IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 1, JANUARY 2021 251

Seek Common While Shelving Differences:
Orchestrating Deep Neural Networks
for Edge Service Provisioning

Lixing Chen

Abstract—Edge computing (EC) platforms, which enable
Application Service Providers (ASPs) to deploy applications in
close proximity to users, are providing ultra-low latency and
location-awareness to a rich portfolio of services. As monetary
costs are incurred for renting computing resources on edge
servers to enable service provisioning, ASP has to cautiously
decide where to deploy the application and how much resources
would be needed to deliver satisfactory performance. However,
the service provisioning problem exhibits complex correlations
with multifarious factors in EC systems, ranging from user
behavior to computation offloading, which are difficult to be
fully captured by mathematical modeling and also put off
traditional machine learning techniques due to the induction
of high-dimension state space. The recent success of deep
learning (DL) underpins new tools for addressing our problem.
While previous works provide valuable insights on applying DL
techniques, e.g., distributed DL, deep reinforcement learning
(DRL), and multi-agent DL, in EC systems, these techniques
cannot solely handle the distributed and heterogeneous nature
of EC systems. To address these limitations, we propose a
novel framework based on multi-agent DRL, distributed neural
network orchestration (N20O), and knowledge distilling. The
multi-agent DRL enables edge servers to learn deep neural
networks that shelve distinct features learned from local edge
sites and hence caters to the heterogeneity of EC systems. N2O
coordinates edge servers in a fully distributed manner toward
a common goal of maximizing ASP’s reward. It requires only
local communications during execution and provides provable
performance guarantees. The knowledge distilling is further
utilized to distill the N2O policy for reducing the communication
overhead and stabilizing the decision-making. We also carry out
systematic experiments to show the advantages of our method
over state-of-the-art alternatives.

Index Terms—Edge computing, deep reinforcement learning,
multi-agent learning, distributed optimization.

I. INTRODUCTION

DGE computing [1], [2] is a promising solution to
accommodate the explosive growth of Internet-connected
devices and the huge amount of distributed data that they

Manuscript received July 15, 2020; revised September 26, 2020; accepted
October 24, 2020. Date of publication November 9, 2020; date of current
version December 16, 2020. This work was supported in part by the National
Science Foundation under Award ECCS-2033681, Award ECCS-2029858, and
Award CNS-2006630 and in part by the Army Research Office under Award
WO1INF-18-1-0343. (Corresponding author: Lixing Chen.)

The authors are with the Department of Electrical and Computer Engi-
neering, University of Miami, Coral Gables, FL 33146 USA (e-mail:
Ix.chen@miami.edu; jiexu@miami.edu).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2020.3036953

and Jie Xu

, Member, IEEE

generate. Being physically close to the data sources and
leveraging fast network technologies such as 5G, edge com-
puting promises several benefits compared to the traditional
cloud-based computing paradigm, including lower latency,
higher energy efficiency, better privacy protection, reduced
bandwidth consumption, and location/context awareness [1].
In fact, edge computing is no longer a mere version but
becoming a reality. For example, Verizon and Amazon Web
Services (AWS) are partnering to construct a cloud-like com-
mercialized platform at the edge of Verizon’s 5G network [3].
It is anticipated that application service providers (ASPs), e.g.,
developers and enterprise customers, will soon be able to rent
computing resources on the shared edge computing platform
and deploy their services close to end-users without building
their own data center or trenching their own fiber. As renting
computing resources incurs monetary costs, a realistic problem
faced by ASPs is: how to deliver high-quality application
services using the edge computing platform in a cost-effective
manner? This brings up the edge service provisioning problem
for ASPs: 1) where (i.e., at which edge sites) to deploy the
application service, and 2) how much computing resources
should be rented at these edge sites in order to maximize
performance. Although service provisioning problems have
been studied in the cloud computing context (e.g., [4]), the
distributed and heterogeneous nature of edge computing sys-
tems, as well as the complicated user-edge interactions, calls
for new approaches to address new challenges for efficient and
cost-effective edge service provisioning.

A. Technical Challenges

Edge service provisioning is tightly intertwined with many
other components in edge computing systems. Considering
the vertical user-edge interaction, the computation offloading
policy [5], [6] on the user-side determines the amount of
service demand that is sent to edge servers, which are further
influenced by how radio resources are scheduled by the wire-
less network [7], [8]. Considering the horizontal interactions
between users or between edge servers, users may compete
for radio/computing resources of an edge server [9] and
edge servers may perform load balancing among each other
[10]. All these factors affect directly or indirectly the edge
service provisioning decisions and rewards of ASP, making it
extremely difficult to characterize and solve the problem with
traditional model-based approaches. Traditional learning-based
approaches (e.g., reinforcement learning [11], multi-armed

0733-8716 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 21,2021 at 02:07:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1805-0183
https://orcid.org/0000-0002-0515-1647

252 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 1, JANUARY 2021

bandit [12]) also quickly reach their bottlenecks due to the
large state/action spaces for characterizing the complex edge
computing system. The substantial breakthroughs of deep
learning [13], [14] in recent years underpin new tools for
solving the edge service provisioning problem. The complex
correlations between service provisioning and other compo-
nents in edge computing can be abstracted directly from data,
thereby saving the effort of complicated system modeling.
Previous works [5], [15]-[19] have considered exploiting deep
learning in edge computing systems though not in the context
of edge service provisioning. Among the existing works,
two deep learning techniques, namely Deep Reinforcement
Learning [20] and Distributed Deep Learning [21], are inves-
tigated most. Although these two techniques have their distinct
advantages, they overlook certain crucial features in the edge
computing for addressing the service provisioning problem
effectively and efficiently. Below, we discuss their pros and
cons in more detail.

1) Deep Reinforcement Learning: Deep reinforcement
learning (DRL) is a model-free approach to learn a decision
policy that captures the temporal decision dependency. It can
work without an offline collected dataset and instead learn
in an online fashion from its experience by interacting with
the environment. These properties are desirable for solving
our edge service provisioning problem, as well as many other
decision problems in edge computing systems, e.g., com-
putation offloading [6], [22], resource allocation [15], and
caching [23]. However, existing works apply DRL to solve
a single-agent decision problem, which is not suitable for
edge service provisioning where decisions have to be made
by many distributed edge sites. Because a single edge server
is resource-constrained, cooperation among multiple edge
servers is needed to accommodate geographically distributed
and correlated service demand. Simply applying single-agent
DRL requires collecting the state information of all edge
servers [18], [23] by a centralized entity and hence incurs a
high communication overhead. More importantly, centralized
single-agent DRL requires training a big deep neural network
to incorporate the state/action spaces of all edge servers, result-
ing in intolerably long training time and poor accuracy. This
makes single-agent DRL infeasible in large-scale distributed
edge computing systems.

2) Distributed Deep Learning: Distributed deep learn-
ing (DDL) is recently studied to train a global deep learning
model in a distributed way using locally collected data [21],
[24]. This idea has been applied in edge computing systems
to derive computation offloading, service placement, and con-
tent caching policies [5], [16], [25]. With DDL, all learners
(e.g., edge servers) eventually arrive at the same global model
and hence, the same policy, after many rounds of the model
integration process [21], [24]. However, because edge servers
are different in terms of their geographical locations, user
demographics, demand patterns, and computing capabilities,
their policies are likely to be different. This requires edge
servers to have distinct service provisioning policies while
being coordinated to achieve a global performance goal.

Considering the distributed and heterogeneous nature of
edge computing systems, multi-agent reinforcement learn-
ing (MA-RL) [26] is actually a better fit to address many
edge computing decision problems but receives much less
investigation. In MA-RL, agents learn their own policies
tailored to their local environment, and work cooperatively to
maximize the overall system performance. MA-RL has been
applied to solve computation offloading [27] and resource
allocation [28] problems in edge computing. More recently,
multi-agent deep reinforcement learning (MA-DRL) [29]-[31]
incorporates deep learning into MA-RL. In this literature,
most existing works [29], [30] consider a cooperative setting
where agents aim at maximizing the overall system reward
and train their local DRL policies using the overall system
reward feedback. Some other works [31] study the competitive
setting (like a game) where agents aim at maximizing their
own individual reward and train their local DRL policies using
their individual reward feedback. These works all adopt the
framework of centralized training with decentralized execution
which will require a centralized entity. Our problem is different
in that each agent uses its own individual reward feedback to
train local edge service provisioning policies yet the goal is
still to maximize the overall system reward. In particular, both
training and execution of the edge service provisioning policies
have to be fully distributed.

B. Novelties and Contributions

In this paper, we propose a novel framework for address-
ing the service provisioning problem in the edge computing
system. Our method is based on multi-agent deep reinforce-
ment learning (MA-DRL) and further incorporates distributed
neural network orchestration and knowledge distilling, thereby
overcoming the limitations of DDL, single-agent DRL, and
existing MA-DRL solutions. The proposed framework respects
the heterogeneity in edge computing systems and enables
distributed policy learning and execution. While this paper
uses edge service provisioning as a specific problem to illus-
trate the power of the proposed framework, it can also be
applied to address many other decision problems in distrib-
uted and heterogeneous edge computing systems, e.g., service
placement, content caching, computation offloading, etc. with
proper adjustment. The main contributions are summarized as
follows.

