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Abstract
We investigate problems in penalized M-estimation, inspired by applications in machine 
learning debugging. Data are collected from two pools, one containing data with possibly 
contaminated labels, and the other which is known to contain only cleanly labeled points. 
We first formulate a general statistical algorithm for identifying buggy points and provide 
rigorous theoretical guarantees when the data follow a linear model. We then propose 
an algorithm for tuning parameter selection of our Lasso-based algorithm with theoreti-
cal guarantees. Finally, we consider a two-person “game” played between a bug generator 
and a debugger, where the debugger can augment the contaminated data set with cleanly 
labeled versions of points in the original data pool. We develop and analyze a debugging 
strategy in terms of a Mixed Integer Linear Programming (MILP). Finally, we provide 
empirical results to verify our theoretical results and the utility of the MILP strategy.

Keywords Robust statistics · Outlier detection · Tuning parameter selection · Optimization

1 Introduction

Modern machine learning systems are extremely sensitive to training set contamina-
tion. Since sources of error and noise are unavoidable in real-world data (e.g., due to 
Mechanical Turkers, selection bias, or adversarial attacks), an urgent need has arisen 
to perform automatic debugging of large data sets. Cadamuro et al. (2016), Zhang et al. 
(2018) proposed a method called “machine learning debugging” to identify training 
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set errors by introducing new clean data. Consider the following real-world scenario: 
Company A collects movie ratings for users on a media platform, from which it learns 
relationships between features of movies and ratings in order to perform future recom-
mendations. A competing company B knows A’s learning method and hires some users 
to provide malicious ratings. Company A could employ a robust method for learning 
contaminated data—but in the long run, it would be more effective for company A to 
identify the adversarial users and prevent them from submitting additional buggy rat-
ings in the future. This distinguishes debugging from classical learning. The debug-
ging problem also assumes that company A can hire an expert to help rate movies, from 
which it obtains a second trusted data set which is generally smaller than the original 
data set due to budget limitations. In this paper, we will study a theoretical framework 
for the machine learning debugging problem in a linear regression setting, where the 
main goal is to identify bugs in the data. We will also discuss theory and algorithms for 
selecting the trusted data set.

Our first contribution is to provide a rigorous theoretical framework explaining how 
to identify errors in the “buggy” data pool. Specifically, we embed a squared loss term 
applied to the trusted data pool into the extended Lasso algorithm proposed by Nguyen and 
Tran (2013), and reformulate the objective to better service the debugging task. Borrowing 
techniques from robust statistics (Huber and Ronchetti 2011; She and Owen 2011; Nguyen 
and Tran 2013; Foygel and Mackey 2014; Slawski and Ben-David 2017) and leveraging 
results on support recovery analysis (Wainwright 2009; Meinshausen and Yu 2009), we 
provide sufficient conditions for successful debugging in linear regression. We emphasize 
that our setting, involving data coming from multiple pools, has not been studied in any of 
the earlier papers.

The work of Nguyen and Tran (2013), Foygel and Mackey (2014) [and more recently, 
Sasai and Fujisawa (2020)] provided results for the extended Lasso with a theoretically 
optimal choice of tuning parameter, which depends on the unknown noise variance in the 
linear model. Our second contribution is to discuss a rigorous procedure for tuning param-
eter selection which does not require such an assumption. Specifically, our algorithm starts 
from a sufficiently large initial tuning parameter that produces the all-zeros vector as an 
estimator. Assuming the sufficient conditions for successful support recovery are met, this 
tuning parameter selection algorithm is guaranteed to terminate with a correct choice of 
tuning parameter after a logarithmic number of steps. Note that when outliers exist in the 
training data set, it is improper to use cross-validation to select the tuning parameter due to 
possible outliers in the validation data set.

Our third contribution considers how to design a second clean data pool, which is an 
important but previously unstudied problem in machine learning debugging. We consider 
a two-player “game” between a bug generator and debugger, where the bug generator per-
forms adversarial attacks (Chakraborty et al. 2018), and the debugger applies Lasso-based 
linear regression to the augmented data set. On the theoretical side, we establish a suf-
ficient condition under which the debugger can always beat the bug generator, and show 
how to translate this condition into a debugging strategy based on mixed integer linear 
programming. Our theory is only derived in the “noiseless” setting; nonetheless, empiri-
cal simulations show that our debugging strategy also performs well in the noisy setting. 
We experimentally compare our method to two other algorithms motivated by the machine 
learning literature, which involve designing two neural networks, one to correct labels and 
one to fit cleaned data (Veit et al. 2017); and a method based on semi-supervised learning 
that weights the noisy and clean datasets differently and employs a similarity matrix based 
on the graph Laplacian (Fergus et al. 2009).
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The remainder of the paper is organized as follows: Sect. 2 introduces our novel frame-
work for machine learning debugging using weighted M-estimators. Section  3 provides 
theoretical guarantees for recovery of buggy data points. Section 4 presents our algorithm 
for tuning parameter selection and corresponding theoretical guarantees. Section  5 dis-
cusses strategies for designing the second pool. Section 6 provides experimental results. 
Section 7 concludes the paper.

Notation We write !min(A) and !max(A) to denote the minimum and maximum eigenval-
ues, respectively, of a matrix A. We use Null(A) to denote the nullspace of A. For subsets of 
row and column indices S and T, we write AS,T to denote the corresponding submatrix of A. 
We write ‖A‖max to denote the elementwise !∞-norm, ‖A‖2 to denote the spectral norm, and 
‖A‖∞ to denote the !∞-operator norm. For a vector v ∈ ℝn , we write supp(v) ⊆ {1,… , n} 
to denote the support of v, and ‖v‖∞ = max |vi| to denote the maximum absolute entry. We 
write ‖v‖p to denote the !p-norm, for p ≥ 1 . We write diag(v) to denote the n × n diago-
nal matrix with entries equal to the components of v. For S ⊆ {1,… , n} , we write vS to 
denote the |S|-dimensional vector obtained by restricting v to S. We write [n] as shorthand 
for {1,… , n}.

2  Problem formulation

We first formalize the data-generating models analyzed in this paper. Suppose we have 
observation pairs {(xi, yi)}ni=1 from the contaminated linear model

where !∗ ∈ ℝp is the unknown regression vector, !∗ ∈ ℝn represents possible contamina-
tion in the labels, and the !i ’s are i.i.d. sub-Gaussian noise variables with variance param-
eter !2 . We also assume the xi ’s are i.i.d. and xi ⟂⟂ !i . This constitutes the “first pool.” Note 
that the vector !∗ is unknown and may be generated by some adversary. If !∗

i
= 0 , the i th 

point is uncontaminated and follows the usual linear model; if !∗
i
≠ 0 , the i th point is con-

taminated/buggy. Let T ∶= supp(!∗) denote the indices of the buggy points, and let t ∶= |T| 
denote the number of bugs.

We also assume we have a clean data set which we call the “second pool.” We observe 
{(̃xi, ỹi)}

m
i=1

 satisfying

where the "̃i ’s are i.i.d. sub-Gaussian noise variables with parameter "̃2 . Let L ∶= !

!̃
 , and 

suppose L ≥ 1 . Unlike the first pool, the data points in the second pool are all known to be 
uncontaminated.

For notational convenience, we also use X ∈ ℝn×p , y ∈ ℝn , and ! ∈ ℝm to denote the 
matrix/vectors containing the xi’s, yi’s, and !i’s, respectively. Similarly, we define the matri-
ces X̃ ∈ ℝm×p, ỹ ∈ ℝm , and "̃ ∈ ℝm . Note that !∗, "∗, T , t , and the noise parameters ! and 
"̃ are all assumed to be unknown to the debugger. In this paper, we will work in settings 
where X⊤X is invertible.

Goal: Upon observing {(xi, yi)}ni=1 , the debugger is allowed to design m points X̃ in a 
stochastic or deterministic manner and query their corresponding labels ỹ , with the goal of 
recovering the support of !∗ . We have the following definitions:

(1)yi = x⊤
i
"∗ + #∗

i
+ $i, 1 ≤ i ≤ n,

(2)ỹi = x̃⊤
i
#∗ + $̃i, 1 ≤ i ≤ m,
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Definition 1 An estimator "̂  satisfies subset support recovery if supp("̂) ⊆ supp("∗) . It 
satisfies exact support recovery if supp("̂) = supp("∗).

In words, when "̂  satisfies subset support recovery, all estimated bugs are true bugs. 
When "̂  satisfies exact support recovery, the debugger correctly flags all bugs. We are 
primarily interested in exact support recovery.

Weighted M-estimation Algorithm: We propose to optimize the joint objective

where the weight parameter ! > 0 determines the relative importance of the two data pools. 
The objective function applies the usual squared loss to the points in the second pool and 
introduces the additional variable ! to help identify bugs in the first pool. Furthermore, the 
!1-penalty encourages "̂  to be sparse, since we are working in settings where the number 
of outliers is relatively small compared to the total number of data points. Note that the 
objective function (3) may equivalently be formulated as a weighted sum of M-estimators 
applied to the first and second pools, where the loss for the first pool is the robust Huber 
loss and the loss for the second pool is the squared loss (cf. Proposition 4 in Appendix A).

Lasso Reformulation: Recall that our main goal is to estimate (the support of) !∗ 
rather than !∗ . Thus, we will restrict our attention to !∗ by reformulating the objectives 
appropriately. We first introduce some notation: Define the stacked vectors/matrices

where X′ ∈ ℝ(m+n)×p and y′, !′ ∈ ℝm+n . For a matrix A, let PA = A(A⊤A)−1A⊤ and 
P⟂

A
= I − A(A⊤A)−1A⊤ denote projection matrices onto the range of the column space of 

A and its orthogonal complement, respectively. For a matrix S ⊆ [n] , let MS denote the 
(n + m) × |S| matrix with ith column equal to the canonical vector eS(i) . Thus, right-multi-
plying by MS truncates a matrix to only include columns indexed by S. We have the follow-
ing useful result:

Proposition 1 The objective function

shares the same solution for "̂  with the objective function (3).

Proposition 1, proved in Appendix B, translates the joint optimization problem (3) 
into an optimization problem only involving the parameter of interest ! . We provide 
a discussion regarding the corresponding solution "̂  in Appendix A for the interested 
reader. Note that the optimization problem (5) corresponds to linear regression of the 
vector/matrix pairs (P⟂

X′y
′,P⟂

X′M[n]) with a Lasso penalty, inspiring us to borrow tech-
niques from high-dimensional statistics.

(3)("̂, #̂) ∈ arg min
"∈ℝp ,#∈ℝn

{
1

2n
‖y − X" − #‖2

2
+

$
2m

‖ỹ − X̃"‖2
2
+ &‖#‖1

}
,

(4)X′ =

(
X√
!n

m
X̃

)
, y′ =

(
y√
!n

m
ỹ

)
, #′ =

(
#√
!n

m
#̃

)
,

(5)"̂ ∈ arg min
"∈ℝn

{
1

2n
‖P⟂

X′y
′ − P⟂

X′M[n]"‖22 + #‖"‖1
}
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3  Support recovery

The reformulation  (5) allows us to analyze the machine learning debugging frame-
work through the lens of Lasso support recovery. The three key conditions we impose 
to ensure support recovery are provided below. Recall that we use MT to represent the 
truncation matrix indexed by T.

Assumption 1 (Minimum Eigenvalue) Assume that there is a positive number b′
min

 such 
that

Assumption 2 [Mutual Incoherence] Assume that there is a number !′ ∈ [0, 1) such that

Assumption 3 (Gamma-Min) Assume that

Assumption  1 comes from a primal-dual witness argument (Wainwright 2009) to 
guarantee that the minimizer "̂  is unique. Assumption 2 measures a relationship between 
the sets Tc and T, indicating that the large number of nonbuggy covariates (i.e., Tc ) can-
not exert an overly strong effect on the subset of buggy covariates (Ravikumar et  al. 
2010). To aid intuition, consider an orthogonal design, where X =

[
cI[t],[p]
c′Ip×p

]
 and 

X̃ = c′′Ip×p , for some t < p , and c, c′, c′′ > 0 . We use the notation I[t],[p] to denote a sub-
matrix of Ip×p with rows indexed by the set [t]. Suppose the first t points are bugs, and 
for simplicity, let ! = m∕n . Then the mutual incoherence condition requires 
c < c′ + (c′′)2

c′
 , meaning that in every direction ei , the component of buggy data cannot be 

too large compared to the nonbuggy data and the clean data. Assumption  3 lower-
bounds the minimum absolute value of elements of ! . Note that ! is chosen based on !′ , 
so the right-hand expression is a function of !′ . This assumption indeed captures the 
intuition that the signal-to-noise ratio, mini∈T |!∗i |

"
 , needs to be sufficiently large.

We now provide two general theorems regarding subset support recovery and exact 
support recovery.

Theorem  1 (Subset support recovery) Suppose P⟂

X′ satisfies Assumptions  1 and  2. If the 
tuning parameter satisfies

then the objective (5) has a unique optimal solution "̂  , satisfying supp("̂) ⊆ supp("∗) and 
‖‖"̂ − "∗‖‖∞ ≤ G′.

Theorem 2 (Exact support recovery) In addition to the assumptions in Theorem 1, suppose 
Assumption 3 holds. Then we have a unique optimal solution "̂  , which satisfies exact sup-
port recovery.

(6)!min

(
M⊤

T
P⟂

X′MT

)
≥ b′

min
.

(7)‖M⊤
TcP

⟂

X′MT (M
⊤
T
P⟂

X′MT )
−1‖∞ ≤ "′.

(8)min
i∈T

|!∗
i
| > G′ ∶= ‖(M⊤

T
P⟂

X′MT )
−1M⊤

T
P⟂

X′#
′‖∞ + n$‖‖‖(M

⊤
T
P⟂

X′MT )
−1‖‖‖∞.

(9)! ≥
2

1 − "′

‖‖‖MTcP⟂

X′

(
I − P⟂

X′MT (M
⊤
T
P⟂

X′MT )
−1M⊤

T
P⟂

X′

)$′
n

‖‖‖∞,
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Note that we additionally need Assumption 3 to guarantee exact support recovery. This 
follows the aforementioned intuition regarding the assumption. In particular, recall that ! 
and "̃  are sub-Gaussian vectors with parameters !2 and !2∕L , respectively, where L ≥ 1 
(i.e., the clean data pool has smaller noise). The minimum signal strength mini∈T |!∗i | needs 
to be at least !("

√
log n) , since !

[
maxi∈[n] |!i|

]
≤ "

√
2 log(2n) . Intuitively, if mini∈T |!∗i | 

is of constant order, it is difficult for the debugger to distinguish between random noise and 
intentional contamination.

We now present two special cases to illustrate the theoretical benefits of including a 
second data pool. Although Theorems 1 and 2 are stated in terms of deterministic design 
matrices and error vectors ! and "̃  , the assumptions can be shown to hold with high prob-
ability in the example. We provide formal statements of the associated results in Appen-
dix C.2 and Appendix C.3.

Example 1 (Orthogonal design) Suppose Q is an orthogonal matrix with columns 
q1, q2,… , qp , and consider the setting where XT = RQ⊤ ∈ ℝt×p and XTc = FQ⊤ ∈ ℝp×p , 
where R =

[
diag({ri}

t
i=1

) ∣ 0t×(p−t)
]
 and F = diag({fi}

p

i=1
) . Thus, points in the contaminated 

first pool correspond to orthogonal vectors. Similarly, suppose the second pool consists of 
(rescaled) columns of Q, so X̃ = WQ⊤ ∈ ℝm×p , where W = diag({wi}

p

i=1
) . (To visualize 

this setting, one can consider Q = I as a special case.) The mutual incoherence parameter is 
!′ = max1≤i≤t

||||
rifi

f 2
i
+" n

m
w2
i

|||| . Hence, !′ < 1 if the weight of a contaminated point dominates the 
weight of a clean point in any direction, e.g., when |ri| > |fi| and wi = 0 ; in contrast, if the 
second pool includes clean points wiqi with sufficiently large |wi| , we can guarantee that 
!′ < 1 . Furthermore,

for some constant C. It is not hard to verify that G′ decreases by adding a second pool. Fur-
ther note that the behavior of the non-buggy subspace, span{qt+1,… , qp} , is not involved 
in any conditions or conclusions. Thus, our key observation is that the theoretical results 
for support recovery consistency only rely on the addition of second-pool points in buggy 
directions.

Example 2 (Random design) Consider a random design setting where the rows of X and X̃ 
are drawn from a common sub-Gaussian distribution with covariance ! . The conditions in 
Assumptions 1–3 are relaxed in the presence of a second data pool when n and m are large 
compared to p: First, b′

min
 increases by adding a second pool. Second, !′ ≈

‖XTc"
−1XT‖∞

n−t+#n
 , so 

the mutual incoherence parameter also decreases by adding a second pool. Third,

where XT and XTc represent the submatrices of X with rows indexed by T and Tc , respec-
tively. Note that the one-pool case corresponds to ! = 0 and 

G′ ≈!
(√

2 log t + c
)
√√√√1 +max

1≤i≤t

r2
i
(Lf 2

i
+ "n

m
w2
i
)

L(f 2
i
+ "n

m
w2
i
)2

+
2!

1 − #′

(√
log 2(n − t) + C

)(
1 +max

1≤i≤t

r2
i

f 2
i
+ "n

m
w2
i

)

G′ ≈
2!

√
log t

b′
min

+
2!

1 − "′
max

{
1,

√
#n
mL

}‖‖‖‖‖
(It×t −

XT$
−1X⊤

T

n + #n
)−1

‖‖‖‖‖∞
,
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‖‖‖‖(It×t −
XT!

−1X⊤
T

n+#n
)−1

‖‖‖‖∞
<
‖‖‖‖(It×t −

XT!
−1X⊤

T

n
)−1

‖‖‖‖∞
 , so if we choose ! ≤

mL

n
 , then G′ decreases 

by adding a second pool. Therefore, all three assumptions are relaxed by having a second 
pool, making it easier to achieve exact support recovery.

We also briefly discuss the three assumptions with respect to the weight parameter ! : 
Increasing ! always relaxes the eigenvalue and mutual incoherence conditions, so placing 
more weight on the second pool generally helps with subset support recovery. However, the 
same trend does not necessarily hold for exact recovery. This is because a larger value of ! 
causes the lower bound  (9) on ! to increase, resulting in a stricter gamma-min condition. 
Therefore, there is a tradeoff for selecting !.

4  Tuning parameter selection

A drawback of the results in the previous section is that the proper choice of tuning parameter 
depends on a lower bound (9) which cannot be calculated without knowledge of the unknown 
parameters (T , !′, "′) . The tuning parameter ! determines how many outliers a debugger 
detects; if ! is large, then "̂  contains more zeros and the algorithm detects fewer bugs. A natu-
ral question arises: In settings where the conditions for exact support recovery hold, can we 
select a data-dependent tuning parameter that correctly identifies all bugs? In this section, we 
propose an algorithm which answers this question in the affirmative.

4.1  Algorithm and theoretical guarantees

Our tuning parameter selection algorithm is summarized in Algorithm  1, which searches 
through a range of parameter values for ! , starting from a large value !u and then halving the 
parameter on each successive step until a stopping criterion is met. The intuition is as follows: 
First, let !∗ be the right-hand expression of inequality  (9). Suppose that for any value in 
I = [!∗, 2!∗] , support recovery holds. Then given !u > !∗ , the geometric series 
! =

{
"u,

"u
2
,
"u
4
,…

}
 must contain at least one correct parameter for exact support recovery 

since ! ∩ I ≠ ∅ , guaranteeing that the algorithm stops. As for the stopping criterion, let XS 
denote the submatrix of X with rows indexed by S for Tc ⊆ S ⊆ [n] . We have 
P⟂

XS

|S|→∞
⟶

(
1 − p

|S|)

)
I under some mild assumptions on X, in which case 

P⟂

XS
yS →

(
1 − p

|S|

)
(!∗

S
+ "S) . When ! is large and the conditions hold for subset support 

recovery but not exact recovery, we have S ∩ T ≠ ∅ , so

In contrast, when S = Tc , we have

When min |!∗
T
| is large enough, the task then reduces to choosing a proper threshold to dis-

tinguish the error |!Tc | from the bug signal |!∗
T
| , which occurs when the threshold is chosen 

between maxi |!i| and mini∈T |!∗i | −maxi |"i| . 

min |P⟂

XS
yS| ≥

(
1 −

p

|S|
)(

min |!∗
T
| −max

i∈[n]
|"i|

)
.

min |P⟂

XS
yS| ≤

(
1 −

p

|S|
)
max
i∈[n]

|!i|.
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With the above intuition, we now state our main result concerning exact recovery 
guarantees for our algorithm. Recall that the !i ’s are sub-Gaussian with parameter !2.

Let ct ∶= t

n
< 1

2
 denote the fraction of outliers. We assume knowledge of a constant 

c̄ that satisfies ct + ℙ[|!i| ≤ c̄#] < 1

2
 . Note that a priori knowledge of c̄ is a less strin-

gent assumption than knowing ! , since we can always choose c̄ to be close to zero. For 
instance, if we know the !i ’s are Gaussian, we can choose c̄ < erf−1( 1

2
− ct) ; in practice, 

we can usually estimate ct to be less than 1
3
 , so we can take c̄ = erf−1( 1

6
) . As shown 

later, the tradeoff is that having a larger value of c̄ provides the desired guarantees under 
weaker requirements on the lower bound of mini∈T |!∗i | . Hence, if we know more about 
the shape of the error distribution, we can be guaranteed to detect bugs of smaller mag-
nitudes. We will make the following assumption on the design matrix:

Assumption 4 There exists a p × p positive definite matrix ! , with bounded minimum and 
maximum eigenvalues, such that for all X(k) appearing in the while loop of Algorithm 1, we 
have

where l(k) is the number of rows of the matrix X(k) and c is a universal constant.

This assumption is a type of concentration result, which we will show holds w.h.p. in 
some random design settings in the following proposition:

Proposition 2 Suppose the xi’s are i.i.d. and satisfy any of the following additional 
conditions:

(a)  the xi’s are Gaussian and the spectral norm of the covariance matrix is bounded;

(10)

‖‖‖‖
X(k)!−1X(k)⊤

p
− I

‖‖‖‖max

≤ cmax

⎧
⎪
⎨
⎪⎩

√
log l(k)

p
,
log l(k)

p

⎫
⎪
⎬
⎪⎭
,

‖‖‖‖
X(k)⊤X(k)

l(k)
− !

‖‖‖‖2
≤

#min(!)

2
,
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(b)  the xi’s are sub-Gaussian with mean zero and independent coordinates, and the spec-
tral norm of the covariance matrix is bounded; or

(c)  the xi’s satisfy the convex concentration property.

