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Module for ab initio structure evolution (MAISE) is an open-source package for materials modeling and
prediction. The code’s main feature is an automated generation of neural network (NN) interatomic
potentials for use in global structure searches. The systematic construction of Behler-Parrinello-type
NN models approximating ab initio energy and forces relies on two approaches introduced in our
recent studies. An evolutionary sampling scheme for generating reference structures improves the
NNs’ mapping of regions visited in unconstrained searches, while a stratified training approach enables
the creation of standardized NN models for multiple elements. A more flexible NN architecture
proposed here expands the applicability of the stratified scheme for an arbitrary number of elements.
The full workflow in the NN development is managed with a customizable ‘MAISE-NET" wrapper
written in Python. The global structure optimization capability in MAISE is based on an evolutionary
algorithm applicable for nanoparticles, films, and bulk crystals. A multitribe extension of the algorithm
allows for an efficient simultaneous optimization of nanoparticles in a given size range. Implemented
structure analysis functions include fingerprinting with radial distribution functions and finding space
groups with the SPGLIB tool. This work overviews MAISE'’s available features, constructed models, and
confirmed predictions.
Program summary
Program Title: MAISE
CPC Library link to program files: http://dx.doi.org/10.17632/vfzgt2gnsh.1
Licensing provisions: GNU General Public License v3.0
Programming language: C
Nature of problem: Construction of NN interatomic potentials suitable for evolutionary structure
searches, molecular dynamics, phonon calculations, and other applications presents a host of challenges
ranging from sampling relevant parts of vast configuration spaces to tuning multitudes of NN
parameters.
Solution method: Evolutionary data generation and modular NN training algorithms featured in the
open-source parallelized MAISE package enable automated development of NN models for multiple
chemical species. Customizable MAISE-NET wrapper streamlines all stages of the iterative process.
Unusual features: NN training stratification allows one to build libraries of reusable models from the
bottom up, starting from elements and proceeding to multielement chemical systems. A multitribe
evolutionary algorithm improves the efficiency of ground state structure searches by simultaneously
optimizing nanoparticles of different sizes and periodically exchanging best motifs between the tribes.
© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Development of advanced modeling methods and simulation
tools continues to reshape the process of materials discovery and
characterization [ 1-4]. In structure prediction, unconstrained op-

* The review of this paper was arranged by Prof. D.P. Landau.

X This paper and its associated computer program are available via the
Computer Physics Communication homepage on ScienceDirect (http://www.

sciencedirect.com/science/journal/00104655).
* Corresponding author.
E-mail address: kolmogorov@binghamton.edu (A.N. Kolmogorov).

https://doi.org/10.1016/j.cpc.2020.107679
0010-4655/© 2020 Elsevier B.V. All rights reserved.

timization algorithms enable identification of thermodynamically
stable phases with no prior information and have been widely
used to guide the experimental work [4-6]. The challenge of
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finding global minima in large configuration spaces has been ad-
dressed with a variety of strategies: basin-hopping [7] represents
an efficient procedure for escaping from local minima and map-
ping the potential energy surface (PES), particle swarm optimiza-
tion relies on the crowd intelligence for navigating the energy
landscape [8], random searching provides an unbiased configura-
tion sampling [9], evolutionary algorithm mixes and propagates
beneficial structural traits [10-12], etc. In interatomic interac-
tion modeling, machine learning frameworks have emerged as
attractive alternatives to traditional potentials [13,14]. Numerous
recent studies have been dedicated to improving the methodol-
ogy for representing atomic environments, generating reference
datasets, and training machine learning models. [3,13-48].

The aim of this study is to introduce the main materials
modeling capabilities available in our module for ab initio struc-
ture evolution (MAISE), starting with a guide into the package
installation (Section 2) and basic features (Sections 3 and 4).
Given a number of excellent reviews detailing the background
on unconstrained structure prediction [4,6] and machine learning
[3,24], our presentation focuses on describing MAISE’s distinc-
tive algorithms, functionalities, and applications previewed in the
following paragraphs.

MAISE was first written as a standalone C code in 2009 [49].
It was originally designed as an evolutionary optimization engine
interfaced with external density functional theory (DFT) pack-
ages to enable unconstrained ground state structure searches.
The implemented evolutionary algorithm (Section 5) followed
a general principle of using natural selection to evolve pop-
ulations of structures with crossover and mutation operations
[10,50-63]. MAISE-specific features include radial distribution
function (RDF)-based structure fingerprinting for detecting and
eliminating similar population members [49,64,65] and an ef-
ficient co-evolutionary optimization of nanoparticles (NP) in a
given size range via sharing of best motifs among multiple tribes
[38,39]. Ab initio predictions made with MAISE and confirmed in
experimental studies are overviewed in Section 6.

The primary function of the present MAISE package is the
construction of neural network (NN) interatomic models for
accurate mapping of ab initio PES’s. Our examinations of NN
performance in prediction of stable compounds have revealed
limitations of the traditional approaches used to sample con-
figuration spaces and train NNs for multiple elements [27]. An
evolutionary sampling and a stratified training scheme intro-
duced in Ref. [27] and discussed in Section 7 have allowed us
to build reliable NN models for extended sets of metals. Our
developed MAISE-NET Python script streamlines all stages of
the process, from generating reference structures and handling
external ab initio calculations to performing NN training and
testing (see Section 8). The library of the latest generation of
NN models constructed with the MAISE-NET script are described
in Section 9. The efficiency of NN calculations, the performance
of NN models, and the first NN-based structure predictions are
described in Section 10. With the machine learning module and
relevant utility functions comprising about 9130 out of 14,364
lines of the full code, a more descriptive reading of the MAISE
acronym at this point is ‘module for artificial intelligence and
structure evolution’.

MAISE command-line structure analysis and manipulation op-
erations, such as structure comparison or space group determi-
nation, are listed in Section 3. The code can perform local/global
optimizations, molecular dynamics (MD), and basic phonon cal-
culations by evaluating the total energy, atomic forces, and unit
cell stresses for given structures at the NN or empirical potential
levels (see Section 4). The main input/output files have a general
VASP [66,67] format to simplify interfacing MAISE with other
structure prediction and property analysis engines (PyChemia
[68], PHON [69], etc.). The NN training and structure simulation
modules are parallelized with OpenMP [70].
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2. Installation

Download The full MAISE package, currently MAISE version
2.5 and MAISE-NET version 1.0, can be obtained from the Github
repository [71,72]. It contains MAISE C-language source code,
MAISE-NET Python script (Section 8), available NN and empirical
potential models (Section 9), and basic examples.

Compilation The source code for MAISE can be compiled with:
$ make --jobs. During MAISE compilation, the makefile script
checks if two required external libraries, GSL [73] and SPGLIB
(v1.11.2.1, Feb 2019) [74], are present. If not, they will be au-
tomatically downloaded to ./ext-dep and installed in ./lib on
most systems. If the GSL or SPGLIB installation is not completed
automatically the user should compile them manually and copy
(i) libgsl.a, libgslcblas.a and libsymspg.a into the ‘./lib’ subdirec-
tory; (ii) the ‘spglib.h’ header into ‘./lib/include’ subdirectory; and
(iii) all gsl headers into the ‘./lib/include/gsl’ subdirectory.

Post-compilation test A ‘check’ script is available in the ‘./test’
directory which can be run after compiling the MAISE executable
to ensure the proper function of the code. The script parses a
small dataset, trains a basic NN, and optimizes a crystal structure.
Error logs are generated in case any issues are detected.

3. Unit cell analysis and manipulation

A variety of structure analysis and manipulation tools are im-
plemented in MAISE package which can be used in the command-
line with the corresponding task-specifier flag. Working primarily
with the VASP structure format (POSCAR file) as input, MAISE can
determine the space group, calculate the radial distribution func-
tion (RDF) [49,64], measure the similarity of two structures via
RDF pattern comparison, calculate volume per atom for bulk and
cluster geometries [75], align the cluster in the simulation box
along the high symmetry axes, etc. The code expects a ‘POSCAR’
file in the running directory for operations involving a single
structure or two ‘POSCARO’ and ‘POSCART files for structure
comparison. The tasks listed in Table 1 can be performed in the
command line by running: $ maise -[flag].

