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Viral nanoparticles (VNPs) encompass a diverse array of naturally occurring nanomaterials derived from plant
viruses, bacteriophages, and mammalian viruses. The application and development of VNPs and their genome-
free versions, the virus-like particles (VLPs), for nanomedicine is a rapidly growing. VLPs can encapsulate a
wide range of active ingredients aswell as be genetically or chemically conjugated to targeting ligands to achieve
tissue specificity. VLPs are manufactured through scalable fermentation or molecular farming, and the materials
are biocompatible and biodegradable. These properties have led to a wide range of applications, including cancer
therapies, immunotherapies, vaccines, antimicrobial therapies, cardiovascular therapies, gene therapies, as well
as imaging and theranostics. The use of VLPs as drug delivery agents is evolving, and sufficient researchmust con-
tinuously be undertaken to translate these therapies to the clinic. This review highlights some of the novel re-
search efforts currently underway in the VNP drug delivery field in achieving this greater goal.
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Fig. 1.Different plant VLPs and bacteriophages to scale. CCMV (PDB ID: 1ZA7), CPMV (PDB
ID: 1NY7), PhMV (PDB ID: 1QJZ), SeMV (PDB ID: 1X33), TMV (PDB ID: 2TMV), MS2
(1AQ3), Qβ (PDB ID: 5KIP), and P22 (PDB ID: 5UU5) and images were reconstructed
using UCSF Chimera software.
1. Introduction

1.1. Viral nanocarrier platforms

Over the past decades, the progress of nanotechnology has opened
up new avenues formedical science, especially in thefield of drug deliv-
ery. Traditional drug carriers have been developed based on liposomes/
lipids [1], polymers of synthetic and natural origin [2], and inorganic
nanoparticles [3]. To make a clinical impact, nanoparticles for drug de-
livery must be biocompatible and biodegradable with minimal toxicity.
However, some synthetic carriers are restricted by toxicity and/or low
delivery efficiency necessitating the development and application of al-
ternate systems [4]. There is no “perfect solution”, thus there is a need to
fuel the development pipeline with novel drug delivery systems. An
emerging class of novel drug carriers are protein-based nanoparticles
such as protein cages and viruses [5]. Protein cages are self-assembled
supramolecular structures arranged from their individual protein
monomers. Their subunits are not viral by nature. VLPs are similar, but
are assembled specifically from the coat proteins of the native virus. Vi-
ruses are stable structures that can withstand environmental pressures
and escape degradation, but at the same time are sensitized to detect
signals in the cellular environment thereby releasing their genome
when instructed. Within the class of viruses, there are two subsets:
virus-like particles (VLPs) and viral nanoparticles (VNPs). VLPs are the
genome-free versions of their VNP counterparts and are considered
noninfectious. They may also impart different immunostimulatory pro-
files due to the presence/absence of the viral genomes [6]. In our review,
we mention VLP and VNP plant viruses and bacteriophages; we men-
tion application of some protein cages in some examples and also high-
light a few mammalian virus nanotechnologies. Virus capsids are
formed through the self-assembly of repeating protein subunits, there-
fore providing a high degree ofmultivalency. Plant viruses in general are
non-enveloped structures and they can assume a spherical/icosahedral
or filamentous/tubular shape (Fig. 1). Viruses are regarded as naturally
occurring nucleic acid carriers as they protect and carry their cargo, and
that is themain property exploited for drug delivery [7]. Drug cargo can
be infused, encapsulated, absorbed, or conjugated to the interior and ex-
terior surfaces of the coat protein interfaces using a combination of
chemistries and through attachment to various functional groups of-
fered by the protein structure [7]. This flexibility offers a variety of pos-
sibilities including reversible binding of active molecules, protection
within proteinaceous matrices, as well as specific targeting to the site
of action.

Natural delivery carriers, particularly VNP-based carriers, offer some
unique advantages due to their morphological uniformity, biocompati-
bility, water solubility, easy functionalization and high uptake efficiency
[8]. Further, ideal nanomedical approaches for drug delivery or imaging
aim to utilize biological behaviors to develop smart nanosized cages
Please cite this article as: Y.H. Chung, H. Cai and N.F. Steinmetz, Viral nano
applications, Adv. Drug Deliv. Rev., https://doi.org/10.1016/j.addr.2020.06
with high stability, appropriate pharmacokinetics, cell-targeting, and ef-
ficient cell penetrability. Plant viruses generally do not exhibit tissue
tropisms, therefore these properties can be engineered as an added
function to give the nanoparticle formulation, whether of synthetic or
natural origin, properties such as cell surface receptor binding, targeting
abilities, membrane crossing, and nuclear penetration [9].

While there is no clinically approved plant or bacteriophage-based
nanomedicine, several are undergoing preclinical development while
some systems are poised to enter translational development. The
plant VLP and VNP-based nanotechnology platforms undergoing devel-
opment for various nanomedical applications are tobacco mosaic virus
(TMV), cowpea mosaic virus (CPMV), cowpea chlorotic mottle virus
(CCMV), physalis mottle virus (PhMV), and potato virus X (PVX) (not
figured) amongst others. Notable are also the following bacteriophages:
MS2, P22, Qβ and M13 (not figured). These viruses range in sizes from
~30 nm to over a micron and can be found in a variety of distinctive
shapes (Fig. 1). With advances in biochemistry and directed evolution
techniques, continuous progress has been made in the development of
viral nanocarriers for drug delivery, imaging, and theranostic applica-
tions. In this review, we focus on the use of VNPs and VLPs as therapeu-
tics and diagnostics in biomedical applications including antimicrobial,
cancer, protein/peptide, and gene therapies; monotherapy and combi-
nation therapies against cancer; vaccines against infectious diseases,
cancer and other diseases; nanocarriers for imaging modalities; and
theranostics with photothermal therapy (PTT).
particles for drug delivery, imaging, immunotherapy, and theranostic
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Fig. 2. Strategies to carry cargo using VLPs include: a) self-assembly around cargo by altering pHand buffer conditionswith CCMV, b) infusion of cargowithin RCNMVdue to changes in pH
and salt concentrations, c) genetic engineering techniques utilizing genetically conjugated scaffolding proteins to encapsulate drugs within P22, d) bioconjugation onto CPMV using
exterior surface-exposed residues.
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2. Delivery of drug cargo with VLPs

2.1. Encapsulation and conjugation techniques for VLPs

While their natural cargo is nucleic acids, VLPs are flexible and ver-
satile tools and amenable for incorporating and delivering a wide
range of small or large molecule cargo, both of biologic (e.g. nucleic
acids and proteins) and synthetic origin (e.g. chemotherapy). Different
strategies have been developed to carry the payloads either inside or
outside the capsid (Fig. 2). Viruses generally package their genetic ma-
terial inside the capsid through a simple supramolecular self-assembly
process, and the principles governing the packaging can be used to
load functional payloads within the viruses. VLPs that have been pro-
grammed to encapsulate cargo during reassembly include CCMV,
bromemosaic virus, red clover necrotic mosaic virus (RCNMV), and Hi-
biscus chlorotic virus (reviewed in [8]). Changing the buffer conditions,
pH, and ionic strength in vitro disassembles the capsid and releases the
viral genome. Following disassembly, viral capsids are reassembled to
encapsulate the desired cargo using buffer exchange methods (Fig. 2a)
[10,11]. For instance, at physiological pH or high ionic strength (I ~
1M), CCMV disassembles releasing its inner RNA; changing the buffer
to a pH between 3 and 6 with low ionic strength (I ~0.1M) causes re-
assembly of the capsid [12]. Using this method, our group has demon-
strated CCMV encapsulation of CpG oligodeoxynucleotides (ODNs) for
use in cancer immunotherapy [13]. Reassembly can also be triggered
bymixing the cargo with coat proteins above the critical assembly con-
centration of the VLPs in a similar fashion to the formation of micelles
[14]. The successful encapsulation of cargo depends on the size and sur-
face charge of the cargo, electrostatic interactions, hydrophobicity/hy-
drophilicity, and other unique binding interactions that occur during
Please cite this article as: Y.H. Chung, H. Cai and N.F. Steinmetz, Viral nano
applications, Adv. Drug Deliv. Rev., https://doi.org/10.1016/j.addr.2020.06
nanoassembly [15–17]. In some cases, the reassembly is based on elec-
trostatic interactions between the positively charged interior surfaces of
the capsid proteins and a negatively charged cargo thatmimics the neg-
atively charged nucleic acids [18]. Encapsulation of positively charged
payloads can be accomplished by mixing with another negatively
charged molecule providing sufficient net negative charge and thereby
catalyzing capsid assembly [19].

While often depicted as solid nanoparticles (e.g. Fig. 1), one should
keep in mind that many VLPs are porous and the materials “breeze” in
that they change conformation under various bathing conditions
allowing the infusion of small molecules into the capsid’s cavity
(Fig. 2b). Lommel et al. demonstrated this property with RCNMV by
adding chelators to remove calcium and magnesium ions from the sol-
vent leading to the formation of 11–13 Å-diameter channels; the re-
addition of the ions closes the formed channels [20]. Building off of
this work, RCNMV was conjugated to a CD46-targeting peptide and
loaded with doxorubicin (DOX) through passive diffusion of DOX
through the formed channels during the capsid’s “open” conformation
[21]. The targeted and DOX-loaded RCNMV nanoparticles showed sig-
nificant cytotoxicity in vitro in HeLa cells. Another example is CCMV;
changes in pH and salt concentration can affect CCMV capsid stability.
Careful adjustment of buffer conditions enables CCMV production in
the open and expanded conformation forming pores of ~2 nm allowing
for cargo loading [22]. Reversal to the closed and condensed conforma-
tion traps the cargo inside in a mechanism referred to as gating [23].

In addition to passive or non-specific encapsulation, cargo can be
tethered and stabilized to the interior of the VLPs making use of bio-
specific interactions. For example, Peabody et al. encapsulated cargo
into MS2 VLPs by utilizing RNA stem loops fused to the desired cargo.
These RNA stem loops are derived from the MS2 genome and bind to
particles for drug delivery, imaging, immunotherapy, and theranostic
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the interior of the capsid proteins with high affinity using electrostatic
interactions. During infection, these interactions drive assembly and
viral genome packing [24]. Additionally, the RNA stem loops can be
used to guide cargo to the interior of the MS2 capsids. MS2 particles
were packagedwith quantum dots, chemotherapeutics including doxo-
rubicin (DOX), cisplatin, and 5-fluorouracil (5-FU), as well as ricin toxin
A-chains by conjugating the molecules to these RNA stem loops. In an-
other example by Finn et al., a positively charged Rev peptide, which
binds to α-Rev aptamers within the Qβ RNA sequence, was genetically
conjugated to the prodrug-modifying enzymes cytosine deaminase and
purine-nucleoside phosphorylase. Encapsulation of these enzymes was
accomplished via noncovalent attachment of Qβ aptamer sequences
within the RNA to the Qβ coat proteins and the Rev peptides on the en-
zymes [25].

Genetically enabled directed loading during in vivo assembly is an-
other technique for cargo encapsulation into VLPs. The cargo and capsid
protein can be expressed simultaneously or separately by heterogeneous
expression systems followed by self-assembly in vivo or in vitro (Fig. 2c).
Genetic techniques will need to be utilized to insert the cargo-encoding
genetic sequences into the genes encoding the capsid protein [26]. Doug-
las et al. employed this technique using scaffolding proteins that help di-
rect the assembly of P22 procapsids with their helix-turn-helix domains
within the C-terminus [27]. The scaffolding proteins were genetically
fused to streptavidin, which serves as a molecular linker to entrap
biotin-labeled cargo. The techniquewas also used to display biotinylated
green fluorescent protein (GFP) on the surface of the P22 procapsid by
tethering the scaffold proteins to the interior streptavidin. While the
GFP was too large to traverse the viral capsid, the scaffolding proteins
could penetrate through thus allowing for exterior functionalization. Ge-
netically enabled loading is particularly powerful, as it improves the
quantitative control of the introduced cargos leading to increased homo-
geneity between samples. The aforementioned methods are not an ex-
haustive list of all the methods utilized to load cargo into VLPs and
other techniques may be applied.

