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Abstract
We advocate a new resource allocation 

framework, which we call resource rationing, for 
wireless federated learning (FL). Unlike existing 
resource allocation methods for FL, resource 
rationing focuses on balancing resources across 
learning rounds so that their collective impact on 
FL performance is explicitly captured. This new 
framework can be integrated seamlessly with 
existing resource allocation schemes to optimize 
the convergence of FL. In particular, a novel “lat-
er-is-better” principle is at the front and center of 
resource rationing and is validated empirically in 
several instances of wireless FL. We also point out 
technical challenges and research opportunities 
that are worth pursuing. Resource rationing high-
lights the benefits of treating the emerging FL as a 
new class of service that has its own characteris-
tics, and designing communication algorithms for 
this particular service.

Introduction
Federated learning (FL) is an emerging distrib-
uted machine learning (ML) paradigm that has 
many attractive properties. In particular, FL caters 
to the growing trend that a massive amount of 
real-world data is generated at the edge devic-
es, and the combination of growing storage and 
computational power of devices and the increas-
ing concern over transmitting private information 
to a central server has made it attractive to store 
data and train ML models locally on each device. 
The power of FL has been realized in commercial 
devices (e.g., Pixel 2 uses FL to train ML models to 
personalize user experience) and ML tasks (e.g., 
Gboard uses FL for keyboard prediction) [1].

Despite being recognized as one of the pri-
mary bottlenecks of FL since its inception [2], 
research on the communication aspect in the FL 
pipeline has not been on par with the learning 
component. Early research on communication-ef-
ficient FL largely focused on reducing the amount 
of information to be transmitted, and did not 
touch on the actual communication algorithm and 
protocol design [3, 4]. More recent research start-
ed to fill this void from a wireless communication 
and networking point of view [5–12]. In general, 
the principle is to balance learning performance 
and communication efficiency via, for example, 
device selection, bandwidth allocation, and power 
control. It has been shown that combining (com-
munication-oriented) adaptive resource allocation 

with (ML-oriented) efficient model representation 
leads to a better overall implementation, in par-
ticular for wireless FL, which is envisioned to be 
among the mainstream deployment scenarios of 
edge ML [13, 14].

While the early results demonstrate the poten-
tial of jointly optimizing communication and 
computation for wireless FL, the communica-
tion design has not been tailored to the unique 
characteristics of FL. In particular, an intrinsic 
and fundamental property of FL has largely been 
ignored: FL is a long-term process consisting of 
many progressive learning rounds that collective-
ly determine the learning performance. Because 
of this progressive nature, learning rounds may 
have varying significance toward the convergence 
rate and final model accuracy, and thus should 
weigh differently when allocating communication 
resources. However, almost all existing works 
treat every learning round as equally important 
and perform resource allocation independent-
ly across learning rounds. Specifically, the com-
mon underlying assumptions made in these works 
[5–9] include that in every learning round, the 
same total bandwidth is available, the same (exact 
or average) number of mobile devices are select-
ed, and the same energy constraints are imposed. 
Resource allocation is then performed within the 
round under these constraints. While this view of 
static resource allocation across time simplifies 
the problem, it may lead to inefficient utilization 
of the scarce communication resources and con-
sequently degrade the FL performance.

We advocate a novel resource allocation 
framework for wireless FL, which we call resource 
rationing to emphasize balancing resources over 
time so that the long-term impact on the FL per-
formance is explicitly captured. The fundamen-
tal principle that differentiates resource rationing 
from existing wireless resource allocation is the 
focus on allocating different resources across 
learning rounds (in addition to possible resource 
allocation within each round) to optimize the con-
vergence of FL [10, 11]. This novel framework 
originates from a holistic view of the resource 
management problem in FL: in order to achieve 
the best possible learning outcome with fast con-
vergence, one has to “ration” the limited resourc-
es, consuming little at the beginning and gradually 
increasing toward the end. We introduce the 
basic concept of resource rationing and show that 
the “later-is-better” principle is general and applies 
to different resources in a wireless FL system. 
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We also discuss several technical challenges and 
research directions to advance resource rationing 
and wireless FL in general.

resource rAtIonInG for WIreless fl
motIVAtIon

A representative wireless FL system is depicted in 
Fig. 1. It works by iteratively executing the follow-
ing steps: 
• The parameter server broadcasts the current 

global ML model to participating mobile 
devices (downlink communication).