The similarity, or dot product, between two structures k = 1, 2
with species Ns,c has been defined in MAISE as

Npin Nspe Nspc

G-G= Z Z Z RDF4 s1,52(Rn)RDF; 51 52(Ry)/(normynormy),
n s1 s2

1/2
Npin Nspc Nspc /

normg = | Y~ Y "> " RDFy g1 (Ra)RDF 51 52(Ry)

n sl s2

The RDFs are defined for each structure k at each bin R, =
1/NpinRhard (Nbin = 3000) as

Natom  Natom (Rij—Rn 2
RDFk,sl,sz(Rn) = § § e 202 feut(Rn),
i,si=s1 j#i,5j=s2

where si and sj denote the species of atoms i and j, respectively.

feut(Ry) = 1 for R, < Rsoe and feue(Ry) = cos (n/zﬁ) for
Rsoft < Ry < Rnara. For efficiency purposes, only R, — 30 < R;j <
R, + 30 are included in the sum.

The dot product is sensitive to the choice of Ry, Rharg, and o. It
is good practice to include at least two shells of nearest neighbors
(Rhara = 5 A) and use sharper Gaussians (¢ &~ 0.008 A) for dis-

ordered or cluster structures and wider ones for high-symmetry
structures (o & 0.02 A).
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Table 1
List of the available command-line flags in MAISE package for structure analysis
and manipulation.

Flag Description

man Output the list of available flags

rdf Compute the RDF for POSCAR

cxc Compute dot product for POSCARO and POSCAR1 using RDF
cmp Compare RDF, space group, and volume of POSCARO and POSCAR1
spg Convert POSCAR into str.cif, CONV, PRIM

cif Convert str.cif into CONV

rot Rotate a cluster along eigenvectors of moments of inertia
dim Find whether POSCAR is periodic (3) or non-periodic (0)
box Reset the box size for clusters

sup Make a N, x Ny x N, supercell

vol Compute volume per atom for crystals or clusters

4. Structure simulation

Available structure simulation functions include unit cell re-
laxation, MD, and phonon property analysis. The structure, the
interaction model, and the job settings are specified in ‘POSCAR’,
‘model’, and ‘setup’ files, respectively.

4.1. Local structure optimization

Structure optimization with analytic derivative-based BFGS
[76] or CG [77] algorithms can be performed by using NN or
other classical interatomic interaction models available in MAISE.
The local optimization is carried out until the maximum num-
ber of iterations (MITR) or the targeted enthalpy difference be-
tween successive steps (ETOL) is reached. The full list of relevant
‘setup’ parameters for the local optimization task is provided in
Table A.3.

The unit cell parameters, total/atomic energies, and force/
stress components can be outputted at each relaxation step in an
‘OUTCAR’ file, while the final structure is saved in a ‘CONTCAR’
file. This information saved in the VASP-style format can be uti-
lized by external codes to perform vibrational property analysis,
global structure optimization, etc.

4.2. Molecular dynamics simulations

MD simulations can be run in the microcanonical ensemble
(NVE) with the Verlet algorithm [78], the canonical ensemble
(NVT) with the Nosé-Hoover thermostat [79,80], and isobaric—
isothermal ensemble (NPT) with a combination of the
Nosé-Hoover thermostat and the Berendsen barostat [81]. The
velocities are initialized either according to the Maxwell distribu-
tion at a given starting temperature or with the values specified
in the ‘POSCAR’ file. Table A.4 lists ‘setup’ parameters relevant
for MD simulations. MAISE outputs energies, lattice parameters,
Lindemann index, average RDF, etc. for each temperature. In the
current version of MAISE, Lindemann index value is well-defined
only for NPs and the barostat is implemented for unit cells with
orthogonal lattice vectors.

Fig. 1 illustrates the use of the NPT ensemble and our latest
NN model for evaluating the linear thermal expansion coefficient
a = 1 (2%), in Ag near room temperature. A 108-atom 3 x 3 x 3
supercell of FCC-Ag was simulated at T = 300 =+ 10 K for 0.5 ns
with a 1 fs time step (500,000 integration steps in total) to find
the numerical temperature derivative of the lattice constants.
Allowing the first 0.025 ns for equilibration, we observed conver-
gence of o to within 0.5% in the following 0.25 ns. Simulations
of FCC-Cu and BCC-Na showed similar convergence rates. The
resulting linear thermal expansion coefficients of 21.0 x 107°
K~! for Ag, 14.9 x 1078 K~! for Cu, and 51.7 x 107% K~! for Na
are within 10%-30% relative to the corresponding experimental
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values of 19.0x 1078 K1, 16.7x107® K~1, and 69 x 1078 K1 [82].
Simulations with a smaller temperature difference T = 300+£5 K
and a larger structure (256-atom 4 x 4 x 4 supercell of FCC-Ag)
showed similar results for the expansion coefficient.

4.3. Phonon calculations

Our studies of vibrational properties [39] have been performed
with an external PHON package [69] because it readily links
with VASP or MAISE for a consistent comparison of the NN
models against the DFT. Presently, MAISE has an internal option
to calculate I'-point phonons with the frozen phonon method
in the quasi-harmonic approximation. The dynamical matrix is
constructed by numerical differentiation of the atomic forces. The
magnitude of atomic displacements of each atom is defined by
the ‘DISP’ parameter. Due to the negligible numerical noise of the
NN analytic forces, the displacement values can be kept small to
reduce the anharmonic effects and satisfy the acoustic sum rule
(a list of setup parameters for phonon calculations in MAISE code
is presented in Table A.5).

The main application of this basic feature is to determine the
presence of soft frequencies in the analysis of structures’ dynam-
ical stability. The code marks trivial zero-frequency translational
(and rotational) modes by checking whether the eigenvectors
generate net linear (and angular) momenta in crystals (and clus-
ters). Ordered frequencies and the corresponding eigenvectors
are printed in the ‘OUTCAR’ file and can be used for introducing
soft-mode mutations in global evolutionary searches [ 12] or mon-
itoring nudged elastic band method convergence in transition
state searches.

5. Evolutionary search

Overview Evolutionary algorithms rely on Nature’s heredity
and ‘survival of the fittest’ principles for optimizing complex sys-
tems. MAISE enables the search for lowest-enthalpy bulk crystals,
flat films, or NPs at a fixed chemical composition. The majority
of the algorithm’s numerous internal parameters related to the
generation, evolution, and selection of structures have been tuned
for typical crystalline unit cells with up to about 50 atoms and
NPs with a few hundred atoms. Below we briefly overview the
key settings adjustable by the user for the algorithm’s optimal
performance (see Table A.6 for a list of these setup parameters).

Interaction description method The evolutionary optimization
module expects local relaxations of structures to be performed
by an external code (flag CODE) through a queueing system
(flag QUET). The current version is linked with VASP for DFT
calculations and with MAISE for NN calculations. In case of fast
Lennard-Jones, Gupta, or Sutton-Chen potentials, local optimiza-
tion calls can be made directly from the evolutionary engine in
MAISE. Input files and submission scripts for DFT/NN relaxations
should be specified in the INI directory.

