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Abstract

We investigate problems in penalized M-estimation, inspired by applications in machine
learning debugging. Data are collected from two pools, one containing data with possibly
contaminated labels, and the other which is known to contain only cleanly labeled points.
We first formulate a general statistical algorithm for identifying buggy points and provide
rigorous theoretical guarantees when the data follow a linear model. We then propose
an algorithm for tuning parameter selection of our Lasso-based algorithm with theoreti-
cal guarantees. Finally, we consider a two-person “game” played between a bug generator
and a debugger, where the debugger can augment the contaminated data set with cleanly
labeled versions of points in the original data pool. We develop and analyze a debugging
strategy in terms of a Mixed Integer Linear Programming (MILP). Finally, we provide
empirical results to verify our theoretical results and the utility of the MILP strategy.

Keywords Robust statistics - Outlier detection - Tuning parameter selection - Optimization

1 Introduction

Modern machine learning systems are extremely sensitive to training set contamina-
tion. Since sources of error and noise are unavoidable in real-world data (e.g., due to
Mechanical Turkers, selection bias, or adversarial attacks), an urgent need has arisen
to perform automatic debugging of large data sets. Cadamuro et al. (2016), Zhang et al.
(2018) proposed a method called “machine learning debugging” to identify training
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set errors by introducing new clean data. Consider the following real-world scenario:
Company A collects movie ratings for users on a media platform, from which it learns
relationships between features of movies and ratings in order to perform future recom-
mendations. A competing company B knows A’s learning method and hires some users
to provide malicious ratings. Company A could employ a robust method for learning
contaminated data—but in the long run, it would be more effective for company A to
identify the adversarial users and prevent them from submitting additional buggy rat-
ings in the future. This distinguishes debugging from classical learning. The debug-
ging problem also assumes that company A can hire an expert to help rate movies, from
which it obtains a second trusted data set which is generally smaller than the original
data set due to budget limitations. In this paper, we will study a theoretical framework
for the machine learning debugging problem in a linear regression setting, where the
main goal is to identify bugs in the data. We will also discuss theory and algorithms for
selecting the trusted data set.

Our first contribution is to provide a rigorous theoretical framework explaining how
to identify errors in the “buggy” data pool. Specifically, we embed a squared loss term
applied to the trusted data pool into the extended Lasso algorithm proposed by Nguyen and
Tran (2013), and reformulate the objective to better service the debugging task. Borrowing
techniques from robust statistics (Huber and Ronchetti 2011; She and Owen 2011; Nguyen
and Tran 2013; Foygel and Mackey 2014; Slawski and Ben-David 2017) and leveraging
results on support recovery analysis (Wainwright 2009; Meinshausen and Yu 2009), we
provide sufficient conditions for successful debugging in linear regression. We emphasize
that our setting, involving data coming from multiple pools, has not been studied in any of
the earlier papers.

The work of Nguyen and Tran (2013), Foygel and Mackey (2014) [and more recently,
Sasai and Fujisawa (2020)] provided results for the extended Lasso with a theoretically
optimal choice of tuning parameter, which depends on the unknown noise variance in the
linear model. Our second contribution is to discuss a rigorous procedure for tuning param-
eter selection which does not require such an assumption. Specifically, our algorithm starts
from a sufficiently large initial tuning parameter that produces the all-zeros vector as an
estimator. Assuming the sufficient conditions for successful support recovery are met, this
tuning parameter selection algorithm is guaranteed to terminate with a correct choice of
tuning parameter after a logarithmic number of steps. Note that when outliers exist in the
training data set, it is improper to use cross-validation to select the tuning parameter due to
possible outliers in the validation data set.

Our third contribution considers how to design a second clean data pool, which is an
important but previously unstudied problem in machine learning debugging. We consider
a two-player “game” between a bug generator and debugger, where the bug generator per-
forms adversarial attacks (Chakraborty et al. 2018), and the debugger applies Lasso-based
linear regression to the augmented data set. On the theoretical side, we establish a suf-
ficient condition under which the debugger can always beat the bug generator, and show
how to translate this condition into a debugging strategy based on mixed integer linear
programming. Our theory is only derived in the “noiseless” setting; nonetheless, empiri-
cal simulations show that our debugging strategy also performs well in the noisy setting.
We experimentally compare our method to two other algorithms motivated by the machine
learning literature, which involve designing two neural networks, one to correct labels and
one to fit cleaned data (Veit et al. 2017); and a method based on semi-supervised learning
that weights the noisy and clean datasets differently and employs a similarity matrix based
on the graph Laplacian (Fergus et al. 2009).
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The remainder of the paper is organized as follows: Sect. 2 introduces our novel frame-
work for machine learning debugging using weighted M-estimators. Section 3 provides
theoretical guarantees for recovery of buggy data points. Section 4 presents our algorithm
for tuning parameter selection and corresponding theoretical guarantees. Section 5 dis-
cusses strategies for designing the second pool. Section 6 provides experimental results.
Section 7 concludes the paper.

Notation We write A,;,(A) and A, (A) to denote the minimum and maximum eigenval-
ues, respectively, of a matrix A. We use Null(A) to denote the nullspace of A. For subsets of
row and column indices S and T, we write Ag 7 to denote the corresponding submatrix of A.
We write ||A|| .« to denote the elementwise £ -norm, ||A||, to denote the spectral norm, and
[A]l, to denote the £ -operator norm. For a vector v € R", we write supp(v) C {1, ...,n}
to denote the support of v, and ||v||, = max |v;| to denote the maximum absolute entry. We
write ||v||, to denote the £,-norm, for p > 1. We write diag(v) to denote the n X n diago-
nal matrix with entries equal to the components of v. For S C {1, ...,n}, we write vg to
denote the |Sl-dimensional vector obtained by restricting v to S. We write [n] as shorthand
for{1,...,n}

2 Problem formulation

We first formalize the data-generating models analyzed in this paper. Suppose we have
observation pairs {(x;, ;) }_, from the contaminated linear model

Vi=x By e 1<i<n, M

where f* € R? is the unknown regression vector, y* € R” represents possible contamina-
tion in the labels, and the ¢;’s are i.i.d. sub-Gaussian noise variables with variance param-
eter 6. We also assume the x;’s are i.i.d. and x; L ¢;. This constitutes the “first pool.” Note
that the vector y* is unknown and may be generated by some adversary. If y/* = 0, the ith
point is uncontaminated and follows the usual linear model; if 7:‘* # 0, the ith point is con-
taminated/buggy. Let T' : = supp(y*) denote the indices of the buggy points, and let ¢ := |T|
denote the number of bugs.

We also assume we have a clean data set which we call the “second pool.” We observe

{(x, Y}, satisfying
Y, =% p*+€, 1<i<m, -

where the €’s are i.i.d. sub-Gaussian noise variables with parameter o2 Let L := %, and
suppose L > 1. Unlike the first pool, the data points in the second pool are all known to be
uncontaminated.

For notational convenience, we also use X € R, y € R", and ¢ € R™ to denote the
matrix/vectors containing the x;’s, y;’s, and ¢;’s, respectively. Similarly, we define the matri-
ces X € R™P Yy € R™, and € € R™. Note that g*,y*, T, ¢, and the noise parameters ¢ and
¢ are all assumed to be unknown to the debugger. In this paper, we will work in settings
where X' X is invertible.

Goal: Upon observing {(x;,y,)}._,, the debugger is allowed to design m points Xina
stochastic or deterministic manner and query their corresponding labels y, with the goal of
recovering the support of y*. We have the following definitions:
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Definition 1 An estimator 7 satisfies subset support recovery if supp(7) C supp(y*). It
satisfies exact support recovery if supp(¥) = supp(y*).

In words, when 7 satisfies subset support recovery, all estimated bugs are true bugs.
When 7 satisfies exact support recovery, the debugger correctly flags all bugs. We are
primarily interested in exact support recovery.

Weighted M-estimation Algorithm: We propose to optimize the joint objective

B eae min {5-Iv=X0- 13+ 5-F-XpE+ 40} @
where the weight parameter # > 0 determines the relative importance of the two data pools.
The objective function applies the usual squared loss to the points in the second pool and
introduces the additional variable y to help identify bugs in the first pool. Furthermore, the
¢ -penalty encourages 7 to be sparse, since we are working in settings where the number
of outliers is relatively small compared to the total number of data points. Note that the
objective function (3) may equivalently be formulated as a weighted sum of M-estimators
applied to the first and second pools, where the loss for the first pool is the robust Huber
loss and the loss for the second pool is the squared loss (cf. Proposition 4 in Appendix A).
Lasso Reformulation: Recall that our main goal is to estimate (the support of) y*
rather than f*. Thus, we will restrict our attention to y* by reformulating the objectives
appropriately. We first introduce some notation: Define the stacked vectors/matrices

() () ()
=\ . mx ) Y= my | €% me |

where X’ € RO™™*P and y',e’ € R™". For a matrix A, let P, = A(ATA)™'AT and
P =1-A(ATA)™'AT denote projection matrices onto the range of the column space of
A and its orthogonal complement, respectively. For a matrix S C [n], let M denote the
(n + m) X |S| matrix with ith column equal to the canonical vector eg ;. Thus, right-multi-
plying by M truncates a matrix to only include columns indexed by S. We have the follow-
ing useful result:

Proposition 1 The objective function

~ . 1
7 € argmin { 5-11P5Y = Ph M3+ Al } )

shares the same solution for 7 with the objective function (3).

Proposition 1, proved in Appendix B, translates the joint optimization problem (3)
into an optimization problem only involving the parameter of interest y. We provide
a discussion regarding the corresponding solution B in Appendix A for the interested
reader. Note that the optimization problem (5) corresponds to linear regression of the
vector/matrix pairs (P)l(,y’ ,P)L(,M[n]) with a Lasso penalty, inspiring us to borrow tech-
niques from high-dimensional statistics.
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3 Support recovery

The reformulation (5) allows us to analyze the machine learning debugging frame-
work through the lens of Lasso support recovery. The three key conditions we impose
to ensure support recovery are provided below. Recall that we use M, to represent the
truncation matrix indexed by 7.

Assumption 1 (Minimum Eigenvalue) Assume that there is a positive number b’ . such
that

Amin (M;P)L(/MT) 2 b:nin' (6)

Assumption 2 [Mutual Incoherence] Assume that there is a number o’ € [0, 1) such that

M. Py, Mp(M]Pu,Mp) |, < o' (7)

Assumption 3 (Gamma-Min) Assume that

L . Tpl 1T pl Tpl -1
min [y;'| > G = (M} Py Mp) ™ MIPy €l +n/1||(MTPX,MT) ”w ®)
Assumption 1 comes from a primal-dual witness argument (Wainwright 2009) to
guarantee that the minimizer 7 is unique. Assumption 2 measures a relationship between
the sets 7¢ and 7, indicating that the large number of nonbuggy covariates (i.e., 7¢) can-
not exert an overly strong effect on the subset of buggy covariates (Ravikumar et al.

1
2010). To aid intuition, consider an orthogonal design, where X = [C,[’]’[P] and

X

X= ", for some ¢ < p, and ¢,c’,¢” > 0. We use the notation I, to denoﬁepa sub-
matrix of /., with rows indexed by the set [¢]. Suppose the first 7 points are bugs, and
for simplicity, let # =m/n. Then the mutual incoherence condition requires
c<c+ (C,.I,)z, meaning that in every direction e;, the component of buggy data cannot be
too large (Compared to the nonbuggy data and the clean data. Assumption 3 lower-
bounds the minimum absolute value of elements of y. Note that A is chosen based on €',
so the right-hand expression is a function of ¢’. This assumption indeed captures the
intuition that the signal-to-noise ratio, M, needs to be sufficiently large.

We now provide two general theoremsaregarding subset support recovery and exact

support recovery.

Theorem 1 (Subset support recovery) Suppose P)i(, satisfies Assumptions 1 and 2. If the
tuning parameter satisfies

A>

2 L L Tpl iy TpL \€
> 1_w,’MT,PX,<1—PX,MT(M PL M) MTP );“m, ©)

T° X T X

then the objective (5) has a unique optimal solution 7, satisfying supp(y) C supp(y*) and
7 -7 <G

Theorem 2 (Exact support recovery) In addition to the assumptions in Theorem 1, suppose

Assumption 3 holds. Then we have a unique optimal solution 7, which satisfies exact sup-
port recovery.
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Note that we additionally need Assumption 3 to guarantee exact support recovery. This
follows the aforementioned intuition regarding the assumption. In particular, recall that €
and € are sub-Gaussian vectors with parameters 6> and o2 /L, respectively, where L > 1
(i.e., the clean data pool has smaller noise). The minimum signal strength min,cr |y;"| needs
to be at least @(cy/logn), since E[max;g,; le;]| < oy/21og(2n). Intuitively, if min;ey |77
is of constant order, it is difficult for the debugger to distinguish between random noise and
intentional contamination.

We now present two special cases to illustrate the theoretical benefits of including a
second data pool. Although Theorems 1 and 2 are stated in terms of deterministic design
matrices and error vectors € and €, the assumptions can be shown to hold with high prob-
ability in the example. We provide formal statements of the associated results in Appen-
dix C.2 and Appendix C.3.

Example 1 (Orthogonal design) Suppose Q is an orthogonal matrix with columns
q1-4y: ---»4q,. and consider the setting where X; = RQT € R* and X, = FQ' € RP?,
where R = [dlag({r Yo 1 0o t)] and F = diag({f; } 1)- Thus, points in the contaminated
first pool correspond to orthogonal vectors. Slmllarly, suppose the second pool consists of
(rescaled) columns of Q, so X = WQT € R™?, where W = diag({w;}"_,). (To visualize
this setting, one can consider Q = I as a special case.) The mutual incoherence parameter is
o' = max, ., sz Hence, o’ < 1if the weight of a contaminated point dominates the

moi

weight of a clean point in any direction, e.g., when |r;| > |f;| and w; = O; in contrast, if the
second pool includes clean points w;q; with sufficiently large |w;|, we can guarantee that
a' < 1. Furthermore,

(L2 4 2
ri(Lf; +—w.)
G’za<\/210gt+c> 1 + max

1<l<t L(fz + ””w2)2

r?
+ 126 /(\/logZ(n -H+ C)(l + max —Z>
-

I<isr f2 4 1,2

for some constant C. It is not hard to verify that G’ decreases by adding a second pool. Fur-
ther note that the behavior of the non-buggy subspace, span{g,.;, ..., q,}, is not involved
in any conditions or conclusions. Thus, our key observation is that the theoretical results
for support recovery consistency only rely on the addition of second-pool points in buggy
directions.

Example 2 (Random design) Consider a random design setting where the rows of X and X
are drawn from a common sub-Gaussian distribution with covariance X. The conditions in

Assumptions 1-3 are relaxed in the presence of a second data pool when »n and m are large
. -1 -
compared to p: First, b/ . increases by adding a second pool. Second, @’ ~ %, SO

the mutual incoherence parameter also decreases by adding a second pool. Third,

204/logt
G ~ £ + 20 max { 1, m
b 1—o mL

(tXt_ n+nn

min

XTz—IX} _1‘

where X; and X;. represent the submatrices of X with rows indexed by T and 7, respec-
tively. Note that the one-pool case corresponds to =0 and
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Xp27'XT g X, 27'\X7 g
(s = nan ) < || Tixe = n )
o0 o0

by adding a second pool. Therefore, all three assumptions are relaxed by having a second
pool, making it easier to achieve exact support recovery.

. L
, so if we choose 7 < mT, then G’ decreases

We also briefly discuss the three assumptions with respect to the weight parameter #:
Increasing # always relaxes the eigenvalue and mutual incoherence conditions, so placing
more weight on the second pool generally helps with subset support recovery. However, the
same trend does not necessarily hold for exact recovery. This is because a larger value of #
causes the lower bound (9) on A to increase, resulting in a stricter gamma-min condition.
Therefore, there is a tradeoff for selecting #.

4 Tuning parameter selection

A drawback of the results in the previous section is that the proper choice of tuning parameter
depends on a lower bound (9) which cannot be calculated without knowledge of the unknown
parameters (7, a’,¢’). The tuning parameter A determines how many outliers a debugger
detects; if A is large, then 7 contains more zeros and the algorithm detects fewer bugs. A natu-
ral question arises: In settings where the conditions for exact support recovery hold, can we
select a data-dependent tuning parameter that correctly identifies all bugs? In this section, we
propose an algorithm which answers this question in the affirmative.