 Then Assumption 4 holds with probability at least 1 − O(n−1).
The ! matrix can be chosen as the covariance of X. In fact, Assumption 4 shows that 

P⟂

X(k) is approximately a scalar matrix. We now introduce some additional notation: For 
! > 0 , define c! and C! such that ! = ℙ[|"i| ≤ c!#] and ! = ℙ[|"i| ≥ C!#] . We write G′(!) 
to denote the function of ! in the right-hand expression of inequality (8). Proofs of the 
theoretical results in this section are provided in Appendix D.

Theorem 3 Assume ! is a constant satisfying ! + ct <
1

2
 . Suppose Assumption 4, the mini-

mum eigenvalue condition, and the mutual incoherence condition hold. If

where C is an absolute constant, and

for some cn ∈ (0, 1
2
) , then Algorithm 1 with inputs c̄ < c" and !u ≥ !∗ will return a feasible 

"̂  in at most log2
(

!u
!∗

)
 iterations such that the Lasso estimator "̂  based on "̂  satisfies 

supp("̂) = supp("∗) , with probability at least

Theorem 3 guarantees exact support recovery for the output of Algorithm 1 without 
knowing ! . Note that compared to the gamma-min condition  (8) with ! = !∗ , the 
required lower bound (12) only differs by a constant factor. In fact, the constant 2 inside 
G′(2!∗) can be replaced by any constant c > 1 , but Algorithm  1 will then update 
"̂k = "̂k−1∕c and require logc

(
!u
!∗

)
 iterations. Further note that larger values of ct trans-

late into a larger sample size requirement, as n = !
(

1

1−ct

)
 for cn being close to 0. A lim-

itation of the theorem is the upper bound on ‖!∗‖∞ , where t needs to be smaller than n 
in a nonlinear relationship. Also, n is required to be !(p2) . These two conditions are 
imposed in our analysis in order to guarantee that P⟂

XS
yS →

(
1 − p

|S|

)
(!∗

S
+ "S) . We now 

present a result indicating a practical choice of !u:

(11)n ≥ max

{[
24

c!

] 1

cn

,

[
C log 2n

1 − ct
(p2 + log2 n)

] 1

1−2cn

}
,

(12)
min
i∈T

|!∗
i
| > max

{
G′(2"∗), 4

√
log(2n)#,

5

4

√
log(2n)

c$ + 5C$

c̄
#

}
,

‖!∗‖∞ ≤

√
Cc$

16
√
2

√
1 − ct

√
log 2n

n1∕2+cn

t
#,

1 −
3 log2

(
!u
!∗

)

n − t
− 2 log2

(
!u
!∗

)
exp

(
−2

(
1

2
− ct − "

)2

n

)
.
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Corollary 1 Define

Suppose Assumption  4, the minimum eigenvalue condition, and the mutual incoherence 
condition hold. Also assume conditions (11) and (12) hold when replacing !∗ by !(") . Tak-
ing the input !u =

2‖M[n]P
⟂

X′
y′‖∞

n
 , Algorithm 1 outputs a parameter "̂  in O(log n) iterations 

which provides exact support recovery, with probability at least

Note that !u can be calculated using the observed data set. Further note that the algo-
rithm is guaranteed to stop after O(log n) iterations, meaning it is sufficient to test a rela-
tively small number of candidate parameters in order to achieve exact recovery.

5  Strategy for second pool design

We now turn to the problem of designing a clean data pool. In the preceding sections, we 
have discussed how a second data pool can aid exact recovery under sub-Gaussian designs. 
In practice, however, it is often unreasonable to assume that new points can be drawn from 
an entirely different distribution. Specifically, recall the movie rating example discussed in 
Sect. 1: The expert can only rate movies in the movie pool, say {xi}ni=1 , whereas an arbitrar-
ily designed x̃ , e.g., x̃ = x1∕2 , is unlikely to correspond to an existing movie. Thus, we will 
focus on devising a debugging strategy where the debugger is allowed to choose points for 
the second pool which have the same covariates as points in the first pool.

In particular, we consider this problem in the “worst” case: suppose a bug generator can 
generate any !∗ ∈ Γ ∶= {! ∈ ℝn ∶ supp(!)| ≤ t} and add it to the correct labels X!∗ . We 
will also suppose the bug generator knows the debugger’s strategy. The debugger attempts 
to add a second data pool which will ensure that all bugs are detected regardless of the 
choice of !∗ . Our theory is limited to the noiseless case, where y = X!∗ + "∗ and ỹ = X̃"∗ ; 
the noisy case is studied empirically in Sect. 6.3.3.

5.1  Preliminary analysis

We denote the debugger’s choice by x̃i = X⊤e#(i) , for i ∈ [m] , where e!(i) ∈ ℝn is a canoni-
cal vector and ! ∶ [m] → [n] is injective. In matrix form, we write X̃ = XD , where D ⊆ [n] 
represents the indices selected by the debugger. Assume m < p , so the debugger cannot 
simply use the clean pool to obtain a good estimate of ! . In the noiseless case, we can write 
the debugging algorithm as follows:

!(") ∶=
8max{1,

√
#n

Lm
}

1 − $′

√
log 2(n − t)

‖P⟂

X,Tc‖2
n

⋅ c".

1 −
4
(
c′ log2 n +max

{
0, 1

2
log2

!n

mL

})

n − t

− 2
(
c′ log2 n +

1

2
max

{
0, log2

!n

mL

})
e
−2

(
1

2
−ct−"

)2

n
.

(13)
min

!∈ℝp ,"∈ℝn
‖"‖1

subject to y = X! + " , ỹ = X̃!.
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Similar to Proposition 1, given a ! , we can pick ! to satisfy the constraints, specifically 
! =

(
X⊤X + X̃⊤X̃

)−1(
X⊤(y − $) + X̃⊤ỹ

)
 . Eliminating ! , we obtain the optimization 

problem

Before presenting our results for support recovery, we introduce some definitions. Define 
the cone set ℂ(K) for some subset K ⊆ [n] and |K| = t:

Further let ℂA = ∪K⊆[n],|K|=tℂ(K) , and define

Theorem 4 Suppose

Then a debugger who queries the points indexed by D cannot be beaten by any bug genera-
tor who introduces at most t bugs.

Theorem 4 suggests that Eq. (16) is a sufficient condition for support recovery for an 
omnipotent bug generator who knows the subset D. As a debugger, the consequent goal 
is to find such a subset D which makes Eq. (16) true. Whether such a D exists and how 
to find it will be discussed in Sect. 5.2.

Remark 1 When m = n , we can verify that Null(P̄(D)) = {!} , which implies that Eq. (16) 
always holds. Indeed, in this case, we can simply take X̃ = X and solve for !∗ explicitly to 
recover !∗.

Remark 2 As stated in Theorem  4, Eq.  (16) is a sufficient condition for support recov-
ery. In fact, it is an if-and-only-if condition for signed support recovery: When Eq.  (16) 
holds, sign ("̂) = sign ("∗) ; and when it does not hold, the bug generator can find a !∗ with 
supp(!∗) ≤ t such that sign ("̂) ≠ sign ("∗).

Remark 3 We can also write Null(P̄(D)) as

Let "̂ = "∗ + v for some vector v ∈ ℝp . From the constraint-based algorithm, we obtain

(14)
min
!∈ℝn

&‖!‖1

subject to

[
y

ỹ

]
=

[
X

X̃

] (
X⊤X + X̃⊤X̃

)−1(
X⊤(y − !) + X̃⊤ỹ

)
+

[
!
!

]
.

(15)ℂ(K) ∶=
{
! ∈ ℝ

n ∶ ‖!Kc‖1 ≤ ‖!K‖1
}
.

P̄(D) =

[
I − X

(
X⊤X + X⊤

D
XD

)−1
X⊤

XD

(
X⊤X + X⊤

D
XD

)−1
X⊤

]
.

(16)Null(P̄(D)) ∩ ℂ
A = {!}.

{u ∈ ℝ
n ∣ ∃v ∈ ℝ

p, s.t. u = Xv,XDv = 0}.

yT = XT (!
∗ + v) + #̂T ,

yTc = XTc (!∗ + v) + #̂Tc , yD = XD(!
∗ + v),
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which implies that "̂T = "∗
T
− XTv and "̂Tc = −XTcv, XDv = 0 . Let u = Xv . Then we obtain 

"̂ = "∗ − u . As can be seen, Eq. (16) requires that u = ! , which essentially implies "̂ = "∗ , 
and thus supp("̂) = supp("∗).

5.2  Optimal debugger via MILP

The above analysis is also useful in practice for providing a method for designing X̃ . 
Consider the following optimization problem: 

By Theorem 4 and Remark 3, we immediately conclude that if the problem (17) has 
the unique solution (u, v) = (!, !) , then a debugger who queries the points indexed by D 
cannot be beaten by a bug generator who introduces at most t bugs.

Based on this argument, we can construct a bilevel optimization problem for the 
debugger to solve by further minimizing the objective  (17a) with respect to D ⊆ [n] 
such that |D| ≤ m . The optimization problem can then be transformed into a minimax 
MILP:

Theorem 5 (MILP for debugging) If the optimization problem (18) has the unique solution 
(u, v) = (!, !) , then the debugger can add m points indexed by D = supp(!) to achieve sup-
port recovery.

Remark 4 For more information on efficient algorithms for optimizing minimax MILPs, 
we refer the reader to the references Tang et al. (2016), Xu and Wang (2014), Zeng and An 
(2014).

(17a)max
K⊆[n],|K|≤t,u∈ℝn,v∈ℝd

‖uK‖1 − ‖uKc‖1,

(17b)subject to u = Xv,XDv = 0, ‖u‖∞ ≤ 1.

(18)

min
!∈{0,1}n

max
a, a+, a− ∈ ℝn,

u, u+, u− ∈ ℝn, v ∈ ℝd,
z,w ∈ {0, 1}n

n∑
j=1

a+
j
− a−

j
,

subject to
{
u = Xv, u = u+ − u−, u+, u− ≥ 0,

a = u+ + u−, u+ ≤ z, u− ≤ ("n − z),
n∑
i=1

wi ≤ t, a+ ≤ Mw, a− ≤ M("n − w),

a = a+ + a−, a+ ≥ 0, a− ≥ 0,
n∑
i=1

!i ≤ m, u ≤ ("n − !), u ≥ −("n − !).
}



Machine Learning 

1 3

6  Experiments

In this section, we empirically validate our Lasso-based debugging method for support 
recovery. The section is organized as follows:

• Section  6.1, corresponding to Sect.  3, contains a number of experiments which 
investigate the performance of our proposed debugging formulation.

• Section 6.2, corresponding to Sect. 4, studies the proposed tuning parameter selec-
tion procedure.

• Section  6.3 studies the Lasso-based debugging method with a clean data pool, 
including the proposed MILP algorithm from Sect. 5.

We also compare our proposed method to alternative methods motivated by existing 
literature.

We begin with an outline of the experimental settings used in most of our 
experiments: 

S1 Generate the feature design matrix X ∈ ℝn×p by sampling each row i.i.d. from N(!p, Ip×p)
.

S2 Generate !∗ ∈ ℝp , where each entry !∗
i
 is drawn i.i.d. from Unif (−1, 1).

S3 Generate ! ∈ ℝn , where each entry !i is drawn i.i.d. from N(0, !2).
S4 G e n e r a t e  t h e  b u g  v e c t o r  !∗ ∈ ℝn  ,  w h e r e  w e  d r a w 

!∗
i
= (10

√
log(2n)" + Unif (0, 10)) ⋅ Bernoulli(±1, 0.5) for i ∈ [t] and take !∗

i
= 0 for 

the remaining positions.
S5 Generate the labels by y = X!∗ + " + #∗.

These five steps produce a synthetic dataset (X, y); we will specify the particular param-
eters (n, p, t, !) in each task. If we use a real dataset, the first step changes to [S1’]: 

S1’ Given the whole data pool Xreal , uniformly sample n data points from it to construct X.

In the plot legends, we will refer to our Lasso-based debugging method as “debugging.” 
We may also invoke a postprocessing step on top of debugging, called “debugging + post-
process,” which first runs the Lasso optimization algorithm to obtain "̂  and an estimated 
support set T̂  , then removes the points (XT̂ ,⋅, yT̂ ) and runs ordinary least squares on the 
remaining points to obtain "̂ .

6.1  Support recovery

In this section, we design two experiments. The first experiment investigates the influence 
of the fraction of bugs ct ∶= t

n
 on the three assumptions imposed in our theory and the 

resulting recovery rates. We will vary the design of X using different datasets. The second 
experiment compares debugging with four alternative regression methods, using the pre-
cision-recall metric. Note that we will take the tuning parameter ! = 2

√
log 2(n−t)

n
 for these 

experiments, since the other outlier detection methods we use for comparison do not pro-
pose a way to perform parameter tuning. We will explore the performance of the proposed 
algorithm for parameter selection in the next subsection.
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Fig. 1  Five Measurements on Four Datasets. Three different n’s are of values 5p, 20p , and 100p. The vari-
ance ! is set to 0.1. The tuning parameter is set to ! = 2

√
log 2(n−t)

n
 . Each dot is an average value of 20 ran-

dom trials
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Fig. 1  (continued)
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6.1.1  Number of bugs versus different measurements

Our first experiment involves four different datasets with different values of n and ct . We 
track the performance of the three assumptions (Assumptions  1–3) and the subset/exact 
recovery rates, which measure the fraction of experiments which result in subset/exact recov-
ery. The first dataset is generated using the synthetic mechanism described at the beginning 
of Sect. 6, with p = 15 . The other three datasets are chosen from the UCI Machine Learning 
Repository: Combined Cycle Power Plant,1 temperature forecast,2 and YearPredictionMSD.3 
They are all associated to regression tasks, with varying feature dimensions (4, 21, and 90, 
respectively). In the temperature forecast dataset, we remove the attribute of station and date 
from the original dataset, since they are discrete objects. For each of the UCI datasets, after 
randomly picking n data points from the entire data pool, we normalize the subsampled data-
set according to X⋅,j =

X⋅,j−
1

n

∑
i∈[n] Xi,j

std[X⋅,j]
 , where std represents the standard deviation.

The results are displayed in Fig. 1. For the minimum eigenvalue assumption, a key observa-
tion from all datasets is that the minimum eigenvalue becomes larger (improves) as n increases, 
and becomes smaller as ct increases. For the mutual incoherence assumption, the synthetic 
dataset satisfies the condition with less than 15% outliers. The Combined Cycle Power Plant 
dataset has mutual incoherence close to 1 when ct is approximately 20%-25%, and the mutual 
incoherence condition of the YearPredictionMSD dataset approaches 1 when ct is approxi-
mately 5%. Therefore, we see that the validity of the assumption highly depends on the design 
of X. For the gamma-min condition, as ct increases, we need more obvious (larger mini |!∗i | ) 
outliers. Finally, with larger n and smaller ct , the subset/exact recovery rate improves.

6.1.2  Effectiveness for recovery

The second experiment compares our debugging method to other proposed methods in 
the robust statistics literature. We compare our method with the Fast LTS (Rousseeuw and 
Van Driessen 2006), E-lasso (Nguyen and Tran 2013), Simplified !-IPOD (She and Owen 
2011), and Least Squares methods. E-lasso is similar to our formulation, except it includes 
an additional penalty with ! . The Simplified !-IPOD method iteratively uses hard thresh-
olding to eliminate the influence of outliers. For the experimental setup, we generate syn-
thetic data with n = 2000, t = 200, p = 15 , and ! = 0.1 , but replace step [S4] by one of the 
following mechanisms for generating !∗ : 

1. We generate !∗
i
, i ∈ T  by Bernoulli(±1, 0.5) ⋅ (10

√
log(2n)! + Unif (0, 10)).

2. We generate !′ elementwise from Unif (−10, 10) and take !∗
i
= x⊤

i
(#′ − #∗), i ∈ T .

The first adversary is random, whereas the second adversary aims to attack the data by 
inducing the learner to fit another hyperplane. The precision/recall for Fast LTS and Least 
Squares are calculated by running the method once and applying various thresholds to clip 
"̂  . For the other three methods, we apply different tuning parameters, compute precision/
recall for each result, and finally combine them to plot a macro precision-recall curve.

In the left panel of Fig. 2, Least Squares and Fast LTS reach perfect AUC, while the 
other three methods have slightly lower scores. In the right panel of Fig.  2, we see that 
1 http:// archi ve. ics. uci. edu/ ml/ datas ets/ Combi ned+ Cycle+ Power+ Plant.
2 http:// archi ve. ics. uci. edu/ ml/ datas ets/ Bias+ corre ction+ of+ numer ical+ predi ction+ model+ tempe rature+ 
forec ast.
3 http:// archi ve. ics. uci. edu/ ml/ datas ets/ YearP redic tionM SD.

http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
http://archive.ics.uci.edu/ml/datasets/Bias+correction+of+numerical+prediction+model+temperature+forecast
http://archive.ics.uci.edu/ml/datasets/Bias+correction+of+numerical+prediction+model+temperature+forecast
http://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
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debugging, E-lasso, and Fast LTS perform comparably well, and slightly better than Sim-
plified !-IPOD. Not surprisingly, Least Squares performs somewhat worse, since it is not a 
robust procedure.

6.2  Tuning parameter selection

We now present two experimental designs for tuning parameter selection. The first experi-
ment runs Algorithm  1 for both one- and two-pool cases. We will present the recovery 
rates for a range of n’s and ct’s, showing the effectiveness of our algorithm in a variety of 
situations. The second experiment compares Algorithm 1 in one- and two-pool cases to 
cross-validation, which is a popular alternative for parameter tuning. Our results indicate 
that Algorithm 1 outperforms cross-validation in terms of support recovery performance.

We begin by describing the method used to generate the second data pool. Given the 
first data pool (X, y) and the ground-truth parameters (!∗, ") , we describe two pipelines to 
generate the second pool. The first pipeline checks m random points of the first pool, with 
steps [T1-T3]: 

T1 Select m points uniformly at random from the first pool to construct X̃ for the second 
pool.

T2 Generate "̃ ∈ ℝm , where each entry "̃i is drawn i.i.d. from N(0, !2∕L).
T3 Generate the labels by ỹ = X̃"∗ + #̃ .

When the debugger is able to query features of clean points from a distribution PX , we can 
use a second pipeline, where [T1] is replaced by [T1’]: 

T1’ Independently draw m points from PX to construct X̃.

6.2.1  Verification of Algorithm 1

We use the default procedure for generating the synthetic dataset, with parameters p = 15 , 
! = 0.1 , and t = ctn , where ct ranges from 0.05 to 0.4 in increments of 0.05. In all cases, we 
input c̄ = 0.2 and !u =

2‖P⟂

X
y‖∞

n
 in Algorithm 1.

Fig. 2  Precision Recall Curves over Different Regression Methods. The two plots correspond to the two 
settings described in the text for generating !∗ . To better view the curves, we only show the dots for every c 
positions, where c is an interger and different for different methods
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Figure  3 displays the results for n ∈ {1, 2, 3, 4, 5, 10, 20, 30} ⋅ 103 . First, we see that 
Algorithm 1 achieves exact support recovery in all 20 trials in the yellow area. Second, the 
exact recovery rate increases with increasing n and decreasing ct , showing that the algo-
rithm is particularly useful for large-scale data sets. This trend can also be seen from the 
requirement on n imposed in Theorem 3. In particular, we see that the contour curve for the 
exact recovery rate matches the curve of 

(
1 − ct

)− 1

1−2cn for some constant cn ∈ (0, 1
2
) . How-

ever, a downside of Algorithm 1 is that it does not fully take advantage of the second pool 
in the two-pool case, as the left panel and the right panel display similar results.

6.2.2  Effectiveness of tuning parameter selection

We now compare our method for tuning parameter selection to cross-validation. We also 
use the postprocessing step described at the beginning of the section. Four measurements 
are presented, including two recovery rates, the !2-error of "̂  , and the runtime. In both the 
one- and two-pool cases, we use our default methods for generating synthetic data, and we 
set c̄ = 0.2 for all the experiments.

The cross-validation method for the one-pool case splits the dataset into train-
ing and testing datasets with the ratio of 8:2, then selects ! with the smallest test error, 
‖Xtest"̂ − ytest‖2 . The procedure for the two-pool case is to run the Lasso-based debugging 
method with a list of candidate ! ’s and test it on the second pool. Finally, we select the 
! value with the smallest test error, ‖X̃#̂ − ỹ‖2 . We use 15 candidate values for ! , spaced 
evenly on a log scale between 10−6 and !u =

2‖P⟂

X
y‖∞

n
.

Figure 4 compares the results in the one-pool case. We note that cross-validation does 
not perform very well for all the measurements except ‖"̂ − "∗‖2 . Specifically, it does not 
work at all for subset support recovery, since cross-validation tends to choose very small 
! values. For the !2-error, we see that for small values of ct , our algorithm can select a 
suitable choice of ! , so that after removing outliers, we can fit the remaining points very 
well. This is why the debugging + postprecessing methods gives the lowest error. As ct 
increases, our debugging method shows poorer performance in terms of support recov-
ery, resulting in larger !2-error for "̂  . Although cross-validation seems to perform well, 
carefully designed adversaries may still destroy the good performance of cross-validation, 
since its test dataset could be made to contain numerous buggy points.

Fig. 3  Exact Recovery Rate over 20 Trials. The recovery rate is shown in different cases varying by fraction 
of outliers ct and n. The left subfigure is for one-pool case and the right subfigure is for two-pool case. We 
set m = 100,L = 5 for the second pool
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Figure 5 displays the results for the two-pool experiments, which are qualitatively simi-
lar to the results of the one-pool experiments. We emphasize that our method works well 
for support recovery; furthermore, the methods exhibit comparable performance in terms 
of the !2-error. The slightly larger error of our debugging method can be attributed to the 
bias which arises from using an !1-norm instead of an !0-norm.

6.3  Experiments with clean points

We now focus on debugging methods involving a second clean pool. We have three experi-
mental designs: First, we study the influence of m on support recovery. Second, we com-
pare debugging with alternative methods suggested in the literature. Third, we study the 
performance of our proposed MILP debugger, where we compare it to three other simple 
strategies. Different strategies for selecting clean points correspond to changing step [T1] 
in the setup described above.

6.3.1  Number of clean points versus exact recovery

In this subsection, we present two experiments involving synthetic and YearPredic-
tionMSD datasets, respectively, to see how m affects the exact recovery rate. Recall that 
the pipeline for generating the first pool is described at the beginning of Sect. 6. For the 
second pool, we use steps [T’1, T2, T3] for the synthetic dataset, where we assume PX 
is standard Gaussian. We take steps [T1–T3] for YearPredictionMSD to check the sam-
ple points in the first pool.

Fig. 4  Effectiveness of Tuning Parameter Selection (One Pool). Each dot is the average result of 20 random 
trials. We set n = 2000, p = 15 , and ! = 0.1
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Recall that the YearPredictionMSD dataset is designed to predict the release year of 
a song from audio features. The dataset consists of 515,345 songs, each with 90 audio 
features. Therefore, for both experiments, we set n = 500, t = 50, p = 90, ! = 0.1 , and 
L = 10 , and take ! = 2.5

√
log(n−t)

n
.