1) We formulate the edge service provisioning problem as
a Markov Decision Process (MDP), and decompose it into
multiple loosely connected local MDPs, one for each edge
server. Each edge server trains a DRL policy based on local
data for solving its local MDP. With this MA-DRL approach,
training the service provisioning policy is fully distributed and
the derived local policy fits the local environment.

2) Because the trained local service provisioning policies
may have conflicted decisions, we then design a distributed
orchestration scheme, called Neural Network Orchestration
(N20), to coordinate the local policies to work towards the
common goal of maximizing the overall system performance.
N>O is executed in a distributed manner and requires only
local communication (i.e., information exchanges with only

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 21,2021 at 02:07:20 UTC from IEEE Xplore. Restrictions apply.

CHEN AND XU: SEEK COMMON WHILE SHELVING DIFFERENCES

e Neural Network Knowledge
Multi-agent DRL Orchestration Distilling
om Q - = System-wide =
81 Eﬁmz S e i | -
wa C__J 4
5
- Distributed ~ f§ ~==============-~. N
Framework
o Q . . .
e e
@

N
o
o
3
S
£
=
52
8
=3
o
S
T
i
i
i
[
i
i
i
i
i
i
i
i
i
J\

Edge
site 1

FRe &

Edge
server

- - [] -
»@ Well Scalability . *@*

Actor
network

Location-aware
environment

Deep neural
network

Fig. 1. Overall framework of the proposed method.

nearby edge servers) to derive a system-wide service pro-
visioning decision. In particular, NoO is able to handle the
non-convexity of DNNs with a provable performance guaran-
tee. In addition, NoO works with stochastic communications,
and its convergence rate is proven depending on the edge
network topology.

3) To further reduce the overhead during policy orchestra-
tion and accelerate decision making, knowledge distilling [32]
is utilized to distill the service provisioning policy based on the
decisions made by N5O. Its key idea is to train another DNN,
called the actor network, at each edge server to approximate
the service provisioning decisions derived by N2O.

Fig. 1 depicts an overall framework for the proposed
method. MA-DRL and knowledge distilling are carried out
locally on each edge server, catering to distributed edge
computing systems. The core innovation of our method is
N>O, which coordinates locally trained DNNs of distributed
edge servers and provides data for training the distilled
actor network, thereby connecting MA-DRL and knowledge
distilling. The rest of the paper is organized as follows.
Section II describes the edge computing system and defines the
service provisioning problem. Section III formulates the ser-
vice provisioning problem as a Markov decision process and
presents two possible solutions, centralized deep Q-learning
and multi-agent deep Q-learning. Section I'V designs the neural
network orchestration policy and theoretically analyzes its
performance. Section V studies the knowledge distilling for
the neural network orchestration policy. Section VI carries out
the experiment, followed by the conclusion in Section VII.

II. SERVICE PROVISIONING IN EDGE COMPUTING
SYSTEMS

A. Edge Computing System

We consider a typical edge computing scenario where an
edge computing platform is constructed on a heterogeneous
small-cell network [33]. The heterogeneous small-cell network
consists of a set of small-cell base stations (SBSs), indexed
by NV = {1,2,...,N}, and a macro base station (MBS),
indexed by 0. These SBSs are expected to be densely deployed,
reaching a density of 40 ~ 50 SBSs/km? [34]. Each SBS
is co-located with an edge server that possesses comput-
ing resources for supporting computing services. These edge
servers provide platform-as-a-service to Application Service

253

Provider (ASP), managing computing resources requested by
ASP using virtualization techniques. Besides SBSs, there also
exists an MBS that guarantees a ubiquitous service access with
all-over radio coverage and connections to ASP’s cloud. Users
in the service area can offload computation tasks to either edge
servers (via SBSs) or the cloud server (via MBS). Note that the
SBSs/edge servers are densely deployed and hence the users
may be in the coverage of multiple edge servers. A user uses
a computation offloading policy to distribute the computation
tasks among the local mobile device, reachable edge servers,
and cloud server. Various computation offloading policies have
been investigated in the existing literature [5], [6], and our
method is compatible with most of these policies.

B. Service Provisioning

To enable service provisioning on the network edge, an ASP
rents computing resources and deploys its application service
on edge servers. As such, the edge servers charge the ASP
for the amount of requested computing resources. The edge
server uses virtualization techniques, e.g. containerization or
server virtualization, to discretize the computing resources into
containers or virtual machines. We let A,, := {0,1,2,...}
be the feasible set of resource rental decisions available on
edge server n. Note that A,, contains None decision, denoted
by 0, meaning that no computing resource is rented on the
edge server. To adapt to the time-varying user population and
service demand, ASP needs to change its rental decision across
time. We discretize the operational timeline of ASP into time
slots. At the beginning of each time slot ¢, the ASP determines
its resource rental decisions on all N edge servers a; :=
{an+}N_, where a,; € A, is the resource rental decision
on edge server n. We call a; € A := A; x Ay x ... Ay the
system rental decision. The resource rental decision is fixed
till the end of the time slot. We set the length of each time
slot to be several minutes. We note that changing the rented
computing resource will not incur high reconfiguration costs
to edge servers. The state-of-the-art virtualization techniques
[35] even enable virtual machines to be resized during the
run-time of service applications. If a,, ; is non-zero, then ASP
is able to deploy its application service on edge server n
and the users M; = {1,2,..., M,;} can offload their tasks
to edge server m under certain physical constraints. Fig. 2
provides an illustration of the edge computing system and
service provisioning problem for a better understanding of the
discussed system model.

C. Rewards of Application Service Provider

ASP derives rewards by provisioning service at edge
servers. The improvement of service quality provided by edge
computing can be multi-fold [36], e.g., latency reduction,
energy saving, better privacy protection. Without loss of gen-
erality, we focus on the service delay reduction provided by
edge computing because it is closely related to ASP’s resource
rental decisions. In general, the reward of ASP is determined
by three factors: 1) the reduction of service delay provided
by using edge computing service, 2) the amount of service
demand processed on edge servers, and 3) the monetary cost

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 21,2021 at 02:07:20 UTC from IEEE Xplore. Restrictions apply.

254 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 1, JANUARY 2021

TABLE I
SUMMARY OF VARIABLES

Notation | Description Notation | Description
N A set of edge servers (ESs) An Feasible set of rental decisions on ES n
an,t Rental decision on ES 7 in time slot ¢ s ASP reward in time slot ¢
Sy State of the edge system in time slot ¢ On,t Local observation of ES #n in time slot ¢
ay Localized rental decision of ES n B, One-hop neighbors of ES n
0, Parameters of Q-network on ES n w Communication matrix
T Iteration index of N,O a (1) Local copy of system rental decision on ES n
e Parameters of actor network on ES n u(- 6t Actor network on ES n
al Rental decision derived by actor networks an Rental decision derived by N,O
ASP Cloud Internet backbone

)

"A MBS

Edge server does not have service
\ S< deployed cannot sefve users.

'e"\ (-) O ())=---08 (((-) / "_
’E‘ 8 < sss \"' QTS(‘ Users ‘ o
0w '(\ 0= _ ~

o o [

| environment

ASP rents ﬂeéQurce on edge servers
and deploy its sppllcatlon service. Gg— .
LN

~

~

Users generate and distribute service
demand among edge servers.

Fig. 2. Illustration of the edge computing system and service provisioning
problem. The red part of edge servers denotes the amount of computing
resources rented by the ASP. Users that cannot be served by the edge
computing system can offload tasks to Cloud via MBS and Internet backbone.

for renting computing resources. In the following, we will
show how the resource rental decisions interact with other
components in the edge systems and affect the reward of ASP.

1) Service Delay Reduction: The service delay, denoted by
d = d** + d°°™, consists of the transmission delay d** and
computation delay d“°™. The service delay reduction of edge
computing is defined by the gap between the service delay of
cloud computing and edge computing: A = dc1oua — dedge-
Using edge computing, users can offload tasks to edge servers
via one hop wireless link which is much faster than offloading
tasks to the cloud server via congested Internet backbone.
Therefore, the transmission delay of edge computing is much
lower compared to the cloud computing, dgf,. < d&f,.qa-
If the rented computing resources on an edge server is
non-zero, then ASP can deploy its application on the edge
server and the reduction of transmission delay is realized.
The reduction of transmission delay AL* provided by edge
server 1 is A (a,) = (d5Fouq — edge) 1{a, # 0} where
1{-} is an indicator function. The computation delay on an
edge server is often a decreasing function of the amount
of computing resources on the edge server. In most existing
works [37], [38], the computation delay is formulated as an
M/M/1 queuing system with expected delay dggh.(an) =
1/(an tUrate —wn) (Where urate is the unit processing and w,
is task arriving rate at edge server n) or a constant-rate model

with expected delay dSgi.(an) = 1/(an - Urace). Therefore,

renting more computing resources on an edge server can
provide a larger reduction of computation delay AS*™(a,,) =

Coua — dS35e(an), which leads to lower service delay and
higher rewards for ASP.

