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Abstract—We consider the problem of estimating the common
mean of univariate data, when independent samples are drawn
from non-identical symmetric, unimodal distributions. This cap-
tures the setting where all samples are Gaussian with different
unknown variances. We propose an estimator that adapts to the
level of heterogeneity in the data, achieving near-optimality in
both the i.i.d. setting and some heterogeneous settings, where the
fraction of “low-noise'" points is as small as 1"%. Our estimator
is a hybrid of the modal interval, shorth, and median estimators
from classical statistics. The rates depend on the percentile of
the mixture distribution, making our estimators useful even for
distributions with infinite variance.

I. INTRODUCTION

Many modern data sets involve various forms of heterogene-
ity that lead to new challenges in estimation and prediction.
Whereas much of classical statistics focuses on convergence
guarantees for i.i.d. observations, both the independence and
identical distribution assumptions may be called into question
in specific scientific applications [1]-[5].

We focus on the problem of estimating a common mean
when univariate data are assumed to be generated indepen-
dently, but from non-identical distributions. The special case
where each sample is drawn from a normal distribution with
a potentially different variance was studied by Chierichetti
et al. [6], who showed the existence of a gap between
estimation error rates of the optimal estimator when both
the set of variances and their assignments are known (given
by the maximum likelihood estimator) and the best possible
estimator in the case where the variances of the distributions
are completely unknown. Furthermore, Chierichetti et al. [6]
presented a mean estimator in the unknown variance case
based on calculating the “shortest gap" between samples, and
derived upper bounds on the estimation error of their algorithm
that generally behave better than the naive mean estimator
(which has estimation error rates depending on the maximum
variance) or the median estimator (which is suboptimal when a
very large number of observations are drawn from distributions
with large variances).

As discussed in Chierichetti et al. [6], a practical motivation
for analyzing this problem is aggregation of user ratings in
crowdsourcing, where the rating reported by each user might
be drawn from a distribution centered around the true quality
of the item, but with a different variance corresponding to
the expertise of the user. Importantly, only one observation is
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available from each distribution, although the aggregate data
are drawn from a Gaussian mixture.

A natural question is whether the estimators proposed by
Chierichetti et al. [6] might also perform well in non-Gaussian
settings. For instance, one might ask whether concentration in-
equalities for sub-Gaussian random variables might be plugged
into the analysis in natural ways to obtain good upper bounds.
Furthermore, although Chierichetti et al. [6] derive lower
bounds for the behavior of the best possible estimator in
the unknown variance setting, their work leaves open the
question of whether their proposed estimator actually performs
optimally, and for which collections of variances.

In this paper, we revisit the problem of common mean
estimation and substantially generalize the setting beyond
Gaussian mixtures. In particular, the only assumption we im-
pose on each of the component distributions is symmetry and
unimodality about a common mean. Although our proposed
estimator is similar to the estimator studied by Chierichetti et
al. [6], we use a rather different approach for the analysis,
which allows us to obtain bounds without assuming Gaus-
sianity, sub-Gaussianity, or even finite variances of individual
distributions. Our analysis is inspired by ideas in empirical
process theory, and the upper bounds involve percentiles of
the overall mixture distribution, making them useful even in
the case of Cauchy-type distributions with heavy tails.

Our proposed estimators are connected to classical estima-
tors appearing in the statistics literature, notably the modal
interval estimator [7] and the shorth estimator [8]. However,
existing analysis of these estimators has generally been asymp-
totic and limited to i.i.d. data. In fact, it is well-known that in
the i.i.d. setting, both the modal interval and shorth estimators
have an n~3 convergence rate [9], compared to the faster
n2 convergence rate of the sample mean—on the other
hand, our analysis shows that these estimators enjoy superior
performance to the sample mean when a substantial fraction of
the component distributions have variances that are extremely
large, or even infinite. This underscores the fundamental fact
that estimators which are suboptimal in a “clean” data setting
may be preferable from the point of view of robustness.

Parameter estimation of mixture models is well-studied in
statistics and computer science [10]-[14]. However, our setting
is somewhat different from the canonical setting, since the
number of observations is not large relative to the number of
component distributions; rather, the number of components in
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the mixture could be as large as the number of observations.
On the other hand, the parameters of the component mixtures
are fundamentally entangled via a common mean parameter,
which is the quantity we wish to estimate. Consequently,
although much of the literature in statistical estimation for
mixture models requires the underlying component distribu-
tions to possess certain tail characteristics such as Gaussianity
or log-concavity, such assumptions are not necessary to obtain
small estimation error in our setting.