From Fig. 6, we see that the phenomena are similar for the two different design matri-
ces. In particular, increasing the number of clean points helps with exact recovery. For 
instance, in the left subfigure, for m = 0 , when mini |!∗i | > 2.9 , the exact recovery rate 
goes to 1. For m = 100 , the exact recovery rate goes to 1 when mini |!∗i | > 2.4 . Also, the 
slope of the curve for larger m is sharper. Thus, adding a second pool helps relax the 
gamma-min condition.

Fig. 5  Effectiveness on Tuning Parameter Selection (Two Pools). Each dot is the average result of 20 ran-
dom trials. We set n = 1000, p = 15, t = 100,L = 5 , and ! = 0.1
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Fig. 6  Minimal Gamma versus Exact Recovery Rate on Synthetic Data. We run 50 trials for each dot and 
compute the average
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6.3.2  Comparisons to methods with clean points

In this experiment, we compare the debugging method for two pools with other methods sug-
gested by the machine learning literature. We generate synthetic data using the default first-
pool setup with n = 1000, p = 15, t = 100 , and ! = 0.1 , and we run [T1–T3] to generate the 
second pool using different values of m. For our proposed debugging method, we use Algo-
rithm 1 to select the tuning parameter. We compare the following methods: (1) debugging + 
postprocessing, (2) least squares, (3) simplified noisy neural network, and (4) semi-supervised 
eigvec. The least squares solution is applied using 

{(
X

X̃

)
,

(
y

ỹ

)}
.

The simplified noisy neural network method borrows an idea from Veit et al. (2017), which 
is designed for image classification tasks for a datasets with noisy and clean points. This work 
introduced two kinds of networks and combines them together: the “Label Cleaning Network,” 
used to correct the labels, and the “Image Classifier,” which classifies images using CNN fea-
tures as inputs and corrected labels as outputs. Each of them is associated with a loss, and the 
goal is to minimize the sum of the losses. Let w ∈ ℝ, !1 ∈ ℝd , and !2 ∈ ℝd be the variables 
to be optimized. For our linear regression setting, we design the “Label Cleaning Network” 
by defining ĉi = yiw − x⊤

i
#1 as the corrected labels for both noisy and clean datasets. Then we 

define the loss Lclean =
∑

i∈cleanset |ỹi − yiw − x⊤
i
#1| . The “Image Classifier” is modified to the 

regression setting using predictions of x⊤
i
"2 and the squared loss. Therefore, the classification 

loss can be formalized as Lclassify =
∑

i∈cleanset(x
⊤
i
"2 − ỹi)

2 +
∑

i∈noisyset(x
⊤
i
"2 − ĉi) . Together, 

the optimization problem becomes

We use gradient descent to do the optimization, and initialize it with w = 0 and 
!1 = !2 = !ls . The optimizer "̂2 is used for further predictions. We then calculate 
"̂ = y − X#̂2 . For gradient descent, we will validate multiple step sizes and choose the one 
with the best performance on the squared loss of the clean pool.

The method “semi-supervised eigvec” is from Fergus et al. (2009), and is designed for the 
semi-supervised classification problem. It also contains an experimental setting that involves 
noisy and clean data. To further apply the ideas in our linear regression setting, we make the 
following modifications: Define the loss function as

where L = D −W(!) is the graph Laplacian matrix and ! is a diagonal matrix whose diag-
onal elements are !ii = " for clean points and !ii =

"

c
 for noisy points. In the classification 

setting, f ∈ ℝn+m is to be optimized. The idea is to constrain the elements of f by injecting 
smoothness/similarity using the Laplacian matrix L. Since we assume the linear regression 
model, we can further plug in f =

(
X

X̃

)
" . Our goal is then to estimate ! by minimizing 

J(!) . As suggested in the original paper, we use the range of values 
! ∈ [0, 1, 1, 5], c ∈ [1, 10, 50] , and ! ∈ [1, 10, 100] . We will evaluate all 36 possible combi-
nations and pick the one with the smallest squared loss on the clean pool.

The results are shown in Fig. 7. We observe that only the debugging method is effective 
for support recovery, as we have carefully designed our method for this goal. The method 

min
!1∈ℝ

d ,!2∈ℝ
d

w∈ℝ

∑
i∈cleanset

{(x⊤
i
!2 − ỹi)

2 + |ỹi − wyi − x⊤
i
!1|} +

∑
i∈noisyset

(x⊤
i
!2 − wyi − x⊤

i
!1)

2.

J(f ) = f ⊤Lf +

(
f −

(
y

ỹ

))⊤

#

(
f −

(
y

ỹ

))
,
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from Veit et al. (2017) works best in terms of !2-error of ! , especially when m is large. The 
semi-supervised method, like least squares, does not perform well, possibly because it does 
not consider replacing/removing the influence of the noisy dataset.

6.3.3  Effectiveness on second pool design

We now provide experiments to investigate the design of the clean pool, corresponding 
to Sect. 5. We use the Concrete Slump dataset,4 where p = 7 . We limit our study to small 
datasets, since the runtime of the MILP optimizer is quite long. We report the performance 
of the MILP debugging method in both noiseless and noisy settings. In our experiments, 
we compare the performance of the MILP debugger to a random debugger and a natu-
ral debugging method: adding high-leverage points into the second pool. In other words, 
D.milp selects m clean points to query from running the MILP  (18); D.leverage selects 
the m points with the largest values of x⊤

i
(X⊤X)−1xi ; and D.random randomly chooses m 

points from the first pool without replacement. After choosing the clean pool, the debugger 
applies the Lasso-based algorithm. In Zhang et al. (2018), all the second pool points are 
chosen either randomly or artificially. Therefore, we may consider D.random as an imple-
mentation of the method in Zhang et al. (2018), which will be compared to our D.milp.

In the noiseless setting, we define !∗ to be the least squares solution computed from 
all data points. We randomly select n data points as the xi’s. For D.milp and D.leverage, 

Fig. 7  Comparison to Methods involving Clean Points. Each dot is the average result of 20 random trials. 
We use the synthetic data setting, with n = 500, p = 15, ! = 0.1, t = 0.1n , and mini |!∗i | = 10

√
log 2n" . The 

clean data pool is randomly chosen from the first pool without replacement; we query the labels of these 
chosen points

4 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Concr ete+ Slump+ Test.

https://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test
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since the bug generator knows their strategies or the selected D, it generates bugs accord-
ing to the optimization problem  (17). Let T ⊆ [n] be the index set of the t largest |ui|’s, 
for i = 1,… , n . The bug generator takes !∗

T
= uT if the solution u is nonzero, and other-

wise randomly generates a subset T of size t to create !∗
T
= ! . Thus, yi = x⊤

i
"∗ + #∗ . For 

D.onepool, the bug generator follows the above description with D = ∅ . The orange bars 
indicate whether the bug generator succeeds in exact recovery in the one-pool case. For 
D.random, the bug generator generates bugs using the same mechanism as for D.onepool. 
Note the above bug generating methods are the “worst” in the sense of signed support 
recovery: The debuggers run (14) using their selected XD . From Fig. 8, there is an obvi-
ous advantage of D.milp over D.onepool and D.leverage. This suggests improved perfor-
mance of our MILP algorithm. D.random is sometimes successful even when n and t are 
small because the bug generator cannot control the randomness, but it performs worse than 
D.milp overall.

In the noisy setting, we define !∗ to be the least squares solution computed using the 
entire data set. We randomly select n data points as the xi’s. For D.milp and D.leverage, 
since the bug generator knows their strategies or the selected D, it generates bugs via the 
optimization problem (17): taking !∗

T
= uT if the solution u is nonzero for T being the indi-

ces of the largest t elements of |u|, and otherwise randomly generating a subset T of size t to 
create !∗

T
= ! . Thus, yi = x⊤

i
"∗ + #∗ +N(0, 0.01) . Note that having !∗

T
= uT if the solution u 

is nonzero gives incorrect signed support recovery, which is proved in Appendix E.1. This 
is related to what we have claimed in Remark 2 above. For D.onepool, the bug generator 
follows the above description with D = ∅ . The orange bars indicate whether the bug gen-
erator succeeds in exact recovery in the one-pool case. For D.random, since it is not deter-
ministic, the bug generator does not know D and acts in the same way as in the one-pool 
case. Note that the above bug generating methods are the “worst” in the sense of signed 
support recovery. From Fig. 9, there is an obvious advantage of D.milp over D.onepool and 
D.leverage. Our theory only guarantees the success of D.milp in the noiseless setting, so 
the experimental results for the noisy setting are indeed encouraging.

Debugging in practice: The algorithm for minimax optimization has been executed 
by running all 

(n
m

)
 possible choices of clean points for the outer loop; for each outer 

loop, we then run the inner maximization. For optimal debugging in practice, i.e., n, t, 
and m being large, some recent work provides methods for efficiently solving the mini-
max MILP (Tang et al. 2016). Note that the MILP debugger can be easily combined to 
other heuristic methods: one can run the MILP, and if there is a nonzero solution, we 
can follow it to add clean points. Otherwise, we can switch to other methods, such as 
choosing random points or high-leverage points.

Fig. 8  Comparison between D.milp and other debugging strategies in noiseless settings. Each setting is an 
average over 50 random trials
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7  Conclusion

We have developed theoretical results for machine learning debugging via M-esti-
mation and discussed sufficient conditions under which support recovery may be 
achieved. As shown by our theoretical results and illustrative examples, a clean data 
pool can assist debugging. We have also designed a tuning parameter algorithm which 
is guaranteed to obtain exact support recovery when the design matrix satisfies a cer-
tain concentration property. Finally, we have analyzed a competitive game between the 
bug generator and the debugger, and analyzed a mixed integer optimization strategy 
for the debugger. Empirical results show the success of the tuning parameter algorithm 
and proposed debugging strategy.

Our work raises many interesting future directions. First, the question of how to 
optimally choose the weight parameter ! remains open. Second, although we have 
mentioned several efficient algorithms for bilevel mixed integer programming, we have 
not performed a thorough comparison of these algorithms for our specific problem. 
Third, although our MILP strategy for second pool design has been experimentally 
found to be effective in a noisy setting, we do not have corresponding theoretical guar-
antees. Fourth, our proposed debugging strategy is a one-shot method, and designing 
adaptive methods for choosing the second pool constitutes a fascinating research direc-
tion. Finally, the analysis of our tuning parameter algorithm suggests that a geometri-
cally decreasing series might be used as a grid choice for more general tuning param-
eter selection methods, e.g., cross validation—in practice, one may not need to test 
candidate parameters on a large grid chosen linearly from an interval. Lastly, it would 
be very interesting to extend the ideas in this work to regression or classification set-
tings where the underlying data do not follow a simple linear model.

The supplmentary materials is organized as follows: Sect.  A presents some addi-
tional discussions on ! . Sections B, C, D and E mainly provide proofs respectively for 
problem reformulation and support recovery, tuning parameter selection and strategy 
for second pool selection. They may also include additional discussions and formal 
statements as referred in the main text.

A Additional discussions

We present more miscellaneous discussions here to readers who may care about !.

Fig. 9  Comparison between MILP Strategy and Others. In each setting, we run 20 random simulations
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Debugging connection to ! . Throughout this paper, we have focused on estimating ! for the 
purpose of debugging. A result concerning how the second pool can be used to obtain a better 
estimate of ! is as follows:

Proposition 3 Let X = USV⊤ and X̃ = S̃V⊤
0

 . Let m < p . It holds that

where z"̂ is the subgradient of ‖"̂‖1.

Proof of Proposition 3 Recall the objective function (3) is

By KKT conditions of the objective function,

Plug y = X!∗ + "∗ + # and ỹ = X̃"∗ + #̃  into (20) we obtain 

 Mutiply X⊤ on (21b) and plug it into (21a) we get

Given that X̃ = S̃V⊤
0

,

Plugging into the SVD of X = USV⊤ , we have

(19)‖V0("̂ − "∗)‖2 ≤
c1#

√
m

√
L#min(S̃)

+ %n‖S̃−2V0VSUz&̂‖2,

("̂, #̂) ∈ arg min
" ∈ ℝp,
# ∈ ℝn

{
1

2n
‖y − X" − #‖2

2
+

$
2m

‖ỹ − X̃"‖2
2
+ &‖#‖1

}
.

(20)
∇! = −

1

n
X⊤(y − X!̂ − $̂) −

%
m
X̃⊤ (̃y − X̃!̂) = 0;

∇$ = −
1

n
(y − X!̂ − $̂) + '(|$̂| = 0.

(21a)−
(
1

n
X⊤X +

"
m
X̃⊤X̃

)
($∗ − $̂) −

1

n
X⊤(&∗ − &̂) −

1

n
X⊤' −

"
m
X̃⊤'̃ = 0;

(21b)−
1

n
X(!∗ − !̂) −

1

n
(#∗ − #̂) −

1

n
$ + %&|#̂| = 0.

(22)X̃⊤X̃($̂ − $∗) = %
m

&
X⊤'|(̂| + X̃)̃.

S̃⊤S̃V⊤
0
($̂ − $∗) = %

m

&
V⊤
0
X⊤'|(̂| + V⊤

0
V0S̃)̃.
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with probability at least 1 − exp(−cm) . The second step is because "̃ has subgaussian 
parameter !2∕L .   ◻

Note that when S̃ is chosen large enough, then ‖V0("̂ − "∗)‖2 is controlled to a small 
number. Besides, if the subspace V0 contains the buggy subspace of XT , then ‖yT − y∗

T
‖2 is 

well controlled and we can spot the contaminated points. This, together with the orthogo-
nal design we will discuss in Sect. C.2, suggests that a successful debugging strategy may 
be obtained by producing a carefully chosen interaction between the non-buggy subspace 
(augmented using a second pool of clean data points) and the buggy subspace.

Related work She and Owen (2011). Without the second pool, She and Owen (2011) 
demonstrated the equivalence of the solution "̂  to the joint optimization of the objective (3) 
over (!, ") to the optimum of a regression M-estimator in ! with the Huber loss. This moti-
vates the question of whether the optimizer "̂  of the objective (3) may similarly be viewed 
as the optimum of an M-estimation problem.

Proposition 4 The solution "̂  of the joint optimization problem (3) is the unique optimum 
of the following weighted M-estimation problem:

Proof Recall the definition of the Huber loss function:

We will show the desired equivalence via the KKT conditions for both objective functions. 
Taking gradients with respect to ! and ! for the original objective function (3), we obtain 
the following system of equations:

The second equation (25) has a unique solution, given by the soft-thresholding function:

‖‖‖V
⊤
0
(#̂ − #∗)‖‖‖2 ≤ $

m

%
‖‖‖(S̃

⊤S̃)−1V⊤
0
X⊤'|(̂|‖‖‖2 + ‖(S̃⊤S̃)−1S̃‖‖)̃‖2

≤ $
m

%
‖‖‖(S̃

⊤S̃)−1V⊤
0
VSU⊤'|(̂|‖‖‖2 + c1

√
m*

√
L*min(S̃)

≤ $
m

%
‖‖‖(S̃

⊤S̃)−1V⊤
0
VSU⊤‖‖‖2

√
n + c1

√
m*

√
L*min(S̃)

≤ c*

√
log n

n

m

%
‖‖‖(S̃

⊤S̃)−1S
1∕2

0

‖‖‖2 + c1

√
m*

√
L*min(S̃)

,

(23)min
!∈ℝp

{
1

n

n∑
i=1

!n"

(
yi − x⊤

i
!
)
+

$
2m

‖ỹ − X̃!‖2
2

}
.

!k(u) =

{
!|u| − k2

2
, if |u| > k,

u2

2
, if |u| < k.

(24)0 =
X⊤X

n
" −

X⊤(y − #)

n
+ $

(
X̃⊤X̃

m
" −

X̃⊤ỹ

m

)
,

(25)0 =
!

n
−

y − X"

n
+ # sign (!).
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where for scalars u, k ∈ ℝ , we have

and SoftThreshk acts on vectors componentwise. Plugging back into Eq. (24), we obtain

We now consider the KKT conditions for the weighted M-estimator (23). Taking a gradient 
with respect to ! , we obtain

The key is to note that

so

from which we may infer the equivalence of Eqs. (26) and (27). This concludes the proof.  
 ◻

The proposition also illustrates that the objective uses Huber loss to get the robust 
estimation "̂  , and then imply the estimation "̂  . Therefore, estimations of ! and ! com-
plement each other. Our reformulation more relies on giving a direct analysis of ! and 
its support.

B Appendix for Sect. 2

We show reformulation of the objective function in this section.

Proof of Proposition 1 Using the notation (4), we can translate (3) into

First note that we can split y′ − X′! −

[
"
!m

]
 into two parts by projecting onto the column 

space of X′ and the perpendicular space:

! = SoftThreshn"(y − X#),

SoftThreshk(u) =

{
u − ! sign (u), if |u| ≥ k,
0, if |u| < k,

(26)0 = X⊤

(
X" − y

n
+

1

n
SoftThreshn#(y − X")

)
+ $

(
X̃⊤X̃

m
" −

X̃⊤ỹ

m

)
.

(27)0 = −

n∑
i=1

!
′
n!

(
yi − x⊤

i
#
)xi
n
+ $

(
X̃⊤X̃

m
# −

X̃⊤ỹ

m

)
.

u − !
′
n!(u) = SoftThreshn!(u),

−!′
n!

(
yi − x⊤

i
#
)1
n
=

x⊤
i
# − yi

n
+

1

n
SoftThreshn!

(
yi − x⊤

i
#
)
,

(28)("̂, #̂) ∈ argmin
",#

{
1

2n

‖‖‖‖‖
y′ − X′" −

[
#
!m

]‖‖‖‖‖

2

2

+ $‖#‖1
}

,
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For any value of "̂  , we can choose "̂  such that 
‖‖‖‖‖
PX′

(
y′ − X′"̂ −

[
#
!m

])‖‖‖‖‖

2

2

= 0 , simply by 

taking "̂ = (X′⊤X′)−1X′⊤

(
y′ −

[
$̂
!m

])
 . Hence, we get

and (28) becomes

Therefore, the two optimization problems share the same solution for "̂  .   ◻

C Appendix for Sect. 3

Notations in appendix: We write P⟂

X′,TT
 to represent the submatrix of P⟂

X′ with rows and 
column indexed by T. We write P⟂

X′,T⋅
 to represent the submatrix of P⟂

X′ with rows indexed 
by T and P⟂

X′,⋅T
 to represent the submatrix of P⟂

X′ with columns indexed by T. For simplic-
ity, let P̄ = P⟂

X′M[n] . We slightly abuse notation by using P̄T and P̄Tc to denote P̄⋅T and P̄⋅Tc , 
respectively.

In this appendix, we provide proofs and additional details for the results in Sect. 3. The 
proofs for fixed design are in Sect.  C.1. We discuss orthogonal design in Sect.  C.2 and 
sub-Gaussian design in Sect. C.3. In particular, we use the two special designs to better 
understand the three assumptions and see how having a clean pool helps with the support 
recovery. We will call one-pool case the setting with only contaminated pool and call two-
pool case the setting with both data pools.

C.1 Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1 We follow the usual Primal Dual Witness argument for support recov-
ery in linear regression, which contains the following steps (Wainwright 2009): 

1. Set "̂Tc = 0.
2. Solve the oracle subproblem for ("̂T , ẑT ) : 

‖‖‖‖‖
y′ − X′! −

[
"
!m

]‖‖‖‖‖

2

2

=
‖‖‖‖‖
PX′

(
y′ − X′! −

[
"
!m

])‖‖‖‖‖

2

2

+
‖‖‖‖‖
P⟂

X′

(
y′ − X′! −

[
"
!m

])‖‖‖‖‖

2

2

=
‖‖‖‖‖
PX′

(
y′ − X′! −

[
"
!m

])‖‖‖‖‖

2

2

+
‖‖‖‖‖
P⟂

X′

(
y′ −

[
"
!m

])‖‖‖‖‖

2

2

.

‖‖‖‖‖
y′ − X′! −

[
#̂
!m

]‖‖‖‖‖

2

2

=
‖‖‖‖‖
P⟂

X′

(
y′ −

[
#̂
!m

])‖‖‖‖‖

2

2

= ‖‖P⟂

X′y
′ − P̄#̂‖‖

2

2
,

"̂ ∈
1

2n
‖‖P⟂

X′y
′ − P̄"̂‖‖

2

2
+ $‖"̂‖1,

%̂ = (X′⊤X′)−1X′⊤

(
y′ −

[
"̂
!m

])
.
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 and choose ẑT ∈ "‖‖$̂T‖‖1 . In the one data pool case, we have A = P⟂

X,⋅T
 and B = P⟂

X,⋅T
 ; 

in the two data pool case, we have A = P⟂

X′,⋅T
 and B = P̄T.

3. Solve ẑTc via the zero-subgradient equation, and check whether the strict dual feasibility 
condition holds: ‖‖̂zTc

‖‖∞ < 1.

As in the usual Lasso analysis (Wainwright 2009), under the eigenvalue condition (6), 
("̂T , 0) ∈ ℝn is the unique optimal solution of the Lasso, where "̂T is the solution 
obtained by solving the oracle subproblem (29).

The focus of our current analysis is to verify the conditions under which the strict dual 
feasibility condition holds. The KKT conditions for Eq. (5) may be rewritten as

where ẑT ∈ "‖‖$̂T‖‖1, ẑTc ∈ "‖‖$̂Tc
‖‖1.

We will use the following equations to simplify terms later:

Since P̄⊤
T
P̄T is invertible by condition (6), we can multiply Eq. (30) by 

(
P̄⊤
T
P̄T

)−1 on the left 
to obtain

Plugging this into Eq. (31), we then obtain

or

We need to show that ‖ẑTc‖∞ < 1.
Note that condition (7) gives us

Furthermore, since

we have

(29)"̂T ∈ argmin
"∈ℝt

{
1

2n
‖‖Ay′ − B"‖‖22 + #‖"‖1

}
,

(30)P̄⊤
T
P̄T ($̂T − $∗

T
) − P̄⊤

T
P⟂

X′%
′ + n&ẑT = 0,

(31)P̄⊤
Tc P̄T ($̂T − $∗

T
) − P̄⊤

TcP
⟂

X′%
′ + n&ẑTc = 0,

P̄⊤
T
P̄T = (P⟂⊤

X′ P
⟂

X′ )TT ,

(
P̄⊤
T
P⟂

X′#′

P̄⊤
TcP

⟂

X′#′

)
= P̄⊤P⟂

X′#
′ = P̄⊤#′ =

(
P̄⊤
T
#′

P̄⊤
Tc#′

)
.

(32)"̂T − "∗
T
= (P̄⊤

T
P̄T )

−1P̄⊤
T
%′ − n&(P̄⊤

T
P̄T )

−1ẑT .