2) Service Demand Processed by Edge Servers: The service
demand received by edge servers depends on the demand
generation pattern on user-side and also how users distribute
their service demand among edge servers.

a) User demand generation: The generation of service
demand on user-side is relatively independent of ASP’s rental
decision. The service demand generated by a user follows a
certain demand pattern that may depend on the demographic
features of users (e.g., age and gender), the status of mobile
devices (e.g., device type and battery level), and other external
environmental factors (e.g., location, time, and events). We let
Tm ~ X, be the service demand generated by user m &
M, where A&, is an unknown distribution parameterized
by the above mentioned factors. Since the edge servers are
geographically distributed, we shall expect that the user popu-
lations served by edge servers and their corresponding demand
generation patterns are different.

b) Distributing service demand: Distributing service
demand is a more important process that determines the
amount of service demand received by edge servers.
We abstract the distributing process into a mapping func-
tion D : A} X -+ x Xy, — Q1 X -+ x Qn from the
service demands on user-side x; {Zm}mem,s Tm €
X, to the service demand received on edge servers w; =
{Wn.t}nen, wnt € Q. Besides our service provisioning prob-
lem, quite a lot of other components in the edge computing,
e.g., the user behavior, computation offloading, load balancing,
radio resource scheduling, will affect the service demand
distribution. We cannot precisely characterize the correlations
among these components and mathematically model the map-
ping D. Therefore, we only provide general discussions on the
impact of resource rental decisions a; on distributing the users’
service demand. For example, in the computation offloading,
users distribute their service demand aiming to minimize the
service delay. Recall the impact of resource rental decisions
on the service delay discussed previously (i.e., renting more
computing resources leads to lower service delay), we could
infer that users tend to offload more service demands to edge
server n (i.e., a larger w,,) if more computing resource is rented
there (i.e., a larger a,). Moreover, the users may not know

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 21,2021 at 02:07:20 UTC from IEEE Xplore. Restrictions apply.

CHEN AND XU: SEEK COMMON WHILE SHELVING DIFFERENCES

precisely the service delay the edge servers can provide, and
hence they need to learn it from past experience for making
offloading decisions [39]. In this case, users can be more
willing to offload tasks to edge servers if low service delay is
provided in the past, otherwise, users may reduce their reliance
on the edge computing system. Therefore, we may need to
include the previous rental decisions in the loop, which causes
the temporal dependency between resource rental decisions.

3) Cost of Computing Resource Rental: The above discus-
sion indicates that renting more computing resources on edge
servers provides lower service delay and also attracts more
service demand from users. However, renting more computing
resources does not always mean higher rewards for ASP since
higher monetary costs are also incurred at the same time. In the
commercial edge computing system, the operator sets a price
of its computing resources based on a resource pricing scheme
whose goal is to maximize the profit of the edge computing
system. The resource price is often time-varying depending
on the total resource demand and also the competition among
multiple service providers. Given the resource price, the rental
cost for a service provider C : A — R™ is often an increasing
function of the amount of rented resources, and should be
subtracted from the reward. It is possible sometime that the
reward of providing edge computing service cannot cover the
cost of renting computing resources. Therefore, ASP needs
to judiciously decide resource rental decisions in order to
maximize its reward.

Based on above discussions, we write the ASP reward,
re = R({a:}_1; {Xn}mem,, A, D,C), as a function of
current and previous rental decisions {a,}‘_; given users’
service demand patterns { X}, },nenm,, service delay reduction
A, service demand distributing policy D, rental cost function
C. The reward function is presented in a general form and
many other elements in the edge computing system can be
added to parameterized the reward function R based on the
implementation scenario. As the rental decisions are temporal-
dependent, the goal of ASP is to maximize the time-discounted
reward by optimizing the resource rental decisions {a;}{°;:

max

nax S A (1a)
st. 7y =R ({a- oy {Xn mer,, A, D,C), Vt
(1b)
(Ic)

P1:

a; € A, Vt.

where v € [0,1] is a discount factor. The key challenge
for solving 71 is the unknown reward function R(-) and
its uncertain parameters {X,,}menm,, A, D,C. In particular,
directly learning reward function is infeasible due to the
time-dependency of resource rental decisions, e.g., when
t — o0, the size of the input to reward function becomes infin-
ity. In the next section, we will throw £?1 into a reinforcement
learning problem and solve it with the proposed method.
Remarks on the Reward Function: Note that we do not
provide a concrete reward function for ASP. There are two
main reasons for this. First, it is extremely difficult to math-
ematically characterize an ASP reward function without sim-
plifications on the user service demand generation and the

255

complicated user-edge interactions. Second, our method is
able to work with any reward functions that ASP may have.
Actually, such reward functions are not required since the
proposed method is designed based on the framework of deep
reinforcement learning.

III. EDGE SERVICE PROVISIONING AS A MARKOV
DECISION PROCESS

Markov Decision Process (MDP) provides a solid math-
ematical framework for sequential discrete-time decision-
making problems. We use MDP to characterize interactions
between the edge computing environment and service provider.
In each time slot ¢, a state is observed that reflects the
current status of the edge computing system. The state is
partially resulted from resource rental decisions taken before
and thereby helping capture the temporal dependency of
resource rental decisions. The example state includes the
time and location of edge servers that can help infer the
service demand pattern &,,, of nearby users, the number of
connected users connected to SBSs that affects the amount of
service demand received by edge servers, and the available
bandwidth of SBSs that affects the service delay reduction
A and offloading policies D. The examples are clearly not
exhaustive, many other factors that affect ASP’s reward can be
included in the state. Although the large and continuous state
space lays some difficulties in solving MDP, it is well-handled
by deep reinforcement learning (DRL) [20]. Next, we first
present a basic DRL-based framework that solves the service
provisioning problem in a centralized manner.

A. Service Provisioning as a Centralized MDP

We first consider a centralized-MDP formulation by assum-
ing the existence of a central controller that observes the
state of all edge servers and the ASP reward. Let s, € S
be the state of the edge computing system at the beginning
of time slot ¢. The central controller proactively chooses a
system rental decision a; € A based on the observed state
sy and a policy m : S — A. The reward of ASP with
the system rental decision a; < (s;) is determined by an
unknown reward function r : § x A — R. When time slot
t ends, the edge computing system transits to a new state
si+1 according to a transition 7 : S x A x S — [0,1],
T(s,a,8') = Pr(siy1 =5"| st = s,a; = a). Note that the
reward function r and transition 7 of MDP are given in a
general form and hence can represent real-world cases. The
goal is to maximize an expectation over the discounted rewards
Ry = 7 +res1 + Y?re4o + ..., which is the same to the
objective in 1.

1) Centralized Deep Q-Learning: Q-learning is a
model-free reinforcement learning algorithm that can be
used to learning a decision-making policy for MDP. It defines
a Q-function for policy 7, Q™ (s,a) = E[R: | st = s,a; = al,
which obeys the Bellman equation:

Qﬂ'(sv a) = ES'NTJI'NW [rt + ’)/QW(Slv a/) | St = S5,a¢ = a] :

Traditional Q-learning uses a Q-table to learn the Q-value for
each possible state-action pair, which often suffers from the

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 21,2021 at 02:07:20 UTC from IEEE Xplore. Restrictions apply.

256 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 1, JANUARY 2021

notorious problem of Curse of Dimensionality. The proposal
of Deep Q-Learning (DQL) [20] successfully handles the
high-dimension and continuous state space. The core of DQL
is to build a deep neural network Q(s,a;6), referred to
as Q-network, to approximate the Q-function, where 6 is
the parameter vector of the Q-network. DQL uses a greedy
policy 7(s;6) := argmax, 4 Q(s, a;0) to give the decisions.
The training of Q-network Q(s,a;0) aims to adjust the
parameters 6 for reducing the mean-squared error £(6) =
Esars[(y — Q(s,a;0)%] where y is the optimal target
Q-value. Since the optimal target Q-value is inaccessible, it is
substituted with y = r + ymax, Q(s',a’;07) where 6~ are
the parameters of a target network obtained previously. The
training of Q-network follows the standard process of DQL
and hence we omitted most details here. The pseudocode for
the centralized DQL can be found in online Appendix A [40].
Interested readers are also referred to the reference [20].

2) Limitation of Centralized DQL: Although centralized
DQL is theoretically sound, there are several issues to carry
it out practically in edge computing systems. 1) Running
centralized DQL requires to collect the state of all edge servers
in the edge system for making system rental decisions and
training Q-networks. Doing so needs reliable global com-
munications that may not be guaranteed in the distributed
edge computing system. 2) Even with available global com-
munications, frequently sending experience (i.e., a 4-tuple of
state, action taken, rewards, new state) of edge servers to the
central controller for training the Q-network incurs extremely
high communication overhead. This process occupies precious
spectrum resources in the small-cell network and hence may
degrade users’ QoS. 3) Centralized DQL does not scale well
for large edge computing systems. The dimension of the
state space for centralized MDP increases linearly and the
number of system rental decisions increases exponentially with
the number of edge servers in the edge computing system.
When the number of edge servers becomes large, the central
controller needs to build a huge Q-network to approximate
the Q-function. This not only requires high-capacity hardware
to carry out the training but also incurs long training time
for Q-network to converge. To address these issues, we next
introduce the multi-agent MDP and multi-agent DQL for
service provisioning in edge computing systems.