4.1 Algorithm and theoretical guarantees

Our tuning parameter selection algorithm is summarized in Algorithm 1, which searches
through a range of parameter values for A, starting from a large value 4, and then halving the
parameter on each successive step until a stopping criterion is met. The intuition is as follows:
First, let A* be the right-hand expression of inequality (9). Suppose that for any value in
I =[A*,24*], support recovery holds. Then given A, > A*, the geometric series
b A .
A=1414, ERERE } must contain at least one correct parameter for exact support recovery
since A N1 # @, guaranteeing that the algorithm stops. As for the stopping criterion, let X

denoltscle the submatrix of X with rows indexed by S for 7€ C S C[n]. We have
P§S ity (1 - l;’—))] under some mild assumptions on X, in which case
P)l(sys - (1 - l”?lb(y; + €g). When 1 is large and the conditions hold for subset support
recovery but not exact recovery, we have SN T # @, so

. n _ﬂ . w A
m111|PXS)’s|Z<1 |S|><mm|yr| 52%'610'

In contrast, when S = T¢, we have

. p

When min [y7|is large enough, the task then reduces to choosing a proper threshold to dis-
tinguish the error |er. | from the bug signal |y;|, which occurs when the threshold is chosen
between max; |¢;| and min,ey [y | — max; |¢].
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Algorithm 1 Regularizer selection

Input: )\u,
Output: AE
1: C=1,k=13 = Ay.
2: while C =1 do R
3 AP € argmingern {5, |1 Px/y’ — Pt Mppyll3 + A*[lyll1}-
4: Let X (%) (%) consist of x;,y; such that i ¢ supp(5%). Let 1(¥) be the length of y*).
5: o= l(lk()k) - median <‘Px(k)y( )‘)
6: C=0if \|PJ-(k)y(k>||oo < 37 1'Vlog2ns.
7 k=k+1,0 =) k-1/2,
8: end while

With the above intuition, we now state our main result concerning exact recovery
guarantees for our algorithm. Recall that the ¢;’s are sub-Gaussian with parameter 6>

Let ¢, := £ < 1 denote the fractlon of outliers. We assume knowledge of a constant
¢ that satisfies ¢, + Plle;| < co] <3 . Note that a priori knowledge of ¢ is a less strin-
gent assumption than knowing o, smce we can always choose ¢ to be close to zero. For
instance, if we know the ¢;’s are Gaussian, we can choose ¢ < erf“l(% — ¢,); in practice,
we can usually estimate ¢, to be less than 1, so we can take ¢ = erfl(l). As shown
later, the tradeoff is that having a larger value of ¢ provides the desired guarantees under
weaker requirements on the lower bound of min,.; 7| Hence, if we know more about
the shape of the error distribution, we can be guaranteed to detect bugs of smaller mag-
nitudes. We will make the following assumption on the design matrix:

Assumption 4 There exists a p X p positive definite matrix X, with bounded minimum and
maximum eigenvalues, such that for all X appearing in the while loop of Algorithm 1, we
have

x® y-1x®OT log (3] log 1
H— —1f < emax , ,
p max p p (10)
XWTx® Amin(2)
1® o 2

where [ is the number of rows of the matrix X® and ¢ is a universal constant.

This assumption is a type of concentration result, which we will show holds w.h.p. in
some random design settings in the following proposition:

Proposition 2 Suppose the x;s are i.i.d. and satisfy any of the following additional

conditions:

(a) the x;’s are Gaussian and the spectral norm of the covariance matrix is bounded;
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(b) the x;’s are sub-Gaussian with mean zero and independent coordinates, and the spec-
tral norm of the covariance matrix is bounded; or
(c) the x;’s satisfy the convex concentration property.

Then Assumption 4 holds with probability at least 1 — O(n™").

The X matrix can be chosen as the covariance of X. In fact, Assumption 4 shows that
me is approximately a scalar matrix. We now introduce some additional notation: For
v > 0, define ¢, and C, such that v = P[|¢;| < c,c]and v = P[|¢;| > C,c]. We write G’ (1)
to denote the function of A in the right-hand expression of inequality (8). Proofs of the

theoretical results in this section are provided in Appendix D.

Theorem 3 Assume v is a constant satisfying v + ¢, < 1 Suppose Assumption 4, the mini-
mum eigenvalue condition, and the mutual incoherence condition hold. If

1 1
« | Clog2 =2,
nzmax{[%] [ = n(p2+10g2n)] } (11)
c, l-¢,
where C is an absolute constant, and
+5C
Inl%l ;| > max {G’(Z/l*),4\/log(2n o, %\/log(Zn)Qo},
i€ C

Qmwog—zn

nl /2+c (12)

17Nl <

for some c, € (0, ) then Algorithm 1 with inputs ¢ < ¢, and A, > A* will return afeastble
7 in at most 10g2 Af‘) iterations such that the Lasso estimator ¥ based on 7 satisfies

supp(?) = supp(y*), with probability at least

A’L{
ogs (3) A 1 2
1—n—_t—2]0g2<ﬁ>exp< <§—ct—v) n>

Theorem 3 guarantees exact support recovery for the output of Algorithm 1 without
knowing o. Note that compared to the gamma-min condition (8) with 1 = A*, the
required lower bound (12) only differs by a constant factor. In fact, the constant 2 inside
G'(24*) can be replaced by ans constant ¢ > 1, but Algorithm 1 will then update

Ak = Jk1/c and require log, ( iterations. Further note that larger values of ¢, trans-

late into a larger sample size requirement, as n = .Q(—C> for ¢, being close to 0. A lim-
itation of the theorem is the upper bound on ||y*||,, where ¢ needs to be smaller than n
in a nonlinear relationship. Also, n is required to be Q@p?). These two conditions are
imposed in our analysis in order to guarantee that P)l(sys - (l 5 (rg + €5). We now
present a result indicating a practical choice of A,
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Corollary 1 Define

8 max{1, %}
A =
(o) o

1Py 7l
yVlog2(n —t)———— X2 co.
n

Suppose Assumption 4, the minimum eigenvalue condition, and the mutual incoherence
condition hold. Also ”assmpe “condmons (11) and (12) hold when replacmg A* by A(o). Tak-
ing the input A, = = Myl , Algorithm 1 outputs a parameter 7 in O(log n) iterations
which provides exact sup})ort recovery, with probability at least

4<c’ log, n + max {0, % log, - })

n—t

1. 2
- 2<c' log, n + % max {0, log, YZ—Z })[2(5_“ ) "

Note that 4, can be calculated using the observed data set. Further note that the algo-
rithm is guaranteed to stop after O(log n) iterations, meaning it is sufficient to test a rela-
tively small number of candidate parameters in order to achieve exact recovery.

5 Strategy for second pool design

We now turn to the problem of designing a clean data pool. In the preceding sections, we
have discussed how a second data pool can aid exact recovery under sub-Gaussian designs.
In practice, however, it is often unreasonable to assume that new points can be drawn from
an entirely different distribution. Specifically, recall the movie rating example discussed in
Sect. 1: The expert can only rate movies in the movie pool, say {x;}}_,, whereas an arbitrar-
ily designed X, e.g., X = x, /2, is unlikely to correspond to an existing movie. Thus, we will
focus on devising a debugging strategy where the debugger is allowed to choose points for
the second pool which have the same covariates as points in the first pool.

In particular, we consider this problem in the “worst” case: suppose a bug generator can
generate any y* €' := {y € R" : supp(y)| < t} and add it to the correct labels Xf*. We
will also suppose the bug generator knows the debugger’s strategy. The debugger attempts
to add a second data pool which will ensure that all bugs are detected regardless of the
choice of y*. Our theory is limited to the noiseless case, where y = Xf* + y* and y = Xf*;
the noisy case is studied empirically in Sect. 6.3.3.

5.1 Preliminary analysis

We denote the debugger’s choice by X; = XTev(i), fori € [m], where e,;, € R" is a canoni-
cal vector and v : [m] — [n] is injective. In matrix form, we write X = X}, where D C [n]
represents the indices selected by the debugger. Assume m < p, so the debugger cannot
simply use the clean pool to obtain a good estimate of §. In the noiseless case, we can write
the debugging algorithm as follows:
1l
ﬁeRF . s (13)
subject toy =Xf+y, y=Xp.
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Similar to Propositi?n 1, given a y, we can pick f to satisfy the constraints, specifically
= (XTX +XTX ) (XT(y -+ )?W’) Eliminating f, we obtain the optimization
problem
min &(7l,
X ~r\ ! e (14)
subject to B] = [)?] (XTX +XTX) (XT(y B +XTy) + [(7)] .

Before presenting our results for support recovery, we introduce some definitions. Define
the cone set C(K) for some subset K C [n]and |K| = t:

CK) :={4eR" : || Acll, < 4kll, }- (15)

Further let C* = Uy, k1= C(K), and define

) - [l—x(xwmgxar‘f] .

Xp(XTX +X1X,) X7

Theorem 4 Suppose
Null(P(D)) n C* = {0}. (16)

Then a debugger who queries the points indexed by D cannot be beaten by any bug genera-
tor who introduces at most t bugs.

Theorem 4 suggests that Eq. (16) is a sufficient condition for support recovery for an
omnipotent bug generator who knows the subset D. As a debugger, the consequent goal
is to find such a subset D which makes Eq. (16) true. Whether such a D exists and how
to find it will be discussed in Sect. 5.2.

Remark 1 When m = n, we can verify that Null(f’(D))N= {0}, which implies that Eq. (16)
always holds. Indeed, in this case, we can simply take X = X and solve for f* explicitly to
recover y*.

Remark 2 As stated in Theorem 4, Eq. (16) is a sufficient condition for support recov-
ery. In fact, it is an if-and-only-if condition for signed support recovery: When Eq. (16)
holds, sign (7) = sign (y*); and when it does not hold, the bug generator can find a y* with
supp(y*) <t such that sign (¥) # sign (y*).

Remark 3 We can also write Null(P(D)) as
{fueR"|IveR, st u=Xv,X,v=0]}.
Let [/i\ = f* + v for some vector v € R”. From the constraint-based algorithm, we obtain

yr =X7(B" +v) + 7,
yre = Xro B +v)+ 5’\7'(-, Yp = XD(ﬂ* +v),
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which implies that ¥ = y;. — X;v and ¥ = =Xz.v, Xv = 0. Let u = Xv. Then we obtain
7 = y* — u. As can be seen, Eq. (16) requires that u = 0, which essentially implies ¥ = y*,
and thus supp(?) = supp(y*).

5.2 Optimal debugger via MILP

The above analysis is also useful in practice for providing a method for designing X.
Consider the following optimization problem:

max uelly = g
KCInl, K| <tueR" veRd el = Nl (17a)

subject to u = Xv, Xpv =0, ||lul, < 1. (17b)

By Theorem 4 and Remark 3, we immediately conclude that if the problem (17) has
the unique solution (u, v) = (0, 0), then a debugger who queries the points indexed by D
cannot be beaten by a bug generator who introduces at most ¢ bugs.

Based on this argument, we can construct a bilevel optimization problem for the
debugger to solve by further minimizing the objective (17a) with respect to D C [n]
such that |D| < m. The optimization problem can then be transformed into a minimax
MILP:

n

min max Zaf’ —a;,
cefo.1y a,a*,a” € R", = ! !
wut,um e R,y e R,
z,we {0,1}"

subject to {u =Xvu=u"—u,ut,u” >0,

a=ut+u,ut <z, u” <(1,-2), (18)

n

Zwi <t,at <Mw, a” <M1, —w),
i=1
a=a"+a,at>0,a >0,

n

Y& <mus(,-oux—1,-9.}

i=1

Theorem 5 (MILP for debugging) If the optimization problem (18) has the unique solution
(u,v) = (0,0), then the debugger can add m points indexed by D = supp(&) to achieve sup-
port recovery.

Remark 4 For more information on efficient algorithms for optimizing minimax MILPs,
we refer the reader to the references Tang et al. (2016), Xu and Wang (2014), Zeng and An
(2014).
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6 Experiments

In this section, we empirically validate our Lasso-based debugging method for support
recovery. The section is organized as follows:

e Section 6.1, corresponding to Sect. 3, contains a number of experiments which
investigate the performance of our proposed debugging formulation.

e Section 6.2, corresponding to Sect. 4, studies the proposed tuning parameter selec-
tion procedure.

e Section 6.3 studies the Lasso-based debugging method with a clean data pool,
including the proposed MILP algorithm from Sect. 5.

We also compare our proposed method to alternative methods motivated by existing
literature.

We begin with an outline of the experimental settings used in most of our
experiments:

S1 Generate the feature design matrix X € R™® by sampling each row i.i.d. from M0, 1,,,.,)

S2 Generate f* € RP, where each entry f; is drawn i.i.d. from Unif (-1, 1).

S3 Generate € € R", where each entry ¢; is drawn i.i.d. from A0, o).

S4 Generate the bug vector y*eR", where we draw
v} = (104/log(2n)e + Unif (0, 10)) - Bernoulli(+1,0.5) for i € [¢] and take y = 0 for
the remaining positions.

S5 Generate the labels by y = Xf* + ¢ + y*.

These five steps produce a synthetic dataset (X, y); we will specify the particular param-
eters (n, p, t, o) in each task. If we use a real dataset, the first step changes to [S1’]:

S1’ Given the whole data pool X

real>

uniformly sample n data points from it to construct X.

In the plot legends, we will refer to our Lasso-based debugging method as “debugging.”
We may also invoke a postprocessing step on top of debugging, called “debugging + post-
process,” which first runs the Lasso optimization algorithm to obtain 7 and an estimated
support set 7', then removes the points (X7.,y7) and runs ordinary least squares on the
remaining points to obtain B.

6.1 Support recovery

In this section, we design two experiments. The first experiment investigates the influence
of the fraction of bugs ¢, := ﬁ on the three assumptions imposed in our theory and the
resulting recovery rates. We will vary the design of X using different datasets. The second
experiment compares debugging with four alternative regression methods, using the pre-

cision-recall metric. Note that we will take the tuning parameter A = 2 V22070 o these
experiments, since the other outlier detection methods we use for comparisgn do not pro-
pose a way to perform parameter tuning. We will explore the performance of the proposed
algorithm for parameter selection in the next subsection.
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6.1.1 Number of bugs versus different measurements

Our first experiment involves four different datasets with different values of n and c,. We
track the performance of the three assumptions (Assumptions 1-3) and the subset/exact
recovery rates, which measure the fraction of experiments which result in subset/exact recov-
ery. The first dataset is generated using the synthetic mechanism described at the beginning
of Sect. 6, with p = 15. The other three datasets are chosen from the UCI Machine Learning
Repository: Combined Cycle Power Plant,' temperature forecast,” and YearPredictionMSD.?
They are all associated to regression tasks, with varying feature dimensions (4, 21, and 90,
respectively). In the temperature forecast dataset, we remove the attribute of station and date
from the original dataset, since they are discrete objects. For each of the UCI datasets, after
randomly picking n data polints from the entire data pool, we normalize the subsampled data-
i et Xij
std[X.]
The results are displayed in Fig. 1. For the minimum eigenvalue assumption, a key observa-
tion from all datasets is that the minimum eigenvalue becomes larger (improves) as n increases,
and becomes smaller as ¢, increases. For the mutual incoherence assumption, the synthetic
dataset satisfies the condition with less than 15% outliers. The Combined Cycle Power Plant
dataset has mutual incoherence close to 1 when c, is approximately 20%-25%, and the mutual
incoherence condition of the YearPredictionMSD dataset approaches 1 when c, is approxi-
mately 5%. Therefore, we see that the validity of the assumption highly depends on the design
of X. For the gamma-min condition, as c, increases, we need more obvious (larger min, |y;[)
outliers. Finally, with larger n and smaller c,, the subset/exact recovery rate improves.

set according to X ; = , where std represents the standard deviation.

6.1.2 Effectiveness for recovery

The second experiment compares our debugging method to other proposed methods in
the robust statistics literature. We compare our method with the Fast LTS (Rousseeuw and
Van Driessen 2006), E-lasso (Nguyen and Tran 2013), Simplified @-IPOD (She and Owen
2011), and Least Squares methods. E-lasso is similar to our formulation, except it includes
an additional penalty with f. The Simplified @-IPOD method iteratively uses hard thresh-
olding to eliminate the influence of outliers. For the experimental setup, we generate syn-
thetic data with n = 2000, r = 200, p = 15, and o = 0.1, but replace step [S4] by one of the
following mechanisms for generating y*:

1. We generate y;“,i € T by Bernoulli(+1,0.5) - (104/log(2n)c + Unif(0, 10)).
2. We generate f’ elementwise from Unif (—10, 10) and take y;" = xiT(ﬁ’ —-p*,ieT.

The first adversary is random, whereas the second adversary aims to attack the data by
inducing the learner to fit another hyperplane. The precision/recall for Fast LTS and Least
Squares are calculated by running the method once and applying various thresholds to clip
7. For the other three methods, we apply different tuning parameters, compute precision/
recall for each result, and finally combine them to plot a macro precision-recall curve.

In the left panel of Fig. 2, Least Squares and Fast LTS reach perfect AUC, while the
other three methods have slightly lower scores. In the right panel of Fig. 2, we see that

! http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power-+Plant.
2 http://archive.ics.uci.edu/ml/datasets/Bias+correction+of-+numerical+prediction+model+temperature+
forecast.