ẑTc = −
1

n"
P̄⊤
Tc P̄T

[
(P̄⊤

T
P̄T )

−1P̄⊤
T
%′ − n"(P̄⊤

T
P̄T )

−1ẑT
]
+

1

n"
P̄⊤
Tc%

′,

(33)
ẑTc = P̄⊤

Tc P̄T (P̄
⊤
T
P̄T )

−1ẑT
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(

+ P̄⊤
Tc

(
I − P̄T (P̄

⊤
T
P̄T )

−1P̄⊤
T

) )′

n*
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

VTc

.

∃!′ ∈ [0, 1), ‖"‖∞ = max
j∈Tc

‖P̄⊤
j
P̄T (P̄

⊤
T
P̄T )

−1‖1 ≤ !′.

! ≥
1

1 − "′

‖‖‖‖P̄
⊤
Tc

(
I − P̄T (P̄

⊤
T
P̄T )

−1P̄⊤
T

)%′
n

‖‖‖‖∞
,
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Combining these inequalities, we obtain strict dual feasibility:

In addition, applying the triangle inequality to the RHS of Eq. (32), we obtain

This concludes the proof.   ◻

Proof of Theorem 2 Note that

where the last inequality uses Theorem 1. Thus, if condition (8) also holds, we have

concluding the proof.   ◻

C.2 Orthogonal design

C.2.1 Main results for orthogonal design

In this section, we focus on a special case, where our data have an orthogonal property. Let 
X =

[
RQ⊤

FQ⊤

]
∈ ℝ(t+p)×p, X̃ = WQ⊤ ∈ ℝp×p , where Q is an orthogonal matrix with columns 

q1, q2,⋯ , qp , F, W are diagonal matrices with diagonals fi ’s and wi ’s separately ( i ∈ [p] ), 

and R =

⎡
⎢
⎢
⎢⎣

r1 0 0 0
0 r2 0 0
0 0 ⋯ 0
0 0 0 rt

||| 0 t×(p−t)

⎤
⎥
⎥
⎥⎦
. We assume for all i ∈ [p] , ri ≠ 0, fi ≠ 0 . Consider 

the first t points are buggy and the rest p points are nonbuggy, i.e., 
XT = RQ⊤ ∈ ℝt×p,XTc = FQ⊤ ∈ ℝp×p.

Applying Theorems 1 and 2, we obtain Propositions 5 and 6.

Proposition 5 In the one-pool case, suppose we choose

for some constant C > 0 , and

Then the contaminated pool is capable of achieving subset support recovery with probabil-
ity at least 1 − e−

C2

2 .

‖VTc‖∞ ≤
1 − !′

2
.

‖ẑTc‖∞ ≤ ‖"‖∞ + ‖VTc‖∞ < 1.

G′ = ‖(P̄⊤
T
P̄T )

−1P̄⊤
T
#′‖∞ + n$‖(P̄⊤

T
P̄T )

−1ẑT‖∞ ≥ ‖&̂T − &∗
T
‖∞.

∀i ∈ T , |!∗
i
| − |!̂i| ≤ ‖!̂T − !∗

T
‖∞ ≤ G′,

∀i ∈ T , |"̂i| ≥ min
i∈T

|"∗
i
| − ‖"̂T − "∗

T
‖∞ ≥ min

i∈T
|"∗

i
| − G′ > 0,

(34)! ≥
2"

n(1 − #)

(√
log 2(n − t) + C

)
,

(35)! = max
1≤i≤t

||||
ri
fi

|||| < 1.
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In the two-pool case, suppose we choose

 for some constant C′ > 0 , and

Then adding clean points will achieve subset support recovery with probability at least 
1 − e−

C′2

2 .

As stated in Theorems 1 and 2, to ensure exact recovery, we also need to impose a 
gamma-min condition. This leads to the following proposition:

Proposition 6 In the one-pool case, suppose inequality (35) holds. If also

 then there exists a ! to achieve exact recovery, with probability at least 1 − 2e−
c2

2 − e−
C2

2 .

In the two-pool case, suppose ! ≤
mL

n
 , and inequality (37) holds. If also

 then there exists a ! to achieve exact recovery, with probability at least 1 − 2e−
c2

2 − e−
C2

2 .

Compare  (35) and  (37). Mutual incoherence is decreased from r
2
i

f 2
i

 to r2
i

f 2
i
+ !n

m
w2
i

 . Com-
pare (38) and (39). The second max term, max

1≤i≤t

r2
i

f 2
i

≥ max
1≤i≤t

r2
i
(Lf 2

i
+ !n

m
w2
i
)

L(f 2
i
+ !n

m
w2
i
)2

 , because

when L ≥ 1 . Also note that 1

1−!
> 1

1−!′
 . Altogether, the requirement of mini∈[t] |!∗i | is weak-

ened by introducing clean points. Thus, we see that the mutual incoherence improves in 
two-pool setting. The gamma-min condition imposes a lower bound of !

(√
log(n − t)

)
 on 

the signal-to-noise ratio, mini∈[t] |!∗i |
"

 , and including second pool reduces the prefactor.
As can be seen, we want |wi| to be sufficiently large compared to |fi| . However, if |wi| 

is bounded, we may instead ensure support recovery by repeating points. In this section, 

(36)! ≥
2"

n(1 − #′)
max

{
1,

√
$n
mL

}(√
log 2(n − t) + C′

)
,

(37)!′ = max
1≤i≤t

||||||

rifi

f 2
i
+ " n

m
w2
i

||||||
< 1.

(38)

min
1≤i≤t

|!∗
i
| > "(

√
2 log t + c)max

1≤i≤t

√√√√1 +
r2
i

f 2
i

+
2"

1 − #

(√
log 2(n − t) + C

)(
1 +max

1≤i≤t

r2
i

f 2
i

)
,

(39)
min
1≤i≤t

|!∗
i
| ≥"(

√
2 log t + c)

√√√√1 +max
1≤i≤t

r2
i
(Lf 2

i
+ #n

m
w2
i
)

L(f 2
i
+ #n

m
w2
i
)2

+
2"

1 − $′

(√
log 2(n − t) + C

)(
1 +max

1≤i≤t

r2
i

f 2
i
+ #n

m
w2
i

)
,

max
1≤i≤t

r2
i

f 2
i

≥ max
1≤i≤t

r2
i
(f 2
i
+ !n

m
w2
i
)

(f 2
i
+ !n

m
w2
i
)2

≥ max
1≤i≤t

r2
i
(Lf 2

i
+ !n

m
w2
i
)

L(f 2
i
+ !n

m
w2
i
)2



 Machine Learning

1 3

we discuss the effect of repeating points and determine the number of points needed to 
guarantee correct support recovery. Suppose

where !" = [wi1,… ,wili
]⊤ . For the ith direction qi , we have ki repeated points with respec-

tive weights wi1,wi2,… ,wili
.

Proposition 7 Suppose the scale of clean data points is bounded by wB . Using wi1,… ,wili
 , 

where li =
⌈( |wi|

wB

)2
⌉
 and |wij| = wB, ∀j ∈ [li] , achieves the same effect on Conditions 1, 2, 

and 3 as adding a single point with scale wi.

From Proposition  7, we see that to correctly identify the bugs, we can also query 
multiple points in the same direction if the leverage of a single additional point is not 
large enough.

C.2.2 Proofs for orthogonal design

In this section, we first simplify the three conditions, and then provide the proofs of 
Propositions 5, 6, and 7.

In the one-pool case, we have

Note that P⟂

X,TT
 is a diagonal matrix. Thus, the eigenvalues are immediately obtained and

The condition that P⟂

X,TT
 is invertible is therefore equivalent to the condition that fi ≠ 0 for 

all i. Assuming this is true, we have

The mutual incoherence condition can then be written in terms of the quantity

W =

⎡
⎢
⎢
⎢⎣

!" # ⋯ #

# !$ ⋯ #

⋮ ⋮ ⋱ ⋮

# # ⋯ !%

⎤
⎥
⎥
⎥⎦
,

P⟂

X,TT
= It×t − XT (X

⊤X)−1X⊤
T

= It×t − R(R⊤R + F⊤F)−1R⊤

= diag

(
f 2
1

r2
1
+ f 2

1

,⋯ ,
f 2
t

r2t + f 2t

)
.

!min(P
⟂

X,TT
) = min

1≤i≤t

f 2
i

r2
i
+ f 2

i

= min
1≤i≤t

1(
ri
fi

)2

+ 1

=
1

max1≤i≤t

(
ri

fi

)2

+ 1

.

P⟂

X,TcT
(P⟂

X,TT
)−1 = −F(R⊤R + F⊤F)−1R⊤

⋅ (It×t − R(R⊤R + F⊤F)−1R⊤)−1

=

[
diag

(
−

r1
f1
,⋯ ,−

rt
ft

)
t×t

0(p−t)×t

]
.
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Note that the mutual incoherence condition also implies that fi ≠ 0, ∀i , since the mutual 
incoherence parameter will otherwise go to infinity.

The remaining condition is the gamma-min condition. Note that the upper bound on 
the !∞-error of ! consists of two parts:

Regarding P⟂

X,T⋅
 as two blocks, 

(
P⟂

X,TT
, P⟂

X,TTc

)
 , we have

Altogether, we see that

To summarize, the minimum eigenvalue condition becomes 

the mutual incoherence condition becomes

and the gamma-min condition becomes

Similar calculations show that in the two-pool case, the minimum eigenvalue condi-
tion becomes 

the mutual incoherence condition becomes

and the gamma-min condition becomes

‖‖‖P
⟂

X,TcT
(P⟂

X,TT
)−1

‖‖‖∞ = max
1≤i≤t

||||
ri
fi

|||| = max
1≤i≤t

|||||
rifi

f 2
i

|||||
.

‖"̂ − "∗‖∞ ≤ ‖(P⟂

X,TT
)−1(P⟂

X,T⋅
)#‖∞ + n$‖‖‖(P

⟂

X,TT
)−1

‖‖‖∞.

‖(P⟂

X,TT
)−1(P⟂

X,T⋅
)!‖∞ =

‖‖‖
(
I (P⟂

X,TT
)−1P⟂

X,TTc

)
!‖‖‖∞.

G = max
1≤i≤t

||||!i −
ri
fi
!i+t

|||| + n"

(
max
1≤i≤t

{
r2
i

f 2
i

}
+ 1

)
.

(40a)!min(P
⟂

X,TT
) =

1

max1≤i≤t

(
ri
fi

)2

+ 1

> 0;

(40b)‖‖‖P
⟂

X,TcT
(P⟂

X,TT
)−1

‖‖‖∞ = max
1≤i≤t

||||
ri
fi

|||| = ! ∈ [0, 1);

(40c)min
1≤i≤t

|!∗
i
| ≥ G = max

1≤i≤t
|"i −

ri
fi
"i+t| + n#

(
max
1≤i≤t

{
r2
i

f 2
i

}
+ 1

)
.

(41a)!min(P
⟂

X′,TT
) = min

1≤i≤t

f 2
i
+ "n

m
w2
i

r2
i
+ f 2

i
+ "n

m
w2
i

=
1

maxi∈[t]
r2
i

f 2
i
+ "n

m
w2
i

+ 1
> 0;

(41b)‖‖‖P
⟂

X′,TcT
(P⟂

X′,TT
)−1

‖‖‖∞ = max
1≤i≤t

||||||

rifi

f 2
i
+ !n

m
w2
i

||||||
= "′ ∈ [0, 1);
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where

Here is the proof of Proposition 5.

Proof of Proposition 5 According to Theorem 1, the subset support recovery result relies on 
two conditions: the minimum eigenvalue condition and the mutual incoherence condition. 
In the orthogonal design case, we will argue that both inequalities (40a) and (41a) hold in 
the one-pool case, and inequlaity (37) is sufficient for both inequalities (41a) and (41b) in 
the two-pool case.

For the one-pool case, the assumption (35) implies that fi ≠ 0, ,∀i ∈ [t] . Note that the 
minimum eigenvalue condition  (40a) is equivalent to fi ≠ 0, ,∀i ∈ [t] . Hence, the mini-
mum eigenvalue condition holds. Furthermore, the mutual incoherence condition  (41a) 
clearly holds.

For the two-pool case, if fi = 0 for some i ∈ [t] , then plugging into  (37) implies that 
w2
i
> 0 . Thus, fi and wi cannot be zero at the same time, implying that the eigenvalue con-

dition (41a) holds. Note that inequality (37) is equivalent to inequlaity (41b).
The remaining of the argument concerns the choice of ! . Note that Theorem 1 requires 

! to be lower-bounded for subset recovery (see inequality (9)). Taking the two-pool case as 
an example, we will show that when inequality (36) holds, inequality (9) holds with high 
probability. Define

Note that 
‖‖‖‖P̄

⊤
⋅j

(
I − P̄T (P̄

⊤
T
P̄T )

−1P̄⊤
T

)‖‖‖‖2
≤ 1 for all j ∈ Tc, and !′ =

(
!√
"n

m
!̃

)
 has i.i.d. sub-

Gaussian entries with parameter at most max{1, !n

mL
}"2 . Thus, Zj is sub-Gaussian with 

parameter at most max{1, !n

mL
} "2

n2
 . By a sub-Gaussian tail bound (cf. Lemma 1), we then 

have

Let C′ be a constant such that

and define

(41c)min
1≤i≤t

|!∗
i
| ≥ G′,

G′ = max
1≤i≤t

||||||||
!i −

rifi

f 2
i
+ "n

m
w2
i

!i+t −

√
"n

m
riwi

f 2
i
+ "n

m
w2
i

!̃i

||||||||
+ n$

(
max
1≤i≤t

{
r2
i

f 2
i
+ "n

m
w2
i

}
+ 1

)
.

Zj = P̄⊤
⋅j

(
I − P̄T (P̄

⊤
T
P̄T )

−1P̄⊤
T

)#′
n
, j ∈ Tc.

ℙ

(
max
j∈Tc

|Zj| ≥ !0

)
≤ 2(n − t) exp

(
−

n2!2
0

2max{1, "n

mL
}#2

)
.

2(n − t) exp

(
−

n2!2
0

2max{1, "n

mL
}#2

)
= exp

(
−
C′2

2

)
,

!0 ∶=
"
n
max{1,

√
#n

mL
}
√
log 2(n − t) + C′2.
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Note that we want

which therefore occurs with probability at least 1 − e−
C′2

2  when

The proof for the one-pool case is similar, so we omit the details.   ◻

Here is the proof of Proposition 6.

Proof of Proposition 6 To simplify notation, define

Note that ui is !ui-sub-Gaussian and vi is !vi-sub-Gaussian, with variance parameters

We now prove two technical lemmas:

Lemma 1 (Concentration for non-identical sub-Gaussian random variables) Suppose 
{ui}

t
i=1

 are !ui-sub-Gaussian random variables and {vi}ti=1 are !vi-sub-Gaussian random 
variables. Then the following inequalities hold:

Proof Note that

where ut+i ∶= −ui , for 1 ≤ i ≤ t . By a union bound, we have

2maxj∈Tc |Zj|
1 − !′

≤ ",

! ≥
2"

n(1 − #′)
max{1,

√
$n

mL
}
(√

log 2(n − t) + C′
)
≥

2%0
1 − #′

.

ui ∶= !i −
ri
fi
!i+t,

vi ∶= !i −
rifi

f 2
i
+ "n

m
w2
i

!i+t −

√
"n

m
riwi

f 2
i
+ "n

m
w2
i

!̃i.

!ui =

√√√√1 +
r2
i

f 2
i

!, !vi =

√√√√1 +
r2
i
(L2f 2

i
+ "n

m
w2
i
)

L2(f 2
i
+ "n

m
w2
i
)2

!.

(42)P

(
max
1≤i≤t

|ui| > !1

)
≤2t exp

(
−

!2
1

2max1≤i≤t "2
ui

)
,

(43)P

(
max
1≤i≤t

|vi| > !1

)
≤2t exp

(
−

!2
1

2max1≤i≤t "2
vi

)
.

max
1≤i≤t

|ui| = max
1≤i≤2t

ui,
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For each ui , we have the tail bounds

Altogether, we see that

Similarly, we may obtain the desired concentration inequality for the vi’s:

  ◻

Lemma 2 In the one-pool case, under the orthogonal design setting, suppose

where !ui =
√

1 +
r2
i

f 2
i

! . Then the gamma-min condition holds with probability at least 

1 − 2e−c
2
1
∕2.

In the two-pool case, suppose

where !vi =
√

1 +
r2
i
(L2f 2

i
+ "n

m
w2
i
)

L2(f 2
i
+ "n

m
w2
i
)2
! . Then the gamma-min condition holds with probability at 

least 1 − 2e−c
2
2
∕2.

We use inequality  (42) in Lemma  1. Let !1 =
√

2 log t + c2
1
max1≤i≤t "ui where 

c1 ∈ (0,+∞) . Then with probability 1 − 2e−
c2
1
2  , the following holds:

P

(
max
1≤i≤t

|ui| > !1

)
= P

( ⋃
1≤i≤2t

{ui > !1}

)

≤
∑

1≤i≤2t

P
(
ui ≥ !1

)

=
∑
1≤i≤t

P
(
ui ≥ !1

)
+

∑
1≤i≤t

P
(
ut+i ≥ !1

)

=
∑
1≤i≤t

P
(
ui ≥ !1

)
+

∑
1≤i≤t

P
(
ui ≤ −!1

)
.

P(ui > !1) ≤ exp

(
−

!2
1

2"2
ui

)
, P(ui < −!1) ≤ exp

(
−

!2
1

2"2
ui

)
.

P

(
max
1≤i≤t

|ui| > !1

)
≤ 2

∑
1≤i≤t

exp

(
−

!2
1

2"2
ui

)
≤ 2t exp

(
−

!2
1

2max1≤i≤t "2
ui

)
.

P

(
max
1≤i≤t

|vi| > !1

)
≤ 2t exp

(
−

!2
1

2max1≤i≤t "2
vi

)
.

(44)min
1≤i≤t

|!∗
i
| > (

√
2
√
log t + c1)max

1≤i≤t
"ui + n#

(
1 +max

1≤i≤t

r2
i

f 2
i

)
,

(45)min
1≤i≤t

|!∗
i
| > (

√
2
√
log t + c2)max

1≤i≤t
"vi + n#

(
1 +max

i∈[t]

r2
i

f 2
i
+ $n

m
w2
i

)
,
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In inequality  (43), take !2 =
√

2 log t + c2
2
max1≤i≤t "ui where c2 ∈ (0,+∞) . Then with 

probability 1 − 2e−
c2
2
2  , the following holds:

Combining these inequalities with conditions (40c) and (41c), we obtain G ≤ mini∈[t] |!∗i | 
with probability at least 1 − 2e−

c2
1
2  or at least 1 − 2e−

c2
2
2  . Specifically, when we choose 

c1 = c2 = 2.72 , we can achieve a probability guarantee of at least 95% for the two 
statements.

Therefore, Proposition  6 is proved by plugging the results from Lemma  1 into 
Lemma 2.   ◻

Here is the proof of Proposition 7.

Proof of Proposition 7 We will prove the proposition by comparing the three conditions in 
the two situations: adding one clean point and repeating multiple clean points. The condi-
tions for adding one clean point are already provided in inequalities (41a), (41b) and (41c) 
above.

We now provide the conditions for repeating multiple clean points. The minimum eigen-
value condition becomes

the mutual incoherence condition becomes

and the gamma-min condition becomes

 Compared with inequlaities  (41a), (41b) and (41c), conditions  (46a),  (46b) and   (46c) 
replace w2

i
 by ∑li

j=1
w2
ij
 . Suppose the scale of the clean data points is bounded by wB . Then 

adding one data point may not be enough to satisfy the three conditions. Thus, to achieve 
the same effect of a large scaled |wi| in inequalities  (41a), (41b) and (41c), we need the 
number of repeated clean points to be at least 

( |wi|
wB

)2

 .   ◻

max
1≤i≤t

|ui| ≤
√

2 log t + c2
1
max
1≤i≤t

!ui ≤ (
√
2 log t + c1)max

1≤i≤t
!ui .

max
1≤i≤t

|vi| ≤
√

2 log t + c2
2
max
1≤i≤t

!vi ≤ (
√
2 log t + c2)max

1≤i≤t
!vi .

(46a)!min(P
⟂

X′,TT
) = min

1≤i≤t

f 2
i
+
∑li

j=1
w2
ij

r2
i
+ f 2

i
+ "n

m

∑li
j=1

w2
ij

=
1

max1≤i≤t
r2
i

f 2
i
+
∑li

j=1
w2
ij

+ 1
;

(46b)‖‖‖P
⟂

X′ ,TcT
(P⟂

X′,TT
)−1

‖‖‖∞ = max
1≤i≤t

||||||

rifi

f 2
i
+ !n

m

∑li
j=1

w2
ij

||||||
;

(46c)

‖‖"̂ − "∗‖‖∞ ≤ max
1≤i≤t

||||||
#i +

rifi

f 2
i
+ $n

m

∑li
j=1

w2
ij

#i+t +
ki∑
j=1

riwij

f 2
i
+ $n

m

∑li
j=1

w2
ij

#i+t+p+j
L

||||||

+ n%
⎛
⎜
⎜⎝
max
1≤i≤t

{
r2
i

f 2
i
+ $n

m

∑li
j=1

w2
ij

} + 1
⎞
⎟
⎟⎠
.
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C.3 Sub-Gaussian design

In this section, we will present the support recovery results for sub-Gaussian design in 
Proposition 8 and Proposition 9, and the comparisons of the three conditions in the one- 
and two-pool cases in Table 1. Later, we will provide the proofs of the propositions.

C.3.1 Main results for sub-Gausian design

Proposition 8 Suppose {xj}j∈Tc and {x̃i}i∈[m] , are i.i.d. sub-Gaussian with parameter !2
x
 and 

covariance matrix ! ≻ 0 . Further assume that ‖XT‖2 ≤ BT . For the one-pool case, sup-
pose we choose ! to satisfy inequality (34) and the sample size satisfies

then the contaminated pool achieves subset support recovery with probability at least 
1 − e−

C2

2 − 2e−C1 − n−(c2−1).

For the two-pool case, assume we choose ! to satisfy (36) and the sample sizes satisfy

and

Then adding clean points achieves subset support recovery with probability at least 
1 − e−

C′2

2 − 2e−C
′
1 − n−(c2−1).

As seen in Proposition 8, the number of data points n may be reduced by 1 + ! with the 
introduction of a second data pool.

(47)
n > t +max

{
p + C1,

4c2
1
!4
x
(p + C1)‖"‖2

2

#2
min

(")
,

√
t
(√

p‖"‖2 + c2!
2
2
(log n +

√
p log n)

)(
1 +

2c1!
2
x
‖"‖2

#min(")

)
BT

#min(")

}
,

(48)

n > max
{
t + m,

t

1 + !
+

√
t

1 + !