B. Service Provisioning as Multi-Agent MDP

The multi-agent MDP is featured by partial observ-
ability and localized decision-making. Instead of letting
ASP pick a system rental decision a; € A in a cen-
tralized manner, multi-agent MDP employs a distributed
decision-making process where ASP configures a Local Ser-
vice Manager (LSM) on each edge server n € N to decide the
local resource rental decision a,, for edge server n. Multi-agent
MDP of N edge servers is defined by a set of action spaces
{A,}N_| and observation spaces {0, }_,, O,, C S, with A,
and O,, associated to LSM n. Each LSM n learns a policy
7w : On — A,. Although the resource rental decision on edge
server n is determined independently by LSM n, the reward
of LSM n is still correlated to rental decisions on other edge

servers. Recall that edge servers share overlapped service area
due to the dense deployment of SBSs. In this case, a user that
falls in the overlapped area determines its offloading decision
based on the rental decisions on all its reachable edge servers.
To characterize this correlation, we model the edge computing
system using a graph G = (N, &), where the edge servers
N are the vertices, and there exists an edge e € £ between
two edge servers if they have overlapped service area. The
one-hop neighbors of edge server n in graph G are denoted
by B,,. Then, the reward r,, of LSM n is a function of the
local observation, the rental decision on edge server n, and
rental decisions on its neighbor edge servers i € B,, 1, :
S x A, xiep, Ai — R. The reward 7, on edge server
n is only accessible to LSM n and LSMs do not send this
information to other LSMs. The local observation evolves
according to the transition function 7, : O, x A, Xen,
.Aq; X On e [O, 1].

1) Multi-Agent Deep Q-Learning (MA-DQL): ITn MA-DQL,
each LSM n runs DQL independently to maximize its
discounted reward, R, ; = 7y, + ’ylrn,tﬂ + ’yQTn,HQ +....
A Q-network Q,,(0n,,;6,,) is learned locally by LSM
n. The input of Q(0n,aun;60,) is the local observation
on and localized decision o, := {an U {a;}ien,} of
LSM n. The optimal localized decision is determined
by the greedy policy «, := argmaxg, Qn(0n,0n;0).
Although the localized decision of LSM n contains resource
rental decisions of nearby LMSs in B,, LSM n can only
control the resource rental decision a, on edge server n.
Therefore, the policy 7, (0,;6,) of LSM n for determining
the resource rental decision on edge server n is m,(0,,; 0,) :=
{an | an € o) = argmaxeg, Qn(on, an; Hn)} The
pseudocode for MA-DQL can be found in online
Appendix A [40].

2) Advantages of MA-DQL: MA-DQL addresses several
limitations in centralized DQL. 1) MA-DQL avoids the com-
munication overheads for training Q-networks. In MA-DQL,
the experiences e; := {0y, t, Otn ¢, T t, On t41} stored by LSM
n for training its Q-network Q. (-,-;0,) includes the local
observation oy, ¢, 0p, 111, reward 1, ;, and localized rental deci-
sion «, ;. The local observations and rewards can be directly
obtained, and LSM n only needs to observe the resource rental
decisions taken by one-hop neighbors to obtain c,, ;. An LSM
does not need experiences of other LSMs to complete training.
2) MA-DQL scales well for large edge computing systems.
The size of edge computing systems does not affect much the
structure of Q-networks maintained by LSMs. The dimension
of state space |0, is constant for each local Q-network and
does not change with the total number of edge servers in
the system. The number of actions for a local Q-network
depends on the number of its neighbor edge servers, which is
also a constant in expectation because edge servers/SBSs are
often deployed with a certain density. 3) MA-DQL has better
adaptions to the change of edge computing system. Although
the deployment of SBSs and edges servers are often fixed,
it is still possible that new edge sites will be added or existing
edge sites will be removed from the edge computing system.
In such a case, the centralized DQL needs to reconstruct its
Q-network and learns a new policy. By contrast, MA-DQL

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 21,2021 at 02:07:20 UTC from IEEE Xplore. Restrictions apply.

CHEN AND XU: SEEK COMMON WHILE SHELVING DIFFERENCES

only needs to modify the local Q-networks on edge servers that
have overlapping areas with the added/removed edge server,
which is much more efficient compared to centralized DQL.

3) Remarks on the Performance of MA-DQL: In MA-DQL,
the training process of Q-network on each edge server follows
the standard DQL except that local Q-networks output local-
ized decisions and observe decisions taken by one-hop neigh-
bors as part of experiences. Therefore, the sample complexity,
computational complexity, and stability of MA-DQL on local
edge servers are similar to that of standard DQL. We give
detailed discussions on learning performances of MA-DQL
and standard DQL in online Appendix B [40]).

Notice that MA-DQL is only halfway through the full
solution. Now, each LSM learns its policy to maximize its own
reward instead the reward of ASP (defined as a sum of LSMs’
rewards r; = ZnN:1 T,¢). In this case, LSMs actually compete
with each other like players in a non-cooperative game, and the
rental decisions taken by LSMs resemble a Nash-equilibrium.
In the next section, we proposed an orchestration scheme to
coordinate locally learned Q-networks, such that LSMs could
work cooperatively toward the maximization of ASP reward.

IV. DISTRIBUTED NEURAL NETWORKS ORCHESTRATION

Let Q,(0n, aun, 0,,) be the Q-network learned by LSM n.
For ease of the exposition, the time index ¢ is omitted because
our orchestration process is confined in a single time slot.
Based on the definition of Q-values and the objective defined
in &1, the goal of LSMs in each time slot is collaboratively
optimizing the system rental decision @ to maximize the sum
of local Q-values:

3222 n On;anv ’ (221)
a= {(1,17 ,aN} NZ Q)

st a, ={anU{a;}ien,}, an€A,, VneN.

(2b)

Our goal is to solve &2 with communication constraints
imposed by the graph G — LSM n has its access to only the
Q-network @Q,,(+, -, 0,,) learned locally and communicate only
with its immediate neighbors i € 15,,. We propose a distributed
orchestration scheme for deep neural networks, called Neural
Network Orchestration (N5O), to offer a distributed solution
to 2.

N,O is inspired by distributed dual averaging [41] which
is originally designed for distributed optimization of convex
functions. However, Q-Networks are non-convex in most
cases, and NyO is particularly designed for coordinating
non-convex Q-networks in a distributed manner. It utilizes the
structural information of graph G and scales well for large
edge computing systems.

A. Neural Network Orchestration (N>O)

In N3O, each LSM keeps a copy of the system rental
decision a), = {al, ;}icn. and the copy a/, is only accessible
to LSM n. The algbrithm runs in an iterative manner, at each
iteration 7, there are N pairs of vectors (a/, (1), z,(7)) € AX
RY with the n-th pair associated with LSM n. To update the
vector pair (a),(7), z,(7)), each LSM n computes the partial

257

differentiation ¢,,(7) = —0Qn(0n, o, (1), 0,)/0al, (T) of the
local Q-function, where o, (7) = {a;, ,,(7) U{a;, ;(7)}ies, }»
and receives information about the parameter zi(T),i € By
associated with LSM i in its neighborhood 55,,. These para-
meters are combined through a weighting process. Let W &
RN*N be a matrix of non-negative weights that respects the
structure of graph G. For m,n € A/, and (m,n) € £, we have
Win,n > 0. We let W be a doubly stochastic matrix, meaning
that 37 cnWimn = Dnep, Wmn = 1,Vn € N, and
Yonen Wi = Y nen., Wmn = 1,Vm € N. With these
variables, LSM n updates (a’, (7), zn()) as:

ZmeB Wm,nzm(T) + gn(T)

n

I (za(7 + 1), B(7))

Each LSM n first computes z,, (7+1) from a weighted average
of its own gradient gn(T) and the variables {z,,(7)}men, of
its neighbors. Then a/,(7+1) is computed by a projection Hw”
with a positive stepsize 5(7) > 0. The sequence {3(7)}T 0
should be non-increasing, and the projection Hﬁ" for each
LSM n is defined by:

zZn(T+1) =
a,(r+1) =

(3a)
(3b)

I (2,) = argmin {(z, a) + lwn(a)})

acA ﬁ
where 1, : A — R is a convex auxiliary function that
satisfies the following requirements: 1) ¥, (-) > 0 over A;
2) ¥, (a) and V), (a) is bounded over A, i.e., ¥, (a) <
and Vi, (a) < @i Va € A; 3) —Qn(on, o, b0p) +
ﬁwn(a),an C a,Va € A, is strongly convex. These
requirements are not strict, such auxiliary functions can be
easily constructed. A simple example that satisfies all the
above requirement is ¢, = %|la — ¢,||* with a positive
constant 7, and a constant vector ¢, vector. Clearly, ¥, (-) >
0 holds true, and the second requirement is also satisfied
considering a finite action set .A. For the third requirement,
if the constant +,, is chosen large enough, we are able to make
Qn(on, a,0,) + 1, (a) strongly convex. The pseudo-code of
N>O is presented in Algorithm 1. Running N2O only requires
local communications.

Algorithm 1 Neural Network Orchestration (N2O)

1: Input: Local Q-Networks Q,,(+, -, 0,,), ¥n, communication
matrix W, auxiliary functions v,,(+), Vn, local observa-
tions o,, Vn.