Population initialization Bulk ground state searches can be ini-
tialized via (i) randomization of given structures to bias the search
toward nearby stable configurations; (ii) randomization of atoms
in a constrained unit cell to make use of available information
from XRD; and (iii) unbiased generation of random unit cells
and atomic positions. In case the structures have interatomic dis-
tances shorter than a tabulated species- and pressure-dependent
value, they are adjusted using a simple repulsive interatomic
potential or re-generated. NPs can be created with a TETRIS-like
function introduced in our recent study [38] that ensures good
packing and customizable radial/angular distributions of species.
2D films are constrained to the x-y plane at the beginning and
duration of the ES [83].
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Fig. 1. (Top panel) Fluctuations of the lattice parameter for a 108-atom supercell of FCC-Ag at T = 290 K (gray), T = 300 K (blue), and T = 310 K (green) along with
the corresponding average lattice parameters (red) as a function of the number of MD steps. (Bottom panel) Linear thermal expansion coefficient (@) at T = 300 K
as a function of the number of MD steps. The calculated linear expansion coefficient for Ag is in 10% agreement with the measured value [82] (Color online).

Evolution operations Offspring bulk structures are obtained
with mutation or crossover operations. The former acts on a ran-
domly chosen parent structure to distort lattice vectors, displace
atomic positions, and/or swap atoms of different species. The
latter randomly picks two parent structures, rotates the lattice
vectors to ensure the best matching of unit cell dimensions, slices
the unit cells approximately in half, and combines the pieces with
small adjustments at the boundary to avoid short interatomic
distances. Offspring NPs can also be created with alternative “Ru-
bik’s cube” and “spherical cut crossover” operations, described in
our previous study and used to quantify the effectiveness of the
traditional crossover [38].

Structure selection Once a new generation is locally optimized,
the joint population of parent and child structures is ranked
according to their enthalpy and each structure n is assigned
the survival probability proportional to 1/2(1 — tanh[2(H, —
Hpin)/(Hmax — Hmin) — 1]) where Hp, and Hy,qe are lowest and
highest enthalpies in the population, respectively [84]. Dupli-
cate structures determined to have similar RDFs, energies, and
volumes are assigned zero chance of survival. Structures are elim-
inated one by one until the merged population is reduced to its
original size. Ground states with 10-16 atoms per primitive unit
cells are usually found in 1000-3000 local optimizations. Configu-
rations with large lattice constant differences (e.g., long stacking
sequences) and low atomic densities (e.g., the low-coordination
diamond structure) tend to take longer to appear.

Job execution The evolutionary optimization is executed by
running MAISE in the background. The search (re)starts from
a given generation and proceeds for a specified number of it-
erations (flag NITR). In each cycle, the code generates a new
population, submits a job for each structure to a specified queue,
checks if the jobs finished successfully, processes the results, and
outputs enthalpy/volume for each structure.

Multitribe optimization The efficient co-evolutionary simulta-
neous optimization of NPs introduced and tested in our recent
study [39] requires a separate bash script. The wrapper manages
the submission of ESs and the exchange of seeds among tribes at
the end of each cycle of isolated evolution.

ES output The ES progress can be monitored by visualizing
the enthalpy profile and heredity of population members saved

in ‘ebest.dat’, ‘erank.dat’, and ‘elink.dat’ files (see Fig. 2). The
connections between points in consequent generations illustrate
which parent structures were used to generate the offspring: one
for mutations and two for crossovers. After an ES is completed,
one can select distinct low-enthalpy structures in the entire pool
of locally optimized members by running a post-search analysis
with JOBT=13. Configurations with dissimilar RDF dot products
by at most SCUT (e.g., 0.95) and with enthalpies at most DENE
(e.g., 20 meV/atom) above the lowest-enthalpy structure will be
saved and optionally relaxed at the DFT level.

ES example Fig. 2 illustrates the performance of a typical ES.
Structures with MggCas unit cells were modeled with our lat-
est NN interatomic potential. A population of 32 members was
evolved for 40 generations and converged to the known C14 Laves
phase ground state, producing the metastable C15 along the way.

6. Confirmed ab initio predictions

The reliability of ab initio predictions for finding new materials
depends on the accuracy of the theoretical method for computing
the structure stability (Gibbs free energy) and the exhaustive
sampling of large configuration spaces (structures and composi-
tions). A common approach to evaluating Gibbs free energy with
continually improving DFT approximations [85-91] is to deter-
mine the enthalpy at T = 0 K and then include the temperature-
dependent vibrational/configurational entropy terms for viable
candidates. Explorations of configurational spaces can be done
with a variety of advanced structure prediction methods intro-
duced in the past two decades [5,7,9-11,55,92-100]. The search
strategy employed in our predictive work has involved (i) high-
throughput (HT) screening of known relevant prototypes to es-
tablish a baseline for compound stability; (ii) unconstrained
evolutionary search (ES) to identify new stable motifs; and
(iii) stability analysis to explain or improve the stability of iden-
tified materials.

Here, we recount notable factors leading to successful predic-
tions and provide context on the discovered materials’ signifi-
cance (Fig. 3 and Table 2). In terms of novelty, (i) FeBy
[49,101,102], LiB [103-105], and NaSn, [106,107] are new phases
predicted before their experimental realization; (ii) CaBg [64]
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Fig. 2. Typical results of ES runs performed with MAISE. This global structure search at the MggCas composition identified both the metastable C15 Laves phase and
the C14 ground state. The interactions were modeled with the latest Mg-Ca NN interatomic potential. (a) Energy distribution and structure heredity for an ES with
40 generations and 32 members in the population. (b) Collection of all local/global minima at the end of the ES.

and Naslr;Og [108] are solutions of complex phases synthesized
and characterized in joint studies; and (iii) NaIrO3 [109], CrB4
[101,110], and MnB,4 [111-113] are confirmed revisions of pre-
viously misidentified crystal structures. All cases except Na,IrOs;
involved extensive evolutionary searches and resulted in brand-
new crystal structures for FeB4, CrB4, MnB,4, CaBg, and Naslr;Og.
All phases except Naslr;0g have been either synthesized at or
successfully quenched down to the ambient pressure.

FeB4 [49,101,102] is an early example of a superconductor
predicted fully ‘in silico’. With a combination of HT screening,
ESs, and electron-phonon calculations, we demonstrated that an
FeB, compound should become thermodynamically stable un-
der moderate pressures around 10 GPa in a brand-new oP10
crystal structure (SG#58), remain metastable under normal con-
ditions, and exhibit phonon-mediated superconductivity unusual
for an Fe-containing material. The subsequent discovery of the
superconductor [102] has motivated further studies [114,115].

LiB was proposed to be a new synthesizable layered phase
[103,104] with electronic features desirable for MgB,-type su-
perconductivity [116]. The set of ‘metal sandwich’ configurations
was constructed by analyzing stability trends in our HT data. In
order to determine suitable synthesis conditions, we explained
the off-stoichiometric LiB, material and modeled the complex
behavior of the two competing phases under high pressures. Our
synthesis and XRD analysis confirmed the predicted shifts in the
LiB, composition and the existence of the LiB phase with random
stacking [105]. The demonstration of the LiB metastability under
ambient pressure should simplify future study of the material’s
superconductivity.

NaSn; [106] was predicted to be an overlooked phase synthe-
sizable under ambient pressure. With the primary focus on find-
ing new bulk Sn materials that could be exfoliated into stanene,
we examined a set of layered Sn alloys and showed that Na
stabilizes a rigid 3D framework with flat Sn layers. Our elec-
tronic structure analysis indicated that the compound should
have non-trivial topological properties. The predicted hP3-NaSn,
phase (SG#191) was observed later in an independent experi-
ment [107].

CaBg proved to be the most challenging case in our structure
prediction work. A preliminary ground state search uncovered
several CaBg polymorphs stabilized by high pressure but none
of them matched the high-pressure XRD patterns obtained in
our concurrent experiments [64]. An ES for a larger 28-atom
unit cell eventually converged to a new tI56 structure (SG#139)
with unique boron building blocks that explained the convoluted
XRD data. In contrast to studies that determined ground states
of similar size, the ES for CaBg did not use any structural input

from experiment, which makes tI56 one of the largest confirmed
crystal structures found truly ‘from scratch’. Our follow-up tests
for tI56-CaBg, 0C88-Li, and y-Byg showed that the use of unit
cell dimensions extracted from XRD makes it possible to find the
ground state one-two orders of magnitude faster [64].