(√
p‖"‖2 + c2#

2
2
(log n +

√
p log n)

)(
1 +

2c1#
2
x
‖"‖2

$min(")

)
BT

$min(")

}

m ≥ max{1, 4c2
1
!4
x
‖"‖2

2
}(p + C′

1
).

Table 1  Comparison between the two cases

Condition One-pool case Two-pool case

Eigenvalue !min

(
P⟂

X,TT

)
= bmin !min

(
P⟂

X′ ,TT

)
= b′

min
≥ bmin

Mutual incoherence ‖ − XTc ((n − t)!)−1X⊤
T
‖∞ ‖−XTc ((n−t)!)−1X⊤

T
‖∞

1+# n

n−t

Gamma-min
mini |!∗i | ≥

2"
√
log t+n#

√
t

bmin

mini |!∗i | ≥
2"

√
log t+n#

√
t

b′
min
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Note that when T is randomly chosen from [n], we have BT = O(
√
t‖!‖2) , so ine-

qualities  (47) and   (48) require t
n
 to be upper-bounded, and adding a second pool may 

weaker the upper bound to be (1 + !) than the upper bound for one-pool case.
We now present a result concerning exact support recovery:

Proposition 9 In the one-pool case, suppose inequality (47) holds. If

then there exists a ! to achieve exact recovery with probability at least 
1 − 2e−c − e−

C2

2 − 2e−C1 − n−C2.

For the two-pool case, suppose the assumptions in Proposition 8 hold, and

Then there exists a ! to achieve exact recovery with probability at least 
1 − 2e−c − e

−C′2

2 − 2e−C
′
1 − n−C2.

Compared to Propositions  8, 9 additionally requires the “signal-to-noise” ratio to 
be large enough. We can show that bmin ≤ b′

min
 ; thus, for an appropriate choice of ! , 

the lower bound  (49) is smaller than the bound  (50), so the gamma-min condition is 
improved.

We now briefly compare the three conditions for the one- and two-pool cases in the ran-
dom design setting.

In general, the eigenvalue condition is improved by adding a second pool. The mutual 
incoherence condition is improved in the two-pool case with large m by a constant multi-
plier 1

1+! n

m

(≤ 1) , and the gamma-min condition lower bound is improved by a constant 
bmin

b′
min

(≤ 1).
For the eigenvalue condition, the key result is that adding clean data points will not 

hurt, i.e., it makes the minimum eigenvalue smaller. A formal statement is provided in 
Proposition 10. Recall that

where X′ =

(
X√
!n

m
X̃

)
 , and we assume that X⊤X is invertible.

Proposition 10 (Comparison of minimum eigenvalue conditions) We have

Note that the result of Proposition 10 does not require any assumptions on X̃ or ! . 
However, the degree of improvement depends on ! , as seen in the proof. Usually when n 
is small, increasing ! leads to a big jump of the minimum eigenvalue; when n is large, 

(49)min
i∈T

|!∗
i
| ≥ 1

bmin

(
2"

√
log t + c +

2"
√
t

(1 − #)

(√
log 2(n − t) + C

))
,

(50)

min
i∈T

|!∗
i
| ≥ 1

b′
min

(
2"

√
log t + c +

2"
√
t

(1 − #′)
max{1,

√
$n
mL

}
(√

log 2(n − t) + C′
))

.

P⟂

X′,TT
= I − X′

T
(X′⊤X′)−1X′

T
,

P⟂

X,TT
= I − XT (X

⊤X)−1X⊤
T
,

!min(P
⟂

X′,TT
) ≥ !min(P

⟂

X,TT
).
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increasing ! does not change the minimum eigenvalue much. A typical relationship 
between ! and !min

(
P⟂

X′ ,TT

)
 can be seen in Fig. 10.

For mutual incoherence condition, it is possible to find settings for small m that 
make the mutual incoherence condition worse. Consider the following example:

Example 3 (Example where the mutual incoherence condition worsens) Suppose

Then

Despite this negative example, we can show that including a second pool helps when 
m is large compared to p. Recalling the assumption that X⊤

TcXTc is invertible, we can 
write

XT =

[
−1.8271 −1.6954 −1.1000
0.3020 −1.4817 −0.2284

]
,

XTc =

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

−1.7680 −0.0863 1.6822
−0.5750 −1.1013 0.4749
−0.6693 −0.6413 0.6126
−0.3271 0.3060 −1.0068
0.6177 0.3941 −2.6407
−0.7001 2.3465 0.4309

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

,

X̃ =

[
−1.8722 0.5154 0.1560
−0.9036 0.6064 −0.2540

]
.

‖P⟂

X,TcT
(P⟂

X,TT
)−1‖∞ = 0.96 < 1 < ‖P⟂

X′,TcT
(P⟂

X′,TT
)−1‖∞ = 1.28.

Fig. 10  How does ! influ-
ence the minimum eigenvalue 
condition? The x-axis is the 
weight parameter ! and the 
y-axis is !min(P

⟂

X′ ,TT
) . We take 

t = 15, p = 20 , and m = 5 , and 
vary n from 30 to 500. Both 
pools are drawn randomly from 
N(0, Ip)
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The first equality uses the definitions of P⟂

X,TcT
 and P⟂

X,TT
 , the second equality uses the 

Woodbury matrix identity (Henderson and Searle 1981), and the third equality follows 
from simple linear algebraic manipulations.

Similarly, we can simplify the mutual incoherence condition for the two-pool case, by 
replacing X⊤

TcXTc with X⊤
TcXTc + " n

m
X̃⊤X̃ in the inverse:

where we know that X⊤
TcXTc + " n

m
X̃⊤X̃ must be invertible since X⊤

TcXTc is invertible.
Given these simplifications, it is easy to see that the difference between these two terms 

lies in the middle inverses. When m is large, we have (X⊤
TcXTc )−1 ≈ ((n − t)")−1 and (

X⊤
TcXTc + " n

m
X̃⊤X̃

)−1

≈ ((n − t + "n)$)−1 , where ! is the covariance matrix for the com-
mon distribution of XTc and X̃ . Therefore, the mutual incoherence parameter in the one-
pool case is approximately equal to the mutual incoherence in the two-pool case scaled by (
1 + ! n

n−t

)−1

 , which immediately implies that adding a second data pool improves the 
mutual incoherence condition. This is stated formally in the following proposition:

Proposition 11 (Comparison of mutual incoherence conditions) Let BT = O(
√
t) . In the 

one-pool case, if n ≥ t +
c2
1
!4
x
(p+C1)‖"‖2
#2
min

(")
,then

with high probability.

In the two-pool case, if n ≥ t +max
{

c2
1
!4
x
‖"‖2

#2
min

(")
, 1
}
m and m ≥ max{1, c2

1
!4
x
(p + C′

1
)‖"‖2

2
}

m ≥ max{1, c2
1
!4
x
(p + C′

1
)‖"‖2

2
} , then

with high probability.

Proposition 11 states that when m and n are sufficiently large, the one-pool mutual 
incoherence parameter is close to ‖XTc!X⊤

T‖∞

n−t
 and the two-pool mutual incoherence 

parameter is close to ‖XTc!X⊤
T‖∞

n−t+#n
 . Since the second expression has a larger denominator, 

the mutual incoherence condition improves with the introduction of a second data pool 
with parameter ! > 0.

(51)

P⟂

X,TcT
(P⟂

X,TT
)−1 = −XTc

(
X⊤
T
XT + X⊤

TcXTc

)−1
X⊤
T

(
I − XT

(
X⊤
T
XT + X⊤

TcXTc

)−1
X⊤
T

)−1

= −XTc

(
X⊤
T
XT + X⊤

TcXTc

)−1
X⊤
T

(
I + XT

(
X⊤
TcXTc

)−1
X⊤
T

)

= −XTc

(
X⊤
TcXTc

)−1(
X⊤
T
XT (X

⊤
TcXTc )−1 + I

)−1(
I + X⊤

T
XT

(
X⊤
TcXTc

)−1)
X⊤
T

= −XTc (X⊤
TcXTc )−1X⊤

T
.

(52)P⟂

X′ ,TcT
(P⟂

X′,TT
)−1 = −XTc

(
X⊤
TcXTc + "

n

m
X̃⊤X̃

)−1

X⊤
T
,

||||
‖‖‖‖XTc

!
n − t

X⊤
T

‖‖‖‖∞
−
‖‖‖XTc

(
X⊤
TcXTc

)−1
X⊤
T

‖‖‖∞
|||| = O

(
t(n − t)−1(

√
p +

√
log n)

)
,

||||
‖‖‖‖XTc

!
n − t + "n

X⊤
T

‖‖‖‖∞
−
‖‖‖‖XTc

(
X⊤
TcXTc +

"n
m
X̃⊤X̃

)−1

X⊤
T

‖‖‖‖∞
|||| = O

(
t(n − t + "n)−1(

√
p +

√
log n)

)
,
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For gamma-min condition, we need to compare the terms G and G′ . Note that ine-
qualities (49) and (50) are equivalent to lower-bounding the “signal-to-noise” ratio. The 
order of the lower bound for two-pool case is as same as the one-pool case, i.e., 
mini |!∗i |

"
≥ O(

√
t log n) . However, adding a second pool improves the constant by having a 

factor of 1

b′
min

 instead of 1

bmin

 . As established in Proposition 10, we have bmin ≤ b′
min

 . There-
fore, the lower bound in the two-pool case is smaller than the lower bound in the one-
pool case.

Note that the weight parameter ! shows up in all the three conditions. However, 
recall that the mutual incoherence condition is not always improved by adding a second 
pool, unless m is sufficiently large. Therefore, an appropriate conclusion is that once 
we have a large clean data pool, it is reasonable to place arbitrarily large weight on the 
second pool. On the other hand, if we have fewer clean data points, we cannot be as 
confident about the estimator obtained using the second pool alone. For example, in 
the orthogonal design, if we obtain clean points in the non-buggy subspace, the mutual 
incoherence condition is not improved no matter how large we make ! . In addition, the 
gamma-min condition involves the randomness from noise, and in order to control the 
sparsity of ! , we need the regularizer ! to match large ! [cf. inequality (36)]. Based on 
inequality (50), we need the “signal-to-noise” ratio, i.e., n!

√
t

"
 , to be sufficient large. If ! 

is too large, we cannot estimate relatively small components of !∗ . In summary, select-
ing ! too large or too small is not wise: If ! is too small, we do not improve the three 
conditions, whereas if ! is too large, the range of controllable “signal-to-noise” ratios 
decays.

C.3.2 Proofs for sub-Gaussian design

In this section, we provide proofs of sub-Gaussian design. Here is the proof of 
Proposition 8.

Proof of Proposition 8 We prove the results for the one- and two-pool cases sequentially. In 
each case, we begin with background calculations, and then analyze the eigenvalue condi-
tion followed by the mutual incoherence condition.

For the one-pool case, we know that ! satisfies inequality (34) with probability at least 
1 − e−

C2

2 .
Note that xj, j ∈ Tc are sub-Gaussian random vectors with parameter !x . By Theo-

rem 4.7.1 and Exercise 4.7.3 in Vershynin (2018) and our assumption of n, we have

with probability at least 1 − e−C1 . We will later use this bound multiple times to establish 
the eigenvalue condition and the mutual incoherence condition.

We first consider the eigenvalue condition. By the dual Weyl’s inequality (Horn and 
Johnson 1994), we have !min(A + B) ≥ !min(A) + !min(B) for any square matrices A and B. 
Then

(53)
‖‖‖‖‖
! −

X⊤
TcXTc

n − t

‖‖‖‖‖2
≤ c1#

2
x

√
p + C1

n − t
‖!‖2,
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where the second inequality follows from the fact that !min(A) ≤ !max(A) for any square 
matrix A. Combining this with inequality  (53) and taking n ≥ t + 4

c2
1
!4
x
(p+C1)‖"‖2

2

#2
min

(")
 by 

assumption (47), we have that

with probability 1 − e−C1 . We now derive the following result:

Lemma 3 Suppose X⊤
TcXTc is invertible, where XT ∈ ℝt×p and XTc ∈ ℝ(n−t)×p . Then

implying that the eigenvalue condition for the one-pool case holds.

Proof Define C = Q(I + Q⊤Q)−1Q⊤ and Q ∈ ℝs×p , and suppose rank(Q) = r. Let 
Q = USV⊤ be the SVD, where U ∈ ℝt×p,V ∈ ℝp×p , and S =

[
Jr×r 0r×(p−r)

0(t−r)×r 0(t−r)×(p−r)

]
 . Here, J 

is a diagonal matrix of positive singular values. Then

Therefore, !max(C) =
a2
max

1+a2
max

 , where amax is the maximum singular value appearing in J. 
Also note that a2

max
 is the maximum eigenvalue of Q⊤Q.

Following (16.51) in Seber (2008), given X⊤
TcXTc is invertible, there exists a non-singular 

matrix A such that AX⊤
TcXTcA⊤ = I and AX⊤

T
XTA

⊤ = D , where D is diagonal matrix.
Note that

!min

(
X⊤
TcXTc

n − t

)
= !min

(
X⊤
TcXTc

n − t
− # + #

)

≥ !min(#) + !min

(
X⊤
TcXTc

n − t
− #

)

≥ !min(#) −
‖‖‖‖‖
X⊤
TcXTc

n − t
− #

‖‖‖‖‖2
,

(54)!min

(
X⊤
TcXTc

n − t

)
≥ !min(#) − c1$

2
x

√
p + C1

n − t
‖#‖2 ≥ 1

2
!min(#) > 0,

!min

(
P⟂

X,TT

)
≥ 1 −

!max(X
⊤
T
XT )

!max(X
⊤
T
XT ) + !min(X

⊤
TcXTc )

> 0,

(55)

C = USV⊤(I + VS⊤SV⊤)−1VS⊤U⊤

= US(I + S⊤S)−1S⊤U⊤

= U

[
Jr×r 0r×(p−r)

0(t−r)×r 0(t−r)×(p−r)

]
⋅

[
(I + J2)−1

r×r 0r×(p−r)
0(t−r)×r I(p−r)×(p−r)

]
⋅

[
Jr×r 0r×(p−r)

0(t−r)×r 0(t−r)×(p−r)

]
U⊤

= U

[
(J(I + J2)−1J)r×r 0r×(p−r)

0(t−r)×r 0(p−r)×(p−r)

]
U⊤.
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where Q ∶= XTA
⊤.

Based on our earlier arguments, we know that the matrix under consideration has maxi-
mum eigenvalue !max(AX

⊤
T
XTA

⊤)

1+!max(AX
⊤
T
XTA

⊤)
 . Since AX⊤

T
XTA

⊤ is similar to X⊤
T
XTA

⊤A , we 
have!max(AX

⊤
T
XTA

⊤) = !max(X
⊤
T
XTA

⊤A) . Furthermore, we have A⊤A = (X⊤
TcXTc )−1 , imply-

ing that

Altogether, we have

Finally, we may conclude that

Since !min(X
⊤
TcXTc ) > 0 , we have !min

(
P⟂

X,TT

)
< 1 , implying the desired result.   ◻

We now consider the mutual incoherence condition. By the triangle inequality, we have

XT (X
⊤
T
XT + XTcXTc )−1X⊤

T
= XTA

⊤(A(X⊤
T
XT + XTcXTc )A⊤)−1AX⊤

T

= XTA
⊤(AX⊤

T
XTA

⊤ + I)AX⊤
T

= Q(Q⊤Q + I)−1Q⊤,

!max(AX
⊤
T
XTA

⊤) = !max(X
⊤
T
XT (X

⊤
TcXTc )−1)

≤ max
v

‖‖‖X
⊤
T
XT (X

⊤
TcXTc )−1v

‖‖‖
2

2

‖‖‖(X
⊤
TcXTc )−1v

‖‖‖
2

2

⋅max
v

‖‖‖(X
⊤
TcXTc )−1v

‖‖‖
2

2

‖v‖2
2

≤
!max(X

⊤
T
XT )

!min(X
⊤
TcXTc )

.

(56)

!max

(
XT

(
X⊤
T
XT + X⊤

TcXTc

)−1
X⊤
T

)
≤

1

1 + !−1
max

(
X⊤
T
XT (X

⊤
TcXTc )−1

)

≤
1

1 +
!min(X

⊤
Tc
XTc )

!max(X
⊤
T
XT )

.

!min

(
P⟂

X,TT

)
= !min

(
I − XT

(
X⊤
T
XT + X⊤

TcXTc

)−1
X⊤
T

)

= 1 − !max

(
XT

(
X⊤
T
XT + X⊤

TcXTc

)−1
X⊤
T

)

≥ 1 −
1

1 +
!min(X

⊤
Tc
XTc )

!max(X
⊤
T
XT )

= 1 −
!max(X

⊤
T
XT )

!max(X
⊤
T
XT ) + !min(X

⊤
TcXTc )

.
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We bound 1  and 2  separately. Note that

In order to bound 1  , we bound three parts separately. By assumption, we have ‖‖‖X
⊤
T

‖‖‖2 ≤ BT . For maxj∈Tc ‖xj‖2 , we leverage the Hanson-Wright inequality (Theorem 6.2.1 
in Vershynin (2018)) and a union bound. By the Hanson-Wright inequality, we see that for 
t > 0,

where c is an absolute constant.
By a union bound, we then have

Setting ! = c2"
2
x
max{

√
p log n, log n} with c2 ≥ 1 so that we have 

min
{

!2

"4
x
p
, !

"2
x

}
≥ c2 log n , we conclude that

with probability at least 1 − n−(c2−1) , where c2 ≥ max{2, 2∕c}.
To bound 

‖‖‖‖! −
(

X⊤
Tc
XTc

n−t

)−1‖‖‖‖2
 , note that for two matrices A and B, we have

1

n − t

‖‖‖‖‖‖
XTc

(
X⊤
TcXTc

n − t

)−1

XT

‖‖‖‖‖‖∞
≤

1

n − t

‖‖‖‖‖‖
XTc"X⊤

T
− XTc

(
X⊤
TcXTc

n − t

)−1

X⊤
T

‖‖‖‖‖‖∞
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

1

+
1

n − t

‖‖‖XTc"X⊤
T

‖‖‖∞
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2

.

1 =

maxj∈Tc

‖‖‖‖‖
x⊤
j

(
" −

(
X⊤
Tc
XTc

n−t

)−1
)
X⊤
T

‖‖‖‖‖1
n − t

≤

√
t

n − t
max
j∈Tc

‖xj‖2
‖‖‖‖‖‖
" −

(
X⊤
TcXTc

n − t

)−1‖‖‖‖‖‖2
‖‖‖X

⊤
T

‖‖‖2.

P
(‖xj‖22 − ![‖xj‖22] ≥ t

)
≤ exp

{
−cmin

(
t2

!4
x
p
,
t

!2
x

)}
,

P

(
max
j∈Tc

‖xj‖2 ≥
√

![‖xj‖22] + !

)
= P

(
max
j∈Tc

‖xj‖22 ≥ ![‖xj‖22] + !

)

≤
∑
j∈Tc

P
(‖xj‖22 ≥ ![‖xj‖22] + !

)

≤ (n − t) exp

{
−cmin

(
!2

"4
x
p
,
!
"2
x

)}
.

(57)

max
j∈Tc

‖xj‖2 ≤
√

![‖xj‖22] + !

≤
√
trace(") + !

≤
√
p‖"‖2 + c2#

2
x
(log n +

√
p log n),
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Combining this fact with inequalities (53) and (54), we obtain

Altogether, we obtain the bound

We now consider 2  . Note that

Therefore,

Finally, assuming n satisfies the bound (47), and taking a union bound over all the prob-
abilistic statements appearing above, we conclude that the mutual incoherence condition 
holds with probability at least 1 − e−

C2

2 − 2e−C1 − n−(c2−1) . This concludes the proof.
For the two-pool case, we will use the following inequalities:

with probablity at least 1 − 2e−C
′
1 . Combining these inequalities and using the triangle ine-

quality, we obtain

‖‖‖A
−1 − B−1‖‖‖2 ≤

‖A − B‖2
!min(A)!min(B)

.

(58)

‖‖‖‖‖‖
! −

(
X⊤
TcXTc

n − t

)−1‖‖‖‖‖‖2
≤

‖‖‖‖# −
X⊤
Tc
XTc

n−t

‖‖‖‖2
$min(#)$min

(
X⊤
Tc
XTc

n−t

) ≤

2
‖‖‖‖# −

X⊤
Tc
XTc

n−t

‖‖‖‖2
$2
min

(#)

≤
2c1%

2
x

√
p+C1

n−t
‖#‖2

$2
min

(#)
.

(59)1 ≤

√
t

n − t

(√
p‖!‖2 + c2"

2
x
(log n +

√
p log n)

)
⋅

2c1"
2
x

√
p+C1

n−t
‖!‖

#2
min

(!)
BT .

(60)

‖‖‖XTc!X⊤
T

‖‖‖∞
n − t

=
1

n − t
max
j∈Tc

‖x⊤
j
!X⊤

T
‖1

≤

√
t

n − t
max
j∈Tc

‖x⊤
j
‖2‖!‖2‖X⊤

T
‖2

=

√
t

n − t

(√
p‖#‖2 + c2$

2
x
(log n +

√
p log n)

)
⋅

1

%min(#)
BT .

1 + 2 ≤

√
t

n − t

(√
p‖!‖2 + c2"

2
x
(log n +

√
p log n)

)
⋅

⎛
⎜
⎜
⎜⎝
1 +

2c1"
2
x

√
p+C1

n−t
‖!‖2

#min(!)

⎞
⎟
⎟
⎟⎠

BT

#min(!)
.

‖‖‖‖‖
! −

X⊤
TcXTc

n − t

‖‖‖‖‖2
≤ c1#

2
x

√
p + C′

1

n − t
‖!‖2,

‖‖‖‖‖
! −

X̃⊤X̃

m

‖‖‖‖‖2
≤ c1#

2
x

√
p + C′

1

m
‖!‖2,
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with probability at least 1 − 2e−C
′
1.

Analogous to Lemma  3, we can conclude that if X⊤
TcXTc +

"n

m
X̃⊤X̃ is invertible, the 

eigenvalue condition satisfies

(This can be proved just by replacing X⊤
TcXTc with X⊤

TcXTc +
"n

m
X̃⊤X̃ in the proof of 

Lemma 3.) However, since we further wish to bound the minimum eigenvalue from below 
by !min(")∕2 , to match the one-pool case and to be used in the proof for the mutual inco-
herence condition later, we will consider X⊤

TcXTc +
"n

m
X̃⊤X̃ directly.

Note that

Thus, if we choose m ≥ 4c2
1
!4
x
(p + C′

1
)‖"‖2

2
 , we have

with probability at least 1 − 2e−C
′
1.

