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A B S T R A C T

Accurate online condition monitoring and anomaly detection are crucial in nuclear applications to optimize economic performance and minimize safety risks. To
achieve this goal, several major challenges exist which must be addressed. First, multi-sensor signals are often collected in the form of complex, multivariate time
series. Second, relatively few anomaly records are available to train detection models. Lastly, the recorded data may contain uncertainties resulting from various
sources, such as operator-induced variability and measurement error. In this paper, a recurrent neural network-based approach is proposed to tackle these issues by
effectively utilizing historical data obtained during both normal and abnormal operations. Several advanced data preprocessing techniques are developed to improve
the training process of the proposed neural network. The efficiency and sensitivity of the proposed method are evaluated on the multi-sensor signal measurements
and operational reports obtained from a real case study. The results demonstrate much improved detection accuracy and practicality of the proposed method over
conventional approaches.

1. Introduction

In nuclear power plants (NPPs), inexact condition monitoring and
anomaly detection may result in unanticipated equipment failures and
the associated economic losses, and even endanger public safety. To
minimize such losses, a wide range of sensors that take measurements
of temperature, pressure, neutron flux, etc., and other important system
data, are installed throughout a nuclear reactor to monitor and ensure
reliable, safe, and economical operation. In this paper, the term
“anomaly” refers to acute anomalies, which is different from chronic
anomalies and degradation processes that emerge slowly over time.
Anomalies can be triggered by various causes affecting the relevant
multi-sensor signals. Inference and assessment of the current plant
status should then be made promptly and accurately, so that operators
can carry out proper maintenance procedures. However, in a large NPP,
it can be challenging for operators to process huge amounts of in-
formation of various formats and degrees of importance within a short
period of time (Choi et al., 1995). Thus, it is highly desirable to develop
a systematic process monitoring approach that can automatically assist
operators in real-time anomaly detection. Additionally, as new designs
are considered, these advances in monitoring approaches can be better
integrated at the design phase.

In this study, we propose a novel anomaly detection method based

on artificial neural networks (ANNs) which fully utilizes the available
data obtained during both normal and abnormal operations in NPPs. An
ANN is a computational model that mimics the human brain learning
process to learn complex non-linear relationships between inputs and
outputs. Recently, ANN-based anomaly detection approaches have
gained increasing attention in various applications due to their out-
standing performance in dealing with complex systems (Khan and Yairi,
2018). In particular, we employ an recurrent neural network (RNN)
structure, which is a special type of ANN that focuses on processing
sequential data including sensor signals (Graves, 2012).

Developing an anomaly detection model based on multi-sensor
signals in NPPs faces three major challenges: First, online multi-sensor
signals are often available in the form of complex, multivariate time
series, as different sensors measure various aspects of an NPP over fairly
long periods of time. Accordingly, it is crucial to preprocess the raw
data and systematically design the inputs and outputs of the model.
Second, especially in nuclear applications, we are likely to have ex-
tremely imbalanced training datasets, since far more data are obtained
during normal operations than abnormal operations. Third, the training
dataset may involve uncertainties, especially when it contains manually
recorded data. For instance, operational reports recording useful in-
formation such as the times associated with startup, scrams, and shut-
down, are often available. Yet, as these reports are often manually
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prepared, the information written on the reports may be inaccurate.
Such uncertainties in nuclear datasets make anomaly detection far more
challenging than typical anomaly detection tasks in other applications
based on deterministic datasets. Here, we focus on label uncertainty,
i.e., uncertainty in recorded anomaly times. When operators detect
anomalies, they often either estimate anomaly times based on experi-
ence and domain knowledge, or record clock times after observing the
anomalies and performing immediate follow-up actions. In both cases,
exact anomaly times may be uncertain due to operator variability.