2: Inmitialization: z,(1) = 0,Vn, (1) = 1, a,(1) =
% (2 (1), A(1))

3:for r=1,2,...,T do
4: for each LSM n € N/ do
5: Calculate the partial differentiation:

9n (1) = =0Qu(0n,), (7),0r)/0ay,(1);
6: Receive z,,(7) from one-hop neighbors m € B,,.
7: Update z2,(7 +1) = > cp Winnzm(T) + gn(T)

and
aly(r + 1) = 1% (207 + 1), B(r))

8: Broadcast z, (7 + 1) to its one-hop neighbors
9: end for
10: end for

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 21,2021 at 02:07:20 UTC from IEEE Xplore. Restrictions apply.

258 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 1, JANUARY 2021

Remarks on Information Exchange of N>O During Imple-
mentation: Recall that our edge computing system is con-
structed on small-cell networks, where an edge server is
collocated a small-cell base station. The wireless message
passing between base stations often exists to gather infor-
mation regarding the arrangement of nearby base stations for
facilitating user handovers, spectrum allocation, and coverage
optimization. Therefore, we do not need a dedicated commu-
nication scheduling component for N2 O, the information to be
exchanged for running N2O can be included in messages that
are commonly transmitted between base stations.

B. Performance Analysis

To carry out the performance analysis of NoO, we define
the L-Lipschitz condition of Q-networks with respect to the
same norm || - ||, i.e., You,, &y, Vn.

|Qn(0n; [e27%) on) -

holds true. The L-Lipschitz condition implies that for any «,,
and any gradient g, = 0Qn(0n, ay;0,)/0a,, we will have
gall. < L, where |-|.
by [[v|[« := supy, =1 (v;u). The L-Lipschitz condition exists
for deep neural networks and its parameter L can be measured
using techniques in [42]. Note that the L-Lipschitz condition
is only used for analyzing the performance of NoO and we
do not need the parameters in L-Lipschitz condition to run our
algorithm. In the sequel, we show the theoretical performance
guarantees of N»O.

1) Basic Convergence Result: We first give the basic con-
vergence result of local decision sequence {a/,(7)}1_; to
the optimum of %, via the running average, dn(T) =
* Zle a (7). This value is locally defined at each LSM n
and can be computed in a distributed manner. The convergence
result of N2O provides a decomposition of the error into
an optimization error term, a cost associated with network
communications, and a penalty caused by the non-convexity
of Q-networks. To state the theorem, we define the average
dual variable Z(7) := + Ei:;l 2z (7).

Theorem 1 (Basic Convergence): Let {al(7)}1_, and
{z(7)}1_, be the sequences generated according the updates
defined in (3). For any a* € A and for any decision sequence
{al(7)}I_, of LSM i € N/, we have

Qn(0n, &n; 0n)| < Loy, — éunll, (5)

_Zn 1Qn Onva 0 Z Qn Onv ()’)
< OPT + CoMM + NONC,
with OrPT, COMM, and NONC defined as,
1 L2 T
OPT = ——— * — -1
1=y) T ar >, Bl =1,
L T
Comm = — 27:1 B(7)
2 N o _
- [ﬁ > |zm—znmn*ﬂzm—zimn*],
NONC — Z 2/}max amex Z w/ max.
n=1 Nﬁ n=1

where d™®* := arg max a—a H*,Va, a € A

a,a’ ||

Proof: See Appendix C in supplementary materials
[40]. O
The above theorem indicates that after running the NoO
algorithm for 7 iterations, every LSM n has access to a
locally defined a/,(7') which guarantees that the difference
LS [Qn(0n, @%36,) — Qulon, &(T);6,)],¥i € N is
upper bounded by a sum of three terms. The first term OPT
is the optimization error caused by gradient based algorithms.
The second term COMM is the error caused by the different
decision copies maintained at different LSMs. The third term
NONC is caused by the non-convexity of Q-networks. As long
as the bound of deviation ||z(7) — z;(7)||. is tight enough
and §(7) is appropriately chosen, the error of a}(7") is small
uniformly across all LSMs. Next, we will provide a more
precise statement of its convergence rates.

2) Convergence Rate and Network Topology: We next show
how the network topology affects the convergence rates of
N>O. Let us first consider static network topology where the
communication occurs via a fixed doubly stochastic weight
matrix W at every iteration. The following result shows that
the convergence rate of N2O is determined by the spectral
gap 1 —oo(W) of the matrix W, where o(W) is the second
largest singular! value of W.

Theorem 2 (Convergence Rates): Given the conditions and
definitions in Theorem 1, setting the step size 5(7) = r1/2
the convergence rate of N2O is O (M)

.] T(1—02(W)) .
Proof: See Appendix D in supplementary materials
[40]. O

Theorem 2 establishes a connection between the conver-
gence rate of NoO and the spectral properties of the underlying
graph G. The inverse dependence on the the spectral gap
1 — o9(W) is natural since it is well-known to determine
the rates of mixing in random walks on graph [44], and the
propagation of information in N3O is tied to the random walk
on underlying graph with transition probabilities specified by
W (more detailed explanations are given in the proof). Using
Theorem 2, we can derive explicit convergence rate for several
types of graphs that can be used to model the edge computing
network.

Corollary 1: Under the condition of Theorem 2, we have
following convergence rates of N»O:

a) For k-connected v/ N-by-\/N grids: O (\L/—; %z\/ﬁ))

b) For random geometric graphs with connectivity radius r =
Q (y/log"™* N/N
o (L Nlog(T\/_))
\/T log N .
Proof: See Appendix E in supplementary materials
[40].]
Up to the logarithmic factor, the convergence rate is of the
order L?/ VT, and the remaining terms vary depending on the
size and topology of the underlying graph G.

for any ¢ > 0, with high probability:

C. N;O With Stochastic Communication Links

Next, we consider running NoO with the stochastic com-
munication. Such stochastic communication is of interest for

The largest singular value o (TW) is 1 since W is doubly stochastic [43].

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 21,2021 at 02:07:20 UTC from IEEE Xplore. Restrictions apply.

CHEN AND XU: SEEK COMMON WHILE SHELVING DIFFERENCES

many reasons. For example, the network operator may want to
reduce the spectrum usage for information exchange during a
certain time; or the communication links may sometimes fail
during the execution of N5O. The stochastic communication
is characterized by a time-varying and random communication
matrix W (7) — the matrix W (7) is potentially different for
each iteration 7 and randomly chosen.

The following theorem provides a convergence result for the
case of time-varying random communication matrices. In par-
ticular, it applies to sequence {a/ (7)}32, and {z,(7)}>2,
generated by update (3) with step size 5(7)2°, but in which
W is replaced with W (7).

Theorem 3: Let {W(7)}22, be an independent and identi-
cally distributed sequence of double stochastic matrices. For
any a* € A, with probability at least 1 — 1/7", we have

Qn Onaa 0)

~ Z
< e Y A
% <6king;2N) =2 X a0
Z Yot]\Cfl;ax Z _11/)/ max

where) is the second largest eigenvalue of E[W (7) T W (7)].
Proof: See in Appendix F in supplementary materials
[40].]
Based on the result stated in Theorem 3, if we let
the stepsize [(1) = 7'7%, the convergence rate becomes
@ (\L/—; W) The convergence rate for the stochastic
communication is directly comparable to the convergence rate
for the fixed communication matrices.

Qn(on, &;(T);0,)]

V. KNOWLEDGE DISTILLING FOR NEURAL
NETWORK ORCHESTRATION

N>O requires LSMs to iteratively communicate with each
other for deriving resource rental decisions in a distributed
manner. The information exchanged during this process incurs
non-negligible communication overhead which is unfavor-
able for spectrum saving and fast decision-making. In this
section, we employ knowledge distilling technique to avoid the
communication overhead. Knowledge distilling is originally
proposed for deep neural network (DNN) compression which
aims to transfer the knowledge from a cumbersome DNN
to a smaller DNN that is less computation-prohibitive [45].
It is also utilized for facilitating DNN ensembles where
the knowledge acquired by a large ensemble of DNNs is
extracted and squeezed into a small DNN that is suitable
for deployment [32]. In our problem, we aim to distill the
knowledge generated by N2O and store it in a DNN. To be
specific, an actor network will be trained locally for each
LSM whose output approximates the decision derived by
N>O. The actor network of LSM n takes local observa-
tion o, as input and directly infers a localized decision
for the LSM without information exchange with nearby
LSMs.

259

A. Actor Neural Network

We use i (s;{0n}nen) : S — A to abstract the process of
N>O. Note that although the formulation of [(s; {0y }nen)
indicates the accessibility to all Q-networks {6, },cn and
the system state s € S, each LSM actually only accesses its
partial observation and local Q-network when running N>O.
The actor network for LSM n is denoted by (i, (0,,; 6%), where
0% is the parameter vector of the actor network. The resource
rental decision decided by the actor network is denoted by
tn(0n; 08),¥n € N. Let a {a,}N_,,a, €
A,.,¥n be the distributed solution derived by N»O, i.e.,
a = [(s;{0n}tnen). An “ideal” actor is expected to give
a decision af that is same to a,. However, it is unlikely
that an ideal actor can be trained due to the fact that each
LSM n learns only with its partial observation o,, while NoO
allows LSMs to communicate with each other and negotiate
an optimal solution based on the observations of all LSMs.
This information inequality determines that the actor trained
solely by an LSM cannot precisely duplicate the decision of
N-5O. Nevertheless, to maintain a distributed framework of our
method, we stick to knowledge distilling with partial obser-
vations. The effectiveness of such an approach is reasoned
by the correlation of LSMs’ observations. The correlation
of observations is a very mild assumption that often holds
true especially for nearby LSMs. This is because the edge
servers, on which these LSMs are configured, share overlapped
service areas due to the dense deployment, thereby making the
user population and service demand highly correlated. With
correlated observations, an LSM may, to some extent, infer
the decisions of nearby LSMs and pick a rental decision for
maximizing the system reward.