We now consider the mutual incoherence condition. Similar to the derivation of ine-
quality (58), we have that

(61)

‖‖‖‖‖‖
! −

X⊤
TcXTc +

#n

m
X̃⊤X̃

n − t + #n

‖‖‖‖‖‖2
≤

n − t

n − t + #n

‖‖‖‖‖
! −

X⊤
TcXTc

n − t

‖‖‖‖‖2
+

#n
n − t + #n

‖‖‖‖‖
! −

X̃⊤X̃

m

‖‖‖‖‖2

≤ c1%
2
x
‖!‖2 n − t

n − t + #n

√
p + C′

1

n − t
+ c1%

2
x
‖!‖2

#n
n − t + #n

√
p + C′

1

m

n≥t+m

≤ 2c1%
2
x
‖!‖2

√
p + C′

1

m
,

!min(P
⟂

X′,TT
) ≥ 1 −

!max(X
⊤
T
XT )

!max(X
⊤
T
XT ) + !min

(
X⊤
TcXTc +

#n

m
X̃⊤X̃

) > 0.

!min

(
X⊤
TcXTc +

#n

m
X̃⊤X̃

n − t + #n

)
= !min

(
X⊤
TcXTc +

#n

m
X̃⊤X̃

n − t + #n
− % + %

)

≥ !min

(
X⊤
TcXTc +

#n

m
X̃⊤X̃

n − t + #n
− %

)
+ !min(%)

≥ !min(%) −

‖‖‖‖‖‖

X⊤
TcXTc +

#n

m
X̃⊤X̃

n − t + #n
− %

‖‖‖‖‖‖2
.

!min

(
X⊤
TcXTc +

#n

m
X̃⊤X̃

n − t + #n

)
≥

1

2
!min(%) > 0,
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Combining this with inequality (57), we obtain

Therefore, together with the triangle inequality and inequality  (60), we can bound the 
mutual incoherence parameter as follows:

By the assumption on n in inequality  (48), the mutual incoherence condition therefore 
holds with probability 1 − e−

C′2

2 − 2e−C
′
1 − n−(c2−1) .   ◻

Here is the proof of Proposition 9.

Proof of Proposition 9 To achieve exact support recovery, we need all the three conditions 
to hold. The eigenvalue condition and the mutual incoherence condition have already been 
discussed in the analysis of subset support recovery in “Appendix 8”, so it remains to ana-
lyze the gamma-min condition.

Recall that

‖‖‖‖‖‖‖
! −

(
X⊤
TcXTc +

#n

m
X̃⊤X̃

n − t + #n

)−1‖‖‖‖‖‖‖2
≤

‖‖‖‖% −
X⊤
Tc
XTc+#

n

m
X̃⊤X̃

(1+#)n−t

‖‖‖‖2
&min(%)&min

(
X⊤
Tc
XTc+#

n

m
X̃⊤X̃

(1+#)n−t

)

≤ 2c1'
2
x

‖%‖2
&2
min

(%)

√
p + C′

1

m
.

‖‖‖‖‖
XTc!X⊤

T
− XTc

(
X⊤
Tc
XTc+

#n
m
X̃⊤X̃

n−t+#n

)−1

X⊤
T

‖‖‖‖‖∞
n − t + #n

=

max
j∈Tc

‖‖‖‖‖‖
x⊤
j

(
! −

(
X⊤
Tc
XTc+

#n
m
X̃⊤X̃

n−t+#n

)−1
)
X⊤
T

‖‖‖‖‖‖1
n − t + #n

≤

√
t

n − t + #n
max
j∈Tc

‖xj‖2 ⋅
‖‖‖‖‖‖‖
! −

(
X⊤
TcXTc +

#n

m
X̃⊤X̃

n − t + #n

)−1‖‖‖‖‖‖‖2

‖‖‖X
⊤
T

‖‖‖2

≤

√
t

n − t + #n

(√
p‖%‖2 + c2&

2
x
(log n +

√
p log n)

)
⋅ 2c1&

2
x

‖%‖2
'2
min

(%)

√
p + C′

1

m
BT .

‖‖‖‖‖
XTc

(
X⊤
Tc
XTc+

"n
m
X̃⊤X̃

n−t+"n

)−1

X⊤
T

‖‖‖‖‖∞
n − t + "n

≤

‖‖‖‖‖
XTc$X⊤

T
− XTc

(
X⊤
Tc
XTc+

"n
m
X̃⊤X̃

n−t+"n

)−1

X⊤
T

‖‖‖‖‖∞
n − t + "n

+

‖‖‖XTc$X⊤
T

‖‖‖∞
n − t + "n

≤

√
t

n − t + "n

(√
p‖%‖2 + c2&

2
x
(log n +

√
p log n)

)⎛
⎜
⎜⎝
1 + 2c1&

2
x

‖%‖2
'min(%)

√
p + C′

1

m

⎞
⎟
⎟⎠

BT

'min(%)
.
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To simplify notation, we define

We also define the random variables

Since P⟂

X′ is a projection matrix and the maximum singular value of P⟂

X′,T⋅
 is smaller than 

the maximum singular value of P⟂

X′’s, we have

for all i ∈ T  . Note that Zi is a zero-mean sub-Gaussian random variable with parameter at 
most !

b′
min

 . By a sub-Gaussian tail bound, we then have

Therefore, with probability at least 1 − 2e−c , we have A ≤
2!

√
log t+c

b′
min

. Note that 
‖(P⟂

X′,TT
)−1‖∞ ≤

√
t‖(P⟂

X′,TT
)−1‖2 =

√
t

b′
min

. We can then immediately obtain the bound 
B ≤

2n!
√
t

b′
min

.
Combined with the fact that ! ≥

2"

n(1−#′)
max

{
1,
√

$n

mL

}(√
log 2(n − t) + C′

)
 , we then 

obtain

Thus, as long as mini∈T |!∗i | is greater than or equal to the RHS of the inequality above, the 
gamma-min condition holds with probability at least 1 − 2e−c − e−

C′2

2  . Consequently, the 
exact support recovery is achieved.

The proof of the one-pool case is similar as the proof of the two-pool case provided 
above, so we omit the details here.   ◻

Here is the proof of Proposition 10

Proof Proof of Proposition 10
By the Sherman–Morrison–Woodbury formula (Henderson and Searle 1981), we have

We now state and prove two useful lemmas:

G′ = ‖(P⟂

X′,TT
)−1P⟂

X′,T⋅
!′‖∞ + n"‖‖‖(P

⟂

X′,TT
)−1

‖‖‖∞.

A ∶= ‖(P⟂

X′ ,TT
)−1P⟂

X′,T⋅
P⟂

X′!
′‖∞, B ∶= n"‖‖‖(P

⟂

X′,TT
)−1

‖‖‖∞.

Zi ∶= e⊤
i
(P⟂

X′,TT
)−1P⟂

X′,T⋅
P⟂

X′"
′.

‖‖‖(P
⟂

X′,TT
)−1P⟂

X′,T⋅
P⟂

X′

‖‖‖2 ≤
‖‖‖(P

⟂

X′,TT
)−1

‖‖‖2 ≤
‖‖‖(P

⟂

X′,TT
)−1

‖‖‖2 ≤
1

b′
min

,

P

(
max
1≤i≤t

|Zi| > !
b′
min

(√
2 log t + "

))
≤ 2e−

"2

2 .

G′ ≤
1

b′
min

(
2!

√
log t + c +

2!
√
t

(1 − "′)
max

{
1,

√
#n
mL

}(√
log 2(n − t) + C′

))
.

(62)
XT

(
X⊤X +

"n
m
X̃⊤X̃

)−1

X⊤
T

= XT

(
X⊤X

)−1
X⊤
T
−

"n

m
XT

(
X⊤X

)−1
X̃⊤(I +

"n
m
X̃(X⊤X)−1X̃⊤)−1X̃

(
X⊤X

)−1
X⊤
T
.
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Lemma 4 Assume X⊤X is invertible. Define

Then !min(A) ≥ 0 . Equality holds when X̃
(
X⊤X

)−1
X⊤
T
 is not full-rank.

Proof First note that since X⊤X is invertible and X̃(X⊤X)−1X̃⊤ ≻ 0 , the matrix 
I + !n

m
X̃(X⊤X)−1X̃⊤ is invertible. Note that

so the minimum eigenvalue of A is nonnegative.
In order to study when the !min = 0 , let z = X̃

(
X⊤X

)−1
X⊤
T
y . When y ≠ 0 and 

X̃
(
X⊤X

)−1
X⊤
T
 is full-rank, we have z ≠ 0 . Thus, if X̃

(
X⊤X

)−1
X⊤
T
 is full-rank, we have 

!min(A) > 0 . When y ≠ 0 and X̃
(
X⊤X

)−1
X⊤
T
 is not full-rank, there exists y ≠ 0 such that 

z = 0 , which causes y⊤Ay = 0 and !min(A) = 0 .   ◻

Lemma 5 The following equations holds:

Proof Since XT

(
X⊤X

)−1
X⊤
T
 is symmetric positive semidefinite, we can write 

XT

(
X⊤X

)−1
X⊤
T
= Q"Q⊤ , where Q is an orthogonal matrix and ! is a diagonal matrix with 

nonnegative diagonals. Then

Furthermore, we have shown in inequality (56) that

Hence, the maximum diagonal in ! is upper-bounded by 1, and I − ! has all diagonal 
entries in the range [0,  1]. Thus, we have shown that min diag(I − !) = max(diag(!)) , 
implying the conclusion of the lemma.   ◻

Returning to the proof of the proposition, we have

Here, (i) comes from the fact that

A ∶= XT

(
X⊤X

)−1
X̃⊤(I +

#n
m
X̃(X⊤X)−1X̃⊤)−1X̃

(
X⊤X

)−1
X⊤
T
.

∀y ∈ ℝ
t ≠ 0, y⊤Ay ≥ 0,

!min(P
⟂

X,TT
) =1 − !max(XT

(
X⊤X

)−1
X⊤
T
),

!min(P
⟂

X′,TT
) =1 − !max(XT

(
X⊤X +

#n

m
X̃X̃⊤

)−1

X⊤
T
).

I − XT

(
X⊤X

)−1
X⊤
T
= Q(I − ")Q⊤.

!max

(
XT (X

⊤X)−1X⊤
T

)
≤

1

1 +
!min(X

⊤
Tc
XTc )

!max(X
⊤
T
XT )

.

!max

(
XT

(
X⊤X +

#n

m
X̃⊤X̃

)−1

X⊤
T

)

≤ !max

(
XT

(
X⊤X

)−1
X⊤
T

)

−
#n

m
!min

(
(XT

(
X⊤X

)−1
X̃⊤(I +

#n

m
X̃(X⊤X)−1X̃⊤)−1X̃

(
X⊤X

)−1
X⊤
T

)

(i)

≤!max

(
XT

(
X⊤X

)−1
X⊤
T

)
,
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which follows from Lemma 4. Furthermore, by Lemma 5, we have

and

Altogether, we conclude that the minimum eigenvalue is at least improved by 
!n

m
"min

(
XT

(
X⊤X

)−1
X̃⊤(I + !n

m
X̃(X⊤X)−1X̃⊤)−1X̃

(
X⊤X

)−1
X⊤
T

)
 .   ◻

Here is the proof of Proposition 11.

Proof of Proposition 11 The proof leverages arguments from the proof of Proposition 8. The 
goal is to argue that when n and m are sufficiently large, the empirical quantities are close 
to their population-level versions. We will use Big-O notation to simplify our discussion.

As already stated in inequality (59), if n ≥ t +
c2
1
!4
x
‖"‖2

#2
min

(")
(p + C1) , then

with probability at least 1 − e−C1 − n−1 , where c2 > max{2, 2∕c}.
Also for the two-pool case, if n ≥ t +max

{
c2
1
!4
x
‖"‖2

#2
min

(")
, 1
}
m and 

m ≥ max{1, c2
1
!4
x
(p + C′

1
)‖"‖2

2
} , we have

with probability at least 1 − 2e−C
′
1 − n−1 , where c2 is defined in the same way as above. 

Noting that BT ∝
√
t and using the triangle inequality, we conclude the proof.   ◻

!min

(
XT

(
X⊤X

)−1
X̃⊤

⋅ (I +
$n

m
X̃(X⊤X)−1X̃⊤)−1X̃

(
X⊤X

)−1
X⊤
T

)
≥ 0,

!min

(
P⟂

X′ ,TT

)
= 1 − !max

(
XT

(
X⊤X +

#n

m
X̃⊤X̃

)−1

X⊤
T

)

!min

(
P⟂

X′ ,TT

)
= 1 − !max

(
XT

(
X⊤X +

#n

m
X̃⊤X̃

)−1

X⊤
T

)
.

‖‖‖‖XTc!X⊤
T
− XTc

(
X⊤
Tc
XTc

n−t

)−1

X⊤
T

‖‖‖‖∞
n − t

≤

√
t

n − t

(√
p‖#‖2 + c2$

2
x
(log n +

√
p log n)

)
⋅

2c1$
2
x

√
p+C1

n−t
‖#‖

%2
min

(#)
BT .,

‖‖‖‖‖
XTc!X⊤

T
− XTc

(
X⊤
Tc
XTc+

#n
m
X̃⊤X̃

n−t+#n

)−1

X⊤
T

‖‖‖‖‖∞
n − t + #n

≤

√
t

n − t + #n

(√
p‖%‖2 + c2&

2
x
(log n +

√
p log n)

)⎛
⎜
⎜⎝
1 + 2c1&

2
x

‖%‖2
'min(%)

√
p + C′

1

m

⎞
⎟
⎟⎠

BT

'min(%)
,
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D Proofs for Sect. 4

In this section, we provide proofs and additional details for the results in Sect. 4. We will 
establish several auxiliary results in the process, which are stated and proved in “Appen-
dix D.4”. The flow of logic is outlined below:

Theorem 3 ⇐ (Lemma 6, Lemma 12);
Lemma 6 ⇐ Theorem 2;
Lemma 12 ⇐ (Lemma 7, Lemma 11);
Lemma 11 ⇐ (Lemma 8, Lemma 9);
Lemma 9 ⇐ Lemma 7.
Corollary 1 ⇐ (Theorem 3, Corollary 2).
We sometimes write "̂(#) to represent the estimator from Lasso-based debugging with 

tuning parameter !.

D.1 Proof of Theorem 3

We will first argue that the algorithm will stop, and then argue that all bugs are identified 
correctly when the algorithm stops. Finally, we will take a union bound over all the itera-
tions in the while loop to obtain a probabilistic conclusion.

Algorithm 1 stops: Note that if we have an iteration k such that "̂k > 2"∗ and C = 0 , then 
the algorithm must stop after at most ⌊log2 !u

!∗
⌋ iterations. Otherwise, we know that C = 1 

for all iterations k such that "̂k ≥ "∗ . Thus, after k = ⌊log2 !u

!∗
⌋ iterations, we have

As established in Lemma 6, we know that all true bugs will be identified with such a value 
of !k , so the remaining points are (X(k), y(k)) = (XTc , yTc ) . Also note that

Hence, by Lemma 12, we have

Therefore, the stopping criteria takes effect and the algorithm stops.
Algorithm 1 correctly identifies all bugs: A byproduct of the preceding argument is that 

"̂ > "∗ . By Theorem 1, we have supp("̂k) ⊆ supp("∗) . Now suppose we are at a stage where 
l of the t bugs are flagged, where l ∈ {0, 1,… , t}.

If l = t , then X̄ = XTc . As argued preveiously, the algorithm stops with high probability. 
Hence, we output all of the bugs.

Otherwise, we have l ≤ t − 1 . Suppose this happens at the k th iteration. Then at least 
one bug remains in (X(k), y(k)) , and all the clean points are included. Let S denote the cor-
responding row indices of X and let !∗

S
 denote the following subvector of !∗ . Since bugs still 

remain, we must have mini∈S |!∗S,i| ≥ mini∈T |!∗i | . Furthermore,

By Lemma 12, we have

!k =
!u

2⌊log2
!u

!∗
⌋
∈

[
!u

2log2
!u

!∗

,
!u

2log2
!u

!∗
−1

]
= [!∗, 2!∗].

‖P⟂

XTc
yTc‖∞ = ‖P⟂

XTc
(XTc!∗ + "Tc )‖∞ = ‖P⟂

XTc
"Tc‖∞.

‖P⟂

XTc
!Tc‖∞ <

5

2

1

c̄

√
log 2n $̂.

‖P⟂

X(k)y
(k)‖∞ = ‖P⟂

X(k) (X
(k)!∗ + "∗

S
+ #S)‖∞ = ‖P⟂

X(k) ("
∗
S
+ #S)‖∞.
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implying that C = 0 . Thus, the procedure proceeds to the (k + 1)st iteration. If for all k such 
that "̂k ≥ 2"∗ , bugs still remain, then "̂k keeps shrinking until the ⌊log2 !u

!∗
⌋th iteration. Then 

the tuning parameter must lie in the interval (!∗, 2!∗] , resulting in a value of "̂  such that 
supp("̂) = supp("∗).

Probability by union bound: Now we study the probability for this algorithm to output a 
value of "̂  that achieves exact recovery. Firstly, the algorithm stops as long as Lemmas 6 and 
12 hold, which holds with probability at least 1 − 3

n−t
− 2 exp

(
−2

(
1

2
− ct − !

)2

n

)
.

Secondly, consider the argument that the algorithm correctly identifies all bugs. For each 
iteration, the events {C = 0 if a bug still exists} and {C = 1 if no bugs exist} hold as long as 
Lemmas  6 and  12 hold, which happens with probability at least 
1 − 3

n−t
− 2 exp

(
−2

(
1

2
− ct − !

)2

n

)
 . If the algorithm has K iterations, the probability that 

the algorithm flags all bugs is therefore at least 1 − 3K

n−t
− 2K exp

(
−2

(
1

2
− ct − !

)2

n

)
 by a 

union bound. Since we have argued that K ≤ log2
!u

!("∗)
 , the desired statement follows.

D.2 Proof of Corollary 1

According to the PDW procedure, we can set "̂ = ! , solve for ẑ via the zero-subgradient equa-
tion, and check whether ‖ẑ‖∞ < 1 , where ẑ is a subgradient of ‖"̂‖1 . The gradient of the loss 
function is equal to zero, which implies that

Therefore, we see that ‖̂z‖∞ < 1 for ! >
‖P̄⊤P⟂

X′
y′‖∞

n
 , which means the optimizer satisfies 

"̂ = ! . Since !u =
2‖P̄⊤P⟂

X′
y′‖∞

n
 , the output with tuning parameter !u gives "̂(#u) = 0.

Note that

by the triangle inequality. The second term is bounded by 2max{1,
√

!n

mL
}
√
log 2n "∗ with 

probability at least 1 − 1

n
 , since e⊤

j
P⟂

X′"′ is Gaussian with variance at most max{1,
√

!n

mL
}"∗ . 

For the first term, we have

‖P⟂

X(k) (!
∗
S
+ "S)‖∞ >

5

2

1

c̄

√
log 2n %̂,

ẑ =
1

"n
‖P̄⊤P⟂

X′y
′‖∞.

‖P̄⊤P⟂

X′y
′‖∞ = ‖P̄⊤P̄#∗ + P̄⊤P⟂

X′$
′‖∞ ≤ ‖P̄⊤P̄#∗‖∞ + ‖P⟂

X′$
′‖∞

‖P̄⊤P̄#∗‖∞ =
‖‖‖P̄

⊤P̄#∗‖‖‖∞
(i)

≤ t
‖‖‖P̄

⊤P̄
‖‖‖max

‖#∗
T
‖∞

(ii)

≤ t‖#∗‖∞
≤

Cc$
2

√
1 − ct

√
log 2n ncn+

1

2 %∗,
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where (i) holds because ‖v⊤"∗‖1 =
∑

i∈T |vi"∗i | ≤ t‖v‖∞‖"∗‖∞ for any row v of the matrix 
P̄⊤P̄ , and (ii) holds because P̄⊤P̄ is a submatrix of the projection matrix P⟂

X′ and each entry 
of a projection matrix is upper-bounded by 1. Altogether, we obtain

By a similar argument as in Theorem 3 and Corollary 2, we know that Algorithm 1 stops 
with at most log2 !u

!("∗)
 with probability at least 1 − 1

n−t
 . Hence,

where (1) comes from the fact that P̄⟂

Tc is a submatrix of P⟂

X′ , which has spectral norm 1 
when n ≥ t + p + 1 ; and (2) holds because 1 − !′ < 1 . To illustrate that ‖P̄⟂

Tc‖2 = 1 , note 
that it is sufficient to show ‖P⟂

X′,TcTc‖2 = 1 P⟂

X′,TcTc is a principal matrix of P⟂

X′ . By interlac-
ing theorem (Hwang 2004), we know that !max(P

⟂

X′,TcTc ) is no less than the (t + 1)st largest 
eigenvalue of P⟂

X′ , which is a projection matrix and therefore has n − p eigenvalues equal to 
1. Thus, if t + 1 ≤ n − p , i.e., n ≥ t + p + 1 , then ‖P⟂

X′,TcTc‖2 = 1.
Now that we have bounded the number of iterations, we consider probability that the 

statement holds. Note that !′ is sub-Gaussian and all the statements based on !("∗) hold 
with probability 1 − 1

n−t
 . Compared to Theorem 3, note that on each iteration, we have 

subset support recovery with probability 1 − 1

n−t
 ; and on iteration log2 !u

!("∗)
 , we have 

exact support recovery with probability 1 − 1

n−t
 . Thus, we conclude that Algorithm  1 

outputs a value of "̂  that achieves exact recovery with probability at least

Proof of Proposition 2

We consider the three cases in Appendices D.3.1, D.3.2, and D.3.3.
Let ! = ![xix

⊤
i
] and ! = "−1 , and assume that X(k) corresponds to some XS with rows 

indexed by S. Our goal is to prove that

!u ≤

[
max

{
1,

√
"n
mL

}
2
√
log 2n

n
+

Cc#
2

√
1 − ct

√
log 2n ncn+

1

2

]
$∗.

log2
!u

!("∗)
= log2

[
max{1,

√
#n

mL
} +

Cc$
4

√
1 − ctn

cn+
3

2

]
2
√
log 2n

n
"∗

4

1−%′

√
2 log 2n(1 − ct)

‖P̄⟂

Tc‖2

n
"∗

(1)

≤ log2

[
max{1,

√
#n

mL
} + C

4
ncn+

3

2

]
2
√
log n

4

1−%′

√
2 log 2n

(2)

≤ log2

[
max{1,

√
#n

mL
} + C

4
ncn+

3

2

]

2

≤ c
(
3

2
+ cn

)
log2 n +max

{
0,

1

2
log2

#n
mL

− 1
}
,

1 −
5
(
c log2 n +max

{
0, 1

2
log2

!n

mL

})

n − t
− 2

(
c log2 n +max

{
0,

1

2
log2

!n
mL

})
e
−2

(
1

2
−ct−"

)2

n
.
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for at most log2 !u
!∗

 of such sets S. Note that Tc ⊆ S ⊆ [n] holds with probability at least 
1 −

log2
!u
!∗

n−t
.