3 http://archive.ics.uci.edu/ml/datasets/YearPredictionMSD.
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Fig.2 Precision Recall Curves over Different Regression Methods. The two plots correspond to the two
settings described in the text for generating y*. To better view the curves, we only show the dots for every ¢
positions, where ¢ is an interger and different for different methods

debugging, E-lasso, and Fast LTS perform comparably well, and slightly better than Sim-
plified ©-IPOD. Not surprisingly, Least Squares performs somewhat worse, since it is not a
robust procedure.

6.2 Tuning parameter selection

We now present two experimental designs for tuning parameter selection. The first experi-
ment runs Algorithm 1 for both one- and two-pool cases. We will present the recovery
rates for a range of n’s and ¢,’s, showing the effectiveness of our algorithm in a variety of
situations. The second experiment compares Algorithm 1 in one- and two-pool cases to
cross-validation, which is a popular alternative for parameter tuning. Our results indicate
that Algorithm 1 outperforms cross-validation in terms of support recovery performance.

We begin by describing the method used to generate the second data pool. Given the
first data pool (X, y) and the ground-truth parameters (f*, c), we describe two pipelines to
generate the second pool. The first pipeline checks m random points of the first pool, with
steps [T1-T3]:

T1 Select m points uniformly at random from the first pool to construct X for the second
pool.

T2 Generate € € R, where each entry €, is drawn i.i.d. from A0, 6% /L).

T3 Generate the labels by ¥ = Xp* + €.

When the debugger is able to query features of clean points from a distribution Py, we can
use a second pipeline, where [T1] is replaced by [T1’]:

T1’ Independently draw m points from Py to construct X.
6.2.1 Verification of Algorithm 1

We use the default procedure for generating the synthetic dataset, with parameters p = 15,

o = 0.1, and t = ¢,n, where ¢, ranges from 0.05 to 0.4 in increments of 0.05. In all cases, we

Ly,
input¢ =0.2and 4, = % in Algorithm 1.
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Fig.3 Exact Recovery Rate over 20 Trials. The recovery rate is shown in different cases varying by fraction
of outliers ¢, and n. The left subfigure is for one-pool case and the right subfigure is for two-pool case. We
set m = 100, L = 5 for the second pool

Figure 3 displays the results for n € {1,2,3,4,5,10,20,30} - 103. First, we see that
Algorithm 1 achieves exact support recovery in all 20 trials in the yellow area. Second, the
exact recovery rate increases with increasing n and decreasing c,, showing that the algo-
rithm is particularly useful for large-scale data sets. This trend can also be seen from the
requirement on n imposed in Theorem 3. In particular, we see that the contour curve for the

L
exact recovery rate matches the curve of (1 - C,) =2 for some constant ¢, € (0, 1), How-
ever, a downside of Algorithm 1 is that it does not fully take advantage of the second pool
in the two-pool case, as the left panel and the right panel display similar results.

6.2.2 Effectiveness of tuning parameter selection

We now compare our method for tuning parameter selection to cross-validation. We also
use the postprocessing step described at the beginning of the section. Four measurements
are presented, including two recovery rates, the £,-error of ﬁ\ , and the runtime. In both the
one- and two-pool cases, we use our default methods for generating synthetic data, and we
set ¢ = 0.2 for all the experiments.

The cross-validation method for the one-pool case splits the dataset into train-
ing and testing datasets with the ratio of 8:2, then selects 4 with the smallest test error,
||le//i\ — Ysestll2- The procedure for the two-pool case is to run the Lasso-based debugging
method with a list of candidate A’s and test it on the second pool. Finally, we select the
A value with the smallest test error, ||Xﬁ —9|l,. We use 15 candidate values for A, spaced

6 2Pyl
evenly on a log scale between 107° and 4, = ——=.

Figure 4 compares the results in the one—pogl case. We note that cross-validation does
not perform very well for all the measurements except ||[f — B*|l,. Specifically, it does not
work at all for subset support recovery, since cross-validation tends to choose very small
A values. For the £,-error, we see that for small values of c¢,, our algorithm can select a
suitable choice of 4, so that after removing outliers, we can fit the remaining points very
well. This is why the debugging + postprecessing methods gives the lowest error. As ¢,
increases, our debugging method shows poorer performance in terms of support recov-
ery, resulting in larger £,-error for . Although cross-validation seems to perform well,
carefully designed adversaries may still destroy the good performance of cross-validation,
since its test dataset could be made to contain numerous buggy points.
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Fig.4 Effectiveness of Tuning Parameter Selection (One Pool). Each dot is the average result of 20 random
trials. We set n = 2000, p = 15, and 6 = 0.1

Figure 5 displays the results for the two-pool experiments, which are qualitatively simi-
lar to the results of the one-pool experiments. We emphasize that our method works well
for support recovery; furthermore, the methods exhibit comparable performance in terms
of the £,-error. The slightly larger error of our debugging method can be attributed to the
bias which arises from using an #;-norm instead of an £-norm.

6.3 Experiments with clean points

We now focus on debugging methods involving a second clean pool. We have three experi-
mental designs: First, we study the influence of m on support recovery. Second, we com-
pare debugging with alternative methods suggested in the literature. Third, we study the
performance of our proposed MILP debugger, where we compare it to three other simple
strategies. Different strategies for selecting clean points correspond to changing step [T1]
in the setup described above.

6.3.1 Number of clean points versus exact recovery

In this subsection, we present two experiments involving synthetic and YearPredic-
tionMSD datasets, respectively, to see how m affects the exact recovery rate. Recall that
the pipeline for generating the first pool is described at the beginning of Sect. 6. For the
second pool, we use steps [T’ 1, T2, T3] for the synthetic dataset, where we assume Py
is standard Gaussian. We take steps [T1-T3] for YearPredictionMSD to check the sam-
ple points in the first pool.
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Fig.6 Minimal Gamma versus Exact Recovery Rate on Synthetic Data. We run 50 trials for each dot and
compute the average

Recall that the YearPredictionMSD dataset is designed to predict the release year of
a song from audio features. The dataset consists of 515,345 songs, each with 90 audio
features. Therefore, for both experiments, we set n = 500, ¢ = 50,p = 90,0 = 0.1, and
L =10, and take 4 = 2.5 Y220,

From Fig. 6, we see that the phenomena are similar for the two different design matri-
ces. In particular, increasing the number of clean points helps with exact recovery. For
instance, in the left subfigure, for m = 0, when min, |y[.*| > 2.9, the exact recovery rate
goes to 1. For m = 100, the exact recovery rate goes to 1 when min, |y > 2.4. Also, the
slope of the curve for larger m is sharper. Thus, adding a second pool helps relax the
gamma-min condition.
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6.3.2 Comparisons to methods with clean points

In this experiment, we compare the debugging method for two pools with other methods sug-
gested by the machine learning literature. We generate synthetic data using the default first-
pool setup with n = 1000, p = 15,¢ = 100, and o = 0.1, and we run [T1-T3] to generate the
second pool using different values of m. For our proposed debugging method, we use Algo-
rithm 1 to select the tuning parameter. We compare the following methods: (1) debugging +
postprocessing, (2) least squares, (3) simplified noisy neural network, and (4) semi-supervised
y
y

The simplified noisy neural network method borrows an idea from Veit et al. (2017), which
is designed for image classification tasks for a datasets with noisy and clean points. This work
introduced two kinds of networks and combines them together: the “Label Cleaning Network,”
used to correct the labels, and the “Image Classifier,” which classifies images using CNN fea-
tures as inputs and corrected labels as outputs. Each of them is associated with a loss, and the
goal is to minimize the sum of the losses. Let w € R, #;, € R?, and #, € R? be the variables
to be optimized. For our linear regression setting, we design the “Label Cleaning Network”
by defining ¢; = y,w — xlT p, as the corrected labels for both noisy and clean datasets. Then we
define the 108S L o0 = X iccieanse 19 — YiW — xiT f, 1. The “Image Classifier” is modified to the
regression setting using predictions of x;.r p, and the squared loss. Therefore, the classification
loss can be formalized as Eclassify = Ziecleanset(xl-‘rﬂZ - j}i)z + Zienoisyset(x;‘rﬁZ - 61) Together,
the optimization problem becomes

eigvec. The least squares solution is applied using 3

min AT B I T wyi =X B+ Y By —wy, =X B
h Eidﬁ[%;w i€cleanset i€noisyset
We use gradient descent to do the optimization, and initialize it with w =0 and
p, = p, = . The optimizer [fz is used for further predictions. We then calculate
7=y-X ﬁz For gradient descent, we will validate multiple step sizes and choose the one
with the best performance on the squared loss of the clean pool.

The method “semi-supervised eigvec” is from Fergus et al. (2009), and is designed for the
semi-supervised classification problem. It also contains an experimental setting that involves
noisy and clean data. To further apply the ideas in our linear regression setting, we make the
following modifications: Define the loss function as

=i+ (1=(3)) 2(- ()

where L = D — W(e) is the graph Laplacian matrix and A is a diagonal matrix whose diag-
onal elements are A; = A for clean points and A;; = f for noisy points. In the classification
setting, f € R™™ is to be optimized. The idea is to constrain the elements of f by injecting
smoothness/similarity using the Laplacian matrix L. Since we assume the linear regression

model, we can further plug in f = § B. Our goal is then to estimate f by minimizing

J(B). As suggested in the original paper, we use the range of values
ee[0,1,1,5],c € [1,10,50], and A € [1, 10, 100]. We will evaluate all 36 possible combi-
nations and pick the one with the smallest squared loss on the clean pool.

The results are shown in Fig. 7. We observe that only the debugging method is effective
for support recovery, as we have carefully designed our method for this goal. The method
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Fig.7 Comparison to Methods involving Clean Points. Each dot is the average result of 20 random trials.
We use the synthetic data setting, with n = 500,p = 15,6 = 0.1,¢ = 0.1n, and min; Iyl.*l = 104/log2nc. The
clean data pool is randomly chosen from the first pool without replacement; we query the labels of these
chosen points

from Veit et al. (2017) works best in terms of £,-error of f, especially when m is large. The
semi-supervised method, like least squares, does not perform well, possibly because it does
not consider replacing/removing the influence of the noisy dataset.

6.3.3 Effectiveness on second pool design

We now provide experiments to investigate the design of the clean pool, corresponding
to Sect. 5. We use the Concrete Slump dataset,* where p = 7. We limit our study to small
datasets, since the runtime of the MILP optimizer is quite long. We report the performance
of the MILP debugging method in both noiseless and noisy settings. In our experiments,
we compare the performance of the MILP debugger to a random debugger and a natu-
ral debugging method: adding high-leverage points into the second pool. In other words,
D.milp selects m clean points to query from running the MILP (18); D.leverage selects
the m points with the largest values of x| (XTX)~'x;; and D.random randomly chooses m
points from the first pool without replacement. After choosing the clean pool, the debugger
applies the Lasso-based algorithm. In Zhang et al. (2018), all the second pool points are
chosen either randomly or artificially. Therefore, we may consider D.random as an imple-
mentation of the method in Zhang et al. (2018), which will be compared to our D.milp.

In the noiseless setting, we define f* to be the least squares solution computed from
all data points. We randomly select n data points as the x;’s. For D.milp and D.leverage,

4 https://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test.
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Fig.8 Comparison between D.milp and other debugging strategies in noiseless settings. Each setting is an
average over 50 random trials

since the bug generator knows their strategies or the selected D, it generates bugs accord-
ing to the optimization problem (17). Let T C [n] be the index set of the ¢ largest |u;]’s,
for i = 1,...,n. The bug generator takes y; = uy if the solution u is nonzero, and other-
wise randomly generates a subset T of size ¢ to create yy. = 1. Thus, y; = xiTﬁ* + y*. For
D.onepool, the bug generator follows the above description with D = @J. The orange bars
indicate whether the bug generator succeeds in exact recovery in the one-pool case. For
D.random, the bug generator generates bugs using the same mechanism as for D.onepool.
Note the above bug generating methods are the “worst” in the sense of signed support
recovery: The debuggers run (14) using their selected X,,. From Fig. 8, there is an obvi-
ous advantage of D.milp over D.onepool and D.leverage. This suggests improved perfor-
mance of our MILP algorithm. D.random is sometimes successful even when » and ¢ are
small because the bug generator cannot control the randomness, but it performs worse than
D.milp overall.

In the noisy setting, we define f* to be the least squares solution computed using the
entire data set. We randomly select n data points as the x;’s. For D.milp and D.leverage,
since the bug generator knows their strategies or the selected D, it generates bugs via the
optimization problem (17): taking yy. = uy if the solution u is nonzero for 7 being the indi-
ces of the largest 7 elements of lul, and otherwise randomly generating a subset 7 of size ¢ to
create y; = 1. Thus, y; = xiTﬂ* + y* + N(0,0.01). Note that having ¥y = uy if the solution u
is nonzero gives incorrect signed support recovery, which is proved in Appendix E.1. This
is related to what we have claimed in Remark 2 above. For D.onepool, the bug generator
follows the above description with D = @§. The orange bars indicate whether the bug gen-
erator succeeds in exact recovery in the one-pool case. For D.random, since it is not deter-
ministic, the bug generator does not know D and acts in the same way as in the one-pool
case. Note that the above bug generating methods are the “worst” in the sense of signed
support recovery. From Fig. 9, there is an obvious advantage of D.milp over D.onepool and
D.leverage. Our theory only guarantees the success of D.milp in the noiseless setting, so
the experimental results for the noisy setting are indeed encouraging.

Debugging in practice: The algorithm for minimax optimization has been executed
by running all (Zl) possible choices of clean points for the outer loop; for each outer
loop, we then run the inner maximization. For optimal debugging in practice, i.e., n, t,
and m being large, some recent work provides methods for efficiently solving the mini-
max MILP (Tang et al. 2016). Note that the MILP debugger can be easily combined to
other heuristic methods: one can run the MILP, and if there is a nonzero solution, we
can follow it to add clean points. Otherwise, we can switch to other methods, such as
choosing random points or high-leverage points.
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Fig.9 Comparison between MILP Strategy and Others. In each setting, we run 20 random simulations

7 Conclusion

We have developed theoretical results for machine learning debugging via M-esti-
mation and discussed sufficient conditions under which support recovery may be
achieved. As shown by our theoretical results and illustrative examples, a clean data
pool can assist debugging. We have also designed a tuning parameter algorithm which
is guaranteed to obtain exact support recovery when the design matrix satisfies a cer-
tain concentration property. Finally, we have analyzed a competitive game between the
bug generator and the debugger, and analyzed a mixed integer optimization strategy
for the debugger. Empirical results show the success of the tuning parameter algorithm
and proposed debugging strategy.

Our work raises many interesting future directions. First, the question of how to
optimally choose the weight parameter # remains open. Second, although we have
mentioned several efficient algorithms for bilevel mixed integer programming, we have
not performed a thorough comparison of these algorithms for our specific problem.
Third, although our MILP strategy for second pool design has been experimentally
found to be effective in a noisy setting, we do not have corresponding theoretical guar-
antees. Fourth, our proposed debugging strategy is a one-shot method, and designing
adaptive methods for choosing the second pool constitutes a fascinating research direc-
tion. Finally, the analysis of our tuning parameter algorithm suggests that a geometri-
cally decreasing series might be used as a grid choice for more general tuning param-
eter selection methods, e.g., cross validation—in practice, one may not need to test
candidate parameters on a large grid chosen linearly from an interval. Lastly, it would
be very interesting to extend the ideas in this work to regression or classification set-
tings where the underlying data do not follow a simple linear model.

The supplmentary materials is organized as follows: Sect. A presents some addi-
tional discussions on f. Sections B, C, D and E mainly provide proofs respectively for
problem reformulation and support recovery, tuning parameter selection and strategy
for second pool selection. They may also include additional discussions and formal
statements as referred in the main text.

A Additional discussions

We present more miscellaneous discussions here to readers who may care about /.
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Debugging connection to . Throughout this paper, we have focused on estimating y for the
purpose of debugging. A result concerning how the second pool can be used to obtain a better
estimate of f is as follows:

Proposition3 Let X = USVT and X = §VOT Let m < p. It holds that

WaB— ool < Y™
\/zo-min(S)

+ An||S72V,VSUz |l (19)

where z; is the subgradient of 171l

Proof of Proposition 3 Recall the objective function (3) is

A~ A . 1 o~ =

(B.7) €arg min {—Ily—Xﬁ—yII§+—IIy—XﬁII§+/1II7/I|1}-
B € RP, 2n 2m
y €R"

By KKT conditions of the objective function,
V= X xp -9 - IXTG-XP) = 0:
n m
1 ~ R (20)
v, = —;(y —Xp-7)+ Ad[y| =0.
Plugy=Xp*+y*+eandy = Xp* + € into (20) we obtain

- (XX + LX) - B - X =P - X Te - AXTE=0; )
n m n n m
1o o o~ 1 . A 1 ~
- =X(*=Bp—-=" =Y ——e+0[y| =0. (21b)
n n n
Mutiply X" on (21b) and plug it into (21a) we get
XTX(f - p) = z%xTam +X& 22)
Given that X = EVOT s
STSVI(B - p*) = AZVIXTol7| + V] V,Se.
n

Plugging into the SVD of X = USVT, we have
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-
i

, < A ST VEXTorR ], + 1TSS,

N
\/Zo-min (E)

o

< /1%“(§T§)‘1VOT VSUTamH2 +o

< STV VsUT| Ve VEomn®

<coy/ 22 logn ’"“(STS) 151/2” +e %
Lo i (S)

with probability at least 1 — exp(—cm). The second step is because & has subgaussian
parameter 6 /L. O

Note that when S is chosen large enough, then ||V0(ﬂA — f"|l, is controlled to a small
number. Besides, if the subspace V|, contains the buggy subspace of X7, then ||y; — y7 I, is
well controlled and we can spot the contaminated points. This, together with the orthogo-
nal design we will discuss in Sect. C.2, suggests that a successful debugging strategy may
be obtained by producing a carefully chosen interaction between the non-buggy subspace
(augmented using a second pool of clean data points) and the buggy subspace.