Besides encapsulation techniques, VLPs can also deliver payloads
through covalent attachments making use of reactive amino acid side
chains of the protein structure. Functional addressable groups are prin-
cipally amines (Lys), carboxylates (Asp, Glu), thiols (Cys), and aromatic
groups (Tyr, Trp), all of which can be utilized for bioconjugation chem-
istries (Fig. 2d) [28,29]. Some powerful chemical reactions used for
bioconjugation on these moieties include NHS esters, carbodiimides,
maleimides, and click chemistries respectively. Moreover, residues
such as lysines can be site-specifically engineered into the capsid pro-
tein to provide non-native reactive sites [30,31].

To increase drug loading capacity, structures of higher order have
been introduced. For instance, layer-by-layer techniques to deliver bio-
molecules has beenwidely accomplishedwith additional compartmen-
talization even allowing for multiple-drug delivery [32]. Hierarchical
assembly using virus capsids on DNA origami templates has also been
exploited [30].

2.2. Delivery of small molecule drugs for cancer therapy

Currently, chemotherapy remains the first choice for cancer treat-
ments in the clinic [31]. However, high resistance and recurrence
rates, together with rapid drug clearance and non-targeted administra-
tion, require theuse ofmaximum-tolerated drug dose in cancer therapy,
whichmay result in high-grade toxicities and limited clinical applicabil-
ity [33]. Drug delivery systems that can provide targeted and intracellu-
lar delivery, promote active drug accumulation in tumor tissues, and
minimize required doses would ameliorate these issues and therefore
improve therapeutic outcomes.

VLPs possess numerous features that make them highly suitable
for targeted delivery of therapeutic agents. In an early study, MS2
VLPs were modified with a targeting peptide (SP94) and were used
to selectively deliver chemotherapeutic drugs (DOX, cisplatin and
Please cite this article as: Y.H. Chung, H. Cai and N.F. Steinmetz, Viral nano
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5-FU) to human hepatocellular carcinoma cells (HCC) [24]. These
modified VLPs exhibited high avidity and specificity towards HCC
with minimal uptake in healthy cells and induced selective cytotox-
icity in vitro even at very low doses. For instance, the DOX-loaded
VLPs killed HCC cells at IC50 values of 10–15 nM, 20 times better
than free DOX.

In fact, various VNP and VLP systems have been utilized for DOX de-
livery. The loading and release mechanisms of DOX were extensively
studied using the aforementioned RCNMV in which the breezing prop-
erties of RCNMVwere used to encapsulate DOX [34]. Additionally, DOX
was electrostatically bound to the exterior of the viral capsid using both
phosphate and Tris buffer with the phosphate buffer increasing levels of
surface-boundDOX (Fig. 3a). Different ratios of encapsulated and conju-
gated DOX tuned the release kinetics of the chemotherapeutic. The
RCNMV particles demonstrated Fickian diffusion kinetics attributed to
the rapid release of the exterior DOX followed by the slower release of
the encapsulated DOX. Qβ VLPs have additionally been investigated
with DOX for cancer cell killing. DOX was conjugated using a
photocleavable nitroveratryl linker to the exterior of Qβ VLPs that had
been modified via a dibromomaleimide chemistry [35]. Light exposure
for 15 min caused dose-dependent cytotoxic killing in MCF-7 cells
in vitro.

To study the impact of nanoparticle morphology on drug delivery,
Francis et al. loaded DOX on three morphologically distinct VLPs: MS2,
TMV disks (Fig. 3b), and nanophage filamentous rods [36]. MS2 is
spherical in shape with a diameter around 27 nm, the TMV disks are
flat and round measuring 18x5 nm, and the nanophages are short fila-
mentsmeasuring 50x6 nm. Increased survival rates were only observed
in intracranial U87-Luc glioblastoma-bearingmice that were treated via
convection-enhanced delivery using the TMV disks and MS2 VLPs, with
the TMV disk-treated mice showing the greatest efficacy. The
nanophage filamentous rods showed no efficacy compared to free
DOX and phosphate buffered saline controls indicating that the carrier
itself can also affect drug delivery. Other studies have demonstrated
that high aspect ratio materials tend to improve drug delivery – these
materials marginatemore towards the vessel walls increasing the prob-
ability of binding to diseased areas, retain and accumulate in tumor tis-
sue, and transport better through membranes and tissues compared to
their spherical counterparts [37]. A review by Muzykantov et al., dis-
cusses how nanoparticle shape plays distinct roles in areas of adhesion
and biodistribution, cell internalization, and drug loading and release
[38]. Several plant viruses form filamentous and tubular structures
and therefore make intriguing platforms for drug delivery. Our group
has used 300x18 nm-sized nanotubes of TMV [39] as well as
515x13 nm filamentous PVX [40] (Fig. 3c) to deliver DOX.

In the treatment of athymic mice bearing human MDA-MB-231
breast cancer xenografts injected subcutaneously (s.c.) into the right
flank, DOX loaded onto PVX through simple adsorption to the exterior
surface significantly reduced tumor growth showing superior efficacy
over free DOX. Similar observations were made using albumin-coated
TMV loaded with DOX [41]. It should be noted that in this example,
VNPs (rather than VLPs) of TMV and PVX were used. The reason for
the use of VNPs is that the RNA-cargo acts as a ruler defining the length
of the nucleoprotein complex. Therefore, while TMV VNPs measure
300x18 nm; VLPs thereof are variable in length [42]. The same is true
for other filamentous viral nanoparticles such as PVX. Therefore, from
here on out any instances of TMV and PVX will be utilizing the VNP
form.

Although not the focus of this review, it is noteworthy to mention
that mammalian viruses have also been repurposed to deliver DOX.
Some examples include the influenza virus, foot-and-mouth disease
virus, the hepatitis B core protein (HBc), and the VLP ofMacrobrachium
rosenbergii nodavirus [43–46].

To increase drug loading potential, polymerization chemistries can
be used to increase the functional handles and thus drug loading. An ex-
ample of this technique has been illustrated using Qβ formulated as a
particles for drug delivery, imaging, immunotherapy, and theranostic
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Fig. 3. Various VLPs and their incorporation of DOX through infusion, bioconjugation, adsorption, and using polymerization chemistries a) Infusion and surface binding of DOX onto
RCNMV VLPs in different buffers to study the binding and release characteristics of DOX from the nanoparticles (reproduced with permission from ref [34]) b) Bioconjugation of DOX-
N-ε-maleimidocaproic acid hydrazides onto TMV disk VLPs through maleimide linkages to the cysteine residues (reproduced with permission from ref [36]) c) Adsorption of DOX
onto the exterior surface of PVX (reproduced with permission from ref [40]) d) Copper-catalyzed azide-alkyne cycloaddition of DOX onto OEGMA-N3-polymerized Qβ (reproduced
with permission from ref [47]).
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polymer-protein hybrid nanomaterial [47]. Qβ was polymerized with
an azido-functionalized oligo(ethylene glycol)-methacrylate (OEGMA-
N3) via atom transfer radical polymerization (ATRP), which was then
functionalized to DOX through copper-catalyzed azide-alkyne cycload-
dition (Fig. 3d). The DOX-Qβ particles showed comparable cytotoxicity
to free DOX in HeLa cells in vitro.

Plant virus-based nanoparticles have been widely used for targeted
delivery of platinum-based anticancer drugs, which are used in the
treatment of nearly 50% of cancer patients undergoing chemotherapy
[48]. TMV makes an intriguing platform for efficient delivery of
platinum-based drugs such as cisplatin [49] and drug candidate
phenanthriplatin (phenPt) [50] as they can be efficiently loaded into
the TMV cavity via a charge-driven reaction or by forming stable cova-
lent adducts (Fig. 4a,b). TMV-cisplatin VNP complexes were efficiently
taken up by cancer cells and exhibited superior cytotoxicity compared
to free cisplatin [49]. For targeted drug delivery, cisplatin-loaded TMV
VNPsweremodifiedwithmannose and lactosemoieties on the exterior
surface of the TMV [51]. Through specific recognition betweenmannose
and galectin and lactose and the asialoglycoprotein receptor on the cell
membranes, the targeted and drug-loaded TMV showed increased cyto-
toxicity inMCF-7 and HepG2 cancer cell lines. In amore recent study by
the same group, the coat protein of TMVwasmodifiedwith a small mo-
lecularfluorous ponytail at specific sites precipitating self-assembly into
spherical nanoparticles (Fig. 4c) [52]. Cisplatin was loaded through
metal-ligand coordination into this spherical assembly with high
stability.

Other examples of plant VNP drug delivery applications include
the functionalization of TMV and CPMV with mitoxantrone (MTO).
MTO is a topoisomerase II inhibitor with potent activity against
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most cancers, but like most anti-neoplastic agents, MTO produces se-
vere cardiac effects. We encapsulated MTO into TMV VNPs by a
charge-driven strategy and demonstrated superior efficacy with the
MTO-TMVs compared to controls in a s.c.-injected MDA-MB-231 tri-
ple negative breast cancer (TNBC) nudemousemodel [53]. TheMTO-
TMV was injected intratumorally (i.t.) when the tumors reached 100
mm3. We also loaded MTO into the interior cavity of CPMV through
passive diffusion and found that MTO-CPMV showed enhanced cyto-
toxic effects in vitro in combination with tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL) [54]. Lastly, the antimi-
totic drug valine-citrulline monomethyl auristatin E (vcMMAE) was
loaded onto the exterior surface of TMV VNPs to target non-
Hodgkin’s lymphoma. Particle uptake studies confirmed internaliza-
tion into endolysosomal components with likely protease-mediated
drug release. In vitro studies confirmed cytotoxicity toward the
non-Hodgkin’s lymphoma cell line, Karpas 299, exhibiting an IC50

of ~250 nM [55].

2.3. Delivery of small molecule drugs for anti-microbial therapy

Bacterial populations continue to evolve and escape current anti-
bacterial treatments requiring improved antimicrobial approaches
[56]. One therapeutic option is the use of drug delivery approaches,
and VLPs have been engineered toward that goal. Bacteriophages, espe-
cially, can be designed to specifically target microbes making use of
phage display techniques to select microbe-specific peptide binders
[57]. Benhar et al. utilized phage display on filamentous fd phages to
isolate and then conjugate and display peptides specific towards the
gram-positive bacterium Staphylococcus aureus; co-delivery of the
particles for drug delivery, imaging, immunotherapy, and theranostic
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Fig. 4.Differentmechanisms of loading platinum-based drugs such as phenPt and cisplatin into TMVa)Graphical abstract fromLippard, S.J., et al. showing the loading schematic for phenPt
loading intowild-type TMVparticles (reproducedwith permission from ref [50]) b) Graphical illustration of the phenPt docking onto the Glu97 andGlu106 residues of TMV as discovered
through matrix-assisted laser desorption/ionization – mass spectrometry and nuclear magnetic resonance spectroscopy c) Graphical schematic of the assembly of TMV spherical
nanoparticles using a fluorous ponytail interaction (F-TMVCP). Cisplatin was loaded into the F-TMVCP using the same glutamic residues as in b (not shown) (reproduced with
permission from ref [52]).
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antibiotic, chloramphenicol, enabled targeted drug delivery [57]. The
chloramphenicol-conjugated fd phages retarded bacterial growth by a
factor of 20 compared to chloramphenicol alone. Recently, Finn et al.
demonstrated the conjugation of variants of macrolide antibiotics (e.g.
azithromycin, clarithromycin) onto Qβ particles for the potential treat-
ment of microbes such as Mycobacterium tuberculosis and Legionella
pneumophilia that reside in pulmonary macrophages [58]. The VLPs
were assessed for uptake both in vitro in RAW264.7 macrophages as
well as in vivo in lung tissue from mice and were found to traffic into
the RAW264.7 cells as well as to the lungs significantly greater than
the negative control tolyl-labeled Qβ particles. As of yet, no efficacy
studies have been reported.