Naslr;0g was experimentally observed to transform into a
lower-symmetry phase under pressure. Given the considerable
size of the 56-atom ambient-pressure ground state, we used it
to initialize our ES but did not rely on any high-P experimental
data. An independently obtained mP56 solution (SG#4) with a
dimerized Ir-Ir network turned out to be in excellent agreement
with the collected XRD patterns [108].

Na,IrO; structure was originally assigned SG#15 (C2/c) [117].
A simple local optimization revealed the ground state to have
SG#12 (C2/m) in agreement with the experimental solution es-
tablished by our colleagues in a joint study [109]. Our RDF anal-
ysis helped rationalize the bond rearrangement resulting in the
more stable configuration. The compound has received consid-
erable attention as a candidate for the realization of the Kitaev
model.

CrB4 [101] was first synthesized over 50 years ago and rep-
resented as an ol10 structure (SG#71). Having determined that
FeB, is significantly more stable in the related distorted oP10 con-
figuration (SG#58) [49,101], we re-examined CrB, and showed
oP10 to be the ground state for this compound as well. The
significant distortion of the 3D boron framework was shown to
have little effect on the powder XRD patterns which explained
the mischaracterization of the CrB, structure. Following elec-
tron diffraction [110] and single-crystal XRD [118] measurements
confirmed the revised oP10 solution for CrBy.

MnB, [111] was also synthesized over 50 years ago and tenta-
tively assigned an mS10 (SG#12) structure. Our ES found a more
stable mP20 (SG#14) derivative in early 2013. Matching solutions
were obtained independently by several groups around the same
time [112,113].

Our predictive work has shown that crystalline ground states
can be found rather routinely without the need of advanced
structure prediction algorithms if (i) the unit cells have fewer
than about 10 atoms; (ii) the search is initialized with related
configurations; or (iii) the search is constrained with unit cell
dimensions extracted from experiment. The ES becomes essen-
tial for larger systems, especially when no prior information is
available.

7. Neural network model construction

In contrast to traditional classical potentials crafted to describe
particular interaction types [119-128], common NN models are
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b) FeB,

c¢) CaBg

Fig. 3. Structures of select MAISE confirmed predictions detailed in Table 2. The small (large) spheres show boron (metal) atoms.

Table 2

MAISE confirmed predictions with listed ground state structures, synthesis pressure, established metastability under
normal conditions (for phases synthesized at high pressures), key features, and general observations.

Phase Prediction Synthesis P Properties

Structure Confirmation Quenched P Remarks

FeBy 2010 [49,101] 10 GPa Fe-based BCS superconductor

oP10 2013 [102] 1 bar Predicted fully ‘from scratch’

LiB 2006 [103,104] 21 GPa Proposed MgB,-type superconductor
hP4-8 2015 [105] 1 bar cold compression synthesis

NaSn, 2016 [106] 1 bar 3D Sn framework with flat Sn layers
hP3 (AlB;) 2017 [107] Non-trivial topological properties
CaBg 2012 [64] 31 GPa Unique boron building blocks

tI56 2012 [64] 1 bar Found w/o any structural input
Naslr;Og 2018 [108] 11 GPa Dimerized Ir framework

mP56 2018 [108] 1 bar Found w/o any high-P structural input
Na,IrO3 2012 [109] 1 bar Candidate for the Kitaev model
mS24 2012 [109] Revised structure

CrBy4 2011 [101] 1 bar Distorted 3D boron framework

oP10 2012 [110] Misidentified for over 40 years
MnB, 2014 [111] 1 bar Distorted 3D boron framework
mP20 2014 [112,113] Unsolved for over 40 years

intentionally kept devoid of any embedded physics to achieve
better transferability [24]. The NNs’ great interpolation power
comes with users’ great responsibility to generate proper refer-
ence datasets and perform careful fitting. This section describes
key steps for building general NN interatomic potentials and
overviews guidelines for constructing practical NNs applicable to
compound prediction.

7.1. Reference data generation

The starting point in NN construction involves choosing a
suitable reference interaction description method and selecting
particular parts of the PES to approximate. Both choices are
essential because NNs inherit the method’s systematic/numerical
errors and represent the PES well only in or near the sampled
regions. While there are well-established comparable DFT ap-
proximations that can be picked to describe targeted materials
properties [85-91], automated protocols for generating reference
dataset are still being developed and tested [19,27,34,129-133].

As a general principle, it is natural to expose NNs to typical
configurations that will be encountered in intended applications,
such as ground/transition state searches, MD, Monte Carlo sim-
ulations, vibrational property calculations, etc. In our previous
study dedicated to unconstrained searches [27], we departed
from the popular MD-based scheme and introduced an evolu-
tionary sampling approach reviewed and generalized further in

Section 8. With the bulk of the diverse dataset created in an
unsupervised fashion, we keep an option open for customized
input.

One important recourse discussed in Ref. [27] is the incorpora-
tion of equation of state (EOS) data for select structures, e.g., the
dimer, FCC, BCC, HCP, etc., which helps reduce the number of
NN artifacts. We demonstrated [27] that inclusion of such struc-
tures with very short and very long interatomic distances has
little effect on the NN description of low-energy structures but
teaches the NN to disfavor unphysical configurations that can be
inadvertently probed in global searches or MD runs. We found
this approach to work better than the common introduction of
a repulsive potential. Another beneficial option is the elimina-
tion of structures that are either too similar to each other or
clearly irrelevant. The reduction of similar structures is performed
naturally in our short evolutionary runs during data generation.
The exclusion of structures with high energy or forces is done
during data filtering as detailed in the next section. Our typical
datasets consist of 86% of evolutionary data with 1-8 atoms per
unit cell, 12% of EOS data, and 2% of structures obtained during
evolutionary testing of NN models (more details in Section 8).

Standard target values taken from DFT calculations are total
energies, atomic forces, and unit cell stresses. In energy training,
the outputs of an atomistic NN model need to be summed up
for an entire unit cell before they can be compared against the
corresponding DFT value. In energy-force training, implemented
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and examined in our studies in early 2000s [134], the dataset is
expanded dramatically with more direct information about local
environments. Due to the correlation of forces on nearby atoms
according to Newton’s 3™ law, we randomly pick only 25%-50%
of atoms with non-zero forces in a structure. The resulting ratios
of force to energy data in our studies are at least 7:1.

7.2. Data filtering and parsing

The data processing step allows the user to filter out irrelevant
configurations, earmark structures for training and testing, and
parse atomic environments into NN inputs. These operations can
be customized by choosing flags in the ‘setup’ file (Table A.7),
arranging the data by type into subdirectories, and specifying
Behler-Parrinello (BP) symmetry functions [13] in the ‘basis’ file.

In data filtering, the ECUT, EMAX, and FMAX flags described in
Table A.7 control the maximum values of energy (enthalpy) and
forces allowed in the database. A single energy cutoff is ill-defined
or not helpful if the database contains entries with different
structure types (clusters or crystal structures), compositions (in
multielement systems), or simulation conditions (pressure val-
ues). Provided that the data is sorted in subdirectories by type,
ECUT and EMAX are applied to the energy (enthalpy) per atom
within each subset. These values can be overwritten for a specific
subset by placing a ‘tag’ file in the corresponding subdirectory.
This ‘tag’ file can also be used to promote the inclusion of the
subset, e.g., EOS data, into the training set.

The energy and force cutoff parameters are critical for striking
a balance between the accuracy and the reliability of a NN. It may
be tempting to keep EMAX and FMAX below about 0.5 eV/atom
and 1 eV/A, respectively, for exploration of (nearly) stable phases.
However, our tests have shown that such NNs develop numerous
artificial minima easily accessible in MD or structure optimization
runs, a problem known not only for NNs but also for traditional
potentials. We have found that when the cutoff values are raised
to 5 eV/atom and 10 eV/A, and even higher for EOS data, the NNs
lose 1-2 meV/atom in accuracy but become robust enough to be
used in unconstrained searches.