-
@y, =

B. Orchestration Policy Distilling

The overall framework for knowledge distilling is illustrated
in Fig. 3. The essence of the actor network is a regression
module that predicts the output of NoO based on the local
observation. The training of actor network is realized by the
stochastic gradient decent with online experience collection.
Suppose in time slot ¢, LSMs run NoO and derive the
distributed solution a;. Then, each LSM n collects experience
et = (On,t,an) of time slot ¢ in dataset V,, = V,, U {e;}
(V,, is stored locally on edge server n). In the actor network
training, we apply updates of 0% on samples (mini-batch) of
experience (0y,dn) ~ U(V,), drawn uniformly at random
from V,,. The objective of the parameter update is to minimize
the loss function:

L (64) — pin(0n,08))%] (6)

The update of the actor parameter can be calculated as 6+ =
0" +0V gu L(6*), where ¢ is the learning rate. The pseudo-code
for training actor networks is given in the online Appendix A
[40]. During the training of actors, N3O is still performed
to acquire the target solution &, and therefore knowledge
distillation does not help reduce the communication overhead
in this phase. Once actors are trained, LSMs can directly use
actors to give a local resource rental decision, and in this case,
the communication overhead for running N2O is avoided.

= E(o,,a0)~U (w2 [(@n

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 21,2021 at 02:07:20 UTC from IEEE Xplore. Restrictions apply.

260 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 1, JANUARY 2021

@ N m — [& = 865 Ouhuen M

Q-Network

Loss Function
ah = i (0n; 65)

Ilustration of orchestration policy distilling.

:
Back propagation i
;

£)

Actor Network

Observation
of LSM n

Fig. 3.

Our original goal is to acquire actors that have comparable
performance to that of N2O. After using the knowledge dis-
tillation, we surprisingly find that the distilled policy achieves
even higher rewards than N5 O. The rationale behind this seem-
ingly abnormal phenomenon is that the trained actor network
is more stable to the gradient oscillation. To be specific, the
Q-network, as an approximation of the Q-function, is never
smooth. It often has jagged surfaces that lead to gradient
oscillations. It is possible that for a certain observation o,
the gradient of Q-network, i.e., g, = 9Qy(0n, ayn;6y)/0ay,
oscillates across the localized decisions. Relying on the heavily
oscillating gradients, NoO may fail to converge to a good
solution. During knowledge distilling, the actors are trained
based on the experience of NoO. There can be a few samples
that N2 O does not converge well due to gradient oscillation at
certain observations. However, the impact of these samples is
alleviated by nearby samples (i.e., samples with similar obser-
vations) that have relatively smooth gradients and converge
well. The generalization ability of deep neural networks makes
the actor more robust to the gradient oscillation.

VI. EXPERIMENTS AND RESULTS
A. Experimental Setup

1) Edge Computing System: The simulated environment of
the edge computing system is provided in the supplementary
materials [40]. We implement our method on edge computing
systems with different sizes, ranging from 4 to 25 edge servers.
These edge servers are deployed in a grid layout with a grid
interval of 60m. The maximum communication radius of an
edge server is 85m and therefore the service areas of edge
servers are overlapped. The length of each time slot (i.e., the
decision cycle of service provisioning) is 10 minutes.

The service demand generated at users is affected by two
main factors, the location of users and the time of the day.
The service areas are categorized into four types: residential
zone, school zone, commercial zone, and public zone. The
users in different types of areas have different demand patterns
across the time of the day. For example, the expected service
demand for a user in the residential zone from 8 p.m. to 9 p.m.
is 22.5 tasks while at the same time the expected service
demand for a user in the school zone is 3.0 tasks. The users in
the edge system move based on a random walk process with
existing users disappearing and new users appearing randomly.
The expected number of users connected to an edge server in
a time slot is 30. A user can offload tasks to edge servers
within the communication range. The offloading policy of
users aims to minimize the expected service delay, i.e., a sum

of transmission delay and computation delay. The transmission
delay depends on the wireless channel condition which is
modeled by the free space path-loss with Rayleigh fading.
The users estimate the expected computation delay of an edge
server by averaging the previously experienced computation
delays. The computation delay on an edge server is modeled
as an M/M/1 queuing system: dcgi? = 1/(a - Urate — W),
where a is the resource rental decision on the edge server,
Uyrare 1S the processing rate of unit computing resource, and
w is the amount of service demand received by the edge server.
There are 3 resource rental decisions available on each edge
server A, = [0,1,2],Vn. The cost of the rented computing
resources on edge server n is determined by the function
cost = p'Mit.q,, where ™™ is the unit price randomly picked
from [20,40] in each time slot .

The state of an edge server includes: 1) time of the day,
2) the number of users connected to the edge server, 3) avail-
able spectrum at the edge server, 4) previous computation
delay of the edge server, 5) unit price of the computing
resource. These states can be easily acquired and very related
to the reward of edge servers. The time of the day deter-
mines the service demand generated by users. The number
of connected users and the available spectrum together deter-
mine the bandwidth assigned to users which affects channel
condition and transmission delay. The previous computation
delay influences users’ offloading decisions (if the previously
experienced delay is large, then the user will offload less tasks
to the edge server) and affects the amount of service demand
received by edge servers.

2) Hyper-Parameters of Q-Networks: We use manual search
for determining the hyper-parameters of Q-networks. For
centralized DQL, we construct a 5-layer Q-network. The
input layer (first layer) of centralized Q-network includes
observations of all LSMs s (5 - N nodes, the length of the
state vector for each edge server is 5). The output layer (last
layer) outputs the Q-values of all possible actions (3% nodes).
Layer 2 to layer 4 are fully-connected layers with 256, 256,
and 128 nodes, respectively. In multi-agent DQL, each LSM
n € N learns a local Q-network which is also a 5-layer
deep neural network but much smaller than the centralized
Q-network. The input layer of local Q-network n includes
the observation of edge server n, o, (5 nodes), and the
resource rental decisions of LSM n and its one-hop neighbors,
a,, (|B,| + 1 nodes). The output of local Q-network is the
Q-value (one node) given the partial observation o, and
localized rental decision «,,. Three fully-connected layers of
the local Q-network (layer 2 to layer 4) have 8, 32, 8 nodes,

respectively.
The auxiliary function used by N2O is v, = 77 a—c,| 2
where 7, = 10,Vn and ¢, is the resource rental decision

determined by Q-network n locally before running N>O.

B. Results and Evaluations

1) Heterogeneity of Edge Sites: We first show the service
provisioning policy learned by multi-agent DQL. Fig. 4 depicts
resource rental decisions taken by four edge servers under
various system states (two kinds of state information, the time
of the day and unit resource price, are used in the figure).

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 21,2021 at 02:07:20 UTC from IEEE Xplore. Restrictions apply.

CHEN AND XU: SEEK COMMON WHILE SHELVING DIFFERENCES

Edge Site 1

»

Edge Site 2

3

Resoruce Rental Decision
Resoruce Rental Decision

0l g @
20 40
10 B 20

Time of Day 00 Unit Resource Price

Time of Day 0 o Unit Resource Price

261

Edge Site 3 Edge Site 4

Resoruce Rental Decision
Resoruce Rental Decision

0
20 ‘ 40
40 10 20

. 0 o0 B .
Time of Day 9 0 ynit Resource Price Time of Day Unit Resource Price

Fig. 4. Resource rental decisions at different edge sites.

& 4000 —— Centralized DQL
o —e— NZO
g 35007 , Multi-agent DQL
¥ 3000
o Unable to train a DON
'g 2500 | with centralized DQL e
3 2000
0]
c 1500
3
= 1000
4 9 16 25

Number of edge server

Fig. 5. Comparison on mean episode rewards.

We can see that resource rental decisions at different edge
sites exhibit noticeable differences, and therefore considering
the heterogeneity of edge sites is very necessary.

2) Comparison on Mean Episode Rewards: We first com-
pare the ASP reward R; = Zgzl Ty, achieved by centralized
DQL, multi-agent DQL, and N2O. The results are shown
in Fig. 5 which depicts the mean episode (each episode
contains 6 time slots) reward of ASP 1/73"]_, R; and the
standard value. As expected, the centralized DQL achieves
the highest reward since it collects the system-wide state and
learns to maximize ASP’s reward over the edge computing
system. The mean episode reward of multi-agent DQL is
62.06% of that achieved by centralized DQL. By running
our orchestration algorithm N,O, we are able to increase the
mean episode reward to 91.39% of the reward achieved by
centralized DQL.