2.4. Delivery of genes and nucleic acids

Viruses are natural vehicles for delivery of genes. Because VLPs are
devoid of their own genome, they can encapsulate nucleic acids easily
and therefore have been broadly used for the delivery of genes as well
as therapeutic nucleic acids. In fact, about 67% of gene therapy clinical
trials world-wide are using viruses as vectors to transport geneticmate-
rial [59]. However, traditional gene delivery strategies are based on
mammalian viral vectors, and the application of plant viruses and
phages is a newer iteration. While some reports indicate that cell
targeting or cell penetrating peptides are not required to achieve gene
delivery with plant VLPs as they are proteinaceous in nature imparting
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better cell penetration and endolysosomal escape than some synthetic
nanoparticle systems [13], a common strategy to enhance the delivery
efficiency is the display of peptides that improve cell uptake and traf-
ficking [60]. Plant viruses and phages did not evolve to circumvent
mammalian cellular compartments and therefore to some degree be-
come trapped within intracellular vesicles.

To engineer cell trafficking properties, bacteriophages such as PP7
and MS2 have been modified with cell penetrating ligands such as the
transacting activation transduction (TAT) peptide for microRNA deliv-
ery [61,62]. The TAT peptide has also been used by Niu et al., who con-
jugated the TAT peptide onto the exterior surface of TMV [63]. This
engineered TMV-TAT system exhibited enhanced internalization, ac-
quired endo/lysosomal escape capacity, and were successfully used to
intravenously (i.v.) and i.t. deliver GFP silencing RNA (siRNA) into
GFP-expressing hepatocellular carcinoma tumors (MHCC97-H/GFP)
in vivo in Balb/c-nudemice. To aid VLPs in crossing the blood-brain bar-
rier and targeting malignant brain tumors, RNAi loaded Qβ VLPs were
modified with cell-penetrating peptides and apolipoprotein E (ApoE)
[64]. The engineered Qβ VLPs delivered i.v. acted synergistically with
temozolomide to eradicate intracranial U87 brain tumors in nude
mice. Our grouphas used CCMVVLPs carrying a cell penetrating peptide
(M-lycotoxin peptide L17E) to deliver siRNA to mammalian cells [65].

Plant VLPs have also been used for the delivery of mRNA. In one
study, CCMV was examined for the delivery of heterologous mRNA
encoding enhanced yellow fluorescent protein (EYFP) to mammalian
particles for drug delivery, imaging, immunotherapy, and theranostic
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BHK-21 cells. It was shown that the RNA cargo was stabilized through
encapsulation into the plant viral capsid and when cells were
transfected using lipofectamine, the nucleic acid was successfully deliv-
ered and released from the VLPs into the cytoplasm of the BHK-21 cells
facilitating EYFP expression [66]. In clinical settings, mRNA delivery for
vaccination purposes can be ineffective due to low antigen production.
To overcome this predicament, CCMV has been demonstrated to suc-
cessfully deliver replicons enabling amplification and expression of
model antigens containing a variety of reporter genes [67]. Preliminary
in vitro studies show that compared to controls of naked mRNA, naked
replicon mRNA, and VLPs with non-replicon mRNA, the VLPs with rep-
licon mRNA produced one to two orders of magnitude greater activa-
tion. In another example, TMV was utilized to deliver mRNA for
possible vaccine development; proof-of-concept was demonstrated by
encapsulating mRNA encoding GFP into TMV coat proteins. The TMV
vector was administered s.c. into Balb/c mice and immune responses
against the target gene, which in this case was GFP, were demonstrated
[68].

Most VLPs are immunogenic and are taken up efficiently by immune
cells, such as macrophages and dendritic cells (DCs). This function can
be utilized to deliver therapeutic nucleic acids to innate immune cells
in the treatment of cancer. Toward this goal, Bachmann et al. have
showcased CpG oligodeoxynucleotide (ODN) loading into Qβ, HBc anti-
gen (HBcAg), and liposomes [69]. CpG ODNs are ligands of the toll-like
receptor 9 (TLR9), and when activated, TLR9 has the capability to acti-
vate macrophages. The CpG loaded Qβ particles were able to induce
greater cytotoxic T lymphocyte responses than CpG alone. Liposomes
are one of the most commonly studied nanoparticles in clinical trials,
but the HBcAg VLPs induced greater responses and outperformed
dose-matched liposomes with encapsulated CpG. The HbcAg particles
(100 μg dose)were able to completely eradicate s.c. administered fibro-
sarcoma tumors (MC57G-GP) in 13 of 18 C57BL/6 mice. The aforemen-
tioned Qβ formulation administered concurrently with pembrolizumab
has advanced into clinical trials in immunotherapy-resistant patients
with advanced melanomas [70]. Similarly, we used the dis- and re-
assembly of CCMV, as mentioned in Section 2.1, to encapsulate CpG
ODNs. The CpG loaded CCMV VLPs showed significantly enhanced up-
take by tumor associated macrophages (TAM), but not by cancer cells.
When delivered i.t., the CpG-loaded CCMV VLPs significantly inhibited
the growth of solid CT26 colon cancer and B16F10 melanoma tumors
in Balb/c mice through the activation of these macrophages [13].

2.5. Delivery of peptides and protein drugs

Delivery of polypeptides and proteins requires different strategies as
they can bemore difficult to encapsulate. One strategy is chemical or ge-
netic fusion of the peptide/protein to a targeting agent or capsid compo-
nent that directs localization of the cargo to the VLP interior during
capsid synthesis and assembly in vivo [71]. Spontaneous self-assembly
of the viral capsid protein around the peptide/protein in vitro is also fea-
sible with or without a targeting element [72]. These strategies were
discussed in Section 2.1.

In an early study, Tullman-Ercek et al. reported two improved
methods for the encapsulation of enzymes inside MS2. First, DNA
stem loops initiated reassembly of the viral coat proteins similarly to
the work by Peabody et al., who instead used RNA stem loops to encap-
sulate cargo into MS2 capsids [24,73]. Second, the protein cargo was
expressed with a genetically encoded negatively charged peptide tag
[73]. Black et al. further demonstrated packaging of protein and DNA to-
gether within phage T4 [74]. The T4 phage was genetically engineered
to encapsulate Cre together with linearized double-stranded DNA
(encoding a gene of interest), which is packaged within the procapsid
via an ATP-driven terminase motor protein (gp17). The encapsulated
Cre re-circularizes the DNA within the T4 and subsequent delivery to
lung cancer epithelial A549 cells in vitro leads to expression of the
gene of interest. The aforementioned study encapsulated DNA and
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protein, but at separate stages during the assembly process. A self-
sorting and self-assembling system based on murine polyomavirus
(MPyV) was developed by Sainsbury et al. with the capability of pro-
gramming in vitro co-encapsidation of multiple guest proteins simulta-
neously [75]. Simultaneous co-encapsidation allows for precise control
of the stoichiometric ratios between the proteins andmay translate bet-
ter for therapies requiring multiple components. MPyV capsomeres,
which form the VLP capsids, were genetically conjugated to GFP and
mRuby3 and isolated and self-assembled in vitro. Co-encapsidation
was verified through Förster resonance energy transfer of GFP to the
mRuby3.

A lot of recent work has been accomplished with encapsulating
drug-activating enzymes within VLPs for therapeutic purposes [76]. En-
zymeswithin the cytochromeP450 family are responsible for catalyzing
chemotherapeutic pro-drugs into their active forms, and encapsulating
these enzymeswithin VLPs can reduce side effects, increase targeting to
the tumor site, and boost retentionwithin tumors via the enhanced per-
meability and retention effect [77,78]. Initial results show that a bacte-
rial cytochrome, CYPBM3, encapsulated within CCMV, could efficiently
activate the pro-drugs tamoxifen and resveratrol [77]. An additional
study with CYPBM3-encapsulated bacteriophage P22 indicated that the
enzyme-VLP therapy could enhance the activity of the CYPBM3 up to
10x that of endogenous levels when delivered with lipofectamine
[79]. In addition to the delivery function, the VLP can offer protection
against degradation by proteases. P22-CYPBM3 and free CYPBM3were in-
cubated in trypsin for 1 h; the CYPBM3 within the P22 retained up to
90.3% of its activity compared to 59.5% for the free CYPBM3 indicating
protection from the protease.

In a different example, M13 bacteriophages were bioconjugated to
horseradish peroxidase (on coat protein p9) and a peptide sequence
called Ypep, which has targeting and penetration capability in PC-3
prostate cancer cells (on coat protein p3) [80]. Horseradish peroxidase
converts the prodrug indole-3-acetic acid (IAA) into a peroxyl radical,
and concurrent addition of the M13 phages with IAA led to near com-
plete cell death in vitro against the PC-3 cells. Lastly, protein display
strategies have been developed for mammalian viruses: Handa et al.
showed that cytosine deamidase encapsulated within simian virus 40
(SV40) VLPs could sensitize CV-1 cells to 5-fluorocytosine, a prodrug
to 5-FU, in vitro better than cytosine deamidase alone [81].

In addition to encapsulating proteins, VLPs can tether and display
proteins on their surfaces with the proteins serving cell targeting or
therapeutic functions. For example, for cell targeting applications,
Francis et al. covalently conjugated anti-epidermal growth factor re-
ceptor (EGFR) antibodies to MS2 VLPs to target EGFR on breast can-
cer cells. Antibody conjugation significantly increased uptake of VLPs
in vitro in MDA-MB-231 and HCC1954 cell lines; although this effect
was not observed in vivo [82]. Another similar study tested the
targeting capabilities of MS2 by conjugating four different functional
single-chain variable fragments to the surface of MS2 VLPs; the
engineered VLPs demonstrated specificity and binding to their cog-
nate antigens [83]. In these aforementioned examples, protein/pep-
tide display was accomplished via bioconjugate chemistries. With
genetic fusion however, typically only short peptide fragments can
be fused to avoid disrupting capsid assembly. Finn et al. overcame
this shortcoming with a PP7 phage-derived VLP platform with C-
terminal fused peptides [84]. PP7 is amenable to C-terminus display
as it is signficantly less crowded around its threefold axes increasing
its tolerance to peptide and protein display. PP7 capsid dimers were
engineered with peptides of up to 14.2 kDa, and cryo-electron mi-
croscopy of the formed VLPs revealed surprising structural transfor-
mations from original T = 3 to T = 4 capsids.