Our proposed method makes the following distinctive contributions,
tailored to nuclear applications, by tackling the unique challenges
mentioned above:

• We consider cases where historical anomalies are available and
propose a novel RNN-based framework for anomaly detection in
NPPs that effectively incorporates historical anomalies into model
training. Here, different techniques are employed to address the
major challenges resulting from the characteristic features of data
collected in nuclear applications, including multi-sensor data, im-
balance, and uncertainty.

• We propose a novel concept of robust labeling, which views labels
probabilistically and can alleviate the issue of label uncertainty in
anomaly detection.

• We conduct a series of numerical studies using the data collected
from a real case study. The effects of the proposed techniques are
investigated, and the anomaly detection performance is compared
with a conventional residual-based method. The results show that
the proposed method outperforms the conventional residual-based
method and the improvement becomes more significant as the
number of historical anomalies in the training dataset increases.

The rest of this paper is organized as follows. Section 2 reviews the
existing approaches on online condition monitoring and anomaly de-
tection in NPPs. Section 3 briefly introduces the concept of recurrent
neural networks (RNNs) and principal component analysis (PCA).
Section 4 describes the details of the proposed anomaly detection fra-
mework. Section 5 evaluates the accuracy and efficiency of the pro-
posed method using data from a real case study. Section 6 presents
conclusions and future research topics.

2. Literature review

In the literature, several efforts have been made to tackle online
condition monitoring and anomaly detection in NPPs. In general, ex-
isting methods can be classified into two main categories: model-based
and data-driven methods (Ma and Jiang, 2011). In model-based
methods, a mathematical model is developed to represent the under-
lying physics of the system operation. Various model-based anomaly
detection methods have been developed for nuclear applications, in-
cluding Kalman filters (Roy et al., 1998; Tylee, 1983), parity equations
(Gertler and Singer, 1990), and diagnostic observers (Frank et al., 1999;
Frank and Ding, 1997). Yet, it may not be feasible to construct an ac-
curate model for complex, nonlinear systems such as large NPPs,
making the performance of existing algorithms often unsatisfactory.

Alternatively, data-driven methods build models based on a large
amount of historical data with less required knowledge of the inherent

system operating physics. Popular data-driven methods for anomaly
detection include singular value decomposition (SVD) (Mandal et al.,
2017a), statistical process control (SPC) (Wang et al., 2018; Xian et al.,
2018, 2019), support vector machines (SVMs) (Banerjee and Das, 2012;
Zavaljevski and Gross, 2000), and artificial neural networks (ANNs)
(Hadad et al., 2008; Mandal et al., 2017b; Messai et al., 2015). Re-
cently, ANN-based approaches have been widely studied and shown
outstanding performance especially on complex systems.

Most existing anomaly detection methods, including ANN-based
approaches, train a model using only anomaly-free data obtained
during normal operations to estimate the signal outputs. Anomalies are
then detected when the residuals, i.e., the differences between true
measurements and their estimates, exceed a predefined threshold
(henceforth, we call these residual-based methods) (Hadad et al., 2008;
Mandal et al., 2017a; Messai et al., 2015; Upadhyaya et al., 2003). Even
when historical anomalies are available, they are only used to evaluate
the constructed model and do not directly contribute to training the
model. In fact, historical anomalies could be used in model training to
learn unique patterns characterizing abnormal behaviors. It has been
shown in different applications that incorporating both normal and
abnormal training data may result in greatly improved anomaly de-
tection accuracy, especially when future anomalies are expected to
share similarities with historical anomalies (Gogoi et al., 2010).

To fill this literature gap, this paper aims at developing a novel
RNN-based anomaly detection approach that systematically pre-
processes the data obtained during both normal and abnormal opera-
tions and provides more accurate anomaly detection performance.

3. Introduction of recurrent neural networks and principal
component analysis

This section contains two parts: In Section 3.1, we briefly introduce
the concept of RNNs and review existing RNN-based anomaly detection
approaches in nuclear applications. Combining RNNs with additional
feature extraction methods can significantly improve training speed and
model accuracy. In Section 3.2, we discuss the PCA algorithm which is
one of the most widely used feature extraction methods and the benefits
of using PCA with RNNs.

