstream deployment scenarios of
edge ML [13, 14].

While the early results demonstrate the poten-
tial of jointly optimizing communication and
computation for wireless FL, the communica-
tion design has not been tailored to the unique
characteristics of FL. In particular, an intrinsic
and fundamental property of FL has largely been
ignored: FL is a long-term process consisting of
many progressive learning rounds that collective-
ly determine the learning performance. Because
of this progressive nature, learning rounds may
have varying significance toward the convergence
rate and final model accuracy, and thus should
weigh differently when allocating communication
resources. However, almost all existing works
treat every learning round as equally important
and perform resource allocation independent-
ly across learning rounds. Specifically, the com-
mon underlying assumptions made in these works
[5-9] include that in every learning round, the
same total bandwidth is available, the same (exact
or average) number of mobile devices are select-
ed, and the same energy constraints are imposed.
Resource allocation is then performed within the
round under these constraints. While this view of
static resource allocation across time simplifies
the problem, it may lead to inefficient utilization
of the scarce communication resources and con-
sequently degrade the FL performance.

We advocate a novel resource allocation
framework for wireless FL, which we call resource
rationing to emphasize balancing resources over
time so that the long-term impact on the FL per-
formance is explicitly captured. The fundamen-
tal principle that differentiates resource rationing
from existing wireless resource allocation is the
focus on allocating different resources across
learning rounds (in addition to possible resource
allocation within each round) to optimize the con-
vergence of FL [10, 11]. This novel framework
originates from a holistic view of the resource
management problem in FL: in order to achieve
the best possible learning outcome with fast con-
vergence, one has to “ration” the limited resourc-
es, consuming little at the beginning and gradually
increasing toward the end. We introduce the
basic concept of resource rationing and show that
the “later-is-better” principle is general and applies
to different resources in a wireless FL system.
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FIGURE 1. Overview of the proposed resource rationing framework in a wireless FL system. The later-is-better principle for resource rationing is illustrated with

the example of clients rationing that is discussed later.

We also discuss several technical challenges and
research directions to advance resource rationing
and wireless FL in general.

RESOURCE RATIONING FOR WIRELESS FL
MoTIVATION

A representative wireless FL system is depicted in
Fig. 1. It works by iteratively executing the follow-
ing steps:

+ The parameter server broadcasts the current

global ML model to participating mobile

devices (downlink communication).

Starting from the received global model,

each device trains a local model using its

own dataset (local computation).

+ Mobile devices upload their updated local
models to the parameter server (uplink com-
munication).

+ The parameter server then aggregates these
updates to generate a new global model
(global computation).

These four steps are collectively called a learn-

ing round. In this way, FL lets each mobile device

evolve its own model using local data, while syn-
chronizing the model training among different
mobile devices via occasional model aggregation.

The primary drive for resource rationing
is that FL is very different than most of the ser-
vices for which current communication systems
are designed. The purpose of communication in
today’s system is to deliver the information bits
efficiently and reliably from one point to another.

Although this is still true for FL, the ultimate goal

of communication is to facilitate ML (e.g., collab-

oratively training a neural network to achieve the
best classification accuracy), which has its own
characteristics. Thus, taking an isolated view of
each individual communication phase and opti-
mizing the resource allocation within each round,
albeit still meaningful, misses the opportunity to
allocate resource toward the ultimate prize —
enabling fast convergence of ML training to an
accurate model. This has motivated us to treat FL
as a new class of service that has its own charac-
teristics, and the problem we want to solve is how

to holistically allocate the scarce wireless resource
to optimize the particular service of FL.

IMPACT OF RESOURCE

The first step toward resource rationing is to
understand the impact of resource on the over-
all learning accuracy and convergence. Taking
communication bandwidth as an example, it
is well known that the power of deep learning
comes from the “depth” of the network and,
correspondingly, significantly many weight coef-
ficients. For example, the original ResNet-50 has
over 23 million parameters. Even for the widely
popular MobileNet, which is specifically designed
for devices with limited computing resource or
limited power, the most economical version
has 0.2 million parameters (0.25 MobileNet-128
model, face attribute classification) [15]. A stan-
dard 32-bit floating-point representation of the
updated weight coefficients leads to an uplink
transmission of 6.4 x 100 bits per user per round,
which requires significant communication band-
width. It is thus crucial to decide what and how
to communicate for the latest model with limited
communication resources.