It is worth noticing that although centralized DQL is able
to achieve the highest system reward, it is not applicable
in all cases even with a central controller and global com-
munications. As can be observed in Fig. 5 that when the
number of edge servers is larger than 9, we are not able
to train a centralized Q-network due to technical difficulties.
For example, if there are 16 edge servers with each edge
server having 3 available resource rental decisions, then the
number of possible actions for centralized DQL becomes
316 = 43,046, 721 which is too large to be included in a single
Q-network. Fig. 6 shows the mean episode reward achieved by
centralized DQL, multi-agent DQL, and NoO with different
computing capacities on edge servers. The number of edge
servers is 4 in this experiment setting and the number of virtual
machines (VMs) on each edge server varies from 2 to 5. For
centralized DQL and N-O, they are able to achieve higher

I Multi-agent DQL

1200 H
- N0
° [__Centralized DQL
21000
o
[0}
8 800
o
[0
c
$ 600
=

400

2 VMs 3 VMs 5 VMs
Capacity of edge servers
Fig. 6. Impact of resource rental decisions.

rewards when the computing capacity of edge servers is larger.
This is because larger computing capacity provides more avail-
able rental decisions, which makes the service provisioning on
the edge server more flexible for ASP. For multi-agent DQL,
the reward decreases with the increase of computing capacity
on edge servers. This is because increasing the flexibility of
resource rental for each LSM makes the competition among
LSMs more intense and therefore causing the reduction of total
reward. It is worth noticing that when the number of available
rental decisions for each edge server becomes 5, N> O can even
achieve higher rewards than centralized DQL. This is because
centralized DQL cannot learn well when the action space is
too large while N5 O is still efficient due to its good scalability.

3) Analysis of Algorithm Complexity: Table II further com-
pares the complexity of centralized DQL and N»O in terms of
state space, action space, communication overhead, and mem-
ory requirement. These values are given with the configuration
of 9 edge servers and 3 available rental actions per edge server.
The dimension of state space is 5 -9 = 45 for centralized
DQL and 5 for NoO and multi-agent DQL. The dimension of
state space increases linearly with the number of edge servers
for centralized DQL and stays constant for NoO. The linear
dependency of the state space dimension on the number of
edge servers is still manageable for centralized DQL. The key
difficulty for centralized DQL is that the number of actions
increases exponentially with the number of edge servers in the
edge computing system. By contrast, the number of actions
for NoO is only related to the number of its neighbor edge
servers which is often small (3 neighbor edge servers in this
experiment setting). A large action space not only poses a
high resource requirement for training Q-networks but also
causes slow convergence during training. As can be observed

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 21,2021 at 02:07:20 UTC from IEEE Xplore. Restrictions apply.

262 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 1, JANUARY 2021

TABLE 1I
COMPARISON OF CENTRALIZED DQL AND N2O

Methods Centralized N-O
Metrics DQL 2
State space dimension 45 5
Number of actions 19,683 81
Communication over- 504 Byte 450 Byte
head (global comm.) | (local comm.)
Memory requirement 106 MB 4.2 MB

2000 [

rewards
[-
o wu
o o
o o
T

Centralized (4 edge servers)
- - - - Centralized (9 edge ervers)

u
=3
S

T T
Multi-agent (4 edge servers)
- - - — Multi-agent (9 edge ervers)

2000 F T T ‘ T T {

1500

1000 - 4

500 m
500 1000 1500 2000 2500 3000 3500 4000
Episode index during training

Mean 100-episode Mean 100-episode
rewards

Fig. 7. Comparison of the training convergence.

—
o
[}

—
==
== 4

User demand
=
=
o

—
N
o

|

i

i

| | | i
|

200 400 600 800 1000 1200 1400 1600 1800 2000

' Convérge to a new policyI i 1
Pt o] 1

ﬁ /r Converge to a new policy]
™ Change edge computing %MM/W‘
. . I

| environmelnt] |
200 400 600 800 1000 1200 1400 1600 1800 2000
Episode index

©

=]

S
T

~N N

o u

S o
T T

Mean episode
rewards
o
w
o

o
=3
Is)

Fig. 8. Adaption to edge environment change.

in Fig. 7, when the number of edge servers is 9, the training of
centralized DQL cannot converge fast. By contrast, increasing
the number of edge servers does not affect the convergence of
N,O/multi-agent DQL.

The communication overheads for centralized DQL and
N>2O given in Table II are both small (around 500 Byte).
However, centralized DQL requires global communication
where messages are transmitted over multi-hop wired connec-
tions. This often incurs much higher delay (due to multi-hop
routing) compared to local transmission used by N>O. Global
communication also causes heavier congestion in the backhaul
link. In addition, running N5O requires 4.2 MB, only 3% of
that used by centralized DQL.

4) Adaption to Environment Changes: The readers may
argue based on the result in Fig. 7 that DQL takes a long time
(1,200 episodes) to learn a Q-network for decision-making and
therefore when the underlying environment changes the learner
may need to learn a new Q-network, which becomes extremely

92

BB Z][f
Li 1
%0 "._A_;_&-»~»ﬁ-»—Av—-A—uA—"A""A"74"A—"-A'"A'—'f—"é—"'A—'-A“—A‘—'zJ
A e P
s e
el " I 8
= g
5 eme R
2 86 1
s Convergence
2
Q 84
(=]
---©--- 4 edge servers
82 §| ~% 9 edge servers 4
---3--- 16 edge servers
—-=»-=- 25 edge servers
80 T T
10 20 30 40 50 60 70 80

Iterations of N,O

Fig. 9. N2O convergence v.s. Number of edge servers.

89.5

89

Objective

©
@ o
& in

—&— Cumm. link failure prob. p =0.0
—&— Cumm. link failure prob. p =0.2
8751 Cumm. link failure prob.
—f— Cumm. link failure prob. X
——— Cumm. link failure prob. p =0.8

10 20 30 40 50 60
Iterations of N,O

Fig. 10. N2O convergence with stochastic communications.

inefficient. We would like to mention that the 1,200 episodes
do not necessarily mean the learning is slow since we set a
long exploration phase (30% of the total number of episodes)
in the training process. One may shorten the exploration phase
to reduce reward loss. Second, in Fig. 7, the learner learns
the Q-network from scratch. However, when you already
have a learned Q-network, adapting the Q-network to a new
environment can be faster. Fig. 8 shows the adaption process
of multi-agent DQL when the edge computing environment
changes. We randomly change the users’ service demand
pattern at 270-th and 1400-th episode. It can be observed that
N,O is able to adapt its Q-networks to the new environment
quickly.

5) Convergence Analysis of NoO : Next, we analyze the
convergence performance of N2O. Fig. 9 shows the conver-
gence of NoO with different numbers of edge servers in the
edge computing system. Overall, we see that the number of
edge servers does not have a significant influence on the
convergence of N>O. This result can be expected as it has
been shown in the theoretical analysis (Theorem 2) that the
convergence rate is only log(v/NV)-dependent on the number
of edge servers N. However, we can still see that increasing
the number of edge servers slightly delays the convergence
of NQO.

Fig. 10 shows the convergence of NoO with stochastic
communication links. We let the communication link to fail
with a certain probability in each iteration of NoO. The failure
probability varies from 0.2 to 0.8 and Fig. 10 depicts the
evolution of objective values (objective of £?2) when running
N>O. In general, we see that N,O is able to converge to the
same optimal value with different link failure probabilities.
In addition, NoO converges slower with a larger link failure

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 21,2021 at 02:07:20 UTC from IEEE Xplore. Restrictions apply.

CHEN AND XU: SEEK COMMON WHILE SHELVING DIFFERENCES

6000

I OistilcdN ,0
5000 H l:lNZO policy 1

TN N I

Number of edge servers

Mean episode rewards
n w B
o o o
o o o
o o o

-
o
o
o

o

Fig. 11. Orchestration policy distillation.

probability. The impact of link failure on the convergence
performance is not significant. NoO is able to converge
within 50 iterations even with the link failure probability 0.8.
6) Knowledge Distilling for NoO : Fig. 11 shows the
performance of knowledge distilling for N2O. The actor
for each LSM n uses a 5-layer network. The input layer
has 5 nodes for feeding the local observation and the output
layer has 1 node for outputting the local rental decision. The
other three layers are fully-connected layers with 16, 32, 16
nodes, respectively. Fig. 11 gives the mean episode rewards of
N>O and distilled policy. We can see that the distilled policy
achieves higher rewards since it helps eliminate the impact
of gradient oscillation as discussed in V-B. We also change
the number of edge servers in the edge computing system.
We can see clearly that our method can achieve larger rewards
with more edge servers. This is simply because more edge
servers provide more available computing resources on the
network edge, and therefore more user service demands can
be accommodated and lower service delay can be delivered.

VII. CONCLUSION

In this paper, we proposed a novel distributed DRL
method based on multi-agent DQL, neural network orchestra-
tion (N2O), and knowledge distilling. The proposed method
fits extremely well for distributed edge computing systems.
It captures complicated interactions between the users and
edge computing system using deep learning techniques. The
multi-agent DQL effectively address the heterogeneity of edge
sites, allowing each edge site to have a distinct Q-network that
works well locally. NoO coordinates local Q-networks to max-
imize the system-wide performance. Knowledge distilling is
further applied to avoid the communication overhead incurred
by N,O. We exemplify the efficacy of the proposed method on
a service provisioning problem for edge computing systems.
The proposed method has a general framework that can be
applied to a variety of issues in edge computing systems, e.g.,
computation offloading, service placement, service migration,
and resource allocation. It is also suitable for many other
systems featured by the distributed and heterogeneous nature.
There are still many works can be done to improve the perfor-
mance of our method. For example, episodic rewards can be
used to improve the sample efficiency, and adversary training
can be applied to improve the robustness of multi-agent DQL.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

263

REFERENCES

Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322-2358, 4th Quart., 2017.
T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration,” [EEE Commun. Surveys
Tuts., vol. 19, no. 3, pp. 1657-1681, 3rd Quart., 2017.