Several examples have demonstrated the utility and efficacy of bac-
teriophages and plant viruses to display and deliver therapeutic pep-
tides and proteins. Li et al. used P22 bacteriophages as the vehicle for
intracellular delivery of two cytotoxic and synergistic peptides to
MDA-MB-231 breast cancer cells [85]. The peptides were released in a
particles for drug delivery, imaging, immunotherapy, and theranostic
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controllable manner through Cathepsin B, an overexpressed protease in
many cancer cells. As mentioned in Section 2.2, high aspect ratio plat-
forms such as TMV and PVX make intriguing platforms for drug deliv-
ery. Based on their shape, these particles have enhanced cellular
interactions, and therefore conjugated cargo can increasingly interact
with cell surfaces. Indeed, PVX has been engineered in various ways
for biomedical applications: in early work, a PVXmutant with a deleted
5’ terminus was modified by encoding exogenous peptide sequences
within the genome for attachment to the deleted 5’ end [86]. The
study elucidated that amino acid content, mainly tryptophan, and iso-
electric point could drastically alter the trafficking of the PVX through
plants. For biosensing and diagnostic applications, PVX was genetically
altered to display protein A fragments from Staphylococcus aureus
[87]. The protein A coated PVX was then readily functionalized with
IgG and was applied in biosensing of plant viruses [88]. PVX can further
be conjugated to fluorescent reporters to be used for in vivo imaging ap-
plications and theranostics [89]. PVX was engineered as a fluorescent
probe through genetic manipulation to encode a small fluorescent pro-
tein called iLOV. Of note, iLOV display has also been applied to TMV [90].
To be used as a therapeutic, PVXwas used as a display platform for TNF-
related apoptosis inducing ligand (TRAIL); multivalent display en-
hanced its engagement and activation of death receptors expressed on
MDA-MB-231 breast cancer, HCC-38 primary ductal carcinoma, and
BT-549 ductal carcinoma cell lines. Indeed, potent efficacy was demon-
strated in vivo using the PVX-TRAIL formulation to treat athymic nude
mice with MDA-MB-231 triple negative breast cancer xenografts
injected s.c. into the right flank [91]. The PVX-TRAIL was administered
i.t. Compared to initial tumor volume, the PVX-TRAIL showed essen-
tially no signs of tumor growth even by day 30. Chatterjee et al. showed
similar efficacy in vitro against prostate cancer (PC-3) cells via
bioconjugation of TRAIL to influenza neuraminidase VLPs reducing cell
viability by 70–80% [92].

Our lab has also explored the application of TMV for cardiovascular
therapy. In one example, we conjugated tissue plasminogen activator
(TMV-tPA) to TMV; tPA is a thrombolytic used in acute myocardial in-
farctions to break down thrombus obstructions [93]. Illumination of
the right carotid artery of C57BL/6 mice with a 540 nm green laser pro-
duced thrombi. TMV-tPAwas delivered via tail vein injection andmain-
tained its efficacy and performed similarly to free tPA; more
importantly, the TMV-tPA formulations displayed an improved safety
profile indicated by a decreased average bleeding time of 429 s to 858
by the free tPA [94]. The decreased bleeding time is of noteworthy im-
portance as tPA does not specifically congregate at the diseased area,
and systemic administration can lead to life-threatening systemic
hemorrhaging and/or angioedema [95].
3. Vaccines and immunotherapy

VLPs are powerful platforms for vaccines. VLPs mimic the confor-
mation of native viruses harnessing their inherent immunogenicity
but do not compromise on safety, as VLPs cannot infect nor replicate
due to the absence of the viral genome [96]. VLPs have been devel-
oped as subunit vaccines while plant viruses and bacteriophages
have been developed as heterologous nanoparticle display plat-
forms. Plant viruses and bacteriophages, with or without their viral
genome, are also unable to replicate within mammalian cells confer-
ring a secondary level of safety. When presented to a host immune
system, VLPs – whether of mammalian origin or not – are taken up
by antigen presenting cells (APCs) evoking effective immune re-
sponses. Therefore, VLPs are strong candidates for use as carriers to
deliver and present epitopes for vaccine design. Another emerging
area is the use of VLPs in cancer immunotherapy – here, the inherent
immune-stimulatory properties are utilized to reprogram the tumor
microenvironment (TME) to launch antitumor immunity. This sec-
tion will discuss the recent progress within these fields.
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3.1. Cancer immunotherapy with VLPs

3.1.1. VLPs as monotherapy
The TME is highly immunosuppressive and favors tumor immune

escape by suppressing the production, activation and function of antitu-
mor T-cells [97]. As some VLPs are highly immunogenic, i.t. administra-
tion of VLPs into TMEs can trigger innate immune activation capable of
instigating the transition to adaptive antitumor immunity [98]. Mam-
malian viruses have long been used as therapies in oncology. Oncolytic
viruses directly lyse tumor cells leading to the release of tumor-
associated antigens (TAAs). At the same time, the viral infection causes
release of danger signals and type I interferon (IFN), and the combina-
tion of events can elicit antitumor immunity [99]. Recently, Nair et al.
showed the immunotherapy potential using a recombinant poliovirus/
rhinovirus chimera (PVSRIPO), which is currently in clinical trials
against recurrent grade IV malignant glioma [100]. PVSRIPO infection
of primary humandendritic cells (DCs) andmacrophages produced per-
sistent IFN-dominant activation and increased resistance to cancer cell-
mediated immunosuppression. A single i.t. injection of PVSRIPO elicited
systemic antitumor cytotoxic T-cell (CTL) responses in B16F10.0-OVA-
CD155 implanted C57BL/6 mice.

In 2015, thefirst oncolytic viral immunotherapy named Imlygic, oth-
erwise known as talimogene laherparepvec (TVEC), was approved by
the Food and Drug Administration [101]. TVEC is derived from type I
herpes virus, but has been genetically modified to be unable to create
the fever blisters seen in the infectious virus. As an immunotherapy,
TVEC works in two main ways: 1) by propagating only in tumor cells
through the dysregulation of the protein kinase R (PKR) pathway, and
2) activation of the innate immune system response through expression
of proinflammatorymolecules such as human granulocyte-macrophage
colony-stimulating factor (GM-CSF) [102]. Further, TVEC itself acts on
the innate immune system, similarly to any virus or VLP, and is recog-
nized by pathogen-associated molecular pattern (PAMP) receptors.
Viral infiltration into the tumor cells leads to cell lysis releasing TAAs ex-
tracellularly for DCs to process and activate CTLs, which go on to attack
additional tumor cells, in an expanding cyclic fashion. TVEC immunoge-
nicity is amplified by GM-CSF, which has been shown to further aug-
ment DC recruitment and maturation and CTL activation [103]. TVEC
is currently undergoing further clinical trials in combination therapies
and in monotherapies for other cancers such as non-melanoma skin
cancers, pancreatic cancer, and angiosarcomas [104–107]. The success
of TVEC through clinical trials warrants the continued research and de-
velopment of new and exciting oncolytic viruses and sets the stage as an
important stepping stone for future viral therapies.

We and others have shown that plant viruses and their VLPs have
potential to be utilized for cancer therapeutics. Our early study indicated
that inhalation of CPMV VLP nanoparticles reduced i.v. administered
B16F10 lung melanomas in C57BL/6J mice and generated potent sys-
temic antitumor immunity [108]. In the same study, in situ vaccination
of CPMV demonstrated efficacy in the treatment of ovarian (ID8-
Defb29/Vegf-A), colon (CT26), and breast tumor (4T1) models. Mecha-
nistic studies indicated that activated neutrophils triggered systemic
antitumor responses in the TME, which rapidly took up the adminis-
tered CPMV VLPs. In follow-up studies, we delineated the different
mechanisms of the CPMV-triggered anti-tumor immunity: CPMV repro-
grams the TME recruiting neutrophils and natural killer cells, and mac-
rophages are reprogrammed from M2 to M1 anti-tumor macrophages.
The innate immune cells then attack the tumor, and subsequent cell
lysis allows APCs to process and present TAAs triggering tumor-
specific T-cell responses. T-cell activation not only treats the injected
tumor, but also induces systemic anti-tumor immunity [109]. The over-
allmechanism is outlined in Fig. 5.We further verified the immunother-
apeutic efficacy of CPMV in separate studies in the treatment of murine
dermal melanoma [110], intracranial glioma [111] and ovarian cancer
[109]. In addition to the mouse studies, we have begun testing the im-
munotherapy in canine patients, and our data indicate similar efficacy
particles for drug delivery, imaging, immunotherapy, and theranostic
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Fig. 5.Overall mechanism of VLP in situ vaccination in treating solid tumors: 1) the VLP is delivered directly into the tumor, 2) the VLP is taken up by neutrophils, which become activated
and release chemokines, 3) neutrophils activated by the released chemokines infiltrate the tumor and releasemore chemokines, 4) T-lymphocytes becomeactivated leading to tumor lysis,
5) activated T-lymphocytes travel systemically throughout the body, 6) T-lymphocytes attack metastatic tumors throughout the body.
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in these patients [112]. In the aforementioned CPMV studies, the immu-
notherapeutic vaccines are administeredmultiple times; however, mul-
tiple dosing regimens can lead to low patient compliance and increased
hospital burden. Therefore, the VNPs of CPMV have also been applied as
a slow-release formulation by forming aggregates with
polyamidoamine generation 4 dendrimers (CPMV-G4) [113]. The
CPMV-G4 formulation can be tailored to contain different CPMV release
profiles by altering either salt or CPMV concentrations. The release of
CPMV was measured by the decrease in the hydrodynamic diameters
of the CPMV-G4 aggregates and through ultraviolet-visible spectropho-
tometry. When compared to multiple weekly intraperitoneal (i,p.) in-
jections of CPMV, the single i.p. administration of CPMV-G4 treated
ID8-Def29/Vegf-A ovarian cancer cells with similar efficacy in C57BL/6
mice. As plant virus-based VLPs are stable, nontoxic, modifiable with
drugs and antigens, and can be mass-manufactured [15], this study
has pioneered a new strategy of using plant virus-based VLPs for cancer
immunotherapy.

We also tested the efficacy of other plant viruses as in situ vaccines.
We found that while TMV showed some degree of efficacy, it could
not match that reported for CPMV [110]. On the contrary, Lamarre
et al. showed that i.t. administration of papaya mosaic virus (PapMV)
could slow down B16-OVAmelanoma progression and prolong survival
[114], through TLR7 activation induced by PapMV [98]. Similar observa-
tions of therapeutic efficacy have been made using bacteriophages. The
M13 bacteriophage has been used for monotherapy against B16F10
melanoma cells triggering the immune response through TLR signaling
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[115]. MyD88-/- mice, which are unable to propagate TLR signals,
showed lack of tumor regression or neutrophil infiltration while the tu-
mors in wild type (WT) mice necrosed following M13 s.c. peritumoral
administration. M13 phages polarized tissue-associated macrophages
from the protumor M2 phenotype into the antitumor M1 phenotype
and increased levels of the proinflammatory cytokines tissue necrosis
factor-α and interleukin (IL)-6 by 246 and 314 times controls respec-
tively. The increased cytokine expression led to significantly greater re-
cruitment of neutrophils for enhanced tumor killing. Taken together,
data indicate the potential of plant viruses and bacteriophages in
tumor therapy, and one such formulation has already advanced to clin-
ical testing. The aforementioned Qβ formulation packaged with CpGs is
currently in clinical trials for melanoma immunotherapy [70].

3.1.2. VLPs in combination therapy
Although i.t. administration of VLPs into the TME has shown poten-

tial to induce antitumor immune responses, cancer is inherently a het-
erogenous disease and even cells within the same tumor can
showcase dissimilar responses to treatments [116]. Therefore, the ther-
apeutic efficacy of any immunotherapeutic monotherapy is limited, and
combination therapies between chemotherapeutics and checkpoint
blockades have been heavily investigated in the clinic for improving
therapeutic outcomes.

Plant VLPs are no exception andhave been investigated concurrently
with other drugs. Our lab has developed several strategies using plant
virus-based immunotherapies. In some early work, we compared the
particles for drug delivery, imaging, immunotherapy, and theranostic
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coadministration of PVX+ DOX to the two monotherapies alone [117].
Compared to singular i.t. administrationwith either PVX or DOX, PVX+
DOX significantly increased C57BL/6J mice survival in the treatment of
intradermal B16F10melanoma, and the antitumor cytokine/chemokine
profile stimulated by the PVX + DOX was far superior to the other
tested regimes. Cyclophosphamide (CPA) is another chemotherapeutic
utilized alongside our plant VLPs; CPA is themostwidely used alkylating
agent for chemotherapy and has extensive immunomodulatory activity
including the capability to induce pro-immunogenic activity in tumor
cells. When we combined CPA with CPMV VNPs, CPA induced cell
death to provide a burst of extracellular TAAs while CPMV induced im-
mune cell infiltration and promoted the recognition and processing of
the TAAs [118]. The combination therapy induced systemic antitumor
responses and achieved synergistic efficacy in the treatment of 4T1mu-
rine models.