The remainder of the paper is organized as follows: In
Section II, we define notation and the basic estimators we
will consider, which are analyzed individually in Section IIL
In Section IV, we combine the ideas from the previous sections
to present a hybrid estimator and derive an upper bound on
the final output of the estimation algorithm. We also discuss
a setting in which the performance of our algorithm is nearly
optimal. Proofs are omitted due to space considerations.

Notation: For two real-valued functions f(n) and g(n), we
write f(n) = w(g(n)) if for every real constant ¢ > 0, there
exists mg > 1 such that f(n) > c¢- g(n) for every integer
n > ng. We write w.h.p., or “with high probability," to mean
with probability tending to 1 as the sample size increases. We
use C' and c to represent absolute positive constants Similarly,
we use C; to represent a positive number that depends only
on t.

II. PRELIMINARIES

For x € Rand r > 0, let f, , denote the indicator function
of the interval [z — r,z + r]. Let

H={fer:z€RreRr>0}
Hy = {for xR €R0<7 <1}

Both H and H, have VC dimension 2 [15].

Throughout the paper, we will assume that X; ~ P;
independently, where each P; has a density. All the P;’s are
assumed to be symmetric and unimodal around a common
median p*. Furthermore, the P;’s are unknown to the learner
and need not even be from the same parametric family of
distributions. Let ¢; and o; be the interquartile range and stan-
dard deviation of P;, respectively. Recall that the interquartile
range satisfies P(|X; — p*| < ¢;) = 3. We use ¢(;) and
o(;) to denote the i™ smallest interquartile range and standard
deviation, respectively. For simplicity of presentation, we will
assume that p* = 0. There is no loss of generality, since the
estimators that we consider are translation invariant. Thus, the
error of an estimator /i will be measured by |fi|.

For a function f, we use R,,(f) := 2 3" | f(X;) to denote
the expectation of f with respect to the empirical distribution
of X1,...,X,. Let

R(f) = -3 E (X,
=1

Thus, R(f) is the expectation of f with respect to the mixture
P:=1%"" | P, which is again unimodal and symmetric.

T on

A. Properties of P

Since we are not given access to the individug P;’s, we
will argue about the problem through the lens of P. We first
establish some useful properties. Let

R = sup R(f) = R(fo.r),

feH,
where the second equality follows by symmetry and unimodal-
ity. It is also equal to the probability of the interval [—r,7]
under P.

Lemma 1: We have the following properties:
(i) Forany r > 0and z, 2’ € R, if || < |2/|, then R(f,,) >
R(fx’;r)-

(i) For any z € R, if » < v/, then R(fs,) < R(fur).
(i) If 0 < r <1/, then 2= > o
@v) If 0 < r <7/, then R(f ) < SR
(v) If 1 <k < n, then % < R;(%) and % < R;U(%).
The proofs proceed using simple calculus and algebraic ma-
nipulations, relying only on the properties of symmetry and
unimodality. Lemma 1 shows that we can use P as a measure
of distance between two intervals. In particular, if two intervals
with the same center/radius are close under R, the respective

radii/centers must also be close.

LRY,.

B. Estimators

We now define the estimators that will serve as building
blocks for our algorithms. All of these estimators can be
implemented efficiently after sorting the data points.

Estimator 1 (r-modal interval): The r-modal interval out-
puts the center of the most populated interval of length r:

ﬁ]%,r = argm;lx Rn(fx,r)'

Estimator 2 (k-shortest gap / shorth estimator): The k-
shortest gap estimator, [ig x, outputs the center of the shortest
interval containing at least k£ points. More precisely, we define

~ . k N N

Fo=inf3rsup Ru(for) = = 0, sk = A

xr
The traditional shorth estimator [8], [9] corresponds to k =
0.5n.

We also define the population-level quantities

T = inf {7’ : SUPR(fm,r) > :} = inf {T. : R(foﬂ") > fL}’

where the last equality follows from unimodality and symme-
try. Note that r; measures the spread of P and g5, is the
interquartile range of P. Furthermore, since P has a density,
we have R:k = % In particular, by Lemma 1(v), we have
T < qeeky and 1, < 20(oy,), although these bounds may be
loose (for instance, 7 could be finite even if o(y) is infinite).
However, we are guaranteed that 7, will be small if 2k points
come from “nice" distributions.