Related work She and Owen (2011). Without the second pool, She and Owen (2011)
demonstrated the equivalence of the solution ﬁ to the joint optimization of the objective (3)
over (f, y) to the optimum of a regression M-estimator in § with the Huber loss. This moti-
vates the question of whether the optimizer B\ of the objective (3) may similarly be viewed
as the optimum of an M-estimation problem.

Proposition 4 The solution [f of the joint optimization problem (3) is the unique optimum
of the following weighted M-estimation problem:

min { 1 Zf,u p) + 517 - XBIE |- 23)

pERP

Proof Recall the definition of the Huber loss function:

£1(0) = /1|u| ,1f|u|>k
u
k 2, if |u| < k.

We will show the desired equivalence via the KKT conditions for both objective functions.
Taking gradients with respect to f and y for the original objective function (3), we obtain
the following system of equations:

T XT(y— TTY Xy
Xx, Xo-p +n(ﬁﬂ_ _y),
n m

0= n m (24)
0=£—y_xﬁ + Asign (7). (25)

The second equation (25) has a unique solution, given by the soft-thresholding function:
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y = SoftThresh, ,(y — Xp),
where for scalars u, k € R, we have

if u| > &,

SoftThresh, (1) = { g_ Asign (u), if Jul < k

and SoftThresh, acts on vectors componentwise. Plugging back into Eq. (24), we obtain
X T X7
0= XT< p-y + SoftThreshnﬂ(y Xﬁ)) (X—Xﬂ - —y> (26)
n

We now consider the KKT conditions for the weighted M-estimator (23). Taking a gradient
with respect to f§, we obtain

T X7
Zf v 0% (Hﬁ—%> &)

The key is to note that
u—1¢" (u) = SoftThresh, , (u),
o)

T
a1l By 1 T
= (vi—x, ﬁ); = ’T + ;SoftThreshm1 (vi—xB),
from which we may infer the equivalence of Egs. (26) and (27). This concludes the proof.

|

The proposition also illustrates that the objective uses Huber loss to get the robust
estimation /? , and then imply the estimation ¥. Therefore, estimations of # and y com-
plement each other. Our reformulation more relies on giving a direct analysis of y and
its support.

B Appendix for Sect. 2
We show reformulation of the objective function in this section.

Proof of Proposition 1 Using the notation (4), we can translate (3) into

2
+ Allylly } (28)

2

L., ’ 4
k)

m

£.7) € arg min
B.7) gmir {2

First note that we can split y — X' — [0}/ ] into two parts by projecting onto the column

space of X’ and the perpendicular space:
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(o)
#(-K)

2 2

+

2
2

+
2

2

Y —X'f— [07]

m

(o)
(o)

2 2

2
2

For any value of 7, we can choose § such that Py <y’ -X'p- [07/ ] ) =0, simply by
~ " 2

taking § = (X'TX")"1x'T <y’ - [Oy ] > Hence, we get

S R

4 _||lpL 4 _|pL B2

vexp=| g = Lo (v - |7 )| = 1eb - 2202

m 2 m 2
and (28) becomes

A~ 1 PJ_ , PA 2 2 A~

v E E” vy = PY|[5 + A7l

A ' TyN=1y'T () _ 5’\

)
Therefore, the two optimization problems share the same solution for 7. a
C Appendix for Sect. 3

Notations in appendix: We write P3, 77 (o represent the submatrix of P; with rows and
column indexed by T. We write Px, T_’to represent the submatrix of P%, with rows indexed
by T and P,  to represent the submatrix of PL, with columns indexed by T. For simplic-
ity, let P = P},M|,;. We slightly abuse notation by using P and Py. to denote P, and P .,
respectively.

In this appendix, we provide proofs and additional details for the results in Sect. 3. The
proofs for fixed design are in Sect. C.1. We discuss orthogonal design in Sect. C.2 and
sub-Gaussian design in Sect. C.3. In particular, we use the two special designs to better
understand the three assumptions and see how having a clean pool helps with the support
recovery. We will call one-pool case the setting with only contaminated pool and call two-
pool case the setting with both data pools.

C.1 Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1 We follow the usual Primal Dual Witness argument for support recov-
ery in linear regression, which contains the following steps (Wainwright 2009):

1. Set%r =0.
2. Solve the oracle subproblem for (7, 27):
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~ . 1 , 2
Vr Eargyglg{zllf&y —BV||2+/1IIyI|1}, (29)

and choose 27 € 9|[7r|,. In the one data pool case, we have A = Py . and B = Py 3
in the two data pool case, we have A = P)L(,,'T and B = P,.

3. Solve Z;. via the zero-subgradient equation, and check whether the strict dual feasibility
condition holds: ||Z7. ||, < 1.

As in the usual Lasso analysis (Wainwright 2009), under the eigenvalue condition (6),
(77,0) € R" is the unique optimal solution of the Lasso, where 7; is the solution
obtained by solving the oracle subproblem (29).

The focus of our current analysis is to verify the conditions under which the strict dual
feasibility condition holds. The KKT conditions for Eq. (5) may be rewritten as

PIPr(37 —v3) — Py Pye +ni2p =0, (30)
PL.P(9r —v}) — P].Py€ +nizp. =0, 31

where 27 € |77, 27 € |[7r]| -
We will use the following equations to simplify terms later:

e PTpLe _ _ PTe!
PP, = (PLTPE) 1 < SR ) =PTPLe =P = (116, ).
Te™ X! T

Since P] P is invertible by condition (6), we can multiply Eq. (30) by (P;I_’T)_l on the left
to obtain

br—vi=PrP)'Ple’ — nA(P]Py)™' 2. (32)

Plugging this into Eq. (31), we then obtain

\ L 5T 5 [(BTh. 15 PTP 1214+ Lp
tpe = ——P] Py|(P}Py) ' Ple' — nA(P]Pp) "2 + —PJ.€,
ni ni
or
/
2. = PLP(PLP) "2+ P (1= Py(PLPp T PT ) <.
Zr T T( T T) ir T T( T T) T né (33)
u V..

We need to show that ||Z ||, < L
Note that condition (7) gives us

3o’ €[0,1), llully, = max ”PJTPT(P;PT)_Illl <d.
Furthermore, since

A> !
1—a

PL(1- P PrPpPT)S

s
0

we have
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1-a

Vil <

Combining these inequalities, we obtain strict dual feasibility:
27l < llptllee + 11Vrelloo < 1.
In addition, applying the triangle inequality to the RHS of Eq. (32), we obtain
G' = I(PiPp) ' Prelo + nAll(PLP) 27 llo 2 177 = 77l co-
This concludes the proof. a

Proof of Theorem 2 Note that
VieT, |r/l-17l <llir—7lle <G,
where the last inequality uses Theorem 1. Thus, if condition (8) also holds, we have
. R . N . ,
VieT, |7l zmin|y| =77 - r7lle 2 minr;| - G >0,

concluding the proof. O

C.2 Orthogonal design
C.2.1 Main results for orthogonal design

In this section, we focus on a special case, where our data have an orthogonal property. Let
X= [RQT

= |For
q1-925 " s F, W are diagonal matrices with diagonals f;’s and w,’s separately (i € [p]),
rpr 0 0 O
o rn 0 O
O 0 - 0
0O 0 0 r
the first ¢ points are buggy and the rest p points are nonbuggy, i.e.,
X; =RQ" € R, X,. = FQT € RP%,

Applying Theorems 1 and 2, we obtain Propositions 5 and 6.

€ REP*P X = WQT € RP?, where Q is an orthogonal matrix with columns

and R = 0 x(p=1) . We assume for all i € [p], r; # 0,f; # 0. Consider

Proposition 5 In the one-pool case, suppose we choose

20 (\/bgﬂTtH C), (34)

“n(l —a)

for some constant C > 0, and

= max |2
a_Ill%?thfi‘<l' (35)

Then the contaminzated pool is capable of achieving subset support recovery with probabil-
ity at least | _ o~ 5.
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In the two-pool case, suppose we choose

20 nn ’
zmmax{1,,/M—L}(\/1og2(n—t)+c>, (36)

for some constant C' > 0, and

r.f.
o' = max —f’ <1 37
1<i<r f2 + ;7 w2

Then aczlding clean points will achieve subset support recovery with probability at least
C/

l—e 2

As stated in Theorems 1 and 2, to ensure exact recovery, we also need to impose a
gamma-min condition. This leads to the following proposition:

Proposition 6 In the one-pool case, suppose inequality (35) holds. If also

r? r?
{r<11£1 Iy > 6(\/210gt+c){2a<x 1 +F + 12—<\/10g2(n -+ C)(l + max —’),
<i<t <i<t SIS

1

2
then there exists a A to achieve exact recovery, with probability at least | — 20,5 — ¢~ 7.

In the two-pool case, suppose n < mTL, and inequality (37) holds. If also

2 2 nn_ 2
rA(LfP + Tw?)
min |y| 20(y/2logt + ) 1+ﬂl<,m

5 (39
+ 2—"(\/10 2n-n+c)(1 +maxr+
1—-ao g <t<tf2 + ””W2 ’
then there exists a A to achieve exact recovery, with probability at least | — 26-% —e %
2 2
Compare (35) and (37). Mutual incoherence is decreased from % to r—, Com-
24 1,2 fi‘ f~+ﬂ 2
2 PR+ w?)
Th o> max it
pare (38) and (39). The second max term, ngl(xtf 1{2?<[ LTy because
r2 rl.z(fi2 + %W%) riz(Lfi2 + %W?)

Ilnax—z Z R T 2 M .2
<i<t <i<t = <i<t i
T SisSt(fS 4+ wy) sist L(f7 + w))

when L > 1. Also note that ﬁ > ﬁ Altogether, the requirement of min,, |y| is weak-
ened by introducing clean points. Thus, we see that the mutual incoherence improves in
two-pool setting. The gamma-min condition imposes a lower bound of Q(\/ log(n — t)) on
the signal-to-noise ratio, M and including second pool reduces the prefactor.

As can be seen, we want |w | to be sufficiently large compared to |f;|. However, if |w;|

is bounded, we may instead ensure support recovery by repeating points. In this section,
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we discuss the effect of repeating points and determine the number of points needed to
guarantee correct support recovery. Suppose

w, 0 0
W= 0 W, e 0
0 0 W
where w; = [w;, ..., wil,]T. For the ith direction g;, we have k; repeated points with respec-
tive weights wi, wip, ..., w;.
Proposition 7 Sup[;ose the scale of clean data points is bounded by wg. Using wyy, ..., wy,
where [, = (l::—‘|> and |w;| = wg, Vj € [[;], achieves the same effect on Conditions 1, 2,
. i

and 3 as adding a single point with scale w;.

From Proposition 7, we see that to correctly identify the bugs, we can also query
multiple points in the same direction if the leverage of a single additional point is not
large enough.

C.2.2 Proofs for orthogonal design

In this section, we first simplify the three conditions, and then provide the proofs of
Propositions 5, 6, and 7.
In the one-pool case, we have

Py = Loy = Xp(XTX)7'X]
=1, —RR'R+F'F)"'RT

= diag f12 ffz
P g

Note that P)l( ;7 is a diagonal matrix. Thus, the eigenvalues are immediately obtained and

o 1 1

A (PE.) = i )
win(Pyr) = 000 5~ = ol —
i i <Z’) +1 max; <Z‘) +1

The condition that Py is invertible is therefore equivalent to the condition that f; # 0 for
all i. Assuming this is true, we have

L L _ T Ty-1pT T Ty-1pTy-1
PL o (Pt =—F(R'R+F"F)"'R" - (I, —~RR"R+ F'F)"'RT)

di <_’_1’...’_Q)
= l 1ag h fi zxr] .

O(p—z)xt

)

The mutual incoherence condition can then be written in terms of the quantity
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rifi

|
Ji
Note that the mutual incoherence condition also implies that f; # 0, Vi, since the mutual
incoherence parameter will otherwise go to infinity.

The remaining condition is the gamma-min condition. Note that the upper bound on
the £ -error of y consists of two parts:

x|
= max
” XTT o 1<i<t

f ‘ 1<;<r

17 = 1"l < IPE )™ (P el + ]| P ™|

Regarding Py . as two blocks, ( Y7 P)l( e ) we have

1P ™ Phelle = (T P P e

Altogether, we see that
2

+nif max{ < 3 +1

G = max L >
<i<t
f;

1<i<t Cite

i

To summarize, the minimum eigenvalue condition becomes

1

Apin(PE ) = > 0;
min\" X, TT . 2 (403)
max, g, 7 +1
the mutual incoherence condition becomes
H _1” = max . a€[0,1); 40b
T - =) 1 (40b)
and the gamma-min condition becomes
r }’.2
> — )
lr1<1l1£1 ly'1>G= max|e fz €| + 14 {IELXI 7 +1 (40¢)
1

Similar calculations show that in the two-pool case, the minimum eigenvalue condi-
tion becomes

/Imm( X', 77) = min = > 0;
2 2 2 ’ 41
it r +f + r/nw max;c, fv'r»;—n s +1 @
S+ wr
the mutual incoherence condition becomes
o,
-1 i ) .
|| X', TcT ’,TT) ||oo - 11’2?<l f2 + 'I" =a € [0, 1)5 (41b)

and the gamma-min condition becomes
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min [y;| > G, (41c)

1<i<t

where

nn
L 2
G rii " +ni i +1
= max [¢; — €ipr — €| +niAl max { ——— .
(B2 Y S LAVE Iist | f2 4 1y2
i m i i i m i

Here is the proof of Proposition 5.

Proof of Proposition 5 According to Theorem 1, the subset support recovery result relies on
two conditions: the minimum eigenvalue condition and the mutual incoherence condition.
In the orthogonal design case, we will argue that both inequalities (40a) and (41a) hold in
the one-pool case, and inequlaity (37) is sufficient for both inequalities (41a) and (41b) in
the two-pool case.

For the one-pool case, the assumption (35) implies that f; # 0, , Vi € [7]. Note that the
minimum eigenvalue condition (40a) is equivalent to f; # 0, , Vi € [¢]. Hence, the mini-
mum eigenvalue condition holds. Furthermore, the mutual incoherence condition (41a)
clearly holds.

For the two-pool case, if f; =0 for some i € [7], then plugging into (37) implies that
wi2 > 0. Thus, f; and w; cannot be zero at the same time, implying that the eigenvalue con-
dition (41a) holds. Note that inequality (37) is equivalent to inequlaity (41b).

The remaining of the argument concerns the choice of 4. Note that Theorem 1 requires
A to be lower-bounded for subset recovery (see inequality (9)). Taking the two-pool case as
an example, we will show that when inequality (36) holds, inequality (9) holds with high
probability. Define

_ _ o _ !
z,=P}(1- PT(P}PT)-IP;)%, jer.

€
<1forall j€ T and ¢ = (ﬁg) has i.i.d. sub-
2 n

Gaussian entries with parameter at most max{1, %}62. Thus, Z; is sub-Gaussian with
parameter at most max{1, %}2—7 By a sub-Gaussian tail bound (cf. Lemma 1), we then
have

Note that P; <I - ]_)T(]_);}_)T)—ll‘);>

252
P max |Z]| > 6, | <2(n—1)exp "%
jere V=0 )= 2max{l,l—2}62 .

Let C’ be a constant such that

n*s? ”
2n—tyexp| ———2— | =exp ).
2max{1,%}o’2 2

8y := Smax{1, 1/ = }y/log2(n — 1) + C”.
n mL

and define
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Note that we want

2 max... |Z;|
JET 17 <A

1-ao

which therefore occurs with probability at least | _ e_# when

26 nn ( ,) 26,
2> —= max{l,1/ L} (Vieg2n—n+C') > 2
20—y Mty o Viee 2 =D + I—o

The proof for the one-pool case is similar, so we omit the details. O
Here is the proof of Proposition 6.