In data parsing, the idea is to precompute and store NN inputs
for each structure only once to avoid performing this costly
operation at each NN fitting step. The BP symmetry functions
used for the conversion can be easily customized by adjusting
the parameters in the ‘basis’ file. We typically use the set with
51 functions per element with the cutoff expanded from 6.0 A to
7.5 A and the corresponding 1 parameters rescaled by a factor of
1.25 (as described in our previous study [33]).

The filtering, earmarking, and parsing operations are done
in a single JOBT=30 run. It produces a file for each structure
with parsed energy/force NN inputs and collects statistics on the
energy, force, volume, and RDF distributions in the full dataset.

7.3. Neural network training

The default NN implemented in MAISE has a standard feed-
forward architecture with one bias per input or hidden layer.
Signals are processed with hyperbolic activation functions in hid-
den layers and with the linear function in the output neuron. Our
tests on metallic alloys have shown comparable performances of
one- or two-layer NNs with the same total number of neurons
and insignificant NN accuracy improvements beyond 20 neu-
rons [27]. Based on these observations, we have adopted the
51-10-10-1 architecture with (51 + 1) x 10 + (10 + 1) x 10 +
(10 + 1) = 641 adjustable parameters per chemical element.

The filtered and parsed data is split into training and testing
sets with the NTRN and NTST flags, usually at the 9:1 ratio.
Data earmarked for training with ‘tag’ files in the corresponding
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Fig. 4. Error convergence in optimizations of a Cu-Ag NN model with 1880
adjustable parameters for the same binary structure set with 5352 energy-only
training data (black lines) or 5352-37,803 energy-force training data (red lines).
The ratio of the training to testing data is 9:1. The training errors (dashed lines)
are higher than the testing errors (solid lines) for the first 20,000 steps because
the training set includes high-energy EOS data. The NN trained only on energies
displays a sign of overfitting after about 50,000 steps, while the one trained on
energy-force data shows comparable training and testing errors (with or without
EOS data) until the end of the 420,000 optimization run.

subdirectories (see Section 7.2) has a higher priority to be placed
into the training set.

NN fitting via backpropagation can be performed with BFGS or
CG algorithm as implemented in the GSL. Analytic derivatives of
the weights are used in both energy and force training, with the
latter procedure being slower by a factor of ~ 3 per data point. In
order to balance the significance of the energy and force data, the
contributions to the full error function from the mismatches be-
tween the NN and target force component values are multiplied
by 0.1 A (throughout the present work, ‘error’ represents the root-
mean-square error). The NN weights are initialized randomly or
read in from a previous ‘model’ file.

The optimization is usually carried out for 1 —5 x 10> epochs.
We have observed that initial weight values have little effect on
the resulting NN accuracy and that NN snapshots saved during
an optimization run provide similar description of EOS, defect en-
ergy, and phonons (Figure S4 in Ref. [27]). Overfitting is avoided
by keeping the data to parameter ratio above 10:1 and using L,
regularization with 1078-107% values. Fig. 4 shows typical rates
of convergence in energy and energy-force training runs. The
training process is controlled by the set of user-defined flags in
the ‘setup’ file (see Table A.8).

7.4. Stratified training

The construction of NNs for multielement systems in MAISE
follows a stratified scheme introduced and examined in our previ-
ous study [27]. It differs from the traditional approach in that we
fit NN weights in a hierarchical fashion from the bottom up, first
for elements, then for binaries, and so on. The intact description
of the subsystems, as the NN is expanded to more elements, is
achieved via the use of a constrained NN architecture. The con-
cept of stratification has been used in the development of classical
and tight-binding models [135-137] but has not received much
attention yet in the development of machine learning potentials.

Under ideal conditions - given a complete basis for represent-
ing atomic environments within a large cutoff sphere, unlimited
number of adjustable parameters and reference data, and a pow-
erful fitting algorithm - a multielement NN with fully optimized
elemental and interspecies weights is expected to accurately map
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the PES for all subsystems. In practice, the use of approximations
leads to the following problem. Suppose one wishes to fit a model
describing A, B, and AB phases given three datasets of A, B, and
AB structures. Let us say that the PES of element A happens to
be trivial and can be approximated with negligible error in the
region spanned by the A data. If one now fits all parameters
simultaneously to the full A, B, and AB datasets the larger error
will be distributed across all elemental and binary systems. In
other words, the addition of B and AB data unphysically alters the
description of the elemental A phases. It should be noted that the
constrained NN architecture does account for the change in the
interaction strength between A atoms induced by the presence
of B atoms because the AA/AAA inputs are mixed in with the
AB/AAB/ABB inputs via neurons’ non-linear activation functions.

In a study of a particular composition, e.g., MgO, it would not
make much sense to start the parameterization with the elements
because they will not be encountered in charge-neutral forms
or relevant coordinations in MgO structures. With our primary
interest in the exploration of full compositions in multiple bi-
nary/ternary metal alloys, we have relied on the stratified scheme
to build sets of reusable NN models. Our extensive tests have
shown that the constraints in the adopted NN architectures do
not introduce any appreciable errors for the considered chemical
systems [27].

In addition to having a more sound foundation, the strati-
fication procedure significantly accelerates the creation of NN
libraries. For example, the full training of a binary AB model on
all A, B, and AB data takes about the same time as the sequential
training of A, B, and AB models on the corresponding data subsets.
However, for an extended block of A, B, and C elements, the
standard approach involves the fitting of AC and BC NNs from
scratch, while the inheritance of A and B weights in the stratified
scheme reduces the total fitting time by at least a factor of two.
The speed-up increases dramatically as more elements are added
and ternary models are built.

Users can choose the full or stratified scheme with the JOBT
flag in the ‘setup’ file. In the latter case, substituent models should
be placed in the working directory, e.g., ‘Cu.dat’ and ‘Pd.dat’
for fitting the Cu-Pd binary NN, or ‘CuPd.dat’, ‘CuAg.dat’, and
‘PdAg.dat’ for fitting the Cu-Pd-Ag ternary NN. Presently, MAISE
allows for training NN models with up to three elements. While
the treatment of systems with more elements is possible con-
ceptually, the practical cost of data generation and parameter
optimization becomes expensive.

7.5. Generalized stratified training

In order to extend the stratified procedure to materials with
more complex interactions and an arbitrary number of elements,
we have considered more flexible NN architectures that still
preserve the intact description of the subsystems. Compared to
the original stratified NN layout [27], it involves addition of new
neurons, shown as green units in Fig. 5, with different connection
patterns and conditions.

The schematic of a ‘stratified+" binary NN (top row in Fig. 5)
illustrates that as long as there are no connections from the inputs
or neurons in the elemental subnets to the inserted neurons, the
new adjustable weights do not alter the signal processing for pure
elemental structures. Despite the added flexibility, the NN still
does not allow the proper fitting of interactions in compounds
with more than three chemical elements. Indeed, the adjustable
parts of such NNs involve 60% of inputs in binaries (top right box
in Fig. 5), 11% of inputs in ternaries (caption of Fig. 5) and none
for systems with more elements. In our previous discussion [27],
we incorrectly attributed this limitation to the use of pair and
triplet symmetry functions. This restriction is actually imposed
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not by the particular geometric representation of the atomic
environments [13,138,139] but rather by the NN architecture, and
can be lifted as follows.

The ‘stratified+’ expansion (bottom row in Fig. 5) introduces
semi-adjustable links even in the inherited parts of the merged
NN. We add neurons in pairs, coupling the two weights incom-
ing from each subsystem input to have opposite values while
coupling the two outgoing weights to be the same. For a purely
elemental structure, the interspecies input values are zero and
the net signal (at neuron 5) from each elemental input (1) passed
through the paired neurons (3&4) will be zero as well regardless
of the coupled weight magnitudes. For a binary structure, the
non-zero binary inputs multiplied by fully unconstrained weights
will unbalance the elemental signals because of the non-linear
nature of the activation function resulting in a non-zero contri-
bution at neuron 5 that depends on both elemental and binary
(semi)adjustable weights.

