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Abstract—We consider the problem of influence maximization
in fixed networks for contagion models in an adversarial setting.
The goal is to select an optimal set of nodes to seed the
influence process, such that the number of influenced nodes at the
conclusion of the campaign is as large as possible. We formulate
the problem as a repeated game between a player and adversary,
where the adversary specifies the edges along which the contagion
may spread, and the player chooses sets of nodes to influence in
an online fashion. We establish upper and lower bounds on the
minimax pseudo-regret in both undirected and directed networks.

A full version of this paper is accessible at:
https://arxiv.org/abs/1611.00350

I. INTRODUCTION

Many data sets in contemporary scientific applications pos-
sess some underlying network structure [20]. Popular exam-
ples include data collected from social media websites such as
Facebook and Twitter [1], [18], or electrocortical recordings
gathered from a network of firing neurons [23]. An important
application of network science arises in marketing, where
researchers have studied the importance of word-of-mouth
advertising for decades [13]. More recently, empirical studies
have suggested that word-of-mouth marketing has a significant
effect in online social networks [2], [22]. At the same time,
computer scientists have analyzed the problem of viral market-
ing from an optimization-theoretic perspective [7], [10], [17],
where the goal is to select an optimal set of influencers to en-
courage product adoption in an online social network. This has
led to rigorous theoretical guarantees that hold for stochastic
models of word-of-mouth advertising inspired by physics and
epidemiology, and the scope of the spread is quantified using
a notion known as influence [14]. In social networks, edges
represent potential interactions between individuals, and the
problem of influence maximization corresponds to identifying
subsets of individuals on which to impress an idea so that
information spreads as widely as possible.

Formally, the influence of a subset of nodes is defined as the
expected number of influenced individuals in a network at the
conclusion of a spread, starting from an initial configuration
where only the specified nodes are influenced. Even when
the influence function is assumed to be computable for any
subset using a black-box method in unit time, it is not clear
that influence maximization may be performed (exactly or
approximately) in polynomial time, since searching over all
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subsets of k£ nodes is exponential in the number of nodes.
Accordingly, the body of work in theoretical computer science
has mostly focused on specific spreading models that give
rise to nice properties such as submodularity, implying that
a greedy algorithm for influence maximization leads to a
constant-factor approximation of the optimal set [4], [14],
[15]. A significant shortcoming in the analysis of stochastic
spreading models is the fact that the parameters characterizing
the spread of influence are generally assumed to be known,
allowing for approximate evaluation of the influence function.
However, such an assumption is not always practical, and
one might even question a scientist’s prior knowledge of the
precise network structure.

To address these issues, some authors have studied the
question of accurately learning the influence function itself
in a stochastic spreading model based on observing multiple
rounds of infection [12], [16], [19]. Another approach involves
a notion of “robust influence maximization,” where the pa-
rameters are only specified to lie in fixed confidence sets [8],
[11]. A third approach is to frame influence maximization as
a stochastic semi-bandit problem over many rounds [9], [21],
[25], [26]. Such methods may also be model-dependent, mean-
ing that an algorithm designed for the independent cascade
model may lead to a significantly suboptimal solution if the
influence spread actually follows linear threshold model.

In this paper, we take a rather different approach toward
the problem of unknown spreading parameters that also avoids
assumptions about a particular spreading mechanism. As dis-
cussed in more detail in Section II, we only assume knowledge
of an underlying fixed graph representing the paths along
which a influence may spread, where the case of no prior
knowledge corresponds to a complete graph. We formulate
the influence maximization problem as an online game, where
a “player” must make sequential decisions about the next seed
set to choose based on observing the behavior of the spread
in previous “rounds” of the game. Here, a round represents
a particular instance of an influence process initialized from
the specific seed nodes from beginning to end. We allow an
“adversary” to choose the path of influence on each round
in a completely arbitrary manner, as long as the process
may only spread along edges of the graph—in particular,
this setting subsumes the stochastic models usually adopted
in the influence maximization literature, while allowing for
much more general spreading mechanisms. Thus, instead of
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simply trying to maximize the aggregate number of influenced
vertices across all rounds, we seek to develop player strategies
that bound the “regret” of the player. Such notions are taken
from the literature on multi-armed bandits and online learning
theory [3], [6], and adapted to the present setting.