Proof of Proposition 6 To simplify notation, define

Lrw,
r‘-fi m i

=€ —
i i €ite — €.
f2 nn 2 f2 nn W2

Note that y; is ¢, -sub-Gaussian and v, is o, -sub-Gaussian, with variance parameters

207242 4 M2
ri(Lfi+mwl.)6
2042 nn_ 2\o
LA(f; + W)

We now prove two technical lemmas:

Lemma 1 (Concentration for non-identical sub-Gaussian random variables) Suppose
{u; }l , are o, -sub-Gaussian random variables and {v, } are O'Vi-sub-Gaussian random
variables. Then the following inequalities hold:
52
P<max|u,.| >5,> <rexp| -——————— |, (42)

2
1<i<t 2max; ¢, o,

2
61

2
2max, ¢, o,

P<€2?5)(rlvi| > 51> L2texp| - (43)

Proof Note that

max |u;| = max u;,
1<i<t 1<i<2t
where u,,; := —u;, forl <i <t. By a union bound, we have

@ Springer



Machine Learning

P( U {u; > 51}>
1<i<2t

P<max ;| > 51>
1<i<t

< Z P(ui > 51)
1<i<2t

= Z P(u,- > 51) + Z P(um- > 61)
1<i<t 1<i<t

=) Pl 28,)+ ) Plu; <=5)).
1<i<t 1<i<rt

For each u;, we have the tail bounds

5 52
P(ui>5l)5exp<—ﬁ . P(u; < —8,) < exp —ﬁ)
u; u;

Altogether, we see that

52 82
Pl max |y >6,) <2 Y exp| —— ) <2texp| ———— |
<l<i<t| | 1) - 1;« p< 202 > - p( 2 max, g, 02 >

Similarly, we may obtain the desired concentration inequality for the v;’s:

52
P| max |v;| > 6, ) <2texp -— 1 ).
1<i<t 2max,;, 62

O
Lemma 2 In the one-pool case, under the orthogonal design setting, suppose
P
. * 1
min [7;] > (\/E\/logt+cl)€rglsxtaui +ni 1+{2?;f2 , (44)
1

[
where oy, = 1+ f—;o-. Then the gamma-min condition holds with probability at least
1-2e/2 '

In the two-pool case, suppose

r?
1n<1121 ly?l > (\/Es/logt + cz)llgaz; o, + n/1<1 + max —’> 45)
<i<t <i<t !

ielr] fi2 + ﬂwl_Z
m

AL+ w?)

m__i

Lz(fi2+%wlz)2

where o, = 0. Then the gamma-min condition holds with probability at

least1 — 2e™%/2,

We use inequality (42) in Lemma 1.,Let §; = 4/2log?+ ¢ max, ., o, Where
¢, € (0, +00). Then with probability 1 — 2¢™ 2, the following holds:
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max|u | < \/210gt+c%{naxau, < (\/210gt+c1){naxau,.
<i<i i <i<t U

1<i<

In inequality (43), jtake 6, = 4/2logt + cg max, g, 6, where ¢, € (0,+00). Then with
probability 1 — 26_72, the following holds:

max [v;| < 4/2logt+ c% maxo,, < (y2logt+ cz){rgsxtavl.
Combining these inequalities WltthOIldlthIlS (40c) and (410) we obtain G < min,g, |g/ |
with probability at least 1 —2e” 2 or at least 1 —2¢7 7. Specifically, when we choose
¢, =c¢, =2.72, we can achieve a probability guarantee of at least 95% for the two
statements.

Therefore, Proposition 6 is proved by plugging the results from Lemma 1 into
Lemma 2. O

Here is the proof of Proposition 7.

Proof of Proposition 7 We will prove the proposition by comparing the three conditions in
the two situations: adding one clean point and repeating multiple clean points. The condi-
tions for adding one clean point are already provided in inequalities (41a), (41b) and (41c)
above.

We now provide the conditions for repeating multiple clean points. The minimum eigen-
value condition becomes

n f2 + Zl’ W2 1
Amin(Pyo ) = 1n<l:g 242 m gk 2 - 2 : (462)
U o e e ZJ 1 max, g, ———— +1
- f +2'1 f

the mutual incoherence condition becomes

-
P, (P, ‘1” = max - ;
” X T(T( ’TT) o 1<i<t f2+ nn W2 (46b)
m ] 1
and the gamma-min condition becomes
rif; & €
i T lj i+t+p+j
17 - ylloo<lg§<>§€+—2 — ¢ Z —
f + m ZZ 1 J=1 m Z:] lw
(46¢)
r?
+ni rnax{—'}+1 )

1<i<t f2 + nn Zji 1W2

Compared w1th mequlames (41a), (41b) and (41c), conditions (46a), (46b) and (46¢)
replace w by Z - w . Suppose the scale of the clean data points is bounded by wj,. Then
adding one data pomt may not be enough to satisfy the three conditions. Thus, to achieve
the same effect of a large scaled |w;| in inequalities (41a), (41b) and (41c), we need the

number of repeated clean points to be at least ( l‘:v l ) . a
'B
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Table 1 Comparison between the two cases

Condition One-pool case Two-pool case
Eigenvalue 1. (pL -b 1 (pL -y >b
min\ * X 7T 'min min\* x’ 77 ) = “min = “min
M — —1yT
Mutual incoherence | = Xpe((n = )™ X] || I-Xpe (=0 2)"' X] |l
L4y
Gamma-min mini |}’,-*| > 20 ](LgHM\ﬁ min[ |y;<| > 25\/1(;g[t+nl\ﬂ

C.3 Sub-Gaussian design

In this section, we will present the support recovery results for sub-Gaussian design in
Proposition 8 and Proposition 9, and the comparisons of the three conditions in the one-
and two-pool cases in Table 1. Later, we will provide the proofs of the propositions.

C.3.1 Main results for sub-Gausian design

Proposition 8 Suppose {x;},cr. and {x; }iepmp are L.i.d. sub-Gaussian with parameter o-f and
covariance matrix X > 0 Further assume that || X;||, < By. For the one-pool case, sup-
pose we choose A to satisfy inequality (34) and the sample size satisfies

4c c (p+C )||Z||2

n>t+max{p+C1,

Ain(Z) ’ @
7
2¢,02(1 21, By
1=1, + c,02(logn + /plo n)) 1+ :
\f(\/p 2+ cy0%(logn + y/plog e )i

then the contaminated pool achieves subset support recovery with probability at least
1—e 5 —2e ¢ — p~(e-D.

For the two-pool case, assume we choose A to satisfy (36) and the sample sizes satisfy

t 2c,62|1 2| B
n> max{t+m,ﬁ + i(\/p||2||2 +c2¢7§(logn+ \/plOgn))(l i Lk ) P }

1 + r’ mm(z) mm(z)
(48)
and

m > max{1,4ciol || ZI3}(p + C)).

Then aglding clean points achieves subset support recovery with probability at least

l—e T —2¢C — @D

As seen in Proposition 8, the number of data points n may be reduced by 1 + # with the
introduction of a second data pool.
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Note that when T is randomly chosen from [n], we have By = O(\/E||Z||2), S0 ine-
qualities (47) and (48) require ﬁ to be upper-bounded, and adding a second pool may
weaker the upper bound to be (1 + 7) than the upper bound for one-pool case.

We now present a result concerning exact support recovery:

Proposition 9 In the one-pool case, suppose inequality (47) holds. If

2
(26\/Iogt oy 22V (Viog2( =1+ C)) (49)

(I-o

. 1
min |y’| >
i€T |7, I= bin

then there extsts a A to achieve exact recovery with probability at least

1 —2e¢—e" s —2¢C — G

For the two-pool case, suppose the assumptions in Proposition 8 hold, and

niy bl (20’\/10gt+c+(1 ,/ %) log2(n—t)+C’>>

min
(50)
Then there exists a A to achieve exact recovery with probability at least

_c”?
1-2¢C—e¢7 =2 C —pC

Compared to Propositions 8, 9 additionally requires the “signal-to-noise” ratio to
be large enough. We can show that b;, < b' ; thus, for an appropriate choice of 7,
the lower bound (49) is smaller than the bound (50), so the gamma-min condition is
improved.

We now briefly compare the three conditions for the one- and two-pool cases in the ran-
dom design setting.

In general, the eigenvalue condition is improved by adding a second pool. The mutual
incoherence condition is 1mproved in the two pool case with large m by a constant multi-
phe
P oS

min

For the eigenvalue condition, the key result is that adding clean data points will not
hurt, i.e., it makes the minimum eigenvalue smaller. A formal statement is provided in
Proposition 10. Recall that

L _ Tyry-1
Py =1 =X, (XXX,
Py =1 =X, XTX)7'X],
X
where X’ = wy | and we assume that X" X is invertible.
m
Proposition 10 (Comparison of minimum eigenvalue conditions) We have

Amin(P;,TT) > j'min(P}L(,Tr)'

Note that the result of Proposition 10 does not require any assumptions on X or 7.
However, the degree of improvement depends on #, as seen in the proof. Usually when n
is small, increasing # leads to a big jump of the minimum eigenvalue; when n is large,
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Fig. 10 How does # influ- 1
ence the minimum eigenvalue
condition? The x-axis is the
weight parameter 7 and the 0.8
Y-axis is Ay, (Py, 7). We take

t=15,p=20,and m = 5, and g 07

vary n from 30 to 500. Both P
pools are drawn randomly from @

N(O,1) © 05
£

E 04
=

Eos

0.2

0.1

—&—n =30

increasing # does not change the minimum eigenvalue much. A typical relationship

between # and A, <P)l(, -

) can be seen in Fig. 10.

For mutual incoherence condition, it is possible to find settings for small m that
make the mutual incoherence condition worse. Consider the following example:

Example 3 (Example where the mutual incoherence condition worsens) Suppose

~1.8271
Xr = [ 0.3020

—1.7680
—-0.5750
—0.6693
-0.3271
0.6177
—0.7001

_[-1.8722
= [-0.9036

XT" =

X

Then

—1.6954
—1.4817

—0.0863

—1.1013

—0.6413
0.3060
0.3941
2.3465

0.5154
0.6064

—1.1000]
—0.2284)

1.6822 |
0.4749
0.6126
-1.0068
—2.6407

0.4309

0.1560
—0.2540( °

IPg 707 Py )" Nl = 0.96 < 1 < 1Py 77 (P 1) ' lloo = 1.28.

Despite this negative example, we can show that including a second pool helps when
m is large compared to p. Recalling the assumption that XICXT(- is invertible, we can

write
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-1

- -1 -1
Pl (P ™ = =X (X X0 + X1 X0 )™ XT (1= X0 (X7 X + X7.X0)'XT )
= —Xp (X7 Xp + X7 X0 ) "X (14 X, (X)X ) 7'XT )
1 _ -1 1
= X (XX ) (XX )™+ 1) (14 XX (XX ) )]
X7 (X7 X)X
&1y
The first equality uses the definitions of P)l( rop and P , the second equality uses the

Woodbury matrix identity (Henderson and Searle 1981) and the third equality follows
from simple linear algebraic manipulations.

Similarly, we can simpllfy the mutual incoherence condition for the two-pool case, by
replacing X Xre with X Xre +11— XTX in the inverse:

1 —
Py, T‘T(P ' TT)

1
X (X Xy +1XR) X (52)
where we know that XT Xpe +1— XTX must be invertible since X Xr.1s invertible.
Given these s1mp11ﬁcat10ns itis easy to see that the dlfference between these two terms
lies in the middle inverses. When m is large, we have (X Xre)™ 'm((n—10)X)"" and

1
(X Xre + n- LXTX ) ~((n—t+ rm)Z)_ , where X is the covariance matrix for the com-

mon dlstrlbutlon of X;. and X. Therefore, the mutual incoherence parameter in the one-
pool case is flpproximately equal to the mutual incoherence in the two-pool case scaled by

(1 + nf:) , which immediately implies that adding a second data pool improves the
mutual incoherence condition. This is stated formally in the following proposition:

Proposition 11 (Companson of mutual incoherence conditions) Let By = 0(\/ t). In the

+CPIZI?
one-pool case, if n > t + %,men

‘min

© [ (35X )_IX;“m‘ = 0(ttn =7 (y/p + Viogn) ),
with high probability.

X —X1|| -
n—t"T|,

el ZI?

In the two-pool case, ifn >t + max{
2 4 2
m > max{1,ciol(p + C)HIZ||5}, then

l}mandm > max{1, 2o’ (p + )| Z|12)

L T _ T a T ! T — _ -1
H Xpo e X (X Xy + ! X X) XJ w‘ - 0<t(n ) (b + \/logn)>,
with high probability.

Proposition 11 states that when m”and n rlre sufficiently large, the one-pool mutual

incoherence parameter is close to and the two-pool mutual incoherence
[|X;c0x

T;””"" Since the second expression has a larger denominator,

the mutual incoherence condition improves with the introduction of a second data pool
with parameter # > 0.

parameter is close to
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For gamma-min condition, we need to compare the terms G and G’. Note that ine-
qualities (49) and (50) are equivalent to lower-bounding the “signal-to-noise” ratio. The
order of the lower bound for two-pool case is as same as the one-pool case, i.e.,
min 71 > 0(\/tlog n). However adding a second pool improves the constant by having a
factor of b— instead of —. As established in Proposition 10, we have b,;, < b’ . . There-

min =

'min

fore, the lower bound in the two- pool case is smaller than the lower bound in the one-
pool case.

Note that the weight parameter # shows up in all the three conditions. However,
recall that the mutual incoherence condition is not always improved by adding a second
pool, unless m is sufficiently large. Therefore, an appropriate conclusion is that once
we have a large clean data pool, it is reasonable to place arbitrarily large weight on the
second pool. On the other hand, if we have fewer clean data points, we cannot be as
confident about the estimator obtained using the second pool alone. For example, in
the orthogonal design, if we obtain clean points in the non-buggy subspace, the mutual
incoherence condition is not improved no matter how large we make #. In addition, the
gamma-min condition involves the randomness from noise, and in order to control the
sparsity of y, we need the regularizer A to match large # [cf, inequality (36)]. Based on
inequality (50), we need the “signal-to-noise” ratio, i.e., M to be sufficient large. If #
is too large, we cannot estimate relatively small components of y*. In summary, select-
ing #n too large or too small is not wise: If # is too small, we do not improve the three
conditions, whereas if # is too large, the range of controllable “signal-to-noise” ratios
decays.

C.3.2 Proofs for sub-Gaussian design

In this section, we provide proofs of sub-Gaussian design. Here is the proof of
Proposition 8.

Proof of Proposition 8 We prove the results for the one- and two-pool cases sequentially. In
each case, we begin with background calculations, and then analyze the eigenvalue condi-
tion followed by the mutual incoherence condition.

For 2the one-pool case, we know that A satisfies inequality (34) with probability at least

1—e 2
Note that x;, j € T° are sub-Gaussian random vectors with parameter o,. By Theo-
rem 4.7.1 and Exerc1se 4.7.3 in Vershynin (2018) and our assumption of n, we have

+C
Y L (53)

2

HZ X7 X

n—t

with probability at least 1 — e~¢1. We will later use this bound multiple times to establish
the eigenvalue condition and the mutual incoherence condition.

We first consider the eigenvalue condition. By the dual Weyl’s inequality (Horn and
Johnson 1994), we have 4, (A + B) > A.,,,(A) + A,;,(B) for any square matrices A and B.
Then

min min min
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XT X X1 X
T T T T
imin<n_t)=imin<n_t _Z+Z>
X Xz
= mm(z) + A’mm( l:—l‘ - Z)

X1 X7

—t

(2) -

il

2
(A) < A, (A) f(4)r any square
matrix A. Combining this with inequality (53) and taking n > t+4w by

‘min

- mm

where the second inequality follows from the fact that A, max

assumption (47), we have that

X7 X
imin n—t Z mm

with probability 1 — e~€1. We now derive the following result:

”2”2 = 2 mm(Z) > 0 (54)

Lemma 3 Suppose X] Xy is invertible, where X; € R™? and X;. € R"™"?_Then

max(X XT)
in (Pl ) 2 1= T
XTXp) + 4

max min (

>
TcXTL')
implying that the eigenvalue condition for the one-pool case holds.

Proof Define C=Q(U+Q70)'Q" and Q € R®”, and suppose rank(Q) = r. Let

Q = USVT be the SVD, where U € R,V € RPP, and § = e Orxpn) . Here, J
0([ r)Xr O(t r)X(p—r)
is a diagonal matrix of positive singular values. Then

C=USVTU+VSTsVvHlvsTuT
=USUI +STS)IsTUT

2
=U [ J Orx(p—r) :| (I+‘I )rxlr Orx(p—r) ] . [ ‘]r><r 0r><(p—r) :| UT
O(t—r)xr O(I—r)x(p—r) O(t ryxr I(p—r)x(p—r) O(I—r)xr O(I—r)x(p—r)

(‘I(I+J2)_]J)r><r Orx(p—r) ] UT.
O(t—r)xr O(p—r)x(p—r)

=U

(55)

2
a: . . . . .
C)= ﬁ where a,,, is the maximum singular value appearing in J.

Therefore, A
Also note that afnax is the ;‘r;xaximum eigenvalue of QT Q.