D.3.1 Proof of Proposition 2 for Gaussian case

The spectral norm bound follows from standard results (Vershynin 2010), which holds 
for a fixed set S with probability at least 1 − e−|S| ≥ 1 − e−(n−t) . Note that Algorithm 1 
runs for at most log2 !u

!∗
 iterations by Theorem 3. Taking a union bound over all sets S, 

we obtain an overall probability of 1 − log2
!u
!∗
e−(1−ct)n ≥ 1 − e−

n

2
+log log2

!u
!∗.

We now consider (63). Define zi = !1∕2xi for 1 ≤ i ≤ n , so that

We know the !1∕2xi ’s are i.i.d. isotropic Gaussian random vectors. Hence, z⊤
i
zi ∼ "2(p) 

satisfies

with probability at least 1 − ! . Similarly, we can bound z⊤
k
zk and (zi + zk)

⊤(zi + zk) . Since 
z⊤
i
zk =

1

2
[(zi + zk)

⊤(zi + zk) − z⊤
i
zi − z⊤

k
zk] , we then have

with probability at least 1 − !.
We now choose ! = 1

nc
 for some c > 2 and take a union bound over all n2 entries of 

the matrix X!X⊤ , to obtain

with probability at least 1 − 1

nc′−2
 , where c′ > 2.

Finally, note that for all S ⊆ [n] , we have

(63)
‖‖‖‖‖
XS!

−1X⊤
S

p
− I

‖‖‖‖‖max

≤ cmax

⎧
⎪
⎨
⎪⎩

√
log |S|

p
,
log |S|

p

⎫
⎪
⎬
⎪⎭
,

(64)
‖‖‖‖
XS⊤XS

|S| − "
‖‖‖‖2

≤
#min(")

2
,

X!1∕2 =
⎡
⎢
⎢⎣

−z⊤
1
−

...
−z⊤

n
−

⎤
⎥
⎥⎦
.

‖‖zi‖‖22
p

− 1 ≤ 4

√
log 1

!

p
,

⟨zi, zk⟩
p

≤ 8

√
log 1

!

p
, ∀i ≠ k,

‖‖‖‖
X!X⊤

p
− I

‖‖‖‖max

≤ cmax

⎧
⎪
⎨
⎪⎩

√
log n

p
,
log n

p
,

⎫
⎪
⎬
⎪⎭
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D.3.2 Proof of Proposition 2 for sub-Gaussian case

By Lemma  14, inequality  (64) holds for a fixed set S, with probability at least 
1 − e−c|S| ≥ 1 − e−c(n−t) for some c > 0 . Note that Algorithm  1 runs for at most log2 !u

!∗
 

iterations. We then take a union bound over the possible subsets Tc ⊆ S ⊆ [n] to reach a 
probability of at least 1 − log2

!u
!∗
e−c(1−ct)n ≥ 1 − e−

cn

2
+log log2

!u
!∗.

Next, we focus on verifying inequality (63). Assuming that the xi ’s are independent 
random vectors and the components of the xi ’s are independent of each other, our goal 
is to prove that

w.h.p., where ! = Cov(xi) = "−1 =∶ D2 is a diagonal matrix.
Define zi = D−1xi . Since the zi ’s are mutually independent with independent compo-

nents, we know that the vector gij = (zi1, ..., zip, zj1, ..., zjp)
⊤ , for i ≠ j , also has independ-

ent components. Furthermore, the sub-Gaussian parameter of gij is bounded by 
lmax = max

p

q=1
K

d2
q

 , where K is the sub-Gaussian variance parameter of the xi’s. This is 
because for a unit vector u, we have

Since we have assumed that ‖!‖2 is bounded, the dq ’s are all bounded for each q, so lmax is 
bounded, as well.

Now let A =

[
0p×p Ip×p
0p×p 0p×p

]
 . By the Hanson-Wright inequality, with probability at 

least 1 − ! , we have

‖‖‖‖
XS!XS

p
− I

‖‖‖‖max

≤
‖‖‖‖
X!X

p
− I

‖‖‖‖max

.

‖‖‖‖
X!X⊤

p
− I

‖‖‖‖max

≲ max

⎧
⎪
⎨
⎪⎩

√
log n

p
,
log n

p

⎫
⎪
⎬
⎪⎭
,

!

[
e!u

⊤gij

]
= #p

q=1
!
[
e!uqziq

]
!
[
e!up+qzjq

]

= #p

q=1
!

[
e
!

uq

dq
xiq

]
!

[
e
!

up+q

dq
xjq

]

≤ #p

q=1
!

[
e
!2

u2q

2d2q
K

]
!

[
e
!2

u2p+q

2d2q
K

]

= !

[
e

∑p

q=1
!2

u2q+u
2
p+q

2d2q
K

]

≤ !

[
e
∑p

q=1
(u2

q
+u2

p+q)
!2

2
lmax

]

= !

[
e

!2

2
lmax

]
.
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where c1 is a constant related to lmax.
Now applying the Hanson-Wright inequality to the vector zi , we have

with probability at least 1 − ! . Noting that ![‖‖zi‖‖22] = tr(!") = p , we will finally have

Plugging in ! = 2

n3
 and taking a union bound, we then conclude that

with probability at least 1 − 2

n
.

D.3.3 Proof of Proposition 2 for convex concentration case

Recall the following definition:

Definition 2 (Convex concentration property) Let X be a random vector in ℝd . If for every 
1-Lipschitz convex function ! ∶ ℝd → ℝ such that ![!(X)] < ∞ and for every t > 0 , we 
have

then X satisfies the convex concentration property with constant K.

Suppose xi has the convex concentration property with parameter K. Note that

By Lemma 13, we thus have the exponential tail bound

(65)
|||||
⟨zi, zj⟩
p

|||||
=

g⊤
ij
Agij

p
≤ c1

√
log 2

"

p
,

(66)
||||||

‖‖zi‖‖22
p

−
![‖‖zi‖‖22]

p

||||||
≤ c2 max

⎧
⎪
⎨
⎪⎩

√
log 2

!

p
,
log 2

!

p

⎫
⎪
⎬
⎪⎭
,

||||||

‖‖zi‖‖22
p

− 1

||||||
≤ c2 max

⎧
⎪
⎨
⎪⎩

√
log 2

!

p
,
log 2

!

p

⎫
⎪
⎬
⎪⎭
.

‖‖‖‖
X!X⊤

p
− I

‖‖‖‖max

≤ 2max{c1, c2}max

⎧
⎪
⎨
⎪⎩

√
log n

p
,
log n

p

⎫
⎪
⎬
⎪⎭
,

ℙ(|!(X) − "[!(X)]| ≥ t) ≤ 2 exp(−t2∕K2),

‖‖‖‖
X!X⊤

p
− I

‖‖‖‖max

= max
i,j

|||||
e⊤
i

(
X!X⊤

p
− I

)
ej

|||||
= max

i,j

|||||
x⊤
i
!xj

p
− e⊤

i
ej

|||||
.
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for all 1 ≤ i ≤ p , which implies that

with probability at least 1 − ! . Taking ! = 2∕n3 , we then obtain

with probability at least 1 − 2

n3
.

Now we consider the off-diagonals xi!xj

p
 , for i ≠ j . We first rewrite

Conditioning on ‖‖‖!xj
‖‖‖2 for some w > 0 , we obtain

Since we have a convex 1-Lipschitz function mapping from xi to x⊤
i

"xj

‖"xj‖2

 , we can further 
upper-bound the probability using the convex concentration property:

ℙ

(|||||
x⊤
i
"xi

p
− 1

|||||
≥ w

)
≤ 2 exp

(
−
1

C
min

{
w2p2

2K4‖"‖F
,

wp

K2‖"‖2

})
,

|||||
x⊤
i
"xi

p
− 1

|||||
≤ cK2 max

⎧
⎪
⎨
⎪⎩

√
log 2

#

p
,
log 2

#

p

⎫
⎪
⎬
⎪⎭
,

(67)
|||||
x⊤
i
"xi

p
− 1

|||||
≤ cK2 max

⎧
⎪
⎨
⎪⎩

√
log n

p
,
log n

p

⎫
⎪
⎬
⎪⎭
,

ℙ

(|||||
x⊤
i
"xj

p

|||||
≥ #

)
= ℙ

⎛
⎜
⎜⎝

|||||||
x⊤
i

"xj
‖‖‖"xj

‖‖‖2

|||||||
≥

#p
‖‖‖"xj

‖‖‖2

⎞
⎟
⎟⎠
.

ℙ

(|||||
x⊤
i
"xj

p

|||||
≥ #

)
= ℙ

⎛
⎜
⎜⎝

|||||||
x⊤
i

"xj
‖‖‖"xj

‖‖‖2

|||||||
≥

#p
‖‖‖"xj

‖‖‖2
||‖‖‖"xj

‖‖‖2 ≥ w

⎞
⎟
⎟⎠
ℙ

(‖‖‖"xj
‖‖‖2 ≥ w

)

+ ℙ

⎛
⎜
⎜⎝

|||||||
x⊤
i

"xj
‖‖‖"xj

‖‖‖2

|||||||
≥

#p
‖‖‖"xj

‖‖‖2
||‖‖‖"xj

‖‖‖2 < w

⎞
⎟
⎟⎠
ℙ

(‖‖‖"xj
‖‖‖2 < w

)
.
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where (1) and (3) use the convex concentration property and (2) uses Jensen’s inequality. 
The last inequality assumes that w ≥

√
p‖!‖2 , can be guaranteed if we choose w suffi-

ciently large.
Plugging ! = cmax

{
log n

p
,
√

log n

p

}
 and w = c′

(√
p +

√
log n

)
 into the above deriva-

tions, we then obtain

If p > log n , then 2 exp
(
−max{(log n)2,p log n}

(p+log n)K2

)
≤ 2 exp

(
− c′′′′ log n

K2

)
 ; If p ≤ log n , then 

2 exp
(
−max{(log n)2,p log n}

(p+log n)K2

)
≤ 2 exp

(
− c′′′′′ log n

K2

)
 . Hence, we have

We can choose c and c′ sufficiently large to ensure that C > 2 . Combining this with ine-
quality (67) using a union bound, we finally obtain the desired result.

D.4 Auxiliary lemmas

By Theorem 1, we have the following corollary:

Corollary 2 For two data pools, suppose the eigenvalue and mutual incoherence conditions 
hold. Let ! ≥ !("∗). Then with probability 1 − 1

n−t
 , we have supp("̂) ⊆ supp("∗) , and

ℙ

(|||||
x⊤
i
"xj

p

|||||
≥ #

)
≤ ℙ

(‖‖‖"xj
‖‖‖2 ≥ w

)
+ ℙ

⎛
⎜
⎜⎝

|||||||
x⊤
i

"xj
‖‖‖"xj

‖‖‖2

|||||||
≥

#p
‖‖‖"xj

‖‖‖2
||‖‖‖"xj

‖‖‖2 < w

⎞
⎟
⎟⎠

≤ ℙ

(
‖‖‖xj

‖‖‖2 ≥
w

‖"‖2

)
+ ℙ

⎛
⎜
⎜⎝

|||||||
x⊤
i

"xj
‖‖‖"xj

‖‖‖2

|||||||
≥

#p

w

⎞
⎟
⎟⎠

(1)

≤ ℙ

(
‖‖‖xj

‖‖‖2 − "[
‖‖‖xj

‖‖‖2] ≥
w

‖"‖2
− "[

‖‖‖xj
‖‖‖2]

)
+ 2 exp

(
−
#2p2

w2K2

)

(2)

≤ ℙ

(
‖‖‖xj

‖‖‖2 − "[
‖‖‖xj

‖‖‖2] ≥
w

‖"‖2
−

√
"[
‖‖‖xj

‖‖‖
2

2
]

)
+ 2 exp

(
−
#2p2

w2K2

)

(3)

≤ 2 exp

⎛
⎜
⎜
⎜⎝
−

(
w

‖"‖2
−
√
tr($)

)2

K2

⎞
⎟
⎟
⎟⎠
+ 2 exp

(
−
#2p2

w2K2

)

≤ 2 exp

⎛
⎜
⎜
⎜⎝
−

(
w

‖"‖2
−
√
p‖$‖2

)2

K2

⎞
⎟
⎟
⎟⎠
+ 2 exp

(
−
#2p2

w2K2

)
,

ℙ

(|||||
x⊤
i
"xj

p

|||||
≥ #

)
≤ 2 exp

(
−
c′′ log n

K2

)
+ 2 exp

(
−c′′′

max{(log n)2, p log n}

(p + log n)K2

)
.

ℙ

(|||||
x⊤
i
"xj

p

|||||
≥ #

)
≤ 2 exp (−C log n).

(68)‖‖"̂(#) − "∗‖‖∞ ≤ G′(#).
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Proof Recall that the rule for regularizer selection in Theorem 1 is

Note that e⊤
j
P̄⊤
Tc

(
I − P̄T (P̄

⊤
T
P̄T )

−1P̄⊤
T

) #′

n
 is sub-Gaussian with variance parameter 

max{1, !n

mL
}
‖P̄⟂

Tc
‖2
2
#∗2

n2
 . We have

with probability at least 1 − 1

n−t
 . According to the definition of !("∗) , we can further derive 

the bound for "̂  , since

  ◻

The following lemma suggests that if mini∈T |!∗i | ≥ G′(2"∗) , then 
supp("̂(#)) = supp("∗) if we take ! ∈ [!∗, 2!∗].

Lemma 6 If mini∈T |!∗i | ≥ G′(2"∗) , then taking ! ∈ [!∗, 2!∗] yields an estimator "̂(#) that 
satisfies supp("̂(#)) = supp("∗).

Proof According to Theorem  1, for a regularizer ! ∈ [!∗, 2!∗] , we have "̂Tc = 0 and 
‖‖"̂(#) − "∗‖‖∞ ≤ G′(#) . If mini∈T |!∗i | ≥ G′(2"∗) , then by the triangle inequality, we have

for all i ∈ T  .   ◻

We use XS to represent some X(k) for S ⊆ [n] , as shown in Algorithm 3. In each loop 
of the algorithm, we know that the points in Sc all lie in T by the subset recovery result. 
Thus, S ⊇ Tc . Let l = n − |S| , and note that 0 ≤ l ≤ t.

Lemma 7 Suppose Assumption 4 holds. If !min(") and !max(") are bounded, then

Proof Using the notation ! = "−1 and "̂ =
X⊤
S
XS

|S|  , we have

By assumption, we may bound the second term by

! ≥
2

1 − "′

‖‖‖‖P̄
⊤
Tc

(
I − P̄T (P̄

⊤
T
P̄T )

−1P̄⊤
T

)%′
n

‖‖‖‖∞
.

max
j∈Tc

||||e
⊤
j
P̄⊤
Tc

(
I − P̄T (P̄

⊤
T
P̄T )

−1P̄⊤
T

)#′
n

|||| ≤ 4max
{
1,

$n

mL

}√
log 2(n − t)

‖P̄⟂

Tc‖2
n

%∗2,

‖‖"̂ − "∗‖‖∞ ≤ ‖(P⟂

X′ ,TT
)−1P⟂

X′,T⋅
#′‖∞ + 2n$(%∗)

‖‖‖(P
⟂

X′,TT
)−1

‖‖‖∞.

|"̂i| > min
i∈T

|"∗
i
| − G′(#) ≥ G′(2#∗) − G′(#) ≥ 0,

‖‖‖‖P
⟂

XS
−
(
1 −

p

n − l

)
I
‖‖‖‖max

≤ C
max{p,

√
p log(n − l), log(n − l)}

n − l
.

‖‖‖‖‖
P⟂

XS
−

(
1 −

p

|S|
)
I|S|×|S|

‖‖‖‖‖max

=
‖‖‖‖XS(X

⊤
S
XS)

−1X⊤
S
−

p

|S| I
‖‖‖‖max

≤

‖‖‖‖‖‖

XS(#̂)−1X⊤
S

|S| −
XS$X⊤

S

|S|
‖‖‖‖‖‖max

+
‖‖‖‖‖
XS$X⊤

S

|S| −
p

|S| I
‖‖‖‖‖max

.
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For the first term, we have

We now have the bound

as well, where the second inequality holds by Weyl’s Theorem (Horn and Johnson 1994): 
!(#̂) ≥ !(#) − ‖# − #̂‖2 . The basic idea for the first inequality is to use the multiplicativ-
ity of matrix norms to conclude that

Hence, an upper bound on ‖A − B‖2—which we obtain from our assumptions—together 
with minimum eigenvalue bounds on A and B, implies an upper bound on ‖‖A−1 − B−1‖‖2.

Finally, we have

By assumption, we have

‖‖‖‖‖
XS!X⊤

S

|S| −
p

|S| I
‖‖‖‖‖max

≤
p

|S| ⋅ cmax

⎧
⎪
⎨
⎪⎩

√
log |S|

p
,
log |S|

p

⎫
⎪
⎬
⎪⎭
=

cmax{
√
p log |S|, log |S|}
|S| .

‖‖‖‖‖‖

XS("̂)−1X⊤
S

|S| −
XS$X⊤

S

|S|
‖‖‖‖‖‖max

=
1

|S|
‖‖‖‖XS

(
("̂)−1 − $

)
X⊤
S

‖‖‖‖max

≤
‖‖‖("̂)−1 − $‖‖‖2 ⋅ max

1≤i≤|S|
1

|S|‖X
⊤
S
ei‖22.

‖‖‖("̂)−1 − #‖‖‖2 ≤
1

2
$min(")

$min(")$min("̂)

≤

1

2
$min(")

$min(")($min(") − 1

2
$min("))

=
1

$min(")
,

(69)

‖‖‖A
−1 − B−1‖‖‖2 ≤

‖‖‖A
−1(A − B)B−1‖‖‖2

≤
‖‖‖A

−1‖‖‖2‖A − B‖2‖‖‖B
−1‖‖‖2

=
‖A − B‖2

!min(A) ⋅ !min(B)
.

max
1≤i≤|S|

1

|S|‖X
⊤
S
ei‖22 ≤ max

1≤i≤|S|
1

|S| ⋅
‖"1∕2X⊤

S
ei‖22

#2
min

("1∕2)

=
1

#min(")
⋅ max
1≤i≤|S|

‖"1∕2X⊤
S
ei‖22

|S|

= #max($) ⋅ max
1≤i≤|S|

e⊤
i
XS"X⊤

S
ei

|S|

≤ #max($) ⋅
‖‖‖‖‖
XS"X⊤

S

|S|
‖‖‖‖‖max

.
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Hence, rescaling and using the triangle inequality, we have

Altogether, we have the bound

Finally, we have

This finishes the proof.   ◻

We use !(k) to represent the kth order statistics of |!i| , for i ∈ Tc , where 
!(1) ≤ !(2) ≤ ⋯ ≤ !(n−t).

Lemma 8 For i.i.d. random variables {|!i|}i∈Tc , the kth order statistics, for any 
k ∈ { n−t

2
,… , n

2
} satisfy

with probability at least 1 − 2 exp

(
−2

(
1

2
− ct − !

)2

n

)
 , for ! ∈ (0, 1

2
) such that ! < 1

2
− ct.

Proof By the assumptions on the noise distribution, we have

Let !i ’s be i.i.d. Bernoulli variables such that

Note that t = ctn for some positive constant ct ∈ (0, 1
2
) . We have

‖‖‖‖‖
XS!X⊤

S

p
− I

‖‖‖‖‖max

≤ cmax

⎧
⎪
⎨
⎪⎩

√
log |S|

p
,
log |S|

p

⎫
⎪
⎬
⎪⎭
.

‖‖‖‖‖
XS!X⊤

S

|S|
‖‖‖‖‖max

≤
p

|S|

(‖‖‖‖‖
XS!X⊤

S

p
− I

‖‖‖‖‖max

+ 1

)
≤

p

|S| +
p

|S| max

⎧
⎪
⎨
⎪⎩

√
log |S|

p
,
log |S|

p

⎫
⎪
⎬
⎪⎭
.

‖‖‖‖‖‖

XS("̂)−1X⊤
S

|S| −
XS$X⊤

S

|S|
‖‖‖‖‖‖max

≤
%max(")

%min(")
⋅
p

|S|

⎛
⎜
⎜
⎜⎝
1 +max

⎧
⎪
⎨
⎪⎩

√
log |S|

p
,
log |S|

p

⎫
⎪
⎬
⎪⎭

⎞
⎟
⎟
⎟⎠
.

cmax{
√
p log |S|, log |S|}
|S| + c′′

p

|S|

⎛
⎜
⎜
⎜⎝
1 +max

⎧
⎪
⎨
⎪⎩

√
log |S|

p
,
log |S|

p

⎫
⎪
⎬
⎪⎭

⎞
⎟
⎟
⎟⎠

≤ C
max{p,

√
p log |S|, log |S|}
|S| .

c!"
∗ ≤ #(k) ≤ C!"

∗,

! = ℙ
[|"i| ≤ c!#

∗
]
and ! = ℙ

[|"i| ≥ C!#
∗
]
.

!i =

{
1 if |"i| ≤ c#$

∗,
0 otherwise.
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and

By Hoeffding’s inequality (Hoeffding 1994), we then obtain

implying that

Similarly, let !i ’s be i.i.d. Bernoulli variables such that

Note that the assumption that ct < 1

2
− ! gives us

and

Then by Hoeffding inequality, we obtain

so that

k − !(n − t) ≥
n − t

2
− !(n − t) =

(1 − ct)(1 − 2!)

2
n > 0

(
k

n − t
− !

)2

(1 − ct) ≥
(
1

2
− !

)2

(1 − ct) ≥
(
1 − 2!

2

)(1 − ct − 2!

2

)
.

ℙ

[
n−t∑
i=1

!i ≥ k

]
= ℙ

[
n−t∑
i=1

!i − "(n − t) ≥ k − "(n − t)

]

≤ exp

(
−2

(
k

n − t
− "

)2

(n − t)

)

≤ exp

(
−2

(
1

2
− ct − "

)2

n

)
,

ℙ
[
!(k) ≤ c"#

∗
]
= ℙ

[
n∑
i=1

$i ≥ k

]
≤ exp

(
−2

(
1

2
− ct − "

)2

n

)
.

!i =

{
1 if |"i| ≥ C#$

∗,
0 otherwise.

n − t − k − !(n − t) > n − ctn −
n

2
− !(1 − ct)n ≥

(
1

2
− ct − !

)
n > 0,

(
1 −

k

n − t
− !

)2

(1 − ct) ≥
(
1

2
− ct − !

)2 n

n − t
≥

(
1

2
− ct − !

)2

.