The k-median outputs the centermost k& points of the data.
Note that the output is a set rather than a point estimator;
however, the k-median will be useful as a preprocessing step
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before applying the modal interval or shorth estimators, to
obtain better estimation error rates.

Estimator 3 (k-median): The k-median outputs a subset Sy
that contains the centermost k points. More precisely, we have
X, € S if and only if Qmed < X; < Hmed 1, Where

k
n b

N —k
emed,fk ‘= sup {0 : wn(g) < n} ,

é\med,k = inf {9 D (0) >

and ¥,() = 137" sign(f — X;). The sample median
corresponds to taking k = 0.

III. PERFORMANCE ANALYSIS OF INDIVIDUAL
ESTIMATORS

We use the following concentration bound to prove tight
concentration results for the modal and the shorth estimators.
Theorem 1: For any fixed ¢ € (0,1] and n > 1, we have

IP’{ sup |R,(f) —

R(f)| > tRﬁ} < 2exp (fcnR:tQ) ,
fEH,

1
M’ where C; =
n

provided r is large enough so that ) >
(%4)2 and ¢ = 5.

The proof modifies the VC-type bounds derived for i.i.d.
settings. This theorem is useful because the bounds are adap-
tive to the problem, compared to the traditional O (i
distribution-independent bound. However, note that Theorem 1
requires the mass R lying around the true mode to be
sufficiently large.

A. Modal interval

The following theorem provides a high-probability bound
on the error of the modal interval estimator:
Theorem 2: Let r be such that R* > Cpa5 glog ”)

with probability at least 1 —2 exp(—cCj o5 logn

2r

|| < o (1

Then
16), we have

The proof of Theorem 2 proceeds by using Theorem 1 to
bound the ratio between R(fz,,, ) and Ry, and then using
Lemma 1 to turn this into a deviation bound on |z, |.

Remark 1: The bound in Theorem 2 is tighter for smaller
values of » by Lemma 1 (iii). Thus, the choice of r which

optimizes the bound satisfies R = Cj .25 ) yielding the

2nTcog o5 logn
bound |IUA]W,7‘| S W

because we do not know P: If r is too small, then R} might
not be large enough and the bounds might not hold, whereas
if r is too large, then the resulting bound is loose.
Fortunately, an estimator with near-optimal performance
may be obtained via Lepski’s method [16]. The basic steps
are as follows: Define r* = 7¢, ,, 10g n to be the interval width

However, it poses a challenge

satisfying R} = Cp.25 (%), and suppose we have rough

initial estimates 7y, and rpax such that rpin < 7 < rpax.
Define 7 := rnin2’, and define

J = {.7 >1:rmin < Ty < 2rmax} .

We then define the index j, to be

Ny L . - - 4r;
mln{] eJ:Vi>jsticJ,|inmr, — Bl < R*Z },
T;

which may be calculated using pairwise comparisons of
the modal interval estimator computed over the gridding of
[Fmin, Tmax)- We define j, = oo if the set is empty; as proved
in the theorem below, we have j, < oo, w.h.p. We then have
the following result:

Theorem 3: With probability at least 1 —
2 (1 + log, (2”"3" ) exp(—Cnk/8), we have
12nr*
Tagr | < == 2
Ao, | < Co.25logn @)

Note that the cost of using Lepski’s method is a factor of 6
in the estimation error. Of course, the validity of the method
requires the availability of the rough bounds i, and 7y ax.
A natural way to obtain rough bounds on r* from the data is
to use the shortest gap estimator, which returns the shortest
interval containing at least Cj o5 logn points. We can again
use Theorem 1 and multiplicative form of the Chernoff bound
[17] to show that 7 does not fluctuate too wildly from its
empirical counterpart:

Lemma 2: For k > 4Cp 5logn, with probability at least
1 —exp(—k/8) — exp(—ck/16), we have 7,5 < T) < rop.

Accordingly, we may use

Tmin = TCy 25 logn/2s
Tmax = T2C( 25 logn-

Finally, note that the modal interval estimator fias, is an
M -estimator [18]:

~ RS
S h ’
fi € argmin { - ;:1 g(z /L)}

with loss function g(z) = — fo (). Clearly, the loss is non-
convex; however, the modal interval estimator is nonetheless
computable, since the overall objective function is piecewise
constant, with transitions lying only at the n data points.
Whereas a more straightforward analysis of convex M-
estimators (e.g., using a Huber loss) would yield somewhat
similar bounds on estimation error, such arguments would gen-
erally require tail assumptions on the component distributions
{P;}, which we avoid altogether in our analysis of the modal
interval estimator.