The set of new partially constrained weights shown in yel-
low in Fig. 5 enables the stratified+ NN to better capture the
screening and charge transfer effects as well as describe inter-
actions in systems with an unlimited number of species. In a trial
implementation, we imposed the constraint by penalizing the
mismatch between the coupled weights as ), o(wiy = wa N ).
We have observed no need to adjust the ¢ penalty factor during
the NN optimization, as the differences between coupled weight
magnitudes become negligible after a few dozen training steps;
near the end of optimization, we set the magnitudes to their
average and keep them fixed without any appreciable effect on
the error. To the best of our knowledge, this semi-constrained
solution for systematically expanding NN features has not been
considered in the field of materials modeling. It adds to the collec-
tion of alternative NN architectures proposed in recent years for
more general applications, such as progressive [140], dynamically
expandable [141], and implanted [142] NNs.

One way to determine whether the use of the expanded NN
architectures is warranted is to reoptimize the standard stratified
NN without any constraints on the full dataset. A significant
reduction in the training and testing errors would indicate the
need for additional NN flexibility. In our studies of metal alloys,
the error reductions are usually in the 0%-15% range (e.g., see
Figure 4 in Ref. [27]). Our preliminary tests have shown that both
stratified+ and =+ architectures end up with errors about midway
between those in the stratified and full NNs. In order to quantify
the improvements arising from the additional degrees of freedom
in each scheme, we plan to investigate more challenging systems
comprised of different element types in future studies.

8. MAISE-NET: automated generator of neural networks

Generation of reference structures suitable for tuning machine
learning models has been explored in numerous studies [19,20,
30,36,129-133,143-150]. Ab initio MD has been a particularly
popular approach to sample physically meaningful configurations
[19,20]. In our previous work, we argued that datasets created
with MD might not have the sufficient representation of di-
verse environments probed in global structure searches [27]. Our
evolutionary sampling protocol proposed in 2017 served as a
basis for an unsupervised creation of diverse datasets, and our
NN models trained on such data have been successfully used
in structure prediction [33,38,39]. A similar approach was de-
veloped by Dolgirev et al. [151]. Several strategies to improve
the mapping of configuration spaces have been developed in
recent years, e.g., normal mode sampling [148], active learning-
based models [131,132], enhanced sampling [133], ab initio ran-
dom structure searching [129,130], and entropy-maximization
approach [149]. A number of studies have shown the benefit
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Fig. 5. Schematic illustration of stratified+ (top row) and stratified+ (bottom row) NN architectures for a binary chemical system. The expansion of the original
stratified architecture is done with the addition of new neurons shown in green. The weights of elemental NNs (middle row) are copied and kept fixed in all stratified
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for an arbitrary number of chemical elements (Color online).

of iterating the generation of data and the parameterization of
models [19,27,34,129-132,150].

The generalized sampling protocol implemented in the MAISE-
NET wrapper [72] relies on the evolutionary search, structure
analysis, and NN fitting features in MAISE to construct training
datasets in an automated iterative fashion. It has been developed
over several studies to deal with systems of increasing com-
plexity. In our early investigation of crystal structure phases of
relatively simple Cu-Pd-Ag metals, it was sufficient to gener-
ate each of the unary, binary, and ternary datasets in a single
cycle, as the NNs trained on this data showed robust perfor-
mance [27]. An accurate description of Cu-Pd-Ag and Au NPs
required an iteration to sample cluster geometries with pre-
trained NNs [38,39]. Our ongoing studies have been dedicated to
predicting high-pressure alloy phases and involve several cycles
to include unusual motifs stabilized under compression.

An overview of the MAISE-NET operation is presented in Fig. 6.
A database construction run starts with building a precursive
dataset followed by cycles of data generation and NN model
training. The complete data generation process is carried out in
multiple steps as follows:

(a) Basic data generation (optional): If instructed by the user,
the script generates a single atom reference and sets of EOS
data for small clusters with 2-4 atoms and select high-symmetry
prototypes preoptimized for the considered element(s). While
being optional, these reference sets, called collectively as EOSO,
are essential for teaching the NN to disfavor configurations with
unphysically short or long interatomic distances.

(b) Preliminary DFT-level evolutionary sampling: MAISE-NET
sets up short evolutionary MAISE runs initialized with random
structures. As described in Ref. [27], the local DFT optimization
of each population member for a few ionic steps is followed
by an accurate static evaluation of the energy and forces of the
resulting configuration. The small set of structures in this cycle 0
samples the walls of multiple basins and is sufficient for a rough
approximation of the PES.

(c) NN model training: The collection of all available high-
accuracy DFT data is parsed and a NN model is built. Various

precursive data

@) ©)

iterative data generation / NN training

NN TEST
DFT relax

DFT minima
DFT EOSN

user input
DFT EOSO

optional tasks

core tasks

random start
NN/DEFT relax

random start
DFT EVOS

NN training
on all DFT data

NN model

Fig. 6. A flowchart of the MAISE-NET automated generation of reference data
and construction of NN models. The core and optional tasks are shown in blue
and gray boxes, respectively. Black and red curves represent the reference DFT
PES and its NN approximation, respectively. Data produced in steps (a, b) is used
to launch an iterative process shown in steps (c-f). A detailed description of all
stages is given in the text (Color online).

system- and cycle-dependent fitting specifications can be defined
in the ‘setup’ file, e.g., the energy or energy-force training type,
the number of steps for each training type, etc.

(d) NN-driven generation of DFT data: MAISE-NET launches
MAISE evolutionary runs to randomly generate and locally opti-
mize new structures using the latest NN model. Compared to step
(b), it proved to be unnecessary to proceed beyond the first ES
generation because small unit cells with 1-8 atoms have a chance
to converge to the global minimum with full local optimization
affordable at the NN level. After the uniqueness of the obtained
minima is verified through the structure comparison feature in
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lowest-enthalpy phase at each pressure.

MAISE and they are accepted in the pool based on a weight-
ing factor favoring low-enthalpy structures, the corresponding
relaxation paths are examined to extract several intermediate
structures per minimum. The target total number of generated
structures per cycle, referred to as EVOS data, is specified in the
‘setup’ file.

(e) NN model test and TEST data (optional): If instructed by
the user, MAISE-NET launches a proper evolutionary ground state
search using the NN model trained in step (c). The resulting NN-
based minima are then optimized at the DFT level. A detailed
report is compiled on the symmetry and enthalpy of the resulting
minima at the NN and DFT levels. The user has an option to
include the DFT energies and forces of the NN- and DFT-based
minima into the dataset for the NN training in subsequent cycles.
The data will be added to the collection of training data as TEST
data. Although generation of the TEST data during the model
construction run is optional, the script has the feature to perform
this evolutionary search test for an existing NN model as an
independent functionality.

(f) DFT EOSN data generation (optional): If instructed by the
user, a small set of EOS data is generated for unique DFT-
optimized minima obtained in each cycle and added to the pool
of training data for the next cycles as EOSN data.

Steps (c) through (f) are repeated for a user-specified number
of cycles, with a NN model trained from scratch on all collected
DFT data at the end of each iteration. The run can be termi-
nated or extended by the user at each iteration depending on
whether a satisfactory accuracy for the NN model is achieved.
While steps (a), (e), and (f) are optional, our tests for elemental,
binary, and ternary metal systems have indicated that addition
of these datasets significantly improves the NN model suitability
for ground state searches in terms of accuracy and reliability.
Generation of a typical training dataset of ~5000 structures with
the MAISE-NET script required roughly 20, 30, and 40 thousand
CPU hours of DFT calculations for elemental, binary, and ternary
metallic compounds, respectively. The higher DFT calculation cost
for each binary and ternary systems is primarily due to the in-
creased number of DFT calculations for structures with larger unit
cells. Fig. 7 illustrates the distribution of data and NN accuracy for
Cu-Ag.