• Starting from the received global model, 
each device trains a local model using its 
own dataset (local computation).

• Mobile devices upload their updated local 
models to the parameter server (uplink com-
munication).

• The parameter server then aggregates these 
updates to generate a new global model 
(global computation).

These four steps are collectively called a learn-
ing round. In this way, FL lets each mobile device 
evolve its own model using local data, while syn-
chronizing the model training among different 
mobile devices via occasional model aggregation.

The primary drive for resource rationing 
is that FL is very different than most of the ser-
vices for which current communication systems 
are designed. The purpose of communication in 
today’s system is to deliver the information bits 
effi  ciently and reliably from one point to another. 
Although this is still true for FL, the ultimate goal 
of communication is to facilitate ML (e.g., collab-
oratively training a neural network to achieve the 
best classification accuracy), which has its own 
characteristics. Thus, taking an isolated view of 
each individual communication phase and opti-
mizing the resource allocation within each round, 
albeit still meaningful, misses the opportunity to 
allocate resource toward the ultimate prize — 
enabling fast convergence of ML training to an 
accurate model. This has motivated us to treat FL 
as a new class of service that has its own charac-
teristics, and the problem we want to solve is how 

to holistically allocate the scarce wireless resource 
to optimize the particular service of FL.

ImpAct of resource
The first step toward resource rationing is to 
understand the impact of resource on the over-
all learning accuracy and convergence. Taking 
communication bandwidth as an example, it 
is well known that the power of deep learning 
comes from the “depth” of the network and, 
correspondingly, signifi cantly many weight coef-
fi cients. For example, the original ResNet-50 has 
over 23 million parameters. Even for the widely 
popular MobileNet, which is specifi cally designed 
for devices with limited computing resource or 
limited power, the most economical version 
has 0.2 million parameters (0.25 MobileNet-128 
model, face attribute classifi cation) [15]. A stan-
dard 32-bit floating-point representation of the 
updated weight coefficients leads to an uplink 
transmission of 6.4  106 bits per user per round, 
which requires significant communication band-
width. It is thus crucial to decide what and how
to communicate for the latest model with limited 
communication resources.

One way to reduce the communication band-
width is to compress the weights before each 
uplink and downlink communication round. Intui-
tively, the uplink communication is more resource 
constrained since the mobile devices are less 
powerful than the parameter server (e.g., base 
station). We thus focus on quantizing the locally 
updated weights and evaluating the performance 
impact to the overall FL convergence in a well 
adopted MNIST digit recognition task [2]. Through 
a carefully designed quantization method [11] 
that adjusts the quantization gain based on the 
dynamic range of the weights, and the adoption 
of stochastic rounding, we are able to signifi cantly 
reduce the communication bandwidth at negligi-
ble loss accuracy and convergence rate as shown 
in Fig. 2. This particular example shows that for 
the independent and identically distributed (IID) 
dataset, by using only 9.4 percent bandwidth of 
the fl oating-point baseline, we are able to achieve 
99.6 percent of the baseline accuracy, at a con-

The purpose of communi-
cation in today’s system is 
to deliver the information 

bits eff iciently and reliably 
from one point to another. 
Although this is still true 
for FL, the ultimate goal 
of communication is to 

facilitate machine learning 
(e.g., collaboratively training 
a neural network to achieve 
the best classification accu-

racy), which has its own 
characteristics.

FIGURE 1. Overview of the proposed resource rationing framework in a wireless FL system. The later-is-better principle for resource rationing is illustrated with 
the example of clients rationing that is discussed later.
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vergence rate that remains almost the same. A 
similar observation can be made from different 
ML tasks and different configurations; see [11] 
for more details. This shows that it is possible to 
signifi cantly reduce the communication resources 
while preserving the learning performance.

“lAter-Is-better”
With a better understanding of how much overall 
resource is needed, we now consider the gen-
eral resource rationing framework that absorbs 
existing wireless-specifi c resource allocation and 
“elevates” the problem dimension to manage 
resources over learning rounds. The immediate 
question is whether a general principle exists 
for resource rationing; that is, for a given total 
resource budget, what is the rule of thumb to 
ration resources?