Verizon. Verizon and AWS: The Cutting-Edge of Edge.
Accessed: Nov. 10, 2020. [Online]. Available: https://enterprise.verizon.
com/business/learn/edge-computing

H. Zhao, M. Pan, X. Liu, X. Li, and Y. Fang, “Exploring fine-grained
resource rental planning in cloud computing,” [EEE Trans. Cloud
Comput., vol. 3, no. 3, pp. 304-317, Jul. 2015.

J. Ren, H. Wang, T. Hou, S. Zheng, and C. Tang, “Feder-
ated learning-based computation offloading optimization in edge
computing-supported Internet of Things,” [EEE Access, vol. 7,
pp. 69194-69201, 2019.

X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet Things J., vol. 6, no. 3,
pp. 4005-4018, Jun. 2019.

F. Guo, L. Ma, H. Zhang, H. Ji, and X. Li, “Joint load management and
resource allocation in the energy harvesting powered small cell networks
with mobile edge computing,” in Proc. IEEE Conf. Comput. Commun.
Workshops (INFOCOM WKSHPS), Apr. 2018, pp. 299-304.

C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and
C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in
wireless communication,” IEEE Trans. Wireless Commun., vol. 18, no. 8,
pp. 4157-4170, Aug. 2019.

X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795-2808, Oct. 2016.

L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for
energy-constrained mobile edge computing in small-cell networks,”
IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1619-1632, Aug. 2018.

J. Xu, L. Chen, and S. Ren, “Online learning for offloading and
autoscaling in energy harvesting mobile edge computing,” IEEE Trans.
Cognit. Commun. Netw., vol. 3, no. 3, pp. 361-373, Sep. 2017.

P. Dai et al., “Multi-armed bandit learning for computation-intensive
services in MEC-empowered vehicular networks,” IEEE Trans. Veh.
Technol., vol. 69, no. 7, pp. 7821-7834, Jul. 2020.

C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and
wireless networking: A survey,” IEEE Commun. Surveys Tuts., vol. 21,
no. 3, pp. 2224-2287, 3rd Quart., 2019.

L. Deng and D. Yu, “Deep learning: Methods and applications,” Found.
Trends Signal Process., vol. 7, nos. 3—4, pp. 197-387, Jun. 2014.

T. Yang, Y. Hu, M. C. Gursoy, A. Schmeink, and R. Mathar, “Deep
reinforcement learning based resource allocation in low latency edge
computing networks,” in Proc. 15th Int. Symp. Wireless Commun. Syst.
(ISWCS), Aug. 2018, pp. 1-5.

Y. Qian, L. Hu, J. Chen, X. Guan, M. M. Hassan, and A. Alelaiwi,
“Privacy-aware service placement for mobile edge computing via fed-
erated learning,” Inf. Sci., vol. 505, pp. 562-570, Dec. 2019.

J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtdrik, A. T. Suresh,
and D. Bacon, “Federated learning: Strategies for improving com-
munication efficiency,” 2016, arXiv:1610.05492. [Online]. Available:
http://arxiv.org/abs/1610.05492

Z. Ning, P. Dong, J. J. P. C. Rodrigues, F. Xia, and X. Wang, “Deep
reinforcement learning for vehicular edge computing: An intelligent
offloading system,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 6,
pp. 1-24, 2019.

C. Huang, R. Mo, and C. Yuen, “Reconfigurable intelligent surface
assisted multiuser MISO systems exploiting deep reinforcement learn-
ing,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1839-1850,
Aug. 2020.

V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529-533, Feb. 2015.

J. Dean et al., “Large scale distributed deep networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2012, pp. 1223-1231.

L. Huang, S. Bi, and Y.-J.-A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Trans. Mobile Comput., vol. 19, no. 11,
pp. 2581-2593, Nov. 2020.

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 21,2021 at 02:07:20 UTC from IEEE Xplore. Restrictions apply.

264

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 1, JANUARY 2021

Y. He, N. Zhao, and H. Yin, “Integrated networking, caching, and com-
puting for connected vehicles: A deep reinforcement learning approach,”
IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 44-55, Jan. 2018.

I. Adamski, R. Adamski, T. Grel, A. Jedrych, K. Kaczmarek, and
H. Michalewski, “Distributed deep reinforcement learning: Learn how
to play Atari games in 21 minutes,” in Proc. Int. Conf. High Perform.
Comput. Cham, Switzerland: Springer, 2018, pp. 370-388.

Z. Yu et al., “Federated learning based proactive content caching in
edge computing,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2018, pp. 1-6.

L. Busoniu, R. Babuska, and B. De Schutter, “Multi-agent reinforcement
learning: An overview,” in Innovations in Multi-Agent Systems and
Applications-1. Berlin, Germany: Springer, 2010, pp. 183-221.

M. G. R. Alam, Y. K. Tun, and C. S. Hong, “Multi-agent and reinforce-
ment learning based code offloading in mobile fog,” in Proc. Int. Conf.
Inf. Netw. (ICOIN), Jan. 2016, pp. 285-290.

X. Liu, J. Yu, and Y. Gao, “Multi-agent reinforcement learning for
resource allocation in IoT networks with edge computing,” 2020,
arXiv:2004.02315. [Online]. Available: http://arxiv.org/abs/2004.02315

J. Foerster, I. A. Assael, N. De Freitas, and S. Whiteson, “Learning to
communicate with deep multi-agent reinforcement learning,” in Proc.
Adv. Neural Inf. Process. Syst., 2016, pp. 2137-2145.

R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and 1. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 6379-6390.
S. Li, Y. Wu, X. Cui, H. Dong, F. Fang, and S. Russell, “Robust
multi-agent reinforcement learning via minimax deep deterministic
policy gradient,” in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019,
pp. 4213-4220.

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge
in a neural network,” 2015, arXiv:1503.02531. [Online]. Available:
http://arxiv.org/abs/1503.02531

L. Chen and J. Xu, “Budget-constrained edge service provisioning with
demand estimation via bandit learning,” IEEE J. Sel. Areas Commun.,
vol. 37, no. 10, pp. 2364-2376, Oct. 2019.

X. Ge, S. Tu, G. Mao, and C. X. Wang, “5G ultra-dense cellular
networks,” IEEE Trans. Wireless Commun., vol. 23, no. 1, pp. 72-79,
Feb. 2016.

D. Breitgand et al., “Dynamic virtual machine resizing in a cloud
computing infrastructure,” U.S. Patent 9858095, Jan. 2, 2018.

D. Ardagna, G. Casale, M. Ciavotta, J. F. Pérez, and W. Wang,
“Quality-of-service in cloud computing: Modeling techniques and their
applications,” J. Internet Services Appl., vol. 5, no. 1, p. 11, Dec. 2014.
J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2018, pp. 207-215.

R. Beraldi, A. Mtibaa, and H. Alnuweiri, “Cooperative load balancing
scheme for edge computing resources,” in Proc. 2nd Int. Conf. Fog
Mobile Edge Comput. (FMEC), May 2017, pp. 94-100.

[39]

[40]

[41]

[42]

[43]
[44]

[45]

Z. Zhu, T. Liu, Y. Yang, and X. Luo, “BLOT: Bandit learning-based
offloading of tasks in fog-enabled networks,” IEEE Trans. Parallel
Distrib. Syst., vol. 30, no. 12, pp. 2636-2649, Dec. 2019.

L. Chen. Online Supplementary Material. Accessed: Nov. 10, 2020.
[Online]. Available: https://github.com/chenlx-um/neural-network-
orchestration. git

J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for
distributed optimization: Convergence analysis and network scaling,”
IEEE Trans. Autom. Control, vol. 57, no. 3, pp. 592-606, Mar. 2012.
A. Virmaux and K. Scaman, “Lipschitz regularity of deep neural
networks: Analysis and efficient estimation,” in Proc. Adv. Neural Inf.
Process. Syst., 2018, pp. 3835-3844.

R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 2012.

D. A. Levin and Y. Peres, Markov Chains and Mixing Times, vol. 107.
Providence, RI, USA: American Mathematical Society, 2017.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958,
2014.

Lixing Chen received the B.S. and M.S. degrees
from the College of Information and Control Engi-
neering, China University of Petroleum (East China),
Qingdao, China, in 2013 and 2016, respectively.
He is currently pursuing the Ph.D. degree with the
College of Engineering, University of Miami. His
research interests include mobile edge computing,
game theory, and machine learning for networks.

Jie Xu (Member, IEEE) received the B.S. and M.S.
degrees in electronic engineering from Tsinghua
University, Beijing, China, in 2008 and 2010, respec-
tively, and the Ph.D. degree in electrical engineering
from UCLA in 2015. He is currently an Assistant
Professor with the Department of Electrical and
Computer Engineering, University of Miami. His
research interests include mobile edge computing,
machine learning for networks, and network security.

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 21,2021 at 02:07:20 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