Aside from chemotherapeutics, monoclonal antibody therapies have
become a widely utilized therapeutic option in clinical trials. To investi-
gate concurrent in situ administration of antibodies and our VNPs, we
used CPMV in combination with CD47-blocking antibodies in the treat-
ment of murine ovarian cancer (ID8-Def29/Vegf-A) and TNBC (4T-1) in
Balb/c mice [119]. Vaccination led to recruitment and activation of
phagocytes while the anti-CD47 inhibited antiphagocytic signals.
Thus, CD47 blockade with CPMV synergized to promote phagocytosis
of cancer cells and help to activate APCs thus priming the adaptive
arm of the immune system. The anti-CD47 and CPMV acted synergisti-
cally to combat tumor growth. And just recently, we demonstrated the
synergistic effects of combining CPMVwith checkpoint inhibitors, such
as anti-programmed cell death-1 [120].

CPMV has also been investigated in combination with radiation ther-
apy (RT). RT leads to tumor debulking and tumor cell apoptosis, leaking a
wide array of TAAs [121]. As mentioned above with the CPA studies, the
CPMVpromotes APC recruitment; the APCs phagocytose the extracellular
TAAs leading to a sustained and improved response. Indeed, combining
radiation therapy with CPMV in situ vaccination significantly improved
tumor growth delay in ID8-Def29/Vegf-A-Luc tumors compared to either
therapy alone [121]. The potent efficacy of CPMV + radiation therapy
has also been translated to canine patients with melanoma [112]; there-
fore, this approach demonstrates high translational potential.

Outside of plant viruses and bacteriophages, mammalian
viruses have been utilized in combination therapies. The inactivated
modified vaccinia virus Ankara, Maraba rhabdovirus, oncolytic human
Orthoreovirus, and TVEC have been utilized in conjunction with the
checkpoint blockades, anti-cytotoxic T-lymphocyte-associated protein
(CTLA)-4 and anti-programmed death ligand (PD-L)-1 [122–125]. As
with the plant viruses, combination therapies improved outcomes com-
pared to monotherapy controls.

3.2. Vaccine development: epitope presentation using VLPs

Asdiscussed in Section3.1, VLPs are immunogenic and are takenupby
APCs; recognition through PRRs leads to activation of the APCs and anti-
gen processing. VLPs comprised ofmultiple copies of their capsid proteins
representmultivalent, repetitive scaffolds, which further benefit themul-
tivalent antigen presentation. These features make VLPs ideal platforms
for epitope delivery and presentation to the immune system, and there-
fore VLP vaccines usually induce stronger immunity than antigens in
their soluble forms. At the same time, the VLPs have adjuvant properties
andmany epitope display platforms do not require use of additional adju-
vant to elicit potent immunity. We discuss the recent progress in using
VLPs as carriers in vaccine design highlighting various application areas.

3.2.1. VLP-based vaccines against infectious diseases
Several approaches of VLP-based vaccines are being considered: VLP

subunit vaccines, viral vector vaccines, andVLP-based display platforms.
Theirmechanism of action is outlined in Fig. 6. Several viral vaccines are
commercially available, these include human papillomavirus (HPV) and
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hepatitis B vaccines (HBV) and well as potential vaccines for influenza,
Epstein-Barr virus, and malaria [126–130].

Using the traditional methods of genetic insertion and chemical conju-
gation it can be difficult to obtain site-specific and highly efficient display
of epitopes on VLPs. To address this issue, an improved VLP display strat-
egy via chemoenzymatic site-specific tailoring of antigens on VLPs with
high efficiencywas recently reported [131]. HBcVLPswere tagged through
a sortase A-mediated transpeptidation reaction with an enterovirus 71
(EV71) SP70 epitope, which elicited effective antibodies against EV71
and protected Balb/c mice from lethal challenge. This chemoenzymatic
site-specific approach showed great potential in VLP-based vaccine design
for its simplicity, site specificity, high efficiency, and versatility.

Besides displaying antigens on the surface, VLPs can also encapsulate
antigens within their interior and deliver antigens to immune cells for
enhanced T-cell response (Fig. 6). Douglas et al. developed a P22-based
platform delivering both matrix and matrix 2 proteins derived from re-
spiratory syncytial virus within the same particle [132]. Following intra-
nasal administration in CB6F1/J mice, the vaccine stimulated CD8+ T-
cell memory responses against both antigens, and the T-cells maintained
tissue-residentmemory phenotypes. Tissue-residentmemory T-cells are
critical in forming quick antiviral responses against re-exposure rapidly
triggering both the innate and adaptive responses [133].

Of the infectious disease vaccines being developed, human immuno-
deficiency virus (HIV) remains one of the major milestones to be
achieved for vaccine development as there is still no vaccine that can in-
duce broadly neutralizing antibodies (bNAbs) to prevent infection
[134]. The only existing target for bNAbs is the envelope glycoprotein
(Env), a trimer of heterodimers consisting of gp120 and gp41 subunits;
however, subunit vaccines are oftentimes immunologically deficient. To
improve the immunogenicity, Überla et al. generated Env VLPs contain-
ing helper T-cell epitopes derived from tetanus toxoid [135]. Pre-
immunization of Balb/c and C57BL/6J mice with the tetanus toxoid via
intramuscular injection into the gastrocnemius muscle of the hind legs
significantly increased Env-specific IgG titers mainly aided by the
intrastructrual help of the helper T-cell epitopes.

Also, protein nanotechnology can enable next-generation vaccine
development; for HIV, several protein cages have been utilized for sub-
unit display. While the following examples are not VLPs, these protein
cages – like VLPs – are self-assembled from repeating protein units. In
an early study, Env was genetically fused to a ferritin protein nanocage
yielding a 24-subunit nanoparticle of 30 nm presenting 8 trimers [136].
Two following efficacy studies showed that Env trimers presented on
ferritin elicited significantly higher binding of antibodies and therefore
autologous neutralizing antibody responses than single trimers after
immunization in rabbits [137,138]. To help delineate how these vaccine
nanoparticle candidates traffic in vivo, Irvine et al. generated a ferritin-
Env presenting eight copies of a gp140 envelope trimer (MD39). They
found that the ferritin-based Env immunogens were rapidly shuttled
to a follicular DC network and then concentrated in germinal centers
via a complement-, mannose-binding lectic-, and immunogen glycan-
dependent manner [139].

The aforementioned examples are from naturally occurring protein
cages; recently, computational protein structure prediction research
has fueled the design and implementation of new protein nanostruc-
tures for vaccine development. Sanders et al. fused HIV Env trimers to
a computationally designed, synthetic icosahedral protein cage, I53-
50, generating monodisperse, well-ordered VLPs presenting 20 trimers
[140]. Immunization via i.m. injections into the quadriceps of naïve New
Zealand White rabbits with I53-50-Env significantly increased the im-
munogenicity, inducing NAb responses, which were 40-fold higher
compared to single Env immunizations. Furthermore, I53-50-Env VLPs
exhibited superior efficacy to ferritin-Env VLPs in enhancing autologous
NAb responses, most likely due to the high density of presented Env tri-
mers on the I53-50.

As we are writing this article, a novel coronavirus (SARS-CoV-2) has
spread throughout the world triggering globally mandated lockdowns
particles for drug delivery, imaging, immunotherapy, and theranostic
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Fig. 6.Mechanism of action of different viral vaccine candidates. Subunit vaccines (bottom left) can be of two different types: 1) encapsulating the antigenic subunit and 2) displaying the
subunit on the exterior. VLP vaccines (bottom center)mimic the natural virus, but are devoid of their genome thus disabling replication. Their capsids are still decoratedwith the antigens
displayed by the APC. Viral vector vaccines can be replicating (top center) or non-replicating (not shown). Viral vector vaccines contain the genomic information for the necessary antigens
within their own genomes. Cell entry leads to genomic processing leading to thedisplay of the encoded antigens on the cell surface. The replicationmachinery remains intact for replicating
viral vector vaccines producing more of the viral vaccines, which goes on to infect other APCs. The steps highlighted in red are those taken by the subunit and VLP vaccines. The steps
highlighted in blue are those taken by the viral vector vaccine. Those in purple are steps taken by the subunit, VLP, and viral vector vaccines. The antigens are displayed on the cell
surfaces priming both CD4+ and CD8+ T-cells. The CD4+ T-cells go on to activate B-cells, which secrete antibodies. Activated CD8+ T-cells induce a CTL response. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

11Y.H. Chung et al. / Advanced Drug Delivery Reviews xxx (2020) xxx
and quarantineswhile institutions and pharmaceutical companieswork
towards the discovery of a novel and efficacious vaccine [141]. Of the
vaccines under development, VLP, attenuated/inactivated, and viral vec-
tor vaccines are strong candidates. In fact, of the 90+vaccines being de-
veloped, 5 vaccines are strictly VLP-based, 8 are inactivated/attenuated,
and 25+ are viral vectors [142]. Medicago is one of the companies pro-
ducing a VLP-based vaccine in plants usingN. benthamiana for in-planta
production of empty SARS-CoV-2 viral particles [143]. The University of
Wisconsin-Madison/Flugen/Bharat Biotech’s live-attenuated influenza
vaccine [144] or Sinovac’s formalin-inactivated SARS-CoV-2 viral vac-
cine [145], which has recently moved into Phase1/2 clinical trials
[146], also remain strong candidates.

3.2.2. VLP-based vaccines against cancer
VLPs have also been widely explored as a platform to deliver TAAs

for use as cancer vaccines. Genetic fusion, chemical conjugation tech-
niques, as well as enzyme-mediated ligation strategies have been uti-
lized to attach TAAs onto VLPs. For cancer vaccines, a particular
challenge is to break tolerance for self-antigens. Based on their propen-
sity to boost immune responses, VLPs are an attractive platform for the
delivery of self-antigens and otherwise poorly immunogenic antigens.
The geometry and multivalency of VLPs boosts immunity based on rec-
ognition through PAMPs, most commonly TLRs [147]. These immune-
stimulatory properties in combination with their size make VLPs ideal
candidates for vaccine delivery to the draining lymph nodes and prim-
ing interactions with APCs.

Chemical conjugation is the most commonly utilized method for at-
tachment of TAAs toVLPs, and our grouphas beenutilizing diverse plant
virus-based nanotechnology platforms for the delivery of TAAs. The
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comparison of icosahedral CPMV and filamentous VNPs for human epi-
dermal growth factor receptor 2 (HER2) epitope delivery revealed that
the icosahedral CPMV was more efficient in terms of lymphatic drain-
age, and uptake by and activation of APCs, leading to enhanced anti-
HER2 immunity compared to filamentous PVX [148,149]. The CPMV-
HER2 vaccine candidate delayed the progression of DDHER2primary tu-
mors and metastasis in Balb/c mice thereby prolonging survival [150].
The displayed epitope plays an integral part in the immunotherapeutic
response, but the nanocarrier itself can also affect the effectiveness of
the therapy. In a recent study, we compared three icosahedral plant
VNPs, CPMV, CCMV and sesbania mosaic virus (SeMV), displaying a
HER2 epitope as a cancer vaccine [151]. Although the three viruses are
similar in shape and structure, there were significant differences be-
tween the immune profiles elicited by the viruses. CPMV-HER2 induced
a Th1 predominant immune responsewhile CCMV- and SeMV-HER2 in-
duced a Th2 predominant immune response thus indicating that the
carrier itself can play a key role in the regulation of Th1/Th2 bias. The
differences in the immunogenic profiles are attributed to the epitope
displayed on the VNP surface and capsid itself. To overcome this draw-
back and focus the immune responses on solely the displayed epitope,
we developed a heterologous prime-boost strategy utilizing different
HER2 displaying carriers (CCMV, CPMV and SeMV) at 2 week intervals
[151]. Indeed, the heterologous prime-boost strategy significantly en-
hanced theHER2-specific immune responses and induced an efficacious
Th1-predominant response delaying s.c. inoculatedDDHER2 tumor pro-
gression and prolonging Balb/c mice survival.