One way to reduce the communication band-
width is to compress the weights before each
uplink and downlink communication round. Intui-
tively, the uplink communication is more resource
constrained since the mobile devices are less
powerful than the parameter server (e.g., base
station). We thus focus on quantizing the locally
updated weights and evaluating the performance
impact to the overall FL convergence in a well
adopted MNIST digit recognition task [2]. Through
a carefully designed quantization method [11]
that adjusts the quantization gain based on the
dynamic range of the weights, and the adoption
of stochastic rounding, we are able to significantly
reduce the communication bandwidth at negligi-
ble loss accuracy and convergence rate as shown
in Fig. 2. This particular example shows that for
the independent and identically distributed (11D)
dataset, by using only 9.4 percent bandwidth of
the floating-point baseline, we are able to achieve
99.6 percent of the baseline accuracy, at a con-

The purpose of communi-
cation in today's system is
to deliver the information
bits efficiently and reliably
from one point to another.
Although this is still true
for FL, the ultimate goal
of communication is to
facilitate machine learning

(e.g, collaboratively training

a neural network to achieve
the best classification accu-
racy), which has its own
characteristics.
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FIGURE 2. Bandwidth reduction and resource rationing on training a convolutional neural network (CNN) for the
MNIST digit recognition task with 11D local datasets. Tuned quantization and stochastic rounding are utilized. 10
out of a total of 2000 clients are uniformly randomly selected in each round. Each curve is obtained by averaging
10independent runs of the FL process. The final model accuracy is averaged over the last 200 learning rounds for

all methods.

FIGURE 3. Early learning rounds have more leeway for gradient direction to
be wrong than later rounds.

vergence rate that remains almost the same. A
similar observation can be made from different
ML tasks and different configurations; see [11]
for more details. This shows that it is possible to
significantly reduce the communication resources
while preserving the learning performance.

“LATER-S-BETTER"

With a better understanding of how much overall
resource is needed, we now consider the gen-
eral resource rationing framework that absorbs
existing wireless-specific resource allocation and
“elevates” the problem dimension to manage
resources over learning rounds. The immediate
question is whether a general principle exists
for resource rationing; that is, for a given total
resource budget, what is the rule of thumb to
ration resources?

To gain some insight into this question, we
need to build an understanding of how FL works
across learning rounds. Predominantly, FL tasks
involve training a deep neural network (DNN)
with (mini-batch) stochastic gradient descent
(SGD), which uses a smaller number of data sam-
ples to calculate an approximated gradient for
updating the model parameters. When data is
further distributed among multiple clients, FL lets
each client perform SGD using their local data

with occasional synchronization by model averag-
ing. A careful examination of the weight update
and model averaging mechanisms for FL (e.g.,
FedAvg [2]) reveals an important feature that has
not been incorporated in FL resource allocation:
when the current weight is far from the optimal
value, a rough gradient estimate is enough to find
a descent direction. As the weight starts approach-
ing the optimal solution, however, noisy gradient
estimates frequently fail to produce descent direc-
tions and do not reliably decrease the objective.
An illustration of this critical hypothesis is given
in Fig. 3, where early rounds enjoy much larger
leeway (the large green area) in choosing gradi-
ent directions than later rounds (the small yellow
area), where the same level of gradient noise may
lead to deviation from convergence. This naturally
leads to a later-is-better resource rationing rule:
preserve resources at the early rounds of FL to
exploit the tolerance of noisy gradient estimates,
and spend the saved resources at later rounds to
produce more accurate gradient estimate, thereby
achieving an overall better learning performance.

BENEFITS OF RESOURCE RATIONING

We instantiate resource rationing and demon-
strate its benefits with three specific examples.
On the physical layer, we study how to ration a
given bandwidth budget over the entire learn-
ing period and how different allocations affect
the final model accuracy and convergence rate.
On the medium access control (MAC) layer,
we study varying client selection strategies and
evaluate how the convergence responds to cli-
ent rationing. Lastly, we give an example of joint
design that simultaneously rations clients selection
and power control.