The end-to-end NN construction depends on a large number of
parameters and can be a daunting task for new users. With this
in mind, we have developed MAISE-NET to have the following
features.

Easy customization MAISE-NET can be run with both Python
2 and 3 version families out-of-the-box without requiring any

10

external modules to be installed. It includes well-tested ‘setup’
templates for developing elemental, binary, and ternary NN mod-
els. All key functionalities can be tuned by adjusting ‘setup’ pa-
rameters listed in Table A.9. Upon detection of user-provided NN
models for the relevant subsystems, the script performs the NN
fitting in the stratified fashion.

Complete automation Once the run is configured, the data
generation and NN construction can proceed without any further
user input or supervision. In particular, the script makes sure
that DFT data is collected only from successfully finished VASP
calculations.

Full transparency An extensive set of messages is produced
and sent into standard output/screen to notify the user about the
progress of the run. The most important messages are saved in
the ‘output.dat’ file. A comprehensive summary is generated to
give the user a detailed account about the generated dataset.

9. Library of neural network models

A library of select NN and empirical potentials is provided
with the distribution in the ‘models/’ directory. Model file names
specify the interaction type (a NN or a traditional potential),
dimensionality of the data used to parameterize the model (0
for crystals and clusters or 3 for crystals only), and the gener-
ation/version number. Model file headers list information about
models’ authorship, architecture, performance, etc. The body of
the NN files contain bias and weight values. Finally, the end of the
files specifies the symmetry function basis chosen for the model.

We have recently started building a new generation of NN
models (gen2) for a large set of metals to allow the prediction
of stable alloys under ambient and high pressures. The use of
MAISE-NET with standardized settings ensures that we can create
a library of models in the stratified fashion. Fig. 8 shows the
accuracy of the new generation of NNs tested to perform well in
structure searches up to 30 GPa pressure.

10. Neural network benchmarks and predictions
10.1. Efficiency of NN calculations

Benchmarking results reported in our previous studies
[27,33,38,39] have demonstrated the levels of speed and accuracy
generally expected from the constructed NN models. For systems
with 50-100 atoms, calculations performed with the order-N
NNs were found to be 10*-10° times faster than with the order-
N3 DFT and about 10? times slower than the order-N empirical
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Fig. 8. Testing error for available second-generation NN interatomic potentials
constructed with the MAISE-NET script.

potentials [28,152-154]. The two most demanding computational
tasks, the NN training and the NN use in structure simulations, are
parallelized with OpenMP over the total number of structures in
the reference dataset in the former case and over the number of
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atoms in the latter one. Fig. 9 illustrates that the parallelization
efficiency is system-dependent and can be up 90% on 16 cores
and 70% on 32 cores.

10.2. Accuracy of NN models

As overviewed in Section 9, the overall accuracy for most
developed models ranges between 2 and 10 meV/atom in the
considered systems with up to three metals. The DFT formation
defect energies are typically reproduced within 0.1-0.2 eV/defect
(see Fig. 10), which is consistent with the NN errors per atom (see
discussion in Ref. [27]). The accurate description of forces with
the NNs allows one to identify dynamically unstable structures
and obtain accurate evaluations of relative phase stability at ele-
vated temperatures by including vibrational entropy corrections
(Figure 5 in Ref. [39] and Fig. 10 in the present work). It has
been encouraging to observe practically the same accuracy of NNs
trained in the full and stratified fashions.
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Fig. 9. MAISE performance in structure relaxation and NN model training. (a) Total CPU time for the relaxation of bulk (red circles) and NP (blue diamonds) Au
structures performed on a 32-core Intel Xeon Gold 5218 @ 2.30 GHz compute node. (b) Parallelization efficiency of MAISE for local optimization of a 1024-atom
Au crystal structure computed on a 16-core Intel Xeon E5-2650 @ 2.00 GHz (gray circles) and a 32-core Intel Xeon E5-4620 v2 @ 2.60 GHz (black diamonds). The
dynamic allocation in OpenMP helps distribute the load for processing atoms with different numbers of neighbors. (c) Parallelization efficiency of training a NN
model on energy-only (gray circles) and energy-force (black diamonds) data, performed on a 32-core Intel Xeon Gold 5218 @ 2.30 GHz compute node (Color online).
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10.3. Comparison of NNs and empirical potentials

The most important quality measure of NNs developed in
our studies has been their performance in structure prediction
[33,38,39]. We carried out a systematic comparison of NN models
and traditional potentials against the DFT, which appears to be
the largest of the kind so far, to quantify their ability to resolve
low-energy configurations in global structure searches [39]. By
examining up to 60 lowest-energy candidates for each size in
the Auszp-Augy NP range, we established that NNs (6.5 meV/atom
accuracy) are far better suited to guide ab initio ground state
search than the Gupta, Sutton-Chen, or embedded atom model
(estimated 30 meV/atom accuracy). The large number of NP con-
figurations with close energies makes it difficult to conclusively
determine the DFT minimum with either approach but the use of
the NNs instead of the traditional potentials reduces the number
of structures needed to be re-evaluated at the DFT level by at least
1-2 orders of magnitude. Moreover, the good correspondence
between the NN and DFT atomic forces allowed us to introduce a
hybrid NN+DFT approach that significantly improves the search
reliability. Application of NN models with 2-10 meV/atom ac-
curacy to bulk crystals is expected to be far more effective for
identifying the DFT ground states because of the simpler PES near
the global minimum in systems without surfaces.

10.4. NN-based structure predictions

First practical applications of NNs in structure prediction with
MAISE have led to identification of more stable Au NP configura-
tions [39] and new synthesizable Mg—Ca bulk phases [33]. In both
studies, NNs were used to describe interatomic interactions dur-
ing unconstrained searches and then select candidate structures
were evaluated with DFT approximations.

Au NPs have been subject of numerous studies because of their
appealing catalytic properties [155-158]. A variety of structure
optimization and interaction description methods have been used
to determine ground state NP configurations with up to 300
atoms as reviewed in our study [39]. Small Au clusters have been
shown to adopt unusual stable morphologies, such as the Aus;
hollow fullerene or the Auyy pyramid [75,159,160]. We performed
NN-based ESs for Ausy—-Augp and found our best configurations at
the DFT level to have either matching or better energy compared
to all previously reported Au NPs. In particular, we identified
more stable configurations for sizes 34, 38, and 55. Considering
the amount of work dedicated to magic-size clusters with 55
atoms, it was surprising to uncover a new Auss configuration
3.6 meV/atom lower in energy than all putative ground states
described in the literature [39].

Mg alloys have been widely explored because of their potential
applications as structural materials in automotive and aircraft
industries [161]. The Mg-Ca binary system has only one known
compound, Mg,Ca, with the C14 Laves structure. In our joint
study [33], the full Mg-Ca composition was scanned with the
PyChemia’s minima hopping search engine [68] using MAISE as
an external NN module. At the ambient pressure, we identified
several phases close to stability at zero temperature: C15/C36
Laves structures at the 2:1 composition and 0S36/mS18 at the
7:2 composition. We demonstrated that the vibrational entropy
contribution makes these phases more stable and they could be
overlooked materials synthesizable at high temperature. At high
pressures, B2-MgCa and cF16-Mgs;Ca become thermodynamically
stable and are expected to form below 10 GPa. We are not
aware of any earlier reports of new synthesizable compounds
predicted with global structure searches based on NN interatomic
potentials.
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11. Summary

In this work, we have reviewed notable predictions and
present capabilities of MAISE. The list of eight crystal structure
predictions made at the DFT level and confirmed in concurrent
or following experiments is presented in Section 6. The identifica-
tion of possible synthesizable Mg-Ca phases with global structure
searches at the NN level [27], which appears to be the first
example of new thermodynamically stable crystalline compounds
predicted in this fashion, is discussed in Section 10. Key aspects of
the evolutionary optimization implemented in MAISE for crystals,
films, and clusters are described in Section 5.