B. Shorth

Guarantees for the shorth estimator are similar to the modal
interval estimator, but computing the shorth does not require
an extra step for adapting to the width of the optimal interval.
We have the following theorem, proved using Theorem 1 and
Lemma 2:
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Theorem 4: Suppose k > max{4Cy 5, Co.25}logn. With
probability at least 1 — exp(—ck/16) — exp(—Fk/8), we have

4TL7”2k 4n min (Q(Zk)a 20(2k))
kO k '

Remark 2: Lemma 1(iii) shows that the upper bound is
actually tighter for small k: for k' > k, we have krap > k'ray.
The smallest value permissible from our theory would be
k = Q(logn). Also note that the upper bound in Theorem 4 for
the shorth estimator resembles the bound in Theorem 3, except
for the fact that the bound for the modal interval estimator
involves the quantity rc¢ ,;10gn rather than rac, 45 10gn, and
the latter could be somewhat larger depending on the spread
of P. Furthermore, both upper bounds in Theorem 4 may
sometimes be loose: In particular, if the X;’s were i.i.d. then
ror, would be of order © (%), so the bound "T% would be
of constant order, whereas it is known [9] that the shorth
estimator is consistent for k£ = 0.5n.

We also discuss an example describing a phase transition
in the performance of the shorth estimator with respect to
variances. The proof of Proposition 1 uses Theorem 4 and
Theorem 1, along with properties of Gaussian distributions.

Example 1: Let a > 0 be a constant. Let X; ~ N (0,02),
independently, where o; = 1 for i < Clogn and o; = n®
otherwise, for some large constant C.

Proposition 1: For Example 1 and & = 0.5C'log n, w.h.p.,
we have |fisx| = O(n®) for a < 1 and |fig | = O(1) for
a>1.

Remark 3: Let P, be the empirical distribution of
X1,...,X,. Both the shorth and the modal estimator are
“local” estimators that only consider the value of P, in
small windows. As we increase the variance of noisy points,
the distribution P approaches 0 around p*. The shorth and
modal interval estimators make mistakes when P is flat after
normalization, meaning that the density at x + p* is within
a (1 — e)-factor of its density at u*, for e = o(1). If this is
the case, then P,, might assign higher mass at  + 1* than p*
due to stochasticity introduced by sampling, so a local method
would mistakenly choose x4+ p* over p*. If an adversary tried
to alter the estimator by making the variance of the points
very high (o >> 1), then although P would approach 0, the
normalized density would not be flat. An extreme example of
this can be seen when variance of noisy points is “co”: Near
w*, the distribution P would behave like A/ (1*, 1) scaled by
O (105 ") which is not flat after normalization, although P
approaches 0 very rapidly, so that the mean or median would
behave poorly. As Proposition 1 shows, the shorth estimator
would only suffer O(1) error in this case.

Finally, note that in Example 1, the sample median and even
the mean would have an error of O(n®~%5). When a < 1, this
is noticeably better than the shorth estimator, which motivates
the hybrid estimator proposed in Section IV.

[isk| <

C. k-median

For the median estimator, we have the following result:

Lemma 3: If RY > % + 6, then

~ o~

amed,k <e and emed,fk > —€,

with probability at least 1 — 2 exp(—nd?).

The proof proceeds by applying Hoeffding’s inequality [15]
on 9, () and noting that for § > 0, we have E,,(0) = Rj.
We will be interested in the case when k£ = O(y/n) and 6 =
@ (10%) Lemma 3 states that if f, . contains enough mass,
the output of the k-median is bounded by e. Compared to
the shorth and modal interval estimators, the k-median is a
more “global” estimator, because it looks at a much bigger
interval fy.: When the latter n — O(y/n) points have very
large variances, the density of P is much flatter, so the value
of € needed to contain logf” mass is quite large. On the other
hand, recall that this is not an issue for the modal interval
and shorth estimators, which only have error governed by the
smallest O(y/n) variances.

IV. HYBRID ESTIMATOR

We now present an algorithm that combines the shorth and
k-median estimators in order to obtain superior performance
for both fast and slow decay of P. The algorithm computes
the kq-shorth estimator and ko-median. If the shorth estimator
lies within the median interval, the algorithm outputs the
shorth; otherwise, it outputs the closest endpoint of the median
interval. This estimator is similar to the estimator proposed by
Chierichetti et al. [6] since it uses the median as a screening
step. However, the shorth estimator is computed separately,
bypassing the need for a delicate conditioning argument in
the analysis.