Our main contribution is to derive upper and lower bounds
on the pseudo-regret for various adversarial and player strate-
gies. We study both directed and undirected networks, where
in the latter setting, contagion is allowed to spread in both
directions when an edge is chosen by the adversary. Fur-
thermore, we derive information-theoretic lower bounds for
the minimax pseudo-regret when the underlying network is a
complete graph. Our upper and lower bounds match up to
constant factors in the case of directed networks. Notably,
the bounds also agree with the usual rate for pseudo-regret
in multi-armed bandits, showing that no new information is
gained by the player by exploiting network structure. On
the other hand, a gap exists between our upper and lower
bounds for undirected networks, leaving open the possibility
that the player may leverage the additional information from
the network to incur less regret. Additionally, the constant
factor on the upper bound may be slightly improved, providing
further evidence that graph structure may be exploited. Finally,
we demonstrate how to extend our upper bounds to the setting
where the player is allowed to choose multiple source vertices
on each round based on a general online greedy algorithm
[24].

The remainder of our paper is organized as follows: In
Section II, we provide some important background on online
learning theory and formally define the adversarial spreading
model and notions of regret to be studied in our paper. In
Section III, we present upper and lower bounds for pseudo-
regret in the adversarial setting. We conclude the paper with a
selection of open research questions in Section IV. All proofs,
as well as a more technical discussion of related work, is
contained in the appendices of the full version of the paper.

Notation. For a set A, let 24 denote the power set of A.
When we want to specify that we are taking the expectation
with respect to a particular distribution p of some random
variable X, we write E x ;. In particular, we often write Es.,,
to mean the expectation taken over the player’s actions for
a fixed set of adversarial actions, which is the same as the
conditional expectation with respect to the adversary’s actions.
Similarly, we write E 4 to indicate the conditional expectation
with respect to a fixed set of player actions.

II. BACKGROUND AND PRELIMINARIES

We begin by formally defining the repeated game between
the player and adversary and the types of strategies we will
analyze in our paper. Next, we introduce the notions of regret
we will study, and then connect our setting to related work in
the learning theory literature.

A. Adversarial repeated games

Consider a fixed graph G = (V, E) on n vertices, which
may be directed or undirected. The adversarial influence max-

imization problem may be described as follows: Repeatedly
over T rounds, the player selects an influence seed set Sy C V/,
with |S¢| = k, for ¢ = 1,...,T. At the same time, the
adversary designates a subset of edges A; C E to be “open.”
A node is considered to be influenced at time ¢ if and only if it
is an element of S; or is reachable from S; via a path of open
edges. Note that in the context of influence spreading, the open
edges correspond to ties over which influence propagates in
that round—importantly, influence only has an opportunity to
be transmitted between individuals that interact in the network,
but may not necessarily spread over a particular connection on
a specific round. In the case when G is an undirected graph,
designating an edge to be open allows an influence campaign
to spread in both directions. Furthermore, in the directed case,
edges may exist in both directions between a given pair of
nodes, in which case the adversary may designate both, one,
or neither of the edges to be open. For an open edge set A C F
and influence seed set S C V, we define f(A,S) to be the
fraction of vertices in the graph lying in the influenced set.

To connect our model to the canonical setting of influence
maximization, note that [15] proposed a very general class of
influence models called triggering models, which include the
independent cascade and the linear threshold models as special
cases. At the beginning of the influence campaign, each node
chooses a random “triggering” subset of neighbors according
to a particular rule, and the incoming edges from those
neighbors are designated to be “active.” A vertex becomes
influenced during the course of the process if and only if a path
of active edges exists connecting that vertex to a vertex in the
seed set. Thus, triggering models correspond to a special case
of our framework, in which the edge sets are chosen in an i.i.d.
manner from round to round, and the probability distribution
over the edges is determined by the probability rule through
which edges are assigned to be active (e.g., according to the
linear threshold or independent cascade models).