Following (16.51) in Seber (2008), given X;—L,XT(. is invertible, there exists a non-singular
matrix A such that AX] X; AT = I and AX]X;AT = D, where D is diagonal matrix.

Note that

max(
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Xr (X, Xy + X X7 7' X] = XpAT(AX X7 + Xp XA T AX]
= X;AT(AX, X, AT + DAX]
=00Q'0+n7'0",
where Q := X,AT.
Based on our earlier arggmeITlts, we know that the matrix under consideration has maxi-
Aax (AXTX7AT) . S
W’Tq;ﬂ“)' Since AX]X;AT is similar to XJX;ATA, we
haved,, . (AX]X;AT) = Ay, (X] X;ATA). Furthermore, we have ATA = (X] X)), imply-
ing that

mum eigenvalue

max

Amax AXFX7AT) = Ao X] X7 (X X7)™h)

”X;XT(X;XT()”VHZ
< max 3 2 - max 3
v ”(X—TFCXTF)_IVHZ v ||V||2
ﬁmax(XyTXT)
B imin(X]-l:rXT")

g1 o

Altogether, we have

_ 1
/1m.x(X XT X, + X1 X IXT) <

o ( Xr (X7 X7 + X7, T) T 1+,1;1LX(X;XT(X;XT[)“)
o GO
S
T+

/lmux

Finally, we may conclude that

-1
A‘min (Pi(_TT> = Amin (I - XT(X;:XT + X-IT—“XT") XY-l:)
=1-A, (XT (XIX, +XLX5) ' XT )
1

z1- Amin X7 Xpc)
min (Xpe X7e
1+ Amax(X-TrX’l')
_1_ /lmax(X;XT)
j’max()(;‘r)(T) + Amin(x;l“—rXTf) '
Since Ay, (X Xpe) > 0, we have 4., (Pf( 77) < 1, implying the desired result. O

‘We now consider the mutual incoherence condition. By the triangle inequality, we have
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1 T
+—||X .OX ||
n-—t T Tleo

| —
@

We bound (D) and (2) separately. Note that

1
T X] Xpe T
x; <@ - ( — ) >XT

n—t

-1

X1 X7

n—t

In order to bound (I), we bound three parts separately. By assumption, we have
”XT“ < By. For max;cr. ||x;||,, we leverage the Hanson-Wright inequality (Theorem 6.2.1

max;ere

D=

Vi
max ||y, (/@

n—t jere

<

[

in Vershynin (2018)) and a union bound. By the Hanson-Wright inequality, we see that for

t>0,
P(||X 15— ELllx; 1131 > t) < exp{ —cmin —tz L
s T2 P o*p’ o2 ’

where c is an absolute constant.
By a union bound, we then have

2 — 2 2
P<5,2f;3< llx;llo > 4/ ELllx 1151 + A> = P<522}3,< llx;l15 = Efllx; 1151 + A)

<3 P(lIx 13 > Elllx; 1131 + 4)
Jjere

2
<(n—1t)exp {—cmin <A—, A) }
oip o?

= (,0; max{4/plogn,logn} with ¢, >1 so that we have
} > ¢, logn, we conclude that

max llx;1l> < /Elllx; 1131 + 4
< \trace(Z) + A 67
< VPIZI, +c07(logn + V/plogn),
with probability at least 1 — n~2~D, where ¢, > max{2,2/c}.
To bound ||® — <ant" > 1

Settlng A
4
2

64’

, note that for two matrices A and B, we have
2
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lIA - Bll,
mln(A)Amm( )
Combining this fact with inequalities (53) and (54), we obtain

o -5, <

X X X X
1 P L 2z - =X
H@— <XTXT‘> ” "l ” "l
n—t - X7 Xpe\ T 2 (x
2 i i (25 Ain () .
2¢,024/ 22| 2],
2
ﬂmm(z)
Altogether, we obtain the bound
Vi 2e1024/ 2|12
@< —(\/p||2||2 + cy02(logn + \/plogn)) — B (59)
We now consider (2). Note that
[xrexz],
= max ||xT ©X] |,
n—t n—tjerc
Vi
v T T 60
< max ] 11Ol 1X 1 60
Vi 1
=— 2|, + c,0%(logn + 4/p1 ) - ———B;.
oo (VPIZTL + eaotogn + Vplogm)) - -8y
Therefore,
\/— 2610'2 p+C1 ”2”2 BT
D+@ < —(\/p||2||2 +cy02(logn + \/plogn)> 1+ (2) 5

Finally, assuming n satisfies the bound (47), and taking a union bound over all the prob-
abilistic statements appearing above, we conclude that the mutual incoherence condition

holds with probability at least | — e*%z —2¢-C1 — p—(c=D. This concludes the proof.
For the two-pool case, we will use the following inequalities:

XTI X p+C
T Te 1
H - Sclai\/ 1 Z1l,,
n—t n—t
2
YTY p+C
Hz_ﬁ <co} LI 2L,
m 2

with probablity at least 1 — 2¢=C

I. Combining these inequalities and using the triangle ine-
quality, we obtain
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T myTy T ~ ~
Z_XTLXT‘ XX n—t _ XrXre nn _X'X
n—t+nn T n—t+nn n—t |, n—t+nn m |,
2
— p+C' n p+C,
< 0?2l = Lt eyo2) Sl —— '
n—t+nn n—t * n—t+nn m
'
p+C

nxt+m 2
< 20,0121,

s

(61)
with probability at least 1 — 2¢~CI. o
Analogous to Lemma 3, we can conclude that if X;XT + %XTX is invertible, the
eigenvalue condition satisfies

A X1 X7)
Ain(P ) = 1 = Ll > 0.

D OFX7) + (XX + 2XTR)

(This can be proved just by replacing X/ X with X] Xy + %}NKT}N( in the proof of
Lemma 3.) However, since we further wish to bound the minimum eigenvalue from below
by Ain(2)/2, to match the one-pool case and to be used in the proof for the mutual inco-
herence condition later, we will consider X, Xr. + %)N(T)N( directly.

Note that

XT Xy + XX X] Xy + XX
Amin = — |1 = j’min e D )
n—t+nn n—t+mnn

X Xy + 2XTX
2 Amin -

-2 |+ 1,2
n—t+nn ) min(>)

XJ Xy + %T(T}?
Z Amin(z) - W -2
2

Thus, if we choose m > 4c26(p + C})|| 2|13, we have

. X1 Xp + ZXTX
min n—t+nn

1
> —1.:.(2) >0,
>—2 mm( )>

with probability at least 1 — 2¢=C1.
We now consider the mutual incoherence condition. Similar to the derivation of ine-
quality (58), we have that
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-1

XTXT(+'7"XTX
o- ——— <
n—t+nn

2

X X,4+n XTX
(14+m)n—t

2

X»,-L»+r/%)?T)?
mm(z)/lmm< (it >

> 1121l

p+C’
<2 IGXAZ 5 .

min

Combining this with inequality (57), we obtain

~e -1
T XjXpe+ZXTX T
X7 OX; — X <—n_t+ﬂn X;
o0
n—t+nn
~en -1
XTI Xpe+2XTX
max x.T<@— (L> >XT
jere (|77 n—t+nn T
_ 1
B n—t+nn
~~ -l
X7 Xre + ZXTX
m T
Tyt o gt I 1
—t+nn jere n—t+nn 2
2
Vi I=l, [p+C
< t—+<\/p||2||2 + czaz(logn + \/plogn)> 2¢, ’%Az (;) LB,.

min

Therefore, together with the triangle inequality and inequality (60), we can bound the
mutual incoherence parameter as follows:

~e~\ —1
X Xpe+ZXTX
7T T
XT(( bal

n—t+nn
(s
n—t+nn
~en =1
X Xpe+2XTX
T _ redret, T
XTL@XT Xre <—n_t+ﬂn ) XT ”XT,.@XT”
T (s
- n—t+nn n—t+nn

\/;

T n—t+nn

o2 IIZIIz

[p+C/| B
mln (Z) mm(z)

By the assumption on n in i}zlequality (48), the mutual incoherence condition therefore
holds with probability | — p=5 — 2,-C} _ ;;~(-D. |
Here is the proof of Proposition 9.

(\/p||2||2 +cy0; (10gn+ \/plogn)) 1 +2c0;

Proof of Proposition 9 To achieve exact support recovery, we need all the three conditions
to hold. The eigenvalue condition and the mutual incoherence condition have already been
discussed in the analysis of subset support recovery in “Appendix 8”, so it remains to ana-
lyze the gamma-min condition.

Recall that
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G = Py )7 Pl oo + 1| Py )™
To simplify notation, we define

A= P )

'P Phelle, B :=”’1“(Pl'ﬂ)_1Hoo

We also define the random variables

lPL PJ_ /.

. T(plL
Z; i=¢; Py qp)” Py p.Px€

1

Since PL is a projection matrix and the maximum singular value of Pi, _is smaller than
the maximum singular value of P ,’s, we have

[t PP g | <, <

for all i € T. Note that Z; is a zero-mean sub-Gaussian random variable with parameter at
most ——. By a sub-Gaussian tail bound, we then have

_2
P<1<<t o (\/2logt+A>> <277,

min

h/

‘min

Therefore, with probability at least 1 —2¢7™¢, we have A < Zoylogite Vlogm. Note that

l(PL, TT)‘lll \/— [l(PL, TT) ", = \[ . We can then immediately obtain the bound
B < 2/t i
‘min 2o m — ,
> 2 max {1,\/2}(Viog2( =+ C'), we then
obtain
’ 1 20—\/; nn '
¢ < o ( 20vlogi+ e+ o ™ b o <\/10g2(n—t)+C> :
) - m
min

Thus, as long as min,y |y/"| is greater than or equal to the RHS of the inequality above, the
gamma-min condition holds with probability at least | — 9~ _ e—#. Consequently, the
exact support recovery is achieved.

The proof of the one-pool case is similar as the proof of the two-pool case provided
above, so we omit the details here. O

Here is the proof of Proposition 10

Proof Proof of Proposition 10
By the Sherman—-Morrison—Woodbury formula (Henderson and Searle 1981), we have

~r~\ 1
X, (XTX + @XTX) X7
(62)

-1,T
X7

= X, (X7X)7'x] - 2x, (xTx) TR T+ EX 0 X)X (X7X)
m m

We now state and prove two useful lemmas:
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Lemma 4 Assume XX is invertible. Define

1

A =X (XTX) X0+ PR X X (XTx) T X
m

Then A;,(A) > 0. Equality holds when )N((XTX)_IX; is not full-rank.

‘min
Proof First note that since X'X is invertible and X(XTX)"!XT > 0, the matrix
I+ %X(XTX)‘IXT is invertible. Note that

VyeR #0, y'Ay>0,

so the minimum eigenvalue of A is nonnegative. ~
In order to study when the A, =0, let z=X (XTx ) 'XTy. When y#0 and
X (XTX) XT is full-rank, we have z # 0. Thus, if X (XTX) XTT1s full-rank, we have
Amin(A) > 0. "When y#0and X(X7X)~ XT is not full-rank, there exists y # 0 such that
z =0, which causes y'Ay = 0 and 4,,;,(A) = m|

Lemma 5 The following equations holds:
1
Aunin(Py 77) =1 = A X (XTX) 7 X),

Py yp) =

N et 1
Armin = Apax X1 (XTX + XXT) X7).

Proof Since X, (XTX )_IX; is symmetric positive semidefinite, we can write
X, (XTX)"X] = QAQ", where Q is an orthogonal matrix and A is a diagonal matrix with

nonnegative diagonals. Then
[-X,(X"%)7'X] = 0t - A)Q".
Furthermore, we have shown in inequality (56) that

1
mm<x T Xre)
1 T
+ (X Xr)

de

Amax(XrXTX)T'X]) <

max (

Hence, the maximum diagonal in A is upper-bounded by 1, and / — A has all diagonal
entries in the range [0, 1]. Thus, we have shown that mindiag(/ — A) = max(diag(A)),
implying the conclusion of the lemma. a
Returning to the proof of the proposition, we have
Mmery\™
Ao (XT (XTX + ZXTX> x] >
<A <XT (X7X) _IX;>
= 2 (O (XTX) R+ RO R R(XTX) 7T )
m m
@)
(X (XTX)'XT ),

Here, (i) comes from the fact that
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A (XT (XTx) KT (0 + %i(XTX)-‘)?T)-')?(XTX)“X; ) >0,

'min
which follows from Lemma 4. Furthermore, by Lemma 5, we have
L _ T U A

Amin PX'JT _I_Amax XT X X+;X X XT
and

don(P ) = 1= 2 (X (XTx+ XTR) X7

min\* x' 77 ) — ' 7 “max T +;XX XT .
Altogether, we conclude that the minimum eigenvalue is at least improved by

2 e (Xr (X7X) XU+ X0 XD IR(XTX) X ) O

Here is the proof of Proposition 11.

min

Proof of Proposition 11 The proof leverages arguments from the proof of Proposition 8. The
goal is to argue that when n and m are sufficiently large, the empirical quantities are close
to their population-level versions. We will use Big-O notation to simplify our discussion.

Hu 2
7@ (p + C)), then

As already stated in inequality (59), ifn > +

X .OXT XT(( ) X1

0

n—t
< ni(\/p”ZHz + cy0; 2(logn + \/plogn)>

2¢,02 ’Lcluzu

Arin(®)

min

with probability at least 1 — e~ — n~!, where ¢, > max{2,2/c}. -
Also for the two-pool case, if n >t + max { 21 ,1 }m and

(D’
m > max{1,cic(p + C))|| 2|3}, we have

T X Xpe+ 2XTX - -
XpOX] — Xy [ ) X

n—t+nn
n—t+nn
Vi Iz, [p+Ci| By
< —(\/pllZ'H + cy02(logn + \/plogn)) 1+ 20,02 ,
n—t+nn 2 2 ! mm(z) }'min(z)

with probability at least 1 — 2¢=C1 — n~!, where ¢, is defined in the same way as above.
Noting that B \/; and using the triangle inequality, we conclude the proof. a
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D Proofs for Sect. 4

In this section, we provide proofs and additional details for the results in Sect. 4. We will
establish several auxiliary results in the process, which are stated and proved in “Appen-
dix D.4”. The flow of logic is outlined below:

Theorem 3 < (Lemma 6, Lemma 12);

Lemma 6 < Theorem 2;

Lemma 12 < (Lemma 7, Lemma 11);

Lemma 11 < (Lemma 8, Lemma 9);

Lemma 9 < Lemma 7.

Corollary 1 < (Theorem 3, Corollary 2).

We sometimes write 7(A) to represent the estimator from Lasso-based debugging with
tuning parameter A.

D.1 Proof of Theorem 3

We will first argue that the algorithm will stop, and then argue that all bugs are identified
correctly when the algorithm stops. Finally, we will take a union bound over all the itera-
tions in the while loop to obtain a probabilistic conclusion.

Algorithm 1 stops: Note that if we have an iteration k such that 2> 2% and C = 0, then
the algorithm must stop after at most |log, /1—J iterations. Otherwise, we know that C =1
for all iterations k such that A* > A*. Thus, after k = |log, —J iterations, we have

A=

J l Ju Ju

=[A%,24%].
o llog, | ] [ ]

P i
210g2 7 210g2 T*_l

As established in Lemma 6, we know that all true bugs will be identified with such a value
of J¥, so the remaining points are (X%, y®) = (X;., y;.). Also note that

1Py Vrellw = 1Py, (X7eB™ + €7l = 1Py €7cllco

Hence, by Lemma 12, we have

1PE erly < %1 Viog2ns.

Therefore, the stopping criteria takes effect and the algorithm stops.

Algorithm 1 correctly identifies all bugs: A byproduct of the preceding argument is that
2> A By Theorem 1, we have supp(7¥) C supp(y*). Now suppose we are at a stage where
[ of the ¢ bugs are flagged, where / € {0, 1, ...,t}.

If I = ¢, then X = X;.. As argued preveiously, the algorithm stops with high probability.
Hence, we output all of the bugs.

Otherwise, we have [ <t — 1. Suppose this happens at the kth iteration. Then at least
one bug remains in (X®, y®), and all the clean points are included. Let S denote the cor-
responding row indices of X and let y; denote the following subvector of y*. Since bugs still
remain, we must have min; g |y ;| = minier |y |. Furthermore,

1P50 YNl = 1P XOB* + 7% + €9l = 1Py (7 + €9)llco

By Lemma 12, we have
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* 51 R
1Py (75 + €9)llo > EE\/log 2no,

implying that C = 0. Thus, the procedure proceeds to the (k + 1)* iteratlon If for all £ such
that A¥ > 2.1*, bugs still remain, then A* keeps shrinking until the Llog2 J‘h iteration. Then
the tuning parameter must lie in the interval (4*,24*], resulting in a Value of 7 such that

supp(¥) = supp(y”).
Probability by union bound: Now we study the probability for this algorithm to output a

value of 7 that achieves exact recovery. Firstly, the algorithm stops as long as Lemmas 6 and
2
12 hold, which holds with probability at least 1 — = — 2 exp < 2(- —e - v> n>

Secondly, consider the argument that the algorithm correctly identifies all bugs. For each
iteration, the events { C = 0 if a bug still exists} and {C = 1 if no bugs exist} hold as long as
Lemmas 6 and 12 hold, which happens with probability at least

2
1- ﬁ —2exp <—2<% -c, - v) n) If the algorithm has K iterations, the probability that
2
the algorithm flags all bugs is therefore at least 1 — i — 2K exp <—2<% -c, - v) n> by a

union bound. Since we have argued that K < log, — ; ( the desired statement follows.