Algorithm 1 Hybrid mean estimator

1: function HYBRIDMEANESTIMATOR(X.,,, k1, k2)
2 Sk, < kMedian(X1.,, k1).

3 ﬁS,]ﬁ — ShOI'th(le,k'g).

4 if I/ZS,kg S [min(Skl),max(Skl)] then

5: [k ko < HS ks

6: else

7 By iy — closestPoint(Sy, , fis i, )

8 end if

9: return iy, ,

10: end function

The following theorem provides an error bound for the
hybrid estimator:

Theorem 5: If k1 = \/nlogn and ky = Cposlogn, the
output of the hybrid estimator in Algorithm 1 is bounded by

8y/nlogn < 8y/nlogn
T
ko 2

|Bey koo | < min (q(2k): 20 (243)) -

2y S A

with probability at least 1 — 2 exp(—c’ks) — 2 exp(—log® n).

The proof of Theorem 5 proceeds by considering two cases

for R% 71z - and uses Lemma 3 and Theorem 4. Im-
T Thy o T2k

portantly, “the bound in Theorem 5 is finite even for heavy-
tailed distributions with infinite variance. Finally, note that in
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Algorithm 1, we could replace the shorth estimator by the
modal interval estimator with adaptively chosen interval width
(cf. Section III-A) to obtain similar error guarantees.
Remark 4: The bounds achieved by our estimators are
problem-dependent, since for a fixed ko, the quantity 7y,
decreases as the fraction of clean points increases. Under
mild regularity conditions, if k£ samples have variance 1, then
rg, = O (%) leading to the bound O (@) Thus, the

estimation error vanishes when k = w(y/n logn). In particular,

logn

for n i.i.d. distributions, we obtain an O n rate, which is

within a log factor of the optimal rate O (%) of the sample
mean. On the other hand, the mean is clearly suboptimal when
the variances vary widely. The benefit of our hybrid estimator
is that it can achieve reasonable error guarantees in both the
cases of i.i.d. and highly heterogeneous observations, without
knowing the collection of variances a priori.

As the following example illustrates, we can derive opti-
mality of the hybrid estimator in certain settings:

Example 2 (Example 1 in Chierichetti et al. [6]): Choose
the number of samples n > 0, and choose p € §07 ﬁ .
For each 4, let o; be chosen i.i.d. according to the following
distribution: with probability p, let it be equal to p>n; and with
probability 1 — p, let it be equal to 1 — p. Conditioned on o;,
let X; ~ N (u*,0;) be drawn independently.

By Lemma 4.4 in Chierichetti et al. [6], the optimal esti-
mator when the o;’s are known is

E|f— u*| = © (min(pg/in/Q,n_l/Q)) ’

provided pn = Q(logn). However, if the o;’s are un-
known, Lemma 4.5 in Chierichetti et al. [6] states that if
pn = Q(logn) and p = o(n~'/?), any algorithm suffers
Elg—p* = Q %) Note the gap in the optimal error

between the two settings when p = O(n=2/3).

However, Chierichetti et al. [6] do not establish the optimal-
ity of their proposed estimator. The following result, proved
using Theorem 5, shows that our hybrid algorithm is indeed
nearly optimal in this scenario, up to a logarithmic factor:
213 and p = o(n~'/?) in

Vnlogn
and ko = O(logn) achieves E |fig, x, — p*| = O (IC\’%”

Note that the situation in Example 2 is in some sense
a mild case of heterogeneity: It demonstrates a scenario
where a provable gap exists between the convergence rates of
estimators based on a priori knowledge of the o;’s, but at the
same time, the mean estimator would still achieve the optimal
o (5
the o;’s. We leave the question of optimality of the hybrid
estimator for a broader range of settings, dependent on the
values of the ¢;’s, for future work.

Proposition 2: If p = Q(
Example 2, then the hybrid algorithm with k; =

) rate for estimators that do not rely on knowledge of

V. CONCLUSION

We have studied the problem of mean estimation of a het-
erogeneous mixture when the fraction of clean points tends to

0. We have shown that the modal interval and shorth estimator,
which perform suboptimally in i.i.d. settings, are superior
to the sample mean in such settings. We have also shown
that these estimators and the k-median have complementary
strengths that may be combined into a single hybrid estimator,
which adapts to the given problem and is nearly optimal in
certain settings. An important question for further study is
whether the proposed hybrid estimator is always near-optimal,
or optimal, for more general collections of variances.
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