BANDWIDTH RATIONING

We have seen that for the specific experiment
in Fig. 2, a 3-bit weight representation achieves
near-optimal learning performance and clearly
outperforms 2-bit and 1-bit representations for
a constant bandwidth allocation. We now ele-
vate the problem setting and fix the total uplink
communication bandwidth consumption across
all learning rounds as 2T per weight per client,
where T is the total rounds of FL. Note that this
would correspond to a 2-bit weight representa-
tion in the constant allocation, but we now eval-
uate two different bit rationing schemes: smaller
number of bits at the beginning and larger num-
ber of bits later, and vice versa. The results are
also shown in Fig. 2, where the increasing pat-
tern uses 1-bit weight representation for the first
third of the rounds, 2-bit for the middle third, and
3-bit for the final third. The decreasing pattern is
the exact reverse of the increasing pattern. The
results suggest that later-is-better indeed achieves
much improved performance: with the same total
bandwidth as the constant 2-bit representation,
it achieves a final learning accuracy of the 3-bit
representation. However, this model accuracy
improvement comes at the cost of reduced con-
vergence rate: since early rounds use less band-
width, the initial convergence is rather slow, which
is predicted by the SGD analysis. This phenome-
non reveals a fundamental trade-off that may exist
between model accuracy and convergence rate,
which is worth further investigation. We also see
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that the decreasing pattern behaves poorly, as it
starts out strong but “starves” at the end, converg-
ing to the 1-bit weight performance.

CLIENT RATIONING

Similarly, one can also take a long-term per-
spective and study how different temporal client
selection patterns lead to different learning perfor-
mance. The experiment is on another standard FL
task — train a recurrent neural network (RNN) for
text generation on the Shakespeare dataset with
FedAvg [2]. Keeping the total number of partic-
ipating clients throughout the entire FL process
constant, we evaluate three patterns as follows.
The state of the art corresponds to the Uniform
selection — in each round, five clients are random-
ly selected. We consider two other rules: Ascend
— the number of randomly selected clients lin-
early increases from 0 to 10, and Descend — the
number of randomly selected clients linearly
decreases from 10 to 0. Figure 4 reports the con-
vergence results of these three methods, which
clearly show that selecting more clients in later
FL rounds not only results in much higher model
accuracy than selecting more clients in earlier FL
rounds, but also is much more robust — its stan-
dard deviation (the black shaded area) at the end
of training is significantly smaller than others (the
blue and orange shaded areas).

JoINT DESIGN

A joint design of resource rationing among mul-
tiple types of resources can also be done to
improve the final FL performance [10]. Let us
consider again the MINST digit recognition task,
but the local datasets are non-lID. Three differ-
ent client selection methods are investigated. The
Select-All method represents the ideal case, which
selects all clients in every round and ignores the
energy constraints; the Myopic method imposes
the same energy constraint in every round and
selects as many clients as possible under this
constraint, representing the state of the art; and
the Proposed method adaptively rations energy
resources by performing joint client selection,
bandwidth allocation, and power control given
the current wireless channel conditions, follow-
ing the later-is-better principle (see [10] for the
detailed design). The convergence results of these
methods are shown in Fig. 5. The eventual FL
accuracy by using the proposed method far out-
performs Myopic and is close to the ideal case
Select-All, despite significantly reduced energy
consumption (roughly 50 percent).

CHALLENGES AND OPPORTUNITIES

Through the understanding of FL convergence
and specific resource rationing schemes of band-
width and clients allocation, we have established a
general later-is-better resource rationing principle.
This is a promising framework that intimately con-
nects communication to FL. In the following, we
highlight some challenges associated with advanc-
ing this novel paradigm, and present research
opportunities that we believe are worth pursuing.

THEORETICAL FOUNDATION
Resource rationing for wireless FL must rely on
a rigorous analysis of the varying significance of
different learning rounds and a deeper under-
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FIGURE 5. Convergence vs. the communication rounds with a joint resource rationing design. A CNN for digit
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standing of how resource rationing across time
influences the convergence of FL. We already
had a glimpse, through the bandwidth alloca-
tion example, that there may be a fundamental
trade-off between model accuracy and conver-
gence rate with a given total budget. Howev-
er, despite the significant effort in establishing
the convergence behavior of different FL algo-
rithms under various regularity conditions, there
is no research to directly connect FL conver-
gence to the varying resource at each learning
round. This theoretical foundation is difficult to
establish but, unfortunately, is absolutely criti-
cal to enable a principled design for resource
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FIGURE 6. Comparing the performance of transmit power control [12] to the baselines with partial clients participa-

tion, model transmission, and IID dataset for FL on the CIFAR-10 dataset. A single-cell multi-user cellular system
with broadband analog aggregation in [7] for FedAvg is simulated where user devices participate in FL over
wireless uplink and downlink communications. The results are averaged over 10 independent runs.

rationing algorithms with proven performance
guarantees.