ℙ

[
n−t∑
i=1

!i ≥ n − t − k

]
= ℙ

[
n−t∑
i=1

!i − "(n − t) ≥ n − t − k − "(n − t)

]

≤ exp

(
−2

(
1 −

k

n − t
− "

)2

(n − t)

)

≤ exp

(
−2

(
1

2
− ct − "

)2

n

)
,
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  ◻

Lemma 9 Suppose the assumptions of Lemma 7 hold and

and

for some constant cn ∈ (0, 1
2
) . Then the kth order statistic of |P⟂

XS
(!∗

S
+ "S)| and the kth order 

statistic of 
||||
(
1 − p

|S|

)
(!∗

S
+ "S)

|||| have differences of at most c̄
4
"∗, for any k ∈ [|S|] , with prob-

ability at least 1 − 1

n−t
.

Proof Recall that l = n − |S| . Now consider the sequences {zi = |e⊤
i
P⟂

XS
("∗

S
+ #S)|}n−li=1

 and {
wi =

||||
(
1 − p

n−l

)
(!∗

S,i
+ "S,i)

||||

}n−l

i=1

 . By the triangle inequality, we have

for i = 1,… , n − l.
Since ui is sub-Gaussian with parameter at most 

‖‖‖‖(P
⟂

XS
)i⋅ − e⊤

i

(
1 − p

n−l

)‖‖‖‖
2

2

"∗2 , we can 
upper-bound the maximum of {|ui|} . With probability at least 1 − 1

n−t
 , we have

where the last inequality follows by Lemma  7. Further note that since 
n1−2cn ≥

32C2

1−ct
log(2n) (p2 + log2 n) for some cn ∈ (0, 1

2
) , we have maxi∈S |ui| ≤ 1

ncn
!∗ .

For the vi’s, we have

ℙ
[
!(k) ≥ C"#

∗
]
≤ exp

(
−2

(
1

2
− ct − "

)2

n

)
.

n1−2cn ≥ max

{
32C2

1 − ct
log(2n) (p2 + log2 n),

(
24

c!

) 1

cn

}
,

max
i∈S

|!∗
S
| ≤ c"C

2

√
1 − ct

√
log 2n

n1∕2+cn

t
#∗,

|zi − wi| ≤
||||e

⊤
i

(
P⟂

XS
−
(
1 −

p

n − l

)
I
)
("∗

S
+ #S)

||||

≤

||||||||||

e⊤
i

(
P⟂

XS
−
(
1 −

p

n − l

)
I
)
"∗
S

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
vi

||||||||||

+

||||||||||

e⊤
i

(
P⟂

XS
−
(
1 −

p

n − l

)
I
)
#S

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ui

||||||||||

,

max
i∈S

|ui| ≤ 2
√
log 2(n − l)!∗

‖‖‖‖(P
⟂

XS
)i⋅ − e⊤

i

(
1 −

p

n − l

)‖‖‖‖2
≤ 2

√
log 2(n − l)!∗

√
n − l

‖‖‖‖P
⟂

XS
−
(
1 −

p

n − l

)‖‖‖‖max

≤ 2C
√
log 2(n − l)

(
√
p +

√
log(n − l))2

√
n − l

!∗,
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where (i) holds because |a⊤"∗
S
| ≤ ‖a‖∞‖"∗S‖∞|supp("∗S )| for any vector a, (ii) holds by 

Lemma 7, and (iii) holds by our assumption on n. Combining this with the assumption that 
maxi∈S |!∗S | ≤

c"C

4

√
1 − ct

√
log 2n n1∕2+cn

t
#∗ , we obtain maxi∈S |vi| ≤ c!

8
"∗ . Finally, using 

the fact that n ≥

(
24

c!

) 1

cn , we obtain

with probability at least 1 − 1

n−t
.

We then use the following lemma:

Lemma 10 For two sequences a1,… , an and b1,… , bn such that |ai − bi| ≤ c for some pos-
itive number c, the jth order statistics of {ai} and {bi} , denoted by !a(j) and !b(j) , satisfy

Proof Without loss of generality, suppose a1 ≤ a2 ≤ ⋯ ≤ an . If there exists j ∈ [n] such 
that inequality  (71) does not hold, then we have either aj > c + !b(j) or aj < !b(j) − c . If 
the first case occurs, we have

Pick a number z between c + !b(j) and aj . We see that at least j of the bi’s, denoted by !↓ , 
are smaller than z − c ; and at least n − j + 1 of ai’s, denoted by !↑ , are greater than z. This 
means that at most j − 1 of ai ’s are no larger than z. Note that for the !↓ , the components 
of the corresponding vector !↓ are within a distance of c, so the elements of !↓ must be at 
most z. However, this contradicts the fact that at most j − 1 of the ai ’s are at most z. This 
concludes the proof.   ◻

From Lemma 10, we can compare the order statistics of sequences {zi}ni=1 and {wi}
n
i=1

 
and conclude that they have differences of at most c̄

6
"∗ , with probability at least 1 − 1

n−t
 .  

 ◻

Lemma 11 Suppose the conditions of Lemmas  8 and  9 hold, and also 
mini∈T |!∗i | > 4

√
log(2n)"∗ . Then

with probability at least 1 − 2 exp

(
−2

(
1

2
− ct − !

)2

n

)
− 2

n−t
.

(70)

max
i∈S

|vi|
(i)

≤ t
‖‖‖‖P

⟂

XS
−
(
1 −

p

n − l

)‖‖‖‖max

max
i∈S

|!∗
S
|

(ii)

≤

√
t2

n(1 − ct)

(
√
p +

√
log(n − l))2

√
n − l

max
i∈S

|!∗
S
|

(iii)

≤
1

2C

√
1

1 − ct

t

n1∕2+cn

1√
log 2n

max
i∈S

|!∗
S
|,

|zi − wi| ≤
c!
6
"∗,

(71)|!a(j) − !b(j)| ≤ c.

an ≥ ⋯ ≥ aj > c + !b(j) ≥ c + !b(j − 1) ≥ ⋯ c + !b(1).

(
c! −

|S|
|S| − p

c!
6

)
"∗ ≤ "̂ ≤

( |S|
|S| − p

c!
6

+ C!

)
"∗,
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Proof Let MP(S) denote the median of |P⟂

XS
(!∗

S
+ "S)| . By Lemma 9, we know that MP(S) is 

close to the median of 
||||
(
1 − p

|S|

)
(!∗

S
+ "S)

|||| . Thus, it remains to analyze the median of 
{|!∗

i
+ "i|}i∈S.

Note that for j ∈ Tc , we have |!∗
j
+ "j| = |"j| . Therefore, for all j ∈ S ∩ Tc = Tc , we have 

|!∗
j
+ "i|∞ ≤ 2

√
log 2n #∗ , with probability at least 1 − 1

n
.

For i ∈ T ∩ S , by the assumption that mini∈T |!∗i | > 4
√
log 2n "∗ , we have 

|!∗
i
+ "i| ≥ |!∗

i
| − |"i| > 2

√
log 2n #∗ . Therefore, the median of |!∗

S
+ "S| is actually the kth 

order statistics of |!Tc | for some {k ∈ n−t

2
,… , n

2
} . By Lemma 9, we have

In Algorithm 1, at some iteration k, we have "̂ = |S|
|S|−pMP(S) , where S is the corresponding 

set of indices of 
(
supp("̂ (k))

)c . Thus,

Combining this with Lemma 8, we have

with probability at least 1 − 2 exp

(
−2

(
1

2
− ct − !

)2

n

)
− 2

n−t
 .   ◻

Lemma 12 Suppose n ≥ 12p,

and inequality (70) holds. Then

and for any !∗
S
 such that S ∩ T ≠ ∅ , we have

with probability at least 1 − 3

n−t
− 2 exp

(
−2

(
1

2
− ct − !

)2

n

)
.

Proof We first establish the bound on ‖P⟂

XTc
!Tc‖∞ . Note that e⊤

j
P⟂

XTc
"Tc is Gaussian with 

variance at most max
j∈Tc

(P⟂

XTc
)jj , so

with probability at least 1 − 1

n−t
 . In addition, Lemma 11 implies that

(
1 −

p

|S|
)
!(k) −

c"
6
#∗ ≤ MP(S) ≤

(
1 −

p

|S|
)
!(k) +

c"
6
#∗.

!(k) −
|S|

|S| − p

c"
6
#∗ ≤ #̂ ≤ !(k) +

|S|
|S| − p

c"
6
#∗.

(
c! −

|S|
|S| − p

c!
6

)
"∗ ≤ "̂ ≤

( |S|
|S| − p

c!
6

+ C!

)
"∗,

min
i∈T

|!∗
i
| ≥ 5

4

(
c" + 5C"

c̄

)√
log 2n $∗,

(72)‖P⟂

XTc
!Tc‖∞ <

5

2c̄

√
log 2n$̂,

(73)‖P⟂

XS
(!∗

S
+ "S)‖∞ >

5

2c̄

√
log 2n%̂,

‖P⟂

XTc
!Tc‖∞ = max

j∈Tc
|e⊤

j
P⟂

XTc
!Tc | ≤ max

j
(P⟂

XTc
)jj2

√
log 2(n − l)#∗ ≤ 2

√
log 2n #∗,
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For n ≥ 12p , we therefore conclude the bound (72).
Now consider !∗

S
 with nonzero elements, i.e., S ⊃ Tc . We have

with probability at least 1 − 1

n−t
 . We now split P⟂

XS
 into P⟂

XS
− (1 − p

n−l
)I and (1 − p

n−l
)I . By 

the triangle inequality, we have

Plugging this into the result from inequality (70), we then obtain

Therefore, we have

By the assumption that n ≥ 12p and Lemma 11, we then obtain

Thus, ‖P⟂

XS
(!∗

S
+ "S)‖∞ ≥

5

2c̄

√
log 2n %̂ if min

i∈T
|!∗

i
| satisfies

This can be further achieved according to Lemma 11 if

‖P⟂

XTc
!Tc‖∞ ≤ 2

√
log 2n

1(
−

c"
6

|S|
|S|−p + c"

) $̂ ≤ 2
√
log 2n

1(
− 1

6

|S|
|S|−p + 1

)
c̄
$̂.

‖P⟂

XS
(!∗

S
+ "S)‖∞ ≥ max

i∈S
|e⊤

i
P⟂

XS
!∗
S
| − ‖P⟂

XS
"S‖∞

≥ max
i∈S

|e⊤
i
P⟂

XS
!∗
S
| − 2

√
log 2n $∗,

max
i∈[n−l]

|||e
⊤
i
P⟂

XS
"∗
S

||| ≥ max
i∈[n−l]

||||e
⊤
i

(
1 −

p

n − l

)
I"∗

S

|||| − max
i∈[n−l]

||||e
⊤
i

(
P⟂

XS
−
(
1 −

p

n − l

)
I
)
"∗
S

||||

≥

(
1 −

p

n − l

)
‖"∗

S
‖∞ − max

i∈[n−l]

||||||||||

e⊤
i

(
P⟂

XS
−
(
1 −

p

n − l

)
I
)
"∗
S

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
vi

||||||||||

.

max
i∈[n−l]

|||e
⊤
i
P⟂

XS
"∗
S

||| ≥
(
1 −

p

n − l

)
‖"∗

S
‖∞ −

c#
8
$∗.

‖P⟂

XS
(!∗

S
+ "S)‖∞ ≥

(
1 −

p

n − t

)
min
i∈T

|!∗
i
| − (2

√
log 2n + c#∕8)$

∗.

‖P⟂

XS
(!∗

S
+ "S)‖∞ ≥

5

6
min
i∈T

|!∗
i
| − (2

√
log 2n + c#∕8)

c# −
|S|

|S|−p
c#
6

%̂

≥
5

6
min
i∈T

|!∗
i
| − (2

√
log 2n + c#∕8)

c# −
c#
5

%̂

≥
5

6
min
i∈T

|!∗
i
| − 13

6

√
log 2n

4c#
5

%̂.

min
i∈T

|!∗
i
| ≥

√
log 2n #̂

(
3

c̄
+

13

4c%

)
.

min
i∈T

|!∗
i
| ≥

√
log 2n "∗

(
3

c̄
+

13

4c$

)(
C$ +

c$
6

|S|
|S| − p

)
.
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Also note that by the assumption of mini∈T |!i| , we have

This concludes the proof.   ◻

Lemma 13 (Theorem 2.5 in Adamczak (2015)) Suppose X is a zero-mean random vector in 
ℝn satisfying the convex concentration property with constant K. Then for any fixed matrix 
A ∈ ℝn×n and any w > 0 , we have

Lemma 14 Suppose X ∈ ℝn×p has i.i.d. rows from a zero-mean distribution satisfying the 
convex concentration property with constant K. Then

with probability at least 1 − exp(−n).

Proof Note that for any fixed unit vector u ∈ ℝp , the map ! ∶ x ↦ ⟨x, u⟩ is convex and 
1-Lipschitz. Hence, by the definition of the convex concentration property, each x⊤

i
u is 

sub-Gaussian with parameter proportional to K. In fact, this is enough to show the desired 
matrix concentration result [cf. Vershynin (2010)]. We omit the details.   ◻

E Appendix for Sect. 5

In this sectopm, we provide proofs and additional details for the results in Sect. 5.

E.1 Proof of Theorem 4

We will prove a stronger results here, which implies Theorem 4. This is actually men-
tioned by Remark 2.

Theorem 6 With respect to D, the bug generator, who has attacking budgets no more than 
t, cannot fail the sign support recovery if only if (16) holds. That failure of sign support 
recovery, sign ("̂) ≠ sign ("∗) , means either "̂j ≠ 0 for some j ∈ Tc or "̂i"∗i ≤ 0 for some 
i ∈ T .

Proof of Theorem 4 We will use the following lemma to prove Theorem 4.

Lemma 15 The following two properties are equivalent:

min
i∈T

|!∗
i
| ≥ 5

4

(
c" + 5C"

c̄

)√
log 2n $∗ ≥

√
log 2n $∗

(
3

c̄
+

13

5c" − c̄

)(
C" +

c"
6

|S|
|S| − p

)
.

ℙ
(|X⊤AX − "[X⊤AX]| ≥ w

)
≤ 2 exp

(
−
1

C
min

{
w2

2K4‖A‖2
F

,
w

K2‖A‖2

})
.

‖‖‖‖‖
X⊤X

n
− !

[
X⊤X

n

]‖‖‖‖‖2
≤ c

"min(#)

2
,
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(a)  For any vector !∗ ∈ ℝd with support K, the constraint-based optimization has all 
solutions "̂  satisfying sign ("̂) = sign ("∗).

(b)  The matrix P̄(D) satisfies the restricted nullspace property with respect to K.

Proof of Lemma  15 We first prove (b) ⟹ (a) . This immediately follows Theorem  7.8 
in Wainwright (2019) since (b) ⟹ !∗ = !̂  for any vector !∗ with supp(!∗) = K , it thus 
implies (b) ⟹ sign ("̂) = sign ("∗) . Or we can show it directly as follow. Suppose (a) 
doesn’t hold. Then, we have ! ∶= "∗ − "̂ ≠ 0 . By the constraint and the objective, it also 
needs to satisfy that ! ∈ Null(P̄(D)) and

Therefore, we have

which means a nonzero ! ∈ Null(P̄) ∩ ℂA and causes a contradiction. Thus when (b) is 
true, (a) holds as well.

From now on to the end of the proof, we will abuse notation by using P̄ to represent 
P̄(D) . The remaining thing is to prove (a) ⟹ (b) . We will prove by contradiction. If (b) 
doesn’t hold, then there exists a nonzero ! such that P̄" = 0 and ‖!Kc‖1 ≤ ‖!K‖1 . We con-
sider a !∗ with !∗

K
= "K and !∗

Kc = ! . Let "̂  be the optimizer given this !∗ . By (a), we shall 
have sign ("̂) = sign ("∗) = sign

([
#K

!(n−t)×1

])
 . The idea is to construct a ! ′ that has no 

larger !1 norm than "̂  and has support not equal to K, which contradicts with (a), and there-
fore, (b) must hold.

Consider ! ′ = !̂ − c ⋅ # where c = "̂i
#i

 for i = argminj∈K
"̂j
#j

 . Since ! is a nonzero vector, 
we must have !l ≠ 0 for some l ∈ K . Therefore, we have c being positive finite, ! ′

i
= 0 and 

|"̂j| ≥ c|#j| for all j ∈ K . Therefore, we further get

as well as

where (i) is because sign ("̂K) = sign (#K), c > 0, |"̂K| ≥ c|#K| and "̂Kc = 0 , (ii) is because 
! ∈ ℂ(K) . Hence, we find a ! ′ to have smaller or equal !1 norm than "̂  . This contradicts 
with the fact that all the solutions have support K or "̂  is the optimal solution. Therefore, 
(b) must hold and (a) ⟹ (b) .   ◻

We first prove that  (16) is sufficient. For any |K| ≤ t and K ⊆ [n] , we know that 
Null(P̄(D)) ∩ ℂ(K) = {0} . Then by Proposition  15, we conclude that sign("̂) = sign("∗) 
with supp(!∗) = K for any subset K of size no more than t.

We second prove that (16) is necessary. Note that for any subset K of size less equal to t, 
we have sign ("̂) = sign ("∗) with supp(!∗) = K . By Proposition 15, it means P̄(D) satisfies 
the restricted nullspace property for any such K. Therefore Null(P̄(D)) ∩ ℂA = {!} .   ◻

‖!∗ − "‖1 = ‖!̂‖1 ≤ ‖!∗‖1 = ‖!∗
K
‖1.

‖!∗
K
‖1 − ‖"K‖1 + ‖"Kc‖1 ≤ ‖!∗

K
− "K‖1 + ‖"Kc‖1 ≤ ‖!∗

K
‖1,

P̄("∗ − " ′) = P̄("∗ − "̂ + c$) = P̄("∗ − "̂) = 0,

‖! ′‖1 = ‖!̂K − c ⋅ #K‖1 + ‖!̂Kc − c ⋅ #Kc‖1
(i)
= ‖!̂K‖1 − c‖#K‖1 + c‖#Kc‖1
(ii)

≤ ‖!̂‖1,
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Theorem 4 immediately holds from Theorem 6.

E.2 Proof of Remark 3

We will prove the statement in Remark 3 here.

Proposition 12 The subspace Null(P̄(D)) is equivalent to 
{u ∈ ℝn ∣ ∃v ∈ ℝp, such that u = Xv,XDv = 0}.

Proof of Proposition  12 We first prove 
Null(P̄(D)) ⊇ {u ∈ ℝn ∣ ∃v ∈ ℝp, such that u = Xv,XDv = 0} . Let u =

(
X +M⊤XD

)
v for 

some v ∈ ℝp , where M ∈ ℝm×p contains m rows stacked with the canonical vectors indexed 
by D so that MX = XD . We have

Besides, we have

Therefore XDv = 0, u = Xv ⟹ u ∈ Null(P̄(D)).
Secondly we prove Null(P̄(D)) ⊆ {u ∣ ∃v ∈ ℝd, such that u = Xv,XDv = 0} . Let u be 

some vector in ℕ(XD) . Then we have

and

By  (75), we have 
(
X⊤X + X⊤

D
XD

)−1
X⊤u = v for some v ∈ Null(XD) . Plugging this back 

to (74), we have u = Xv . Hence, we have u ∈ {u ∣ ∃v ∈ ℝd, such that u = Xv,XDv = 0} .  
 ◻

E.3 Proof of Theorem 5

Here we prove the proof of Theorem 5. We write the minimax MILP here again.

(
I − X

(
X⊤X + X⊤

D
XD

)−1
X⊤

)
u = u − X

(
X⊤X +

"n
m
X⊤
D
XD

)−1

X⊤
(
X +

"n
m
M⊤XD

)
v

=
"n

m
M⊤XDv.

XD

(
X⊤X +

"n
m
X⊤
D
XD

)−1

X⊤u = XD

(
X⊤X + X⊤

D
XD

)−1
X⊤

(
X +M⊤XD

)
v

= XDv.

(74)u = X
(
X⊤X + X⊤

D
XD

)−1
X⊤u,

(75)XD

(
X⊤X + X⊤

D
XD

)−1
X⊤u = 0.

(76)min
!∈{0,1}n

max
a, a+, a−, u, u+, u− ∈ ℝn, v ∈ ℝd

z,w ∈ {0, 1}n

n∑
j=1

a+
j
− a−

j
,

(77)subject to u = Xv,
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Proof of Theorem  5 We first argue that if  (83) has the unique solution of (u, v) = (!, !) , 
then (16) holds and thus the debugger can add m points indexed by D to achieve support 
recovery.

Suppose (16) doesn’t hold. Then there exists K ⊆ [n], |K| ≤ t and a nonzero vector u′ such 
that u′ = Xv,XDv = 0 and ‖u′

K
‖1 ≥ ‖u′

Kc‖1 . And u′

‖u′‖2
 satisfies ‖u′‖∞ ≤ 1 . This contradicts 

with that (83) has the unique solution of (u, v) = (!, !) , then (16) holds. This concludes our 
first part of the proof.

Now we argue that the MILP is equivalent to (83). Equation (77) is inherited from origi-
nal constraint. Equations in (78) are equivalent to a = |u| . Note that u+, u− respectively cor-
respond to the positive and negative parts of u. If zi = 0 , then u+

i
= 0 , u−

i
≤ 1 and u−

i
= −ui . 

If zi = 1 , then u−
i
= 0 , u+

i
≤ 1 and u+

i
= ui . The vector w indicates K in (83). If wi = 1 , then 

i ∈ K otherwise i ∈ Kc . Therefore, Eq. (79) restricts the attacking budget to t. Then, equa-
tions in (80) are equivalent to a+

i
= |ui|, a−i = 0 for i ∈ K and a−

i
= |ui|, a+i = 0 for i ∈ Kc . 

Therefore, the objective function corresponds to ‖uK‖1 − ‖uKc‖1.
Note that the variable in the first layer is ! . If !i = 1 , it means the debugger queries the 

point xi . And the constraint XDv = 0 is replaced by (82). This is because x⊤
i
v = 0 ⇔ ui = 0 . 

If !j = 0 , then uj just needs to satisfy |uj| ≤ 1.
Therefore, we have shown that the MILP is equivalent to (83) and thus conclude Theo-

rem 5.   ◻

Funding Funding was provided by National Science Foundation: NSF (Grant Numbers DMS-1749857, 
CCF-1740707).

(78)u = u+ − u−, a = u+ + u−, u+, u− ≥ 0, u+ ≤ z, u− ≤ (!n − z),

(79)
n∑
i=1

wi ≤ t,

(80)a+ ≤ w, a− ≤ !n − w, a = a+ + a−, a+ ≥ 0, a− ≥ 0,

(81)
n∑
i=1

!i ≤ m i = 1,… , n,

(82)u ≤ !n − !, u ≥ −(!n − !).

(83)

min
D ∈ [n],
|D| ≤ m

max
K⊆[n],|K|≤t,u∈ℝn,v∈ℝd

‖uK‖1 − ‖uKc‖1,

subject to u = Xv,XDv = 0, ‖u‖∞ ≤ 1.
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