To gain some insight into this question, we 
need to build an understanding of how FL works 
across learning rounds. Predominantly, FL tasks 
involve training a deep neural network (DNN) 
with (mini-batch) stochastic gradient descent 
(SGD), which uses a smaller number of data sam-
ples to calculate an approximated gradient for 
updating the model parameters. When data is 
further distributed among multiple clients, FL lets 
each client perform SGD using their local data 

with occasional synchronization by model averag-
ing. A careful examination of the weight update 
and model averaging mechanisms for FL (e.g., 
FedAvg [2]) reveals an important feature that has 
not been incorporated in FL resource allocation: 
when the current weight is far from the optimal 
value, a rough gradient estimate is enough to fi nd 
a descent direction. As the weight starts approach-
ing the optimal solution, however, noisy gradient 
estimates frequently fail to produce descent direc-
tions and do not reliably decrease the objective. 
An illustration of this critical hypothesis is given 
in Fig. 3, where early rounds enjoy much larger 
leeway (the large green area) in choosing gradi-
ent directions than later rounds (the small yellow 
area), where the same level of gradient noise may 
lead to deviation from convergence. This naturally 
leads to a later-is-better resource rationing rule: 
preserve resources at the early rounds of FL to 
exploit the tolerance of noisy gradient estimates, 
and spend the saved resources at later rounds to 
produce more accurate gradient estimate, thereby 
achieving an overall better learning performance.

benefIts of resource rAtIonInG
We instantiate resource rationing and demon-
strate its benefits with three specific examples. 
On the physical layer, we study how to ration a 
given bandwidth budget over the entire learn-
ing period and how different allocations affect 
the final model accuracy and convergence rate. 
On the medium access control (MAC) layer, 
we study varying client selection strategies and 
evaluate how the convergence responds to cli-
ent rationing. Lastly, we give an example of joint 
design that simultaneously rations clients selection 
and power control.

bAndWIdth rAtIonInG
We have seen that for the specific experiment 
in Fig. 2, a 3-bit weight representation achieves 
near-optimal learning performance and clearly 
outperforms 2-bit and 1-bit representations for 
a constant bandwidth allocation. We now ele-
vate the problem setting and fix the total uplink 
communication bandwidth consumption across 
all learning rounds as 2T per weight per client, 
where T is the total rounds of FL. Note that this 
would correspond to a 2-bit weight representa-
tion in the constant allocation, but we now eval-
uate two diff erent bit rationing schemes: smaller 
number of bits at the beginning and larger num-
ber of bits later, and vice versa. The results are 
also shown in Fig. 2, where the increasing pat-
tern uses 1-bit weight representation for the fi rst 
third of the rounds, 2-bit for the middle third, and 
3-bit for the fi nal third. The decreasing pattern is 
the exact reverse of the increasing pattern. The 
results suggest that later-is-better indeed achieves 
much improved performance: with the same total 
bandwidth as the constant 2-bit representation, 
it achieves a final learning accuracy of the 3-bit 
representation. However, this model accuracy 
improvement comes at the cost of reduced con-
vergence rate: since early rounds use less band-
width, the initial convergence is rather slow, which 
is predicted by the SGD analysis. This phenome-
non reveals a fundamental trade-off  that may exist 
between model accuracy and convergence rate, 
which is worth further investigation. We also see 

FIGURE 2. Bandwidth reduction and resource rationing on training a convolutional neural network (CNN) for the 
MNIST digit recognition task with IID local datasets. Tuned quantization and stochastic rounding are utilized. 10 
out of a total of 2000 clients are uniformly randomly selected in each round. Each curve is obtained by averaging 
10 independent runs of the FL process. The final model accuracy is averaged over the last 200 learning rounds for 
all methods.

FIGURE 3. Early learning rounds have more leeway for gradient direction to 
be wrong than later rounds.
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that the decreasing pattern behaves poorly, as it 
starts out strong but “starves” at the end, converg-
ing to the 1-bit weight performance.

clIent rAtIonInG
Similarly, one can also take a long-term per-
spective and study how diff erent temporal client 
selection patterns lead to diff erent learning perfor-
mance. The experiment is on another standard FL 
task — train a recurrent neural network (RNN) for 
text generation on the Shakespeare dataset with 
FedAvg [2]. Keeping the total number of partic-
ipating clients throughout the entire FL process 
constant, we evaluate three patterns as follows. 
The state of the art corresponds to the Uniform 
selection — in each round, fi ve clients are random-
ly selected. We consider two other rules: Ascend
— the number of randomly selected clients lin-
early increases from 0 to 10, and Descend — the 
number of randomly selected clients linearly 
decreases from 10 to 0. Figure 4 reports the con-
vergence results of these three methods, which 
clearly show that selecting more clients in later 
FL rounds not only results in much higher model 
accuracy than selecting more clients in earlier FL 
rounds, but also is much more robust — its stan-
dard deviation (the black shaded area) at the end 
of training is signifi cantly smaller than others (the 
blue and orange shaded areas).