Although chemical conjugation remains themostwidely usedmeth-
odology for attachment of antigens to VLP surfaces, specific ligation
strategies such as the previously mentioned Spy-tag/Spy-catcher
particles for drug delivery, imaging, immunotherapy, and theranostic
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conjugation can confer additional spatial regulation and provide in-
creased stoichiometric control of antigen presentation. Acinetobacter
bacteriophage AP205 derived VLPs were engineered in this fashion to
display multivalent HER2 epitopes on the surface [152]. Immunization
studies indicated that the vaccine overcame B-cell tolerance and in-
duced strong polyclonal anti-HER2 response.

Aside from breast cancer, cervical cancer is responsible for the most
cancer-related deaths in women worldwide [153]. Cervical cancer is
mainly caused by HPV, and recent studies have utilized plant VLPs and
bacteriophage as potential vaccines. Chackerian et al. genetically
engineered MS2 bacteriophages to display the L2 coat protein of HPV
at the N-terminal (MS2-L2) [154]. Compared to the lab’s previously
engineered PP7 bacteriophage vaccines, the MS2-L2 elicited much
greater cross-reactivity and cross-protectivity against 10 heterologous
HPV types in Balb/c mice. HPV-GFP challenge in the vaccinated mice
led to 80–7190 – fold reduction in radiance when compared against
VLP-only controls.

Preclinical studies may show strong efficacy, but oftentimes subunit
vaccinesmay require the use of adjuvants. Plant viruses are beneficial in
this aspect as their genome may act as an inherent adjuvant thereby
augmenting the immune response. PVX conjugated to a recombinant
idiotypic (Id) TAA via a biotin/streptavidin linker showed 7x greater
anti-Id IgG response compared to Id alone in amurine B-cell lymphoma
model (BCL1) [155]. When compared to a gold-standard Id vaccine, the
PVX produced 3x the anti-Id antibodies. The study found that TLR7 was
vital for the recognition of the viral RNA, and cytokine profiling demon-
strated production of IL-12 and IFN-α.

Another variation of cancer vaccines are those targeting tumor as-
sociated carbohydrate antigens (TACAs). TACAs can promote tumor
progression and are useful to target as they are overexpressed on a
wide range of malignant cells; however, the carbohydrates by them-
selves do not elicit strong immunogenic responses as they are weak
T-cell activators and oftentimes require novel approaches to boost
effectiveness. One emergingmethod to combat the weak immunoge-
nicity is the use of plant viruses and bacteriophages as carriers of
TACAs. For example, Qβ has been engineered to present TACAs such
as the poorly immunogenic monomeric Tn antigen and the ganglio-
side antigen GM2 [156,157]. Furthermore, tumor associated MUC1
glycopeptide antigens were conjugated to Qβ, and the obtained Qβ-
MUC1 vaccine induced high titers of anti-MUC1 IgG antibodies in
both MUC1 transgenic and WT mice, conferring protection against
primary and metastatic breast cancers [158–160]. Likewise, Huang
et al. developed CPMV-TACA conjugates, specifically targeting the
Tn antigen (GalNAc-α-O-Ser/Thr) [161]. Immunological studies
showed that by day 35, C57BL/6 mice given the vaccine via s.c. injec-
tion produced high IgG titers indicating T-cell mediated responses
and induced antibody isotype switching. Addition of the mice sera
in both MCF-7 and multidrug resistant NCI-ADR RES breast cancer
cell lines led to the binding of IgG antibodies to the Tn antigens.
The addition of free GalNAc led to marked decrease of antibody bind-
ing indicating high antibody specificity to the Tn. In a follow-up
study, TMV was used to display Tn antigens [162]. Unlike with
CPMV, the location of the Tn conjugation was an important factor
in IgG production; Tn linked to the N-terminus of TMV was
immunosilent, but conjugation to Tyr 139 elicited strong immune
responses.

Alternatively, tumor associated neoantigens can produce more spe-
cific antitumor immune responses and have the potential to be used in
personalized vaccines [163]. A multi-target vaccine strategy using Qβ
VLPs containing TLR ligands was evaluated against B16F10murinemel-
anoma. The study compared vaccines containing germline epitopes
identified through immunopeptidomics, mutated epitopes predicted
by whole exome sequencing, and a third combining both germline
and mutated epitopes [164]. Pre-clinical evaluation indicated that the
Qβ-based vaccines presenting both the germline and mutated epitopes
achieved the greatest therapeutic efficacy.
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Lastly, nucleic acid vaccines have garnered strong interest as next-
generation cancer vaccines, and VLPs have been explored as potential
carriers. RNA is instable in vivo due to the presence of RNases; thus,
nanocarriers – such as VLPs – can help protect and extend the
biodistribution and half-lives of these therapies. Wang et al. developed
a messenger RNA (mRNA) vaccine encoding for GM-CSF loaded on re-
combinant MS2 VLPs against prostate cancer [165]. Following adminis-
tration, GM-CSF production was measured as early as 12 h after APC
phagocytosis in vitro. Fluorescence activated cell sorting of DC markers
confirmed DC activation and maturation leading to strong humoral
and cellular immune responses. The vaccine was administered i.v.,
which protected C57BL/6 mice against TRAMP-C2 prostate cancer pro-
phylactically, and as a therapeutic vaccine, retarded tumor growth com-
pared to soluble GM-CSF and VLP-only controls.

3.2.3. VLP-based vaccines targeting various inflammatory and autoimmune
diseases

VLPvaccines can also beused to treat a range of other disorders, such
as neurological, cardiovascular and autoimmune diseases. Currently,
there are no approved vaccines for tauopathies such as frontotemporal
dementia (FTD) and Alzheimer’s disease (AD). These diseases cause un-
recoverable cognitive decline and lower quality of life extremely for pa-
tients. Data suggests that tauopathies occur due to aggregation of
amyloid beta (Aβ) peptides as well as the accumulation of
microtubule-associated protein tau (pTau) within neurons forming
neurofibrillary tangles [166]. Therefore, tauopathy vaccines should tar-
get either Aβ or pTau and produce long-lived antibody responses
against these proteins. AD vaccines against Aβ fail in the clinic due to
strong T-cell responses from the vaccine and the simultaneously admin-
istered adjuvant leading to meningoencephalitis and self-tolerance to
the anti-Aβ antibodies [167]. To counteract these deficiencies, Morgan
et al. developed Qβ-derived VLPs conjugated on their N- and C-
termini to Aβ peptide sequences [167]. The N-terminal vaccine mainly
elicited an IgM responsewhile the C-terminal vaccine elicited an IgG re-
sponse – highlighting an inherent need in increasing understanding in
design rules that govern the engineering of effective vaccines. Regard-
less, both vaccines elicited strong antibody titers without the need for
an adjuvant in an amyloid precursor protein mouse model and reduced
amyloid plaques in the cortex significantly. In a later study, Bhaskar
et al. engineered Qβ-derived VLPs to deliver multivalent tau peptide
with phosphorylation at threonine 181 (pT181) [168]. Bi-weekly i.m.
vaccination in rTg4510 mice models indicated that the vaccine candi-
date induced a robust and long-lived anti-pT181 antibody response
leading to reduction of phosphorylated pathological tau in the hippo-
campus and cortex, prevention of atrophy in the hippocampus and cor-
pus callosum, and rescue of cognitive dysfunction. It is also worth
mentioning that mammalian VLPs such as HBc [169], murine leukemia
virus [170], and HPV [171] have been explored with relative success as
tauopathy vaccines.

VLPs have also been investigated as vaccines for inflammatory and
autoimmune diseases. IL-17 mediates the release of pro-inflammatory
cytokines in many cells, and IL-17 producing T helper cells (Th17) are
implicated in several autoimmune disorders, such as rheumatoid arthri-
tis andmultiple sclerosis [172]. Monoclonal IL-17 antibody blockade has
shown previous treatment efficacy, and thus one alternative strategy is
the development of vaccines that can produce anti-IL-17 antibodies
[173]. For this purpose, Qβ-based VLPs carrying IL-17 were developed;
theVLPs overcame self-tolerance against IL-17 and generated high titers
of anti-IL-17 antibodies to slow the progression of autoimmune arthritis
and encephalomyelitis [174]. Another inflammatory disease being con-
sidered for vaccine development is allergic asthma; the disease is in-
duced by chronic inflammation in the lungs, which is mainly
mediated by the recruitment and activity of eosinophils [175]. IL-5
and eotaxin are chemokines vital for the recruitment and maturation
of eosinophils from the bone marrow [176]. Qβ particles were chemi-
cally crosslinked to either IL-5 or eotaxin, and immunization with
particles for drug delivery, imaging, immunotherapy, and theranostic
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these particles overcame self-tolerance and stimulated high antibody
response against the two particles. Co-immunization with Qβ-IL-5 and
Qβ-eoxtaxin lowered eosinophil-induced inflammation in Balb/c mice.
Allergic airway inflammation in the mice was induced through the ad-
ministration of ovalbumin and alum [176].

Another target application of engineered VLP vaccines lies in the
treatment of cardiovascular diseases (CD). Mutations that increase the
activity of proprotein convertase subtilisin/kexin type 9 (PCSK9), a se-
creted protein that controls cholesterol homeostasis by enhancing the
degradation of the low-density lipoprotein receptor (LDL-R), can lead
to hypercholesterolemia, atherosclerosis, and early-onset CD [177].
Qβ-based VLPs were engineered to display PCSK9-derived peptides,
and subsequent vaccination in mice and macaques elicited high titers
of PCSK9-specific antibodies thereby inhibiting the enzyme and lower-
ing the levels of cholesterol, phospholipids and triglycerides [177]. The
VLP alsoworked synergistically with simvastatin in lowering LDL levels.
The pathophysiology of atherosclerosis can also be attributed to over-
production of the proinflammatory cytokine IL-1α [178]. Vaccines
targeting IL-1α should therefore produce NAbs against the cytokine, ef-
fectively disrupting its function. Bachmann et al. developed a Qβ-based
vaccine with conjugated full-length IL-1α, and vaccination in ApoE-
deficient mice fed a Western diet led to significant anti-IL-1α titers in
21 days [179]. Immunization further led to a 50 and 37% decrease of
plaque progression in the aorta and aortic root respectively, 22% de-
crease in macrophage infiltration, and decreased levels of the pro-
inflammatory molecules vascular cell adhesion molecule-1 (VCAM-1)
and intercellular adhesion molecule-1 (ICAM-1).

Lastly, VLPs have been investigated as vaccines against pain and as
contraceptives. Nerve growth factor (NGF) is a key cause underlying
the chronic pain associated with osteoarthritis [180]. Cucumber mosaic
virus (CuMV) was used as a scaffold for conjugation of NGF to its exte-
rior surface. The CuMV-NGF VLPs induced high titers of anti-NGF anti-
bodies in mice that had undergone partial meniscectomy-induced
osteoarthritis, leading to the reversal of pain behavior [181]. As a contra-
ceptive, Johnson grass mosaic VLPs displaying the spermatozoa peptide
Fig. 7.Different modalities that VLPs can be used in for imaging and theranostics. The gray circl
those that are in development for the clinic. The circles in purple represent imaging modalities
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YLP12 and zona pellucida epitope ZP3 elicited antibodies that block the
ability of the sperm to interact with the zona pellucida of the egg [182].
s.c. immunization in FVB/cJ micewith the contraceptive VLPs decreased
litters born compared to controls. The far-ranging applicability of VLPs
in neurological, cardiovascular, and autoimmune diseases as well as in
pain and contraception highlight the flexibility of VLPs as vaccination
agents and evidences the justified advancement in the field for future
vaccine strategies.