D.2 Proof of Corollary 1
According to the PDW procedure, we can set 7 = 0, solve for 2 via the zero-subgradient equa-

tion, and check whether ||2]|, < 1, where 7 is a subgradient of ||7||,. The gradient of the loss
function is equal to zero, which implies that

1. =
= IPTPLY I

PTPJ., \/
Therefore, we see I;”oo <1 for 4> M which means the optlmlzer satisfies
7 =0. Since A, = T the output with tumng parameter A, gives 7(4,) =
Note that
IPTPyy llo = IPTPY* + PTPy €' llo < IPTPY [l + 1Py €'l

by the triangle inequality The second term is bounded by 2 max{1, ﬂ } v1og2n ¢* with
probability at least 1 — =, since eTPl ¢’ is Gaussian with variance at most max{1, % }o*.

For the first term, we have

IPTPy*|le =

@ pTp *
<i|P7P| vl
max

@
<7 lle

log2nn“*ic
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where (i) holds because [V y*|l; = Y [vir| < tllvllll7* |l for any row v of the matrix
PTP, and (ii) holds because PTP is a submatrix of the projection matrix P%, and each entry
of a projection matrix is upper-bounded by 1. Altogether, we obtain

24/log2n  Cc .
A, < [maX{1,\/’1—72}—55+TV\/1—CI\/10g2nn‘"+;]a
m n

By a similar argument as in Theorem 3 and Corollary 2, we know that Algorithm 1 stops
with at most log2

nn Cc — 24/log2n
[max{l, mL}+4\/1 cn’ ]—” c

1 Ay 1
08 —— = 108, -
Ale™) %\/210g2n(1 —c,)@a*
0 [max{l, my 4 Cpts ]2 logn
< log,
2log2n
@ [maX{l’ i) T %”C"Jr%]
< log,

2

< c(§ +c,,) log, n 4+ max {0 ]og2 ﬂ - l}
2 2

where (1) comes from the fact that 1_J . is a submatrix of P)l(,, which has spectral norm 1
when n >t +p + 1; and (2) holds because 1 — o < 1. To illustrate that ||PL ||, = 1, note
that it is sufficient to show ||P%, rerela =1 PX, rere] is a principal matrix of P)l(,. By interlac-
ing theorem (Hwang 2004), we know that Amax(P e 7o) 18 1o less than the (z + 1)* largest
eigenvalue of PX,, which is a projection matrix and therefore has n — p eigenvalues equal to

1. Thus,ifr+1<n-—p,ie,n>t+p+1,then ||PL,’TL,TL, =1
Now that we have bounded the number of iterations, we consider probability that the
statement holds. Note that €’ is sub-Gaussian and all the statements based on A(¢*) hold
with probability 1 — — Compared to Theorem 3, note that on each 1terat10n we have
subset support recovery with probability 1 — —t; and on iteration log, m “*), we have

exact support recovery with probability 1 — —. Thus, we conclude that Algorithm 1
outputs a value of 7 that achieves exact recovery with probability at least

5(clog2n+max{0,%log2 %})

n—t

1-

1 nn =2(5—¢,—v 2n
—2<clog2n+max{0,zlog2ﬁ}>e ( ) .

Proof of Proposition 2
We consider the three cases in Appendices D.3.1, D.3.2, and D.3.3.

Let X = [E[xl-xlT] and @ = X!, and assume that X® corresponds to some X, with rows
indexed by S. Our goal is to prove that
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X¢Z7IXT [log|S| log|S
s s < cmax og | L og|S| 7 63)
p max p p
X TX Ain(Z)
- < , 64
‘ H =2 ©4)

for ?ggmpst log, j— of such sets S. Note that 7¢ C S C [n] holds with probability at least
1 — =20

n—t

D.3.1 Proof of Proposition 2 for Gaussian case

The spectral norm bound follows from standard results (Vershynin 2010), which holds
for a fixed set S with probability at least 1 — ™15l > 1 — ¢=("=, Note that Algorithm 1
runs for at most log, =+ % jterations by Theorem 3. Taking a union bound over all sets S,
we obtain an overall probablhty of 1 —log, j —(l=epn > | — g5 loglog 5

We now consider (63). Define z; = ©'/%x; for 1 <i < n, so that

T

xe'? =
)

n

We know the ©'/2x;’s are i.i.d. isotropic Gaussian random vectors. Hence, z[z; ~ x*(p)

satisfies
11 log L
”21”2—154\, gé’
p p

with probablhty at least 1 — 6. Similarly, we can bound zk 7, and (z; + z,) T (z; + 7). Since
7z = [(Z +2)" (2 + ) — 2] 2 — 2, %), we then have

) log 1
(Zz’zk> < 8 [ , Vi 7& k,
p p

with probability at least 1 — 4.
We now choose 6 = + for some ¢ > 2 and take a union bound over all n? entries of

the matrix XOX', to obtain
logn logn
< cmax _—
max p p

with probability at least 1 — —, where > 2.
Finally, note that for all S C [n], we have

-1

”X@XT
p
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X,0Xg
p

<||xex _,

max ‘ max

D.3.2 Proof of Proposition 2 for sub-Gaussian case

By Lemma 14, inequality (64) holds for a fixed set S, with probability at least
1 — el > 1 — ¢~ for some ¢ > 0. Note that Algorithm 1 runs for at most log, 2 L
iterations. We then take a un10n bound over the p0551ble suAbsets T¢ C S Cln]to reach a
probability of at least 1 — log, 7 emcl=eon > | _ =5 Hoglog, 32

Next, we focus on verifying inequality (63). Assuming that the x;’s are independent
random vectors and the components of the x;’s are independent of each other, our goal

is to prove that
lo lo
< max en s en
max p p

w.h.p., where ¥ = Cov(x,) = ©@~! =: D?is a diagonal matrix.

Define z; = D™ 'x,. Since the z;’s are mutually independent with independent compo-
nents, we know that the vector 8= (1 cees Zips Zjls ...,sz)T, for i # j, also has independ-
ent components. Furthermore, the sub-Gaussian parameter of g; is bounded by

l... =max’ where K is the sub-Gaussian variance parameter of the x;’s. This is

LS
max q=1 42’

because for a unit vector u, we have

E [e}”u-rgii] — HLI;:] E [elluqz,»q] E [eiu”*"zf"]

iy pRacRS
— UP I[E[e dq W][E[e dg 94
q=
2
=K

E"_ 20t uq+up+q K
e 9= dq

<E ezq 1 g +u;+q) 2 "“X:l

=E ezlm“‘].

Since we have assumed that || Z||, is bounded, the d,’s are all bounded for each ¢, so [,,, is
bounded, as well.

0 I L . . e
Now let A = | PP PXP | By the Hanson-Wright inequality, with probability at
Opxp Oy

least 1 — 6, we have

@ Springer



Machine Learning

(Z,’, Zj)
p

T 2
g.Ag. log =
_ 2oy <e 5 ’ (65)
p V p
where ¢, is a constant related to [ .

Now applying the Hanson-Wright inequality to the vector z;, we have

2 2
log g lOg E
< ¢, max —_— > (66)
P P

with probability at least 1 — &. Noting that [E[||z,«||§] = tr(0%) = p, we will finally have

100 2 2
log H log 5
< ¢, max —_—
p p

Plugging in 6 = % and taking a union bound, we then conclude that
n

logn lo
< 2max{cy, ¢, } max gn’ 1 >
max p p

=l Etl=i]3)
p P

P

.
”X@X _

p

with probability at least 1 — %

D.3.3 Proof of Proposition 2 for convex concentration case
Recall the following definition:

Definition 2 (Convex concentration property) Let X be a random vector in R¢. If for every
1-Lipschitz convex function ¢ : RY — R such that E[@(X)] < oo and for every ¢ > 0, we
have

P(lp(X) — E[pX)]| > 1) < 2exp(-2/K?),

then X satisfies the convex concentration property with constant K.

Suppose x; has the convex concentration property with parameter K. Note that

T T
HX@X _ =n@xej<X9X _1)%
p max p
xiT@xj
= max - el.Tej .
[N P

By Lemma 13, we thus have the exponential tail bound
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2.2
P w | <2exp —lmin P , P ,
c 2K410l K20,

for all1 <i < p, which implies that
[log 2 log 2
< ¢K? max J s —
p p

with probability at least 1 — 8. Taking § = 2/n>, we then obtain

I I
< cK? max ogn ognt 67)
V pop

x;.r Ox;
r

-1| >

S

X! Ox

i i—l
p

NG

x! Ox;
1
P

-1

with probability atleast1 — %

p()ﬂ 2A> pl o 25 |5 4
’ esl. les,
Conditioning on ||(-9xj||2 for some w > 0, we obtain
x!Ox;
P('—j > x > |[|0x; >w|]3’( Ox; >w>
; ”@ ” ”@ H o], 2w P(lles],
Ox;
+P L > [l|0x; <w[P>< Ox; <w)
o] “@ ” o], < p(lles],

Since we have a convex 1-Lipschitz function mapping from x; to xiT we can further

Ox;
llexl,’

upper-bound the probability using the convex concentration property:
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G

x@x
p

> A) <H@xj||2 > W) +P| |xf ”@;jH ”@ ” |” “

Ox; A
(= i) | o |2

(6] 2,2
2o (ol -etlol > g, -etlol)) 200 (-355)
(2) A2p?

2e( ol -sthsh > - Vel )+ 200 (-252)

IA

® (n@nz ~V tr(z)) A2p?
< 2exp e +2exp Y
(2= - VolI=T;)
woo_ £ > 2) AZ )
[C]
<2exp|- 1Ol e +2exp <_w2_22>’

where (1) and (3) use the convex concentration property and (2) uses Jensen’s inequality.
The last inequality assumes that w > 4/p||Z||,, can be guaranteed if we choose w suffi-
ciently large.

Plugging 4 = ¢ max { l(’f” \/10%} and w = c’(\/[;+ /log n> into the above deriva-

tions, we then obtain

l/l 1 2 1
P( >A>52exp< KOg >+2exp< »ymax{(logn)*,p ogn}>‘

(p +logn)K?
If p>logn, then 2exp —M)SZGXp(—HWKﬂ); If p<logn, then

T@x
P

. (prlogmK® ’
ax{(logn)=,plogn} """ logn
2ex _mdx{(— <2ex ————=—). Hen we havi
exp v < 2exp re ence, we have
x! Ox

L

g

We can choose ¢ and ¢’ sufficiently large to ensure that C > 2. Combining this with ine-
quality (67) using a union bound, we finally obtain the desired result.

4 > A) < 2exp(—Clogn).

D.4 Auxiliary lemmas
By Theorem 1, we have the following corollary:

Corollary 2 For two data pools, suppose the eigenvalue and mutual incoherence conditions
hold. Let A > A(c™). Then with probability 1 — ﬁ, we have supp(¥) C supp(y*), and

7D - 7|, < G'(A). (68)
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Proof Recall that the rule for regularizer selection in Theorem 1 is

1> 2

pT 5 (BTH \-15T) €
2= Pl (I-Pp(PLPy) PT);

o0

Note that eTPT (- Pp(PIP,)'PT)<

max {1,:1'2} T“”%} . We have

I1P7II
max [T PT. (I - Pr(P] Py PT) & ‘<4max{l,n—’z}\/ 2 2(n — 1)~ 26*,
m.

JET*

is sub-Gaussian with variance parameter

BN

with probablhty at least1 — — Accordlng to the definition of A(¢*), we can further derive
the bound for 7, since

”/}; - y*”oo < ||(PLI,77‘)_1P;7,T.€/

leo

a7l
a

The following lemma suggests that if mingy[y/| > G'(24*), then
supp(7(A)) = supp(y*) if we take 1 € [A*,24%].

Lemma 6 [f min,cy [y/| > G'(21%), then taking A € [A*,2A*] yields an estimator 7(A) that
satisfies supp(¥(4)) = supp(y*).

Proof According to Theorem 1, for a regularizer A € [4*,24*], we have 7. =0 and
70 = 7*|| o £ G (D). If min,cr |y}| > G'(24*), then by the triangle inequality, we have

70> min 7| - G'(4) 2 G'24) = G'(D) 2 0,
e
forallie T. O

We use X, to represent some X® for S C [n], as shown in Algorithm 3. In each loop
of the algorithm, we know that the points in S¢ all lie in T by the subset recovery result.
Thus, S D T¢. Letl = n — |S], and note that 0 < [ < 1.

Lemma7 Suppose Assumption 4 holds. If A.,;,(2) and Ay, (X) are bounded, then
PJ_ _ (l— P )1 Cmax{ps Vplog(n_l)’log(n_l)}
Xs n—17"|lmax n—1 '
Proof Using the notation ©® = X~!and = I SI

p - p
Pl—<1——>1 = [ X XTX)'XT — =1
Xs IS BRI TS TS S IS
Xy(5)'X]  X;0X] X0x{ )
- N N N IST
max

By assumption, we may bound the second term by
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X;0X] P <P log|S| log|S| zcmax{\/plongl,logISI}
S| IS [~ 181 p P N

For the first term, we have

XS(Z)"X; XS@X; 1 _ T
- X (Z) 0 )X
N N ~ sl max
max
<& - e 2.
- ”(Z) @”2 1<1<|S| |S] ” ”2
‘We now have the bound
- > Amin(2)
| & -], < = F—=
Ain () Ain(2)
1
< Elmin(z) 1

Iin ) e ) = Fain(2) D)’

as well, where the second inequality holds by Weyl’s Theorem (Horn and Johnson 1994):
MZ) 2 A(2) — || £ = Z||,. The basic idea for the first inequality is to use the multiplicativ-
ity of matrix norms to conclude that

O ] i

IA

=] 14 - B |,
_ llA-Bl,
" Amin(@) * Agin(B)

(69)

Hence, an upper bound on ||A — B||,—which we obtain from our assumptions—together
with minimum eigenvalue bounds on A and B, implies an upper bound on |[A~! — B~!||,.
Finally, we have

o1 lexfel
II e;ll; £ max —
1<i <|S| |S] 1<i<|S| |S| A2 (O1/2)
min
1 0'2XJe;ll3
= ax ——=
(@ =g S|
e X,0X/
- max(z) IE}EI)SS‘I |S|
). sOX{
— max |S| o

By assumption, we have
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X 0X]
p

log |S| log|S|
< cmax s
p p

-1

max

Hence, rescaling and using the triangle inequality, we have

log |S| log|S
sﬂ( ; +1)5£+£max lozlst togsi{
s . ST 1S] P p

Altogether, we have the bound
A (X
<o)y L [loglS] loglS]
Amin(Z) 18] p r

max

Xs0X]
IS

Xs0X]
p

X)X X;0X]
IS |51

Finally, we have

cmax{4/plog|S|,log|S|} +c"£ 1 + max log |S| log|S]
N N pp
< Cmax{p, Vplog|S],log |S]}
B S| '
This finishes the proof. O

We use a(k) to represent the kth order statistics of |¢|, for i€ T¢, where
&y S Ay S S Ay

Lemma 8 For ii.d. random variables {|€;|},cr., the kth order statistics, for any
ke{"T",...,g}sazisfy

c,0" <ak) < C,o",
with probability at least 1 — 2 exp <—2<% —-c - v)2n>,f0rv € (0, %) such that v < % -,
Proof By the assumptions on the noise distribution, we have
V= P[|€i| < cva*] and v = [P’[|€l~| > CVG*].

Let &;’s be i.i.d. Bernoulli variables such that

1 iflgl <c,0%,
§j={ I ll

0  otherwise.

Note that ¢ = ¢,n for some positive constant ¢, € (0, %). We have
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1=c)a- 2v)n 50

k—v(n—t)znT_t—v(n—t)z .

and

(e (-0 (152)(572)

By Hoeffding’s inequality (Hoeffding 1994), we then obtain
n—t n—t
PlZegi zkl = P[Zf,-—V(n—t) Zk—V(n—l)]
i=1 i=1
k 2
< exp (—2(— - v> (n— t)>
n—t

implying that
« S 1 2
Platk) <c,0*] =P ;é > k| <exp <_2<§ —c, - v) n>

Similarly, let #,’s be i.i.d. Bernoulli variables such that

_J 1 ifgl = Coo",
=0 otherwise.