Next, we describe the classes of strategies A = {A4;} and
S = {&;} available to the adversary and player. We assume
that the adversary is oblivious of the player’s actions; i.e.,
at time ¢ = 0, the adversary must decide on the (possibly
random) strategy .A. We use &/ to denote the set of oblivious
adversary strategies and <7; to denote the set of deterministic
adversary strategies. Turning to the classes of player strategies,
we allow the player to choose his or her action at time ¢ based
on the feedback provided in response to the joint actions made
by the player and adversary on preceding time steps. Although
the player knows the edge set E of the underlying graph, we
assume that the player only observes the status of edges (i, j)
such that either ¢ or j is in the reach of S; (in the undirected
case), and the player observes the status of every edge (i, )
such that 7 is in the reach of S; (in the directed case). In other
words, whereas the player cannot observe the subset of all
edges that would have propagated influence in the network, he
or she will know which edges transmitted influence if reached
by the influence cascade initialized using his or her seed set.

Formally, we write .#(A;,S;) to denote the set of edges
with status known to the player (i.e., all edges in the

958

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on August 22,2021 at 15:45:58 UTC from IEEE Xplore. Restrictions apply.



subgraph induced by .A; belonging to connected compo-
nents containing nodes in S;), and we denote ¥t =
(F(A1,81),..., 7 (A, St)). If A, is chosen via a stochastic
model such as the independent cascade model with discrete
time steps for influence campaign ¢, our setup technically
allows the player knowledge of the status of an edge between
two vertices v and v if both were actually influenced by some
other vertex w. Realistically we would not want the status of
edge (u,v) to be returned as feedback, and we could enforce
this by positing a model of how each influence campaign
proceeds. However, this distinction does not affect our results
or algorithms, and so we do not further restrict the feedback
g (At, St)

The player can only make decisions based on the feedback
observed in previous rounds, so any allowable player strategy
{S:} has the property that S; is a function of .#¢~! (possi-
bly with additional randomization). We denote the class of
all player strategies by &2, and denote the subclass of all
deterministic player strategies by £?;, meaning that S; is a
deterministic function of .#*~!. Note that strategies S; € &,
may still be random, due to possible randomization of the
adversary, but conditioned on #*~1, the choice of S, is
deterministic.

B. Minimax regret

The player wishes to devise a strategy that maximizes the
aggregate number of influenced nodes up to time 7. Using the
notation from the previous section, we define the regret of the
player to be

T T
Rp(A,8) = f(AS) =D f(ALS), (D
t=1 t=1
where
T
S, = argmax A, S
S:g\S\zk ;f (A, 5)
is the optimal fixed set that the player would have chosen in
hindsight with full knowledge of the adversary’s strategy.

Note that the regret Rr(A,S) may be a random quantity
due to randomness in both the adversary’s or player’s strate-
gies. Accordingly, we will seek to control the pseudo-regret

T T
Rr(A,S) = Sﬁls%kaA,S Zf(AnS) - Zf(AtaSt) )
R t=1 t=1
2

where the expectation in equation (2) is taken with respect to
potential randomization in both A and S. As in the standard
learning theory literature [5], recall that the expected regret
and pseudo-regret are generally related via the inequality

Rr(A,S) < E[R7r(A,S)],

although if A € o7, we have Rr(A,S) = E[Rr(A,S)]. Our
interest in the pseudo-regret rather than the expected regret is
purely motivated by the fact that the former quantity is often
easier to bound than the latter and that this simplification is
common in the literature on bandits.

Finally, we introduce the scaled regret

T T
RYAS) =a) f(ALS) =Y f(A,8),  (3)
t=1 t=1

and the analogous quantity

T
Rp(A,8) = max Eas (o) f(ALS) =) f(ALS)
Si1S1=k t=1 t=1

Note that & = 1 corresponds to the unscaled version. Our
interest in the expression (3) is again for theoretical purposes,
since we may obtain convenient upper bounds on the scaled
pseudo-regret in the case o = 1 — % using an online greedy
algorithm. Note that when k& > 1, the benchmark greedy
algorithms used for influence maximization in the stochas-
tic spreading setting are also only guaranteed to achieve a
(1 — )-approximation of the truth, so in some sense, the
scaled regret (3) only requires the player to perform com-
parably well in relation to the appropriately scaled optimal
strategy.