4. VLPs in theranostic applications: imaging and therapy

4.1. Delivery of contrast agents using VLPs

Molecular imaging is a growing biomedical research discipline that
enables the visualization, characterization and quantification of biolog-
ical processes in vivo. Various imaging technologies including optical
imaging, computed tomography (CT), magnetic resonance imaging
(MRI), and positron emission tomography (PET) have been widely
used to depict cellular andmolecular pathways andmechanisms of dis-
ease present in the context of living subjects (Fig. 7). Idealmolecular im-
aging techniques should quickly provide optimal signal-to-noise ratios
at the target sitewithminimal toxicity. Compared to synthetic nanopar-
ticles, VLPs can be more advantageous as imaging delivery agents be-
cause of their short circulation and retention time decreasing possible
side effects [183]. Moreover, VLPs can be tailored to carry a wide
range of fluorescent labels and/or contrast agents while being modified
with aptamers, peptides or antibodies for improved targeting to partic-
ular cells and tissues. In this section, we will summarize the VLP-based
platforms for delivery of imaging agents.

4.1.1. Optical imaging using VLPs
Fluorescent VLPs are used in optical imaging for specific labeling of

cells and tissues in addition to analyzing particular biodistributions,
pharmacokinetics and biological interactions [148,184]. The plant
virus, CPMV, has been extensively used for optical imaging applications.
es represent imaging modalities mainly used in preclinical settings (e.g. animal studies) or
utilized in the clinic.
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A unique feature of CPMV is that it naturally interacts with themamma-
lian protein surface vimentin and this enables imaging of the endothe-
lium [185], and in particular the tumor endothelium [186]. In an early
study, the tumor neovasculature was imaged with fluorescent CPMV
VNPs using intravital two-photon laser scanning microscopy (TPLSM)
[185]. Future studies explored engineered VNPs with added receptor
specificity: for example, CPMV was modified with a peptide ligand,
E7p72, which has high affinity for epidermal growth factor-like domain
7 (EGFL7) [187]. The E7p72-CPMV particles showed high specificity to
EGFL7 and demonstrated binding to tumor neovasculature within
90 min as seen through real-time intravital imaging. While native
CPMV also showed interaction with the endothelium – this was much
less profound due to non-specific macrophage clearance. In the CPMV
studies, fluorescence was introduced through chemical coupling of
near-infrared (NIR) fluorophores. However, genetic engineering ap-
proaches have also been exploited to develop fluorescent VLPs. In
Section 2.5, we already discussed PVX and TMV engineered to express
the small fluorescent protein called iLOV [90] amongst other examples.
Further, our lab has constructed PVX VNPs produced in N. benthamiana
plants that have been genetically engineered to display GFP or mCherry
at their N-termini [188]. The PVX displayed 1 fluorescently-modified
coat protein for every 3 wild-type coat proteins. The fluorescent PVX
was used to track the viral infection process in plants, to optically
image HT-29 cells in vitro, and for particle tracking in vivo using a HT-
29 murine model in C57BL/6 mice.

Besides cancer imaging, VLPs have been engineered and studies in
the context of CD imaging. One application has focused on the design
of VLPs loaded with contrast agents to stratify atherosclerotic plaques,
thus improving the accuracy of prognoses and reducing the frequency
of heart attacks and strokes. MS2 VLPs have been utilized to carry NIR
fluorescent dyes (to enable imaging) and anti-VCAM-1 antibodies (to
enable targeting of the sites of inflammation) [189]. The study demon-
strated that the engineered VLPs were effective in targeting and detect-
ing atherosclerotic plaques of different sizes in the descending aorta
and aortic arch in ApoE knockout mice while untargeted controls
showed limited signs of fluorescence in the plaques. Our lab has focused
on the study and application of TMV for CD imaging applications
targeting both atherosclerosis (early stage disease) and thrombosis
(late stage disease). For example, TMV was conjugated to both an NIR
dye and a peptide targeting S100A9 (aka myeloid-related protein 14)
[190]. S100A9 is a molecular marker found in atherosclerotic lesions
that are prone to rupture and was identified as one of the most promis-
ing potential markers for acute myocardial infarctions [191,192]. The
targeted TMV particles were injected i.v. and detected the presence of
macrophage-rich atherosclerotic lesions in ApoE-/- mice while
untargeted TMV controls showed insignificant detection capabilities en-
abling the platform’s possible use in the future as a marker for at-risk le-
sions. The two studies above solely targeted single proteins (e.g. VCAM-1
and S100A9), but targeting different molecules may provide additional
information such as the extent of progression of CD. Toward this goal, a
trifunctional VLP platform derived from SV40 carrying NIR quantum
dots, a targeting peptide, and an anticoagulant drug (Hirulog)was devel-
oped for in vivo targeting, imaging and treatment of atherosclerotic
plaques [193]. Depending on the targeting peptide used (against
VCAM-1, macrophages, or fibrin), the VLP could detect atherosclerosis
at different stages of CD (early, developmental, and late respectively).
Furthermore, the delivery of the Hirulog to aortic atherosclerotic plaques
led to increased antithrombotic activity compared to nontargeted VLPs.

Lastly, fluorescent reporters can oftentimes be easily degraded
within the body leading to diminished imaging capabilities. To improve
imaging times, VLPs can be incorporated into long-lasting formulations
using slow-release polymers, scaffolds, and metal-organic frameworks
(MOFs). A recent paper by Gassensmith et al. details a TMV-MOF hybrid
nanoparticle that increases TMV VNP retention when delivered s.c. into
Balb/c mice [194]. Cy5-encpsulated TMV is coated with zeolitic
imidazolate framework-8 (Cy5-TMV@ZIF), and when compared to
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native Cy5-TMV, the Cy5-TMV@ZIF retained its fluorescence for ~2.5x
the time of Cy5-TMV (288 h vs. 120 h). Histology studies showed no
signs of toxicity due to the MOF. The TMV nanoparticles were also
stressed in harsh conditions through heating at 100°C for 20 min or
soaking in methanol or 6M guanidinium chloride overnight. While WT
TMV showcased significant deterioration, the TMV@ZIF remained
stable.

4.1.2. VLPs as MRI contrast agent carriers
Optical imaging techniques are considered safe and do not expose pa-

tients to harmful radiation, but they are usually limited to 1–2mm of tis-
sue penetration and are restricted translationally [195]. On the contrary,
MRI, PET, and CT are used extensively in the clinic and can provide ex-
tremely accurate images deep within tissues. VLPs can be loaded with
MRI, PET or CT contrast agents and these approaches are discussed in
the following sections. VLPs can be loaded with hundreds-to-thousands
of copies of contrast agents; this increases the local concentration and
therefore the signal-to-noise ratio particularly when these nanoparticles
are engineered to target specific tissues and cells. When it comes to MRI
application, the protein-based contrast agents also confer advantages in
reducing residence time of the contrast agents within tissues, therefore
lowering the risk of toxicity. For example, contrast agents such as gadolin-
ium (Gd) can be quite toxic; but VLPs are generally cleared rapidly from
circulation and tissues therefore reducing systemic toxicity [196]. In
early work, we demonstrated that TMV loaded with Gd-dodecane
tetraacetic acid (Gd-DOTA) and modified to target VCAM-1 enabled sen-
sitive detection and delineation of atherosclerotic plaques in ApoE-/- mice
using submicromolar doses of the contrast agent [197]. The high aspect
ratio of TMV promoted ligand-receptor interactions to enhance margin-
ation to the diseased vessel wall, and the slower tumbling and enhanced
relaxivity of the Gd-DOTA coupled to the macromolecular carrier in-
creased the signal-to-noise ratio. The TMV platform increased the imag-
ing sensitivity considerably allowing for a 400x reduction in Gd dose
compared to standard clinical concentrations. Given their high degree of
surface functionality offering distinct amino acid residues on both their
internal and external surfaces, VLPs make excellent platforms for devel-
opment of multi-modal imaging probes. In one example from our lab,
we demonstrated the loading of a dysprosium (Dy3+) complex in the in-
ternal cavity of TMV to increase T2 relaxivity for MRI; and the simulta-
neous delivery of NIR fluorescent dyes enabled dual optical-MR
imaging. Target specificity was achieved by labeling the external surface
of TMVwith an Asp-Gly-Glu-Ala peptide to target integrinα2β1 on pros-
tate cancer cells. Feasibility of this dual-modal imaging approach was
demonstrated in athymic nudemicewith PC-3prostate cancer xenografts
[198]. While most VLPs exhibit short circulation times and rapid tissue
clearance (~3 days); we discovered that the VLPs fromPhMV allow imag-
ing of tumors over extended periods of time (~10 days). In this study,
PhMV was modified identically to the aforementioned TMV probe:
PhMV was loaded with a NIR dye for optical imaging, Gd-DOTA for MRI,
and the Asp-Gly-Glu-Ala targeting peptide; and longitudinal imaging of
prostate tumors in vivo was demonstrated [184]. The long residence
time within tumors may be utilized to follow disease progression and
therapeutic responses.

Outside of plant virus nanotechnology, Kang et al. has utilized P22
bacteriophages for intravascularMRI imaging [199]. Here, paramagnetic
Gd ions complexed to chelating agent diethylenetriamine pentaacetic
acid (DTPA)were conjugated to the interior and exterior of the P22 cap-
sids (P22-Gd-DTPA) using maleimide chemistry. When administered
into Balb/c nude mice, the P22-Gd-DTPA contrast agent enabled imag-
ing of the carotid, mammary arteries, jugular vein, and superficial ves-
sels at a resolution of 250 μm (it should be noted that non-targeted
P22 was utilized). Using the P22 platform, work has also been done to
increase the contrast agent loading capacity through use of polymeriza-
tion chemistry [200]. Here instead of conjugating the contrast agent to
the surface of the capsid; a polymer network is formedwithin the capsid
and the contrast agent is incorporated within, therefore enhancing
particles for drug delivery, imaging, immunotherapy, and theranostic
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loading capacity. Specifically, a 2-aminoethyl methacrylate (AEMA)
polymerwas synthesizedwithin P22 capsids using ATRP, enabling load-
ing with up to 3646 paramagnetic manganese (III) protoporphyrin IX
(MnPP) sites [201]. The resulting ionic relaxivities were comparable to
free MnPP, but initial studies suggest the relaxivity could be improved
by reducing the intramolecular interactions between MnPP molecules.