TEMPORAL VARIATION IN WIRELESS SYSTEMS

Wireless channels are dynamic and unpredict-
able in nature. When wireless channel charac-
teristics are incorporated, causality issues may
arise, making temporal resource rationing and
applying the later-is-better principle challeng-
ing. For example, uploading the same updat-
ed model incurs different energy consumption
under different wireless channel conditions. The
problem becomes further complicated because
FL is a multi-user system where mobile devices
are heterogeneous in terms of the experienced
wireless environments, computing capabilities,
and resource constraints. The proposed resource
rationing framework, however, operates on
the timescale of communication rounds, which
allows for the flexibility to incorporate existing
or future “fast” resource allocation mechanisms
or prediction methods to handle temporal vari-
ations. We illustrate this flexibility using transmit
power control as a use case [12], and Fig. 6 illus-
trates the performance advantage of combining
the later-is-better principle of resource rationing
with an inner-loop power control that handles
channel fading and interference. Note that both
“equal power” and “O(t?)-increased power” con-
sume the same total energy, and both implement
the power control method proposed in [7] to
enable analog aggregation in each round. Clear-
ly, by deploying the resource rationing principle
on top of the existing power control method, we
can further improve the learning performance
to be very close to the noise-free benchmark,
which has perfect communications. This also
leads to several interesting future research direc-
tions, such as jointly designing resource rationing
with temporal prediction (possibly leveraging
ML), and performing real-world experiments to

validate and evaluate the developed resource
rationing framework.

GENERALIZATION AND EXTENSION

The concept of resource rationing is general and
can be applied to a broad spectrum of resources
whenever there is the flexibility to dynamically
allocate them across learning rounds. In the phys-
ical layer, coding rate and modulation constitute
another type of resource where we can attempt
to develop novel adaptive coding and modulation
methods to realize resource rationing. In addi-
tion, from a pure learning perspective, there is
no difference whether the updated model or its
other forms are communicated between the cli-
ents and the server. However, this choice would
affect the communication efficiency. For example,
transmitting only the model difference as opposed
to the updated model itself reduces the dynamic
range. How to combine this feature with band-
width rationing is an interesting research prob-
lem [11]. At the same time, the model difference
becomes more sparse as the global model grad-
ually converges. How to leverage the sparsity in
model difference for the communication design
is another interesting problem. At the MAC layer,
how to apply resource rationing to client selec-
tion, bandwidth allocation, power control, or a
combination of them to accelerate learning con-
vergence and model accuracy is worth exploring.
Cross-layer designs can also be considered; for
example, one may be able to trade off coding
and modulation for participating clients. These
different aspects collectively form the backbone
of resource rationing in FL, and will constitute a
major technological breakthrough that advances
future applications.

COMPLEXITY AND SCALABILITY

The value of FL increases with more clients par-
ticipating in the system, but the problem com-
plexity of resource rationing will also increase
considerably. Taking client selection in FL as an
example, the selection space size is combinatorial
with respect to the total number of clients. When
there are many clients, searching for the optimal
solution can be very difficult. To enable fast and
effective resource rationing in large-scale wire-
less FL networks, designing low-complexity and/
or distributed algorithms is essential. While pure
optimization-based algorithms may still be worth
exploring, it is interesting to leverage the gener-
alization power of ML to develop a joint optimi-
zation and learning approach. An ML model may
be trained on past resource rationing decisions,
and one can use this ML model to adjust future
resource rationing.

BEYOND COMMUNICATION RESOURCES

The resource rationing principle can be extended
beyond allocating communication resources. For
example, to guarantee learning convergence, it
is required in SGD that the stepsize vanishes as
time evolves. Because of the decaying stepsize,
learning in later rounds is forced to be slow. In
addition, finding the optimal learning rate sched-
ule also requires an expensive grid search over all
possible parameter values. Can we avoid using a
pre-determined decaying stepsize schedule but
rather automatically adapt the stepsize in each
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learning round? We may attempt to apply the
resource rationing principle to reduce the stepsize
by evaluating its impact on the convergence rate.

CONCLUSIONS

In this article, we have argued for a new resource
rationing framework for wireless federated learn-
ing. Resource rationing takes a holistic view of the
resource allocation problem and attempts to bal-
ance the resource consumption across the entire
learning period, with the goal of maximizing the
final ML model accuracy and convergence rate.
This intuition has led to an interesting “later-is-bet-
ter” principle, where we have demonstrated with
several examples that reserving resources at the
beginning and spending them later is beneficial
for the performance of FL. A theoretical intuition
is also provided based on stochastic gradient
descent. Future directions and challenges are pre-
sented to spark research activities. Philosophical-
ly, resource rationing represents an example of
tailoring communication to the characteristics of
FL, and other components of the communication
system for wireless FL may similarly benefit from
this holistic view.
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