III. MAIN RESULTS

In this section, we provide upper and lower bounds for the

pseudo-regret. Specifically, we focus on the quantity

. —«

Jnf) sup, Rp(A,S),
where the supremum is taken over the class of adversarial
strategies, and the infimum is taken over the class of player
strategies based on the feedback model we have described.
In other words, we wish to characterize the hardness of the
influence maximization problem in terms of the player’s best
possible strategy measured with respect to the worst-case
game.

A rough outline of our approach is as follows: We establish
upper bounds by presenting particular strategies for the player
that ensure an appropriately bounded regret under all adver-
sarial strategies. For lower bounds, the general technique is
to provide an ensemble of possible actions for the adversary
that are difficult for the player to distinguish in the influence
maximization problem, which forces the player to incur a
certain level of regret.

A. Undirected graphs

We begin by deriving regret upper bounds for undirected
graphs. We initially restrict our attention to the case k£ = 1. The
proposed player strategy for £ > 1, and corresponding regret
bounds, builds upon the results in the single-source setting.

1) Upper bounds for a single source: Consider a random-
ized player strategy that selects S; = {i} with probability
pi,t- The paper [5] suggests a method based on the Online
Stochastic Mirror Descent (OSMD) algorithm, which is spec-
ified by loss estimates {¢; ; } and learning rates {7, }, as well as
a Legendre function F'. Here, we comment on the losses, and
in order to avoid excessive technicalities, we defer additional
details of the OSMD algorithm to the appendix.
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The most basic loss estimate, which follows from standard
bandit theory and ignores all information about the graph, is
iy

Z?

where ¢;; = 1 — f(A, {i}) is the loss incurred if the
player were to choose S; = {i}. Importantly, Z‘i‘f’tde is always
computable for any choice the player makes at time ¢ and is
an unbiased estimate of /; ;.

On the other hand, if S; = {i} and another node j is influ-
enced (i.e., in the connected component formed by the open
edges of A;), the player also knows the loss that would have
been incurred if S; = {j}, since f(Ay {i}) = f(As, {5}).
This motivates an alternative loss estimate that is nonzero even
when S; # {i}. In particular, we may express

1
ei,t = E 262717
JFi
where Zf’j is the indicator that ¢ and j are in different
connected components formed by the open edges of A;. We

then define 1
7 ¢
Gr=-2 6,
JFi
Sym

where Z;; = 15,ny4,5320. Furthermore, the estimator £, is
{1, : it
always computable by the player, since the value of £; ; is

ot = s, gy, 4)

Pit + Dt

known by the player whenever S; is known. We call @Eytm the
symmetric loss. Now, we state the following regret bounds:

Theorem 1 (Symmetric loss, OSMD). Suppose the player
uses the strategy Speyp corresponding to OSMD with the
symmetric loss ™ and appropriate parameters. Then the
pseudo-regret satisfies the bound

sup Rr(A,85m ) < 2ivTn.
Acot

Remark 1. It is instructive to compare the result of Theorem 1
with analogous regret bounds for generic multi-armed bandits.
When the OSMD algorithm is run with the loss estimates (4),
standard analysis establishes an upper bound of 23/Tn.
Thus, using the symmetric loss, which leverages the graphical
nature of the problem, produces slight gains.

2) Lower bounds: We now establish lower bounds for the
pseudo-regret in the case & = 1. This furnishes a better
understanding of the hardness of the adversarial influence
maximization problem.

The intrinsic difficulty of online influence maximization
may vary widely depending on the topology of the underlying
graph, and methods for deriving lower bounds may also differ
accordingly. In the case of a complete graph, we have the
following result:

Theorem 2. Suppose G = I, is the complete graph onn > 3
vertices. Then the pseudo-regret satisfies the lower bound

2 —
R < i .
2131 = deL S (A9

Remark 2. Clearly, a gap exists between the lower bound
derived in Theorem 2 and the upper bound appearing in
Theorem 1. It is unclear which bound, if any, provides the
proper minimax rate. However, note that if the lower bound
were tight, it would imply that the proportion of vertices
that the player misses by picking suboptimal source sets
is constant, meaning the number of additional vertices the
optimal source vertex influences is linear in the size of the
graph. This differs substantially from the pseudo-regret of
order /n known to be minimax optimal for the standard multi-
armed bandit problem (and arises, for instance, in the case of
directed graphs, as discussed in the next section).