JoInt desIGn
A joint design of resource rationing among mul-
tiple types of resources can also be done to 
improve the final FL performance [10]. Let us 
consider again the MINST digit recognition task, 
but the local datasets are non-IID. Three differ-
ent client selection methods are investigated. The 
Select-All method represents the ideal case, which 
selects all clients in every round and ignores the 
energy constraints; the Myopic method imposes 
the same energy constraint in every round and 
selects as many clients as possible under this 
constraint, representing the state of the art; and 
the Proposed method adaptively rations energy 
resources by performing joint client selection, 
bandwidth allocation, and power control given 
the current wireless channel conditions, follow-
ing the later-is-better principle (see [10] for the 
detailed design). The convergence results of these 
methods are shown in Fig. 5. The eventual FL 
accuracy by using the proposed method far out-
performs Myopic and is close to the ideal case 
Select-All, despite significantly reduced energy 
consumption (roughly 50 percent).

chAllenGes And opportunItIes
Through the understanding of FL convergence 
and specifi c resource rationing schemes of band-
width and clients allocation, we have established a 
general later-is-better resource rationing principle. 
This is a promising framework that intimately con-
nects communication to FL. In the following, we 
highlight some challenges associated with advanc-
ing this novel paradigm, and present research 
opportunities that we believe are worth pursuing.

theoretIcAl foundAtIon
Resource rationing for wireless FL must rely on 
a rigorous analysis of the varying signifi cance of 
different learning rounds and a deeper under-

standing of how resource rationing across time 
influences the convergence of FL. We already 
had a glimpse, through the bandwidth alloca-
tion example, that there may be a fundamental 
trade-off  between model accuracy and conver-
gence rate with a given total budget. Howev-
er, despite the signifi cant eff ort in establishing 
the convergence behavior of diff erent FL algo-
rithms under various regularity conditions, there 
is no research to directly connect FL conver-
gence to the varying resource at each learning 
round. This theoretical foundation is diffi  cult to 
establish but, unfortunately, is absolutely criti-
cal to enable a principled design for resource 

FIGURE 4. Convergence vs. the communication rounds with varying client selection patterns. A pre-trained RNN that 
generates ASCII characters is refined via FL on the Shakespeare dataset, which is divided into 715 non-IID local 
datasets. A certain number of clients are uniformly randomly selected in each round according to the selection 
pattern. Each curve is obtained by averaging 30 independent runs of the FL process.

FIGURE 5. Convergence vs. the communication rounds with a joint resource rationing design. A CNN for digit 
recognition is trained on the MNIST dataset, which is divided into 3383 local non-IID datasets. In every round, 10 
clients are available, and participating clients are selected from among these clients. Each curve is obtained by 
averaging 30 independent runs of the FL process.
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rationing algorithms with proven performance 
guarantees.

Temporal Variation in Wireless Systems
Wireless channels are dynamic and unpredict-
able in nature. When wireless channel charac-
teristics are incorporated, causality issues may 
arise, making temporal resource rationing and 
applying the later-is-better principle challeng-
ing. For example, uploading the same updat-
ed model incurs different energy consumption 
under different wireless channel conditions. The 
problem becomes further complicated because 
FL is a multi-user system where mobile devices 
are heterogeneous in terms of the experienced 
wireless environments, computing capabilities, 
and resource constraints. The proposed resource 
rationing framework, however, operates on 
the timescale of communication rounds, which 
allows for the flexibility to incorporate existing 
or future “fast” resource allocation mechanisms 
or prediction methods to handle temporal vari-
ations. We illustrate this flexibility using transmit 
power control as a use case [12], and Fig. 6 illus-
trates the performance advantage of combining 
the later-is-better principle of resource rationing 
with an inner-loop power control that handles 
channel fading and interference. Note that both 
“equal power” and “O(t2)-increased power” con-
sume the same total energy, and both implement 
the power control method proposed in [7] to 
enable analog aggregation in each round. Clear-
ly, by deploying the resource rationing principle 
on top of the existing power control method, we 
can further improve the learning performance 
to be very close to the noise-free benchmark, 
which has perfect communications. This also 
leads to several interesting future research direc-
tions, such as jointly designing resource rationing 
with temporal prediction (possibly leveraging 
ML), and performing real-world experiments to 

validate and evaluate the developed resource 
rationing framework.