Note that the assumption that ¢, < % — v gives us
n 1
n—t—k—v(n—t)>n—c,n—§—v(l—c,)nz E—ct—v n>0,

and

Then by Hoeffding inequality, we obtain

PlZniZn—t—k] :P[Zni—v(n—t)Zn—t—k—v(n—t)]
i=1 i

i=1

< exp <—2<1 - nL—t - v)z(n - t))
<exp <—2<% —-c - v>2n>,

so that
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2
[P’[a(k) > Cvo-*] < exp (—2(% -c, - v> n>

Lemma 9 Suppose the assumptions of Lemma 7 hold and

1
2 o
n'=%n > max { i’aZC log(2n) (p* + log® n), <%> }’
-G ¢y

l/2+¢

and

max l7g] < \/ c,\/log n

for some constant c,, € (0, %). Then the kth order statistic of |Pl (rg + eg)| and the kth order
statistic of (1 - ‘1’?‘ )(y;‘ + €g)| have differences of at most %o-*,for any k € [|S|], with prob-
ability at least 1 — L

n—t’

Proof Recall that [ = n — |S|. Now consider the sequences {z; = |el,TP)l(S(y;k +€5)|}7-] and
n—l

{Wi = ‘(1 - ﬁ)(}’;i + €50 }
i=1

. By the triangle inequality, we have
—wl < e (P4 - (1- =25 )1
|Zi wil = e,‘ Xg n— (7/5 + €S)

T( plL p * T( pl p
< Jel (P = (1= )| e (P = (1= 755)1 e
fori=1,....,n—1 )
Since u; is sub-Gaussian with parameter at most (Pl )i — e; <1 - 1) ¢*2, we can

2

upper-bound the maximum of { |x;|}. With probability at least 1 — L we have
max |u,| < 2y/log2(n — Do*||(PL), - eT(l . L)

= s ! n—17

log 201 = Do* Vn — [|[PL — (1—L)
n—1

(v/p + Vlog(n - 1))’
<2Cy/log2(n—1) \/_ o,

Vn—1
inequality follows by Lemma 7. Further note that

pl=2e > 22 32C log(Zn) (P* + log? n) for some ¢, € (0, ) we have max,gg |u;| < Tﬂa
For the v; s we have

max

where the last

since

@ Springer



Machine Learning

max|v|<t

(1_n[il> max

(ii) 2 (p+ylogn—D)>
< max [y (70)
n(l —c,) Vn—1 =

(i) 1 1 t
max |yg]|,

< —
=2\ 1=-¢, n/? \/@ ies

where (i) holds because |a'y sl < llalloll7g | Isupp(rg)| for any vector a, (ii) holds by
Lemma 7, and (m) holds by our assumptlon on n. Combining this Wlth the assumption that

max;cq |7g| < \/1 e \/log 2n "—c*, we obtain max;g |v;| < ga Finally, using
the fact that n > <C ) , we obtain

max
na gl

c
lz; —wy| < Eva*,

with probability at least1 — #
We then use the following lemma:

Lemma 10 For two sequences a,, ...,a,and by, ... ,b, such that |a; — b;| < c for some pos-
itive number c, the jth order statistics of {a;} and {b;}, denoted by a,(j) and a,(j), satisfy

la,() — (D] < c. (71)

Proof Without loss of generality, suppose a; < a, < --- < a,,. If there exists j € [n] such
that inequality (71) does not hold, then we have either a; > ¢+ a,(j) or a; < a,(j) — c. If
the first case occurs, we have

a, > -+ Zczj>c+ab(j)26+ab(j—l)2---c+ab(1).

Pick a number z between ¢ + a,(j) and a;. We see that at least j of the b;’s, denoted by b,
are smaller than z — c; and at least n — j + L of a;’s, denoted by a,, are greater than z. This
means that at most j — 1 of a;’s are no larger than z. Note that for the b, the components
of the corresponding vector a are within a distance of ¢, so the elements of a; must be at
most z. However, this contradicts the fact that at most j — 1 of the a,’s are at most z. This
concludes the proof. O

From Lemma 10, we can compare the order statlstlcs of sequences {z;}'_, and {w;}?_

and conclude that they have differences of at most < o , with probability at least 1- ﬁ

Lemma 11 Suppose the conditions of Lemmas 8 and 9 hold, and also

min;ey |y > 44/log(2n)e™. Then

< S| Cv> N ( IS| ¢, ) .
c, — —Joo <0< —+C, o7,
[S|—p 6 IS|—p 6

2
with probability at least 1 — 2 exp <—2<l —c,— v) n) -2
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Proof Let Mp(S) denote the median of |PL (rg +€5)|- By Lemma 9, we know that Mp(S) is

close to the median of (1 - E)(ys + €g)|. Thus, it remains to analyze the median of
{Ir] + €llies-

Note that for j € T, we have |y] + ¢;| = l¢;|. Therefore, for all j € SN T¢ = T¢, we have
|y + ¢l log2n ¢*, with probablhty at leastl - 1

For ie TnS by the assumption that mmleT ly7| > 44/log2no*, we have
Iy +el > |rf| = le| > 24/log2nc™. Therefore the medlan of |yg + egl is actually the kth
order statistics of |e;. | for some {k € =~ 3 5 21. By Lemma 9, we have

P vk P Cy 4
<1 |S|>a(k)——a <Mp(S) < <l—m)(x(k)+€0'

In Algorithm 1, at some iteration k, we have & = 'Sl M p(S), where § is the corresponding

set of indices of (supp(?®))". Thus,
IS| e

IS|—p 6 |S|—p 6

alk

Combining this with Lemma 8, we have

<c— 151 C—V>6*<6'\<<—|S| C—V+C>0'*
Y ISl-p 6 - T \ISI-p6 )

2
with probability at least 1 — 2 exp <—2<% —c, - v> n) -2, O

Lemma 12 Suppose n > 12p,

| +5C
min 7| > 3 <C—> Vlog2n o™,
i€ C

and inequality (70) holds. Then

N

5 ~
”ijT,. erelleo < §\/10g 2no, (72)
and for any yg such that SN'T # @, we have
* 5 N
”P)lfs(ys + el > %V log2no, (73)
3 1 2
with probability at least 1 — - - 2 exp (—2(5 -c, - v) n>

Proof We first establish the bound on ||P; es||,,. Note that ejTP)l( €. is Gaussian with
TC e
variance at most max(Py ) SO
JET* Te

||P§T el = max |ejTP)l<T €| < max(Pl 24/log2(n — )o* < 2+/log2nc*
¢ JjeTe ¢ i

)JJ

with probability at least 1 — ﬁ In addition, Lemma 11 implies that
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1Py, er-l < 2+/log 2n+3 <2/logn # .
(_?m”v) <—gm+l)c

For n > 12p, we therefore conclude the bound (72).
Now consider y;‘ with nonzero elements, i.e., S O T¢. We have

L Tpl L
”PXS(Y; + GS)”oo Z nzlE%S'X |€i PXSY;| - ”szeslloo
> max |el.TP)L(Sy;| —24/log2nc”,

. - _ i pl o L _ 1 - P -2
with probability at least 1 —. We now split PXS into PXS (1 ’H)I and (1 ni])[ . By

the triangle inequality, we have
T(pl p %
(P - (1- n—_z)’)%\

T p *

ei<1_n—l>1y5

)4 * T( L ( )4 ) ) *
> (1 - 2 - ] —(1- .
_(1 n_l)llysllw [max |e; Py — 1 — L)y

. >
"

Vi

— max

> max
i€[n-I]

i€[n-I]

Tpl  *
max |e, P
iefn—1 |t Xs's

Plugging this into the result from inequality (70), we then obtain

. p c
max le Pt y;| > (1 _ m)”;/;”w - 2ot

ie[n—I]

Therefore, we have
1 * p . * . *
1P (75 + €9l = (1= 2= Y min ;| - @/iog2n + ¢, /8)0"

By the assumption that n > 12p and Lemma 11, we then obtain

(2y/log2n+c¢,/8) .
————— O

5 .
L
1Py (rs +€sllleo 2 ¢ Win Iyl =

_ S e
V. ISl-p 6
5 . (24/log2n+c¢,/8)
>>minly| - ————— o
6 ic ! c =<
v 5
S5 13 log2n
—gl}g}l|7’,|—g o O
5

Lo 5 ~Np e
Thus, ||PXS()/; +e9)lle = E\/log 2no if min |y}| satisfies

. ~(3 13
| > -+ — .
I}él%l Iyl = \/log2no-<5 + 4Cv>
This can be further achieved according to Lemma 11 if

- «3, 13 ¢, |S]
| > 4/ 242 v _
r[;él%llyl|_ log2no <_+4cv)<CV+ 615 —p

c
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Also note that by the assumption of min,cy |y;|, we have

... _5{c,+5C, . .3 13 ¢ IS|
l1>=1 —— > = v .
rl_rélp|yl|_4< Z >\/10g2n0 _\/10g2n0' (Z‘+5CV—Z’><CV+ 615 —p

This concludes the proof. O

Lemma 13 (Theorem 2.5 in Adamczak (2015)) Suppose X is a zero-mean random vector in
R" satisfying the convex concentration property with constant K. Then for any fixed matrix
A € R™" and any w > 0, we have

2
P(IXTAX — ELXTAX]| > w) < 2exp ( —= min . :
¢ 2K40A1L - K2NAlL

Lemma 14 Suppose X € R™? has i.i.d. rows from a zero-mean distribution satisfying the
convex concentration property with constant K. Then

< Cimin(Z)

3

n n

T T
XX_[EXX]

2

with probability at least 1 — exp(—n).
Proof Note that for any fixed unit vector u € R”, the map ¢ : x — (x, u) is convex and
1-Lipschitz. Hence, by the definition of the convex concentration property, each xl.Tu is

sub-Gaussian with parameter proportional to K. In fact, this is enough to show the desired
matrix concentration result [cf. Vershynin (2010)]. We omit the details. O

E Appendix for Sect. 5

In this sectopm, we provide proofs and additional details for the results in Sect. 5.

E.1 Proof of Theorem 4

We will prove a stronger results here, which implies Theorem 4. This is actually men-
tioned by Remark 2.

Theorem 6 With respect to D, the bug generator, who has attacking budgets no more than
t, cannot fail the sign support recovery if only if (16) holds. That failure of sign support
recovery, sign (7) # sign(y*), means either ; # 0 for some j € T¢ or ¥y <0 for some
ieT.

Proof of Theorem 4 We will use the following lemma to prove Theorem 4.

Lemma 15 The following two properties are equivalent:

@ Springer



Machine Learning

(@) For any vector y* € R? with support K, the constraint-based optimization has all
solutions ¥ satisfying sign () = sign (y*).
(b)  The matrix P(D) satisfies the restricted nullspace property with respect to K.

Proof of Lemma 15 We first prove (b)) => (a). This immediately follows Theorem 7.8
in Wainwright (2019) since (b)) = y* =7 for any vector y* with supp(y*) = K, it thus
implies (b)) = sign (¥) = sign(y*). Or we can show it directly as follow. Suppose (a)
doesn’t hold. Then, we have 4 := y* —7 # 0. By the constraint and the objective, it also
needs to satisfy that A € Null(P(D)) and

ly* = Ally = 171 < Myl = llvgll-
Therefore, we have
lyells = HAglly + 1 Aglly < llvg — Aglly + WAl < llvgllys

which means a nonzero A € Null(P) n C* and causes a contradiction. Thus when (b) is
true, (a) holds as well.

From now on to the end of the proof, we will abuse notation by using P to represent
P(D). The remaining thing is to prove (@) = (b). We will prove by contradiction. If (b)
doesn’t hold, then there exists a nonzero 4 such that PA = 0 and || 4. ||; < ||4«|l;. We con-
sider a y* with yg = Ag and yg. = 0. Let 7 be the optimizer given this y*. By (a), we shall

Ag
0(n—t)><l
larger £, norm than 7 and has support not equal to K, which contradicts with (a), and there-
fore, (b) must hold.

. 7 . . /T .
Consider y' =% — ¢ - A where ¢ = % for i = arg min;cx . Since 4 is a nonzero vector,
i ; J

have sign (7) = sign (y*) = sign . The idea is to construct a y’ that has no

we must have 4, # 0 for some / € K. Therefore, we have ¢ being positive finite, y/ = 0 and
7| > c|4;| for all j € K. Therefore, we further get

PG*—y)=PG* -7 +cd)=Py*-7) =0,
as well as

7'l = 117k — - Aglly + 17 — ¢ - Agell
[ONN

= 7kl — cllAglly + cllAgelly

W

< 117l

where (i) is because sign (7x) = sign (4g),c > 0, |Px| = c|Ax| and 7. = 0, (ii) is because
A € C(K). Hence, we find a ¥’ to have smaller or equal £, norm than 7. This contradicts
with the fact that all the solutions have support K or 7 is the optimal solution. Therefore,
(b) must hold and (a) = (b). O

We first prove that (16) is sufficient. For any |K| <t and K C [n], we know that
Null(P(D)) n C(K) = {0}. Then by Proposition 15, we conclude that sign(?) = sign(y*)
with supp(y*) = K for any subset K of size no more than z.

We second prove that (16) is necessary. Note that for any subset K of size less equal to ¢,
we have sign (7) = sign (y*) with supp(y*) = K. By Proposition 15, it means P(D) satisfies
the restricted nullspace property for any such K. Therefore Null(P(D)) n C* = {0}. O
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Theorem 4 immediately holds from Theorem 6.

E.2 Proof of Remark 3
We will prove the statement in Remark 3 here.

Proposition 12 The subspace Null(P(D)) is equivalent to
{u e R" | v € R?, such that u = Xv,X,,v = 0}.

Proof of Proposition 12 We first prove
Null(P(D)) 2 {u € R" | 3v € R?, such that u = Xv,X,v = 0}. Let u = (X +M"Xp)v for
some v € RP, where M € R™ P contains m rows stacked with the canonical vectors indexed
by D so that MX = X,,. We have

_ -1
(1= X (T4 X0X0) X7 Ju = u=X(X7X + Lxpx, ) X7 (x4 LuTx, o

Besides, we have

-1 _
Xp (XTX + @XIT)XD> XTu=Xp (XX + X Xp) " XT (X + MTX,)v
m
= Xpv.
Therefore X,v = 0,u = Xv => u € Null(P(D)).

Secondly we prove Null(P(D)) C {u | 3v € R?, such that u = Xv, X,y = 0}. Let u be
some vector in N(X,). Then we have

'XTu, (74)

u=X(X"X+XXp)
and
Xp (XX +X)X,) "' XTu=0. (75)

By (75), we have (XTX+XBXD)_1XTM = v for some v € Null(X,). Plugging this back
to (74), we have u = Xv. Hence, we have u € {u | Iv € R¢, such that u = Xv, X,v =0}

O
E.3 Proof of Theorem 5
Here we prove the proof of Theorem 5. We write the minimax MILP here again.
min max Z at —ar,
elon g ot o uutum eRveRd S T (76)
z,we {0,1}"
subject to u = Xv, (77)
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u=u"—ua=ut+u",utum 2 0,ut <z, um <(1,-2), (78)
n
Zwigt, (79)
i=1
a"<w,a <1l,-wa=at+a,a* >0,a >0, (80)
n
ZgiSmiZI,...,n, (81)
i=1
u<l,—&u>—(1,-8). (82)

Proof of Theorem 5 We first argue that if (83) has the unique solution of (u,v) = (0,0),
then (16) holds and thus the debugger can add m points indexed by D to achieve support
recovery.

Dlgu[ln], Kgln1,|1<|12z3c)émvew”uk”1 = el
D] <m (83)

subject tou = Xv,Xp,v =0, |lull, < 1.

Suppose (16) doesn’t hold. Then there exists K C [1/1], |K| < and a nonzero vector u’ such
that u’ = Xv, X,v = 0 and ||}, ||, > |l ||,- And —— satisfies |||, < 1. This contradicts

with that (83) has the unique solution of (u,v) = (”0,”6), then (16) holds. This concludes our
first part of the proof.

Now we argue that the MILP is equivalent to (83). Equation (77) is inherited from origi-
nal constraint. Equations in (78) are equivalent to @ = |u|. Note that u™, u~ respectively cor-
respond to the positive and negative parts of u. If z; = 0, then u} = 0,u; < landu; = —u,.
If z; = 1, thenu; =0, uf < land u;r = u,. The vector w indicates K in (83). If w; = 1, then
i € K otherwise i € K°. Therefore, Eq. (79) restricts the attacking budget to ¢. Then, equa-
tions in (80) are equivalent to al.+ = |y;|,a; =0fori € K and a; = |ul-|,a:r =0fori e K-
Therefore, the objective function corresponds to ||ug ||, — |[ug|l;-

Note that the variable in the first layer is £. If & = 1, it means the debugger queries the
point x;. And the constraint X;,v = 0 is replaced by (82). This is because xiTv =0 u;=0.
If & = 0, then u; just needs to satisfy |u;| < L

Therefore, we have shown that the MILP is equivalent to (83) and thus conclude Theo-
rem 5. |
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