3) Upper bounds for multiple sources: We now turn to the
case k > 1, where the player chooses multiple source vertices
at each time step. As discussed in Section II, we are interested
in bounding the scaled pseudo-regret Ry.(A, S) with o = 1 —
é, since it is difficult to maximize the influence even in an
offline setting, and the greedy algorithm is only guaranteed to
provide a (1 — 1)-approximation of the truth.

Our proposed player strategy is based on an online greedy
adaptation of the strategy used in the single-source setting,
and the full details are given in the appendix. We then have
the following result concerning the scaled pseudo-regret:

Theorem 3 (Symmetric loss, multiple sources). Suppose k >
1 and the player uses the strategy Ssoys",t,’,’f, corresponding to the
Online Greedy Algorithm with single-source strategy Spep-
Then the scaled pseudo-regret satisfies the bound

sup ﬁ(Tl_l/e) (A,
Acot

ok < 21 kVTh.

Comparing Theorem 3 to Theorem 1, we see an additional
factor of k£ in the pseudo-regret upper bound. Similar results
may be derived when alternative single-source strategies are
used as subroutines in the Online Greedy Algorithm.

B. Directed graphs

We now derive upper and lower bounds for the pseudo-
regret in the case of directed graphs, when k£ = 1.

1) Upper bounds: The symmetric loss does not have a clear
analog in the case of directed graphs. However, we may still
use the node loss estimate for multi-armed bandit problems,
given by equation (4). This leads to the following upper bound:

Theorem 4. Suppose the player uses the strategy Sg‘gﬁjD cor-
responding to OSMD with the node loss 0"°% and appropriate
parameters. Then the pseudo-regret satisfies the bound

sup Rr(A,Spde ) < 23\/Th.
Acot

Remark 3. In the case k > 1, we may again use the Online
Greedy Algorithm to obtain a player strategy composed of
parallel runs of a single-source strategy. If the player uses

960

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on August 22,2021 at 15:45:58 UTC from IEEE Xplore. Restrictions apply.



the single-source strategy Sg‘gﬁ,‘;[,,

pseudo-regret bound

we may obtain the scaled

sup E(Tl_l/e) (A, Z(;‘,i;’[f) < 2:kVTn.

Aecal
2) Lower bounds: Finally, we provide a lower bound for
the directed complete graph on n vertices. (This refers to the
case where all edges are present and bidirectional.) We have
the following result:

Theorem 5. Suppose G is the directed complete graph on n
vertices. Then the pseudo-regret satisfies the lower bound

1

48\/6\/Tn§ inf sup Rr(A,S).

SEP Acwy

Notably, the lower bound in Theorem 5 matches the upper
bound in Theorem 4, up to constant factors. Thus, the min-
imax pseudo-regret for the influence maximization problem
is ©(v/Tn) in the case of directed graphs. In the case of
undirected graphs, however (cf. Theorem 2), we only obtained
a pseudo-regret lower bound of Q(v/T'). This is due to the fact
that in undirected graphs, one may learn about the loss of other
nodes at time ¢ besides the loss at S;.

Finally, we remark that a different choice of G might
affect the lower bound, since influence maximization is easier
for some graph topologies than others. However, Theorem 5
shows that the case of the complete graph is always guaranteed
to incur a pseudo-regret that matches the general upper bound
in Theorem 4, implying that this is the minimax optimal rate
for any class of graphs containing the complete graph.

IV. DISCUSSION

We have proposed and analyzed player strategies that con-
trol the pseudo-regret uniformly across all possible oblivious
adversarial strategies. For the problem of single-source influ-
ence maximization in complete networks, we have also derived
minimax lower bounds that establish the fundamental hardness
of the online influence maximization problem. In particular,
our lower and upper bounds match up to constant factors in the
case of directed complete graphs, implying that our proposed
player strategy is in some sense optimal.
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