Contrast agents in the clinic have beenmainly restricted to paramag-
netic metal complexes such as Gd and Mn; however, newer generation
contrast agents can improve resolution and additionally provide func-
tional information. These newer contrast agents utilize mechanisms
such as chemical exchange saturation transfer (CEST) to improve
upon current standards [202]. As a proof-of-principle with VLPs, fila-
mentous fd bacteriophages expressing anti-EGFR were transaminated
to introduce ketone groups followed by oxime ligation of a cage-like
xenon-binding molecule (CryA) [203]. 129Xe NMR spectroscopy of live
EGFR-expressing MDA-MB-231 cells showed strong saturation at 70
ppm, indicating successful CEST of Xe@CryA. Previous studies show
that this system can be detected at concentrations as low as 230 fM,
which is near the forefront of current standards. In another study,
TMV loaded with a metal-free paramagnetic nitroxide organic radical
contrast agent (ORCA) for MRI and electron paramagnetic resonance
probes for superoxide detection showed enhanced in vitro r1 and r2
relaxivities [204]. The probes functioned as both T1 and T2 contrast
agents making this platform suitable for pre-clinical and clinical MRI
scanners. Furthermore, by conjugating fluorescent dyes on the internal
surface and ORCA on the outer surface, the TMV probes could be used as
a concentration marker regardless of the ORCA oxidation state. In a
more recent study by the same group, TMVwas conjugated to a deriva-
tive of the aminoxyl radical TEMPO (coined Compound 6) by a copper-
catalyzed azide-alkyne cycloaddition reaction (TMV-6) [205]. Subse-
quent binding to cucurbit[8]uril (CB[8]) forms an ORCA inclusion com-
plex called a semirotaxane that helps shield the aminoxyl radicals from
reduction into hydroxylamines – a process which makes aminoxyl-
based ORCAs MRI-silent. Measurements for r1 values of TMV-6 rivaled
that of Gd-DOTA while the semirotaxane also showed an order of mag-
nitude increase in r1 compared to CB[8] and 6 alone. Most importantly,
in the presence of sodium ascorbate, TMV-6was reduced at a half-life of
7.2 min while the semirotaxane showcased half-lives of 577.6 min, an
increase in two orders of magnitude.
4.1.3. VLPs in PET and CT imaging
While MRI works on the structural level, PET can image at the met-

abolic level for refined imaging of pathophysiological changes within
the human body [206]. PET is mainly used in the clinic for oncological
imaging as cancerous cells undergo metabolic changes that PET scans
can detect much earlier than CT or MRI. PET is oftentimes combined
with CT imaging to provide both structural and metabolic information
of tissues within the patient. One example by Francis et al. was the en-
gineering of DOTA-MS2 bacteriophages to deliver 64Cu for microPET/
CT imaging [207]. Compared to free 64Cu, which was cleared rapidly,
the 64Cu-labeled DOTA-MS2 phages lasted in circulation for over 24 h
at > 20% injected dose (ID)/gram although specific tumor homing was
not evidenced. To improve the specificity of the PET imagingmodalities
and improve tumor homing, one can attach targeting ligands. This was
demonstrated with RGD peptide-conjugated T7 [208] and anti-EGFR
conjugated MS2 bacteriophages [82]. The T7 phages were genetically
engineered to express solvent-exposed RGD sequences followed by
the chemical addition of 64Cu-DOTA. These phages were able to specifi-
cally extravasate into U87MG tumor xenografts displaying up to 10% ID/
gram.When cold RGD peptide was added before T7 administration (for
receptor blocking), tumor uptake was significantly reduced verifying
the specificity of the PET imaging. Also, the EGFR-conjugated MS2 bac-
teriophages showed up to 10–15% ID/gram 24 h after injection in
plasma and up to 2–5% ID/gramwithin HCC1954 orthotopic breast can-
cer tumors [82].
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PET is not only utilized in solid tumor imaging, but also can be used
to track micrometastases in sentinel lymph nodes [209]. NV1023 is an
oncolytic herpes simplex virus with preferential targeting towards
tumor cells. The virus platform technology was engineered to catalyze
the production of [18F]-2′-fluoro-2′-deoxy-1-β-D-β-arabinofuranosyl-
5-ethyluracil ([18F]FEAU) upon entering of tumor cells. [18F]FEAU can-
not diffuse extracellularly and thus becomes entrapped within the
tumor cell – [18F]FEAU is then imaged using PET. In a mouse B16F10
melanoma model, [18F]FEAU PET imaging successfully classified 8 out
of 8 tumor-positive nodeswith two standard deviations difference of ra-
dioactivity levels between tumor-free nodes.

Although CT is oftentimes used concurrently with PET, it can also be
employed as a stand-alone imaging modality. Recently, gold-coated
VNPs were developed using CPMV. These materials were engineered
for CT imaging using scattered X-ray for 3D visual reconstruction and
tissue segmentation [210]. The gold-coated CPMV improved the sensi-
tivity of the technique by reducing the scan time to less than 2 min
and achieved a resolution of nearly 150 Hounsfield units.
4.2. Photothermal therapy and other theranostic approaches

In newer generation imaging applications, VLPs can be simulta-
neously loaded with imaging reagents and drugs; and therefore, be
used for both diagnosis and therapy – a concept known as theranostics.
One of the most promising strategies is PTT, which employs NIR laser
photoabsorbers to generate heat for thermal ablation of cancer cells
upon laser irradiation [211]. Compared with conventional therapeutic
modalities, PTT exhibits unique advantages in cancer therapy such as
high specificity, minimal invasiveness, and precise spatial-temporal se-
lectivity [212,213]. Qβ-based VLPs were engineered for PTT through the
attachment of sub 7-nm sized gold nanoparticles on their surface; the
inner cavity was loaded with upwards of 500 DOX molecules [214].
Upon 6-nanosecond laser irradiation, DOX was rapidly released from
the capsid without heating the bulk solution, allowing for highly
targeted cell killing of RAW264.7 macrophage and A549 lung cancer
cells in vitro. Live-cell imaging indicated that only cells inside the irradi-
ated area showed morphological alterations and detachment signifying
highly localized treatment capabilities. Another study with Qβ conju-
gated to metalloporphyrin derivatives and a CD22 receptor targeting
glycan was utilized in photodynamic therapy (PDT) [215]. In vitro stud-
ies with CD22 positive Chinese hamster ovary cells indicated dose-
responsive phototoxicity and greater cell killing in targeted vs. non-
targeted viral particles. PDT has additionally been utilized with P22
VLPs encapsulating CYP (which converts the prodrug tamoxifen) and
decorated with the photosensitizer protoporphyrin IX against estrogen
receptor positive breast cancer cells [216]. To confer MRI and photo-
acoustic imaging capabilities to the PTT treatment for use in
theranostics, the nanorods of TMV were used to load Gd and coated
with polydopamine (PDA); the PDA coating enhances the MRI proper-
ties and confers PDA contrast while enabling PTT [217]. MRI imaging
of Gd-TMV nanoparticles without PDA produced r1 values of up to ~13
mM-1s-1, better than the r1 values of commercial MRI contrast agents
(3–5 mM-1s-1). PDA coating onto the TMV (Gd-TMV-PDA) led to far
greater r1 values, reaching up to ~80mM-1s-1. This increase in relaxivity
may be explained by the fact that the PDA coating traps bulk water in
the structure of TMV therefore further enhancing the magnetic proper-
ties and interaction of the Gd centers with water. Furthermore, the Gd-
TMV-PDA particles showed strong NIR absorption in vitro with high
photothermal conversion efficiency (28.9%). In comparison, other com-
monly used photothermal agents report photothermal conversion effi-
ciencies of 24.4% (Fe@Fe3O4) [218], 13% (gold nanocages) [219], 21%
(gold nanorods) [220], and 22% (Cu2-xSe) [221]. The nanoparticles
showed strong efficacy in vitro in treating PC-3 prostate and 4T1 breast
cancer cells while the controls of cells + irradiation and cells + Gd-
TMV-PDA without irradiation showed minimal cytotoxicity.
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Mammalian viruses have also been utilized in PTT. HBc has been
used to encapsulate copper sulfide for PTT only [222], conjugated to a
RGD peptide for tumor targeting and loaded with indocyanine green
for image-guided PTT [223], and loadedwith iron oxide andmethotrex-
ate for MRI and PTT [224]. Lastly, ferritin based VLPs have been used to
load copper sulfate [225] and gold nanoparticles [226] for cancer
theranostics.

In some more advanced theranostic modalities, the imaging re-
agents and drugs can be activated simultaneously. The bacteriophage
M13 was conjugated with DOX, a fluorophore, and a targeting ligand
to secreted protein, acidic, and rich in cysteine (SPARC), which is
overexpressed in melanoma, breast, brain, prostate, colon, and lung
cancers [227]. The multifunctional M13 nanoparticles were tested
using two prostate cancer lines: one with high SPARC expression (C4-
2B) and one with low SPARC expression (DU145). The IC50 curves indi-
cated strong cytotoxicity towards the C4-2B cell line, but not the DU145
cells, demonstrating specificity towards SPARC. Fluorescence images
showed greater cell adherence of the VLPs towards the C4-2B cell line.
5. Challenges moving forward and future directions

The field of viral drug delivery has taken tremendous steps forward
in recent years; this includes the application of plant viruses for treat-
ment of canine cancer patients [112], clinical trials using CpG-laden bac-
teriophages [70], as well as adenoviral COVID-19 vaccine candidates
that are currently in phase 2 clinical testing [228,229]. These examples
highlight that the field has grown out of its infancy. However, there re-
main challenges in further advancing the viral drug delivery field. The
most obvious hurdle is whether pre-existing or de novo acquired adap-
tive immunity against the viral carrier would lead to adverse effects or
reduce efficacy upon repeat administration [230]. This may be a chal-
lenge for traditional drug delivery approaches targeting diseased cells
and tissues – however, surface passivation or immune editing methods
Fig. 8. Bubble diagram of the proposed drug delivery and imaging/theranostic platforms discus
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have shown promise [231–233]. When it comes to immunotherapy ap-
plications, the immunogenicity of the carrier is less likely to be a barrier.
Rather, opsonization of the carrier primes the VNP for immune cell up-
take, therefore boosting efficacy rather than interferingwith it. This was
validated for both in situ vaccine applications andmRNA vaccines deliv-
ered by the plant viruses CPMV and CCMV respectively [67,234].

As the fieldmatures andmore products enter clinical testing and de-
velopment, efforts must focus on improving process development and
large-scale manufacturing techniques. Lab protocols often involve cen-
trifugation/ultracentrifugation for purification of the viruses or VLPs,
but these processes are generally not scalable and require adaptation
to industry standards (e.g. chromatography). Also, attention should be
paid toward formulation quality control and assurance – when VLPs
are produced by (heterologous) expression they are devoid of their ge-
nome; however, they can oftentimes package host RNA causing un-
wanted side effects [235]. Mammalian viruses may also cause
horizontal genetic transfer events evolving both humans and viruses
in unimaginable ways [236]. These possibilities must be carefully exam-
ined and studied as well as regulated.

Lastly, from a regulatory perspective, whilemammalian viral vectors
and VLP subunit vaccines have long been tested for clinical application,
with several formulations already approved and licensed,
bacteriophage- and plant virus-based therapeutic approaches are just
at the horizon to enter clinical development stages. This is an exciting
time for the field, and we hope to see emerging viral nanotechnologies
soon make the bench-to-bed transition.
6. Conclusion

As highlighted throughout this article, plant viruses and bacterio-
phages are recognized nanotechnologies, which have been engineered
for diverse applications as nanomachines (Fig. 8). VLPs have evolved
to carry and deliver cargomaking themnatural experts at drug delivery.
sed in this review by plant viruses, bacteriophages, mammalian viruses, and protein cages.
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Most VLPs can withstand harsh environments, which allows their
functionalization and engineering in the test tube; yet, VLPs are biocom-
patible and biodegradable. The engineering design space is unparalleled
enabling genetic programming, self-assembly and chemical biology ap-
proaches to be utilized yielding functionalized hybrid VLP nano-
materials. Furthermore, the structures of many viruses are understood
at atomic resolution allowing modifications with precise spatial selec-
tivity. The shape and size of VLPs facilitate their vascular transport, cel-
lular uptake and interactions. Large doses of VLPs are usually well
tolerated, but proteolytic degradation ensures their rapid and complete
clearance for reduced side effects. Moreover, VLPs can be easily
engineered to generate new structures that may interact predictably
with biological systems; VLPs can display functional groups that include
targeting ligands, imaging dyes, epitopes, or they can carry a payload of
drugs or dyes to specific cells and tissues. The field of VLPs for drug de-
livery applications has come a long way since its introduction. As the
field continues to grow and flourish, the number of virus-based thera-
pies in clinical trialswill continue to propagate and hopefully lead to ad-
vanced therapeutics in the clinic in the near future.
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