Generalization and Extension
The concept of resource rationing is general and 
can be applied to a broad spectrum of resources 
whenever there is the flexibility to dynamically 
allocate them across learning rounds. In the phys-
ical layer, coding rate and modulation constitute 
another type of resource where we can attempt 
to develop novel adaptive coding and modulation 
methods to realize resource rationing. In addi-
tion, from a pure learning perspective, there is 
no difference whether the updated model or its 
other forms are communicated between the cli-
ents and the server. However, this choice would 
affect the communication efficiency. For example, 
transmitting only the model difference as opposed 
to the updated model itself reduces the dynamic 
range. How to combine this feature with band-
width rationing is an interesting research prob-
lem [11]. At the same time, the model difference 
becomes more sparse as the global model grad-
ually converges. How to leverage the sparsity in 
model difference for the communication design 
is another interesting problem. At the MAC layer, 
how to apply resource rationing to client selec-
tion, bandwidth allocation, power control, or a 
combination of them to accelerate learning con-
vergence and model accuracy is worth exploring. 
Cross-layer designs can also be considered; for 
example, one may be able to trade off coding 
and modulation for participating clients. These 
different aspects collectively form the backbone 
of resource rationing in FL, and will constitute a 
major technological breakthrough that advances 
future applications.

Complexity and Scalability
The value of FL increases with more clients par-
ticipating in the system, but the problem com-
plexity of resource rationing will also increase 
considerably. Taking client selection in FL as an 
example, the selection space size is combinatorial 
with respect to the total number of clients. When 
there are many clients, searching for the optimal 
solution can be very difficult. To enable fast and 
effective resource rationing in large-scale wire-
less FL networks, designing low-complexity and/
or distributed algorithms is essential. While pure 
optimization-based algorithms may still be worth 
exploring, it is interesting to leverage the gener-
alization power of ML to develop a joint optimi-
zation and learning approach. An ML model may 
be trained on past resource rationing decisions, 
and one can use this ML model to adjust future 
resource rationing.

Beyond Communication Resources
The resource rationing principle can be extended 
beyond allocating communication resources. For 
example, to guarantee learning convergence, it 
is required in SGD that the stepsize vanishes as 
time evolves. Because of the decaying stepsize, 
learning in later rounds is forced to be slow. In 
addition, finding the optimal learning rate sched-
ule also requires an expensive grid search over all 
possible parameter values. Can we avoid using a 
pre-determined decaying stepsize schedule but 
rather automatically adapt the stepsize in each 

FIGURE 6. Comparing the performance of transmit power control [12] to the baselines with partial clients participa-
tion, model transmission, and IID dataset for FL on the CIFAR-10 dataset. A single-cell multi-user cellular system 
with broadband analog aggregation in [7] for FedAvg is simulated where user devices participate in FL over 
wireless uplink and downlink communications. The results are averaged over 10 independent runs.
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learning round? We may attempt to apply the 
resource rationing principle to reduce the stepsize 
by evaluating its impact on the convergence rate.

Conclusions
In this article, we have argued for a new resource 
rationing framework for wireless federated learn-
ing. Resource rationing takes a holistic view of the 
resource allocation problem and attempts to bal-
ance the resource consumption across the entire 
learning period, with the goal of maximizing the 
final ML model accuracy and convergence rate. 
This intuition has led to an interesting “later-is-bet-
ter” principle, where we have demonstrated with 
several examples that reserving resources at the 
beginning and spending them later is beneficial 
for the performance of FL. A theoretical intuition 
is also provided based on stochastic gradient 
descent. Future directions and challenges are pre-
sented to spark research activities. Philosophical-
ly, resource rationing represents an example of 
tailoring communication to the characteristics of 
FL, and other components of the communication 
system for wireless FL may similarly benefit from 
this holistic view.
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Resource rationing takes a 
holistic view of the resource 

allocation problem and 
attempts to balance the 
resource consumption 

across the entire learning 
period, with the goal of max-

imizing the final ML model 
accuracy and convergence 
rate. This intuition has led  

to an interesting  
“later-is-better” principle.
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