The main feature of the package is the construction of NN
interaction models for use in structure prediction (Section 7). We
outline our protocols for configuration space sampling and NN
training that ensure the robustness of the DFT PES mapping. In
particular, we introduce expanded stratified schemes that allow
the construction of NN models in a hierarchical fashion for an
arbitrary number of chemical elements. All stages of the iterative
NN development are handled with an automated MAISE-NET
wrapper (Section 8). The script has been used in our ongoing
effort to build a new generation of NN models (Section 9). So
far, NNs for 12 metals, 5 binary alloys, and 1 ternary alloy with
an accuracy in the 2-9 meV/atom range have been tested in
unconstrained structure searches at pressures up to 30 GPa. Sec-
tion 4 illustrates MAISE and NN performance in local structure
relaxations, MD simulations, and phonon calculations. MAISE,
MAISE-NET, and developed NN models are available for download
on Github [71,72].
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Appendix. Setup parameters for various maise features

This section lists key setup parameters for evolutionary global
structure optimization, local structure optimization, MD simu-
lations, data parsing, and NN training with MAISE as well as
key setup parameters for the automated NN model construction
with MAISE-NET. The following tables include a minimal set of
parameters, i.e., those which need to have a defined value for the
code to operate properly.

Table A.3
Setup parameters for local structure optimization.
Flag Description
JOBT Job type: structure relaxation (20)
NPAR Number of cores for parallel run
NDIM Dimensionality of the unit cell: crystal (3); cluster (0)
MITR Maximum number of cell optimization steps
RLXT Cell optimization type: force only (2); full cell (3); volume (7)
PGPA External pressure in GPa
ETOL Total energy difference for cell optimization convergence
CcouT Output options E: final (00); first/final (01); all steps (02);
EF: final (10); first/final (11); all steps (12)
MINT Minimizer type: BFGS2 (0); CG-FR (1); CG-PR (2); steepest

descent (3)
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Table A4 Table A.7
Setup parameters for MD simulations. Setup parameters for data parsing.
Flag Description Flag Description
JOBT Job type: molecular dynamics (21) JOBT Job type: data parsing (30)
MDTP MD run type: NVE (10); NVT (20); NPT (30); isobaric-isothermal NPAR Number of cores for parallel training or cell simulation
(40) TEFS Parsing for: E (0); EF (1)
NPAR Number of cores for parallel run FMRK Fraction of atoms that will be parsed to use for EF training
TMIN Starting temperature of the simulation NSPC Number of element types for dataset parsing and training
TMAX Final temperature of the simulation TSPC Atomic number of the elements specified with NSPC tag
TSTP Temperature increment during the simulation NSYM Number of the BP symmetry functions for parsing data
DELT Integration time step in fs NCMP The length of the input vector of the neural network
NSTP Number of integration steps per temperature ECUT Parse only this fraction of lowest-energy structures (from 0
CPLT Thermostat coupling constant to 1)
CPLP Barostat coupling constant EMAX Maximum energy from the lowest-energy structure that is
ICMP Isothermal compressibility in 1/GPa parsed
FMAX Will not parse data with forces larger than this value
RAND Random seed for the parsing: time (0); seed value (+); no
Table A.5 randomization (—)
Setup parameters for phonon calculations. DEPO Path to the DFT datasets to be parsed
Flag Description DATA Location of the parsed data to write the parsed data
JOBT Job type: phonon calculations (22)
DISP Size of the displacement made to each atom in A
NPAR Number of cores for parallel run Table A8 .
NDIM Dimensionality of the unit cell: crystal (3); cluster (0) Setup parameters for training of NN models.
Flag Description
Table A6 JOBT Training type: full training (40);. sFratiﬁed training (41)
Setup parameters for evolutionary search. NPAR NumberA Of_ cores for_ parallel training .
— MINT The optimizer algorithm for neural network training
Flag Description MITR Number of the optimization steps for training
JOBT Evolutionary search: run (10); soft exit (11); hard exit (12); ETOL Error tolerance for training
analysis (13) TEFS Training target value: E (0); EF (1)
NMAX Maximum number of atoms NSPC Number of element types for dataset parsing and training
MMAX Maximum number of neighbors within cutoff radius TSPC Atomic number of the elements specified with NSPC tag
NSPC Number of species types NSYM Number of the BP symmetry functions for parsing data
TSPC Species types NCMP The length of the input vector of the neural network
ASPC Atom number of each species in evolutionary searches NTRN Number of structures used for training (negative number means
CODE MAISE-INT (0); VASP-EXT (1); MAISE-EXT (2) percentage)
QUET Queue type: torque (0); slurm (1) NTST Number of structures used for testing (negative number means
NDIM Structure type: crystal (3); film (2); cluster (0) percentage)
LBOX Box size for cluster calculations (ignored for crystals) NNNN Number of hidden layers (does not include input vector and
NPOP Population size output neuron)
SITR Starting iteration NNNU Number of neurons in hidden layers
NITR Number of iterations NNGT Activation function type for the hidden layers’ neurons: linear
TINI Starting options if SITR = 0 (0); tanh (1)
TIME Max time per relaxation LREG Regularization parameter
PGPA Pressure in GPa SEED Rand seed for generating NN weights (0 for system time)
DENE Energy/atom window for selecting distinct structures DATA Location of the parsed data to read from for training
SCUT RDF difference for selecting distinct structures OTPT Directory for storing model parameters in the training process
TETR Random using TETRIS EVAL Directory for model testing data
PLNT Seeded
gi\gg ﬁ:;sdegm using blob shape Table A.9 ) .
Setup parameters for automated model construction with MAISE-NET.
MATE Crossover using two halves Flag Description
SWAP Crossover using core-shell
RUBE Rubik’s cube operation JOBT Job type: (gelljic data generation (80); evolutionary data
REFL Symmetrization via reflection generation ;
INVS Simmetrization via inversion Test run (87); pause (88); exit (89)
TSPC Atomic number of the elements
CHoP Chop to make facets QUET Queue type: torque (0); slurm (1); IBM-Isf (2)
MUTE Distortion LBOX Unit cell size: should be non-zero for BASIC data
ELPS Cluster ellipticity MAX] Maximum number of DFT jobs to be submitted at once
MCRS Crossover: mutation rate ECUT Energy cut-off for DFT (0 = VASP default)
SCRS Crossover: swapping rate PREC Precision of the DFT run (e.g., norm,acc)
LCRS Crossover: mutation strength for lattice vectors KDNS K-mesh density for DFT runs
ACRS Crossover: mutation strength for atomic positions SMER VASP ISMEAR .
SDST Distortion: swapping rate SIGM VASP Sl‘GMA (for REFS and CLST data will be set to 0.01)
LDST Distortion: mutation strength for lattice vectors LREG Regularization paran‘.leter‘
. R X ; = NNNU Number of neurons in hidden layers
ADST Distortion: mutation strength for atomic positions NNGT Activation function type for the hidden layers’ neurons: linear
SEED Starting seed for the random number generator (0 for system (0); tanh (1)
time)
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Table A.9 (continued).

Flag Description

NPAR Number of cores for parallel parsing

NSYM Number of the BP symmetry functions for parsing data

RCUT BP symmetry function cut-off radius: 6 A (0); 7.5 A (1)

FMRK Ratio of atomic forces for training

SITR Starting cycle (0 for full run)

NITR Final cycle

DATA Desired number of structures per cycle (1+)

aspc List of number of atoms/unit cell (for cycle 0)

npop List of population size for evolution runs (for cycle 0)

mitr Number of training steps (for cycle 0)

tefs Type of training at each round

ASPC List of number of atoms/unit cell (for cycles 1+)

NPOP Population size for evolution runs (for cycles 1+)

ITER Relaxation steps for NN-based search

MITR Number of training steps (for cycles 1+)

TEFS Type of training at each round (for cycles 1+)

EXTR Extended force training factor when cycle = NITR
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