3.1. Recurrent neural networks

In complex systems such as nuclear reactors, it can be very time-
consuming and expensive to manually extract high-level, meaningful
features capturing complicated relationships between observed multi-
sensor signals and underlying operational conditions. An ANN avoids
this labor-intensive feature engineering step by directly learning fea-
tures from the data itself. In particular, an ANN constructs models with
layers which consist of nonlinear processing neurons. Each neuron
learns to transform an input representation into an output representa-
tion at a more abstract level. By stacking multiple layers, we can build a
network that learns a very complex function.

An RNN is a special type of ANN that focuses on processing se-
quential data such as speech, text, or time-series signals (Graves, 2012).
Unlike conventional ANNs, an RNN has an internal loop and processes a
sequence by iterating through the sequence elements and maintaining a
“recurrent hidden state” that implicitly contains information about

Fig. 1. Illustration of a Recurrent Neural
Network.
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what it has seen so far, as illustrated in Fig. 1. A simple RNN, also
known as a vanilla RNN, calculates a recurrent hidden state by= + +−W x U bφ ( · · ),t t t 1H H

where xt denotes an input at time step t (preprocessed multi-sensor
signal measurements in our case), tH denotes a hidden state vector at
time step t , W denotes an input weight matrix, U denotes a hidden
weight matrix, b denotes a vector of biases, and φ (·) is a nonlinear
activation function. The hidden state at the last time step of the RNN is
fed into another activation function φ'(·)to obtain the output ̂yt defined
by

̂ = Vy φ'( · ),t tH

where V is a weight matrix from the hidden layer to the output
layer. Note that φ (·) and φ'(·) can be two different activation functions.
For instance, for anomaly detection problems, sigmoid activation
function = + −φ x'( ) e

1
1 x is often used as it scales V · tH to the range 0 to 1

to indicate the normal and abnormal states of the system at the corre-
sponding time. For a given training set = ⋯x y t T{ , }, 0, ,t t the RNN aims
at solving the following optimization problem for a given loss function∙ ∙( , )L via gradient descent to find the optimal weights and biases:

̂y ymin ( , ).
W U b V t t, , ,

L

Different variations of RNNs have been proposed including LSTMs
and GRUs (Cho et al., 2014; Gers et al., 2000). Some of these variations
have been applied in nuclear applications such as Infinite Impulse Re-
sponse–Locally Recurrent Neural Networks (IIR–LRNNs) (Messai et al.,
2015; Zio et al., 2009). However, we found that vanilla RNNs per-
formed better than two of the most popular RNN variations, LSTM and
GRU, in our case study (Section 5). One possible reason is that LSTM
and GRU are quite computationally expensive to train and may cause
overfitting and poor generalization on smaller dataset like in our case
study. Thus, without loss of generality, we adopted the vanilla RNN
structure in the paper. Note that extending the proposed method to
other RNN variations is straightforward.

3.2. Principal component analysis

PCA is one of the most widely used methods for applications in-
volving dimensionality reduction, data compression, and feature ex-
traction (Jolliffe, 2011; Liu et al., 2013). Two popular definitions of
PCA give rise to the same algorithm: First, PCA can be defined as a
linear projection of the data onto a lower dimensional linear space,
known as the principal subspace, which minimizes the average squared
distance between the data points and their projections. Second, PCA can
be defined as the orthogonal projection of the data such that the var-
iance of the projected data is maximized.

Consider a set of N vectors x{ }n , where xn is D-dimensional, i.e.,= ⋯x x x x{ , , , }n n n nD1 2 . Using PCA, we find a linear projection of the
D-dimensional vectors x{ }n onto a space with dimensionality ≤M D. It
has been proved that the optimal linear projection in which the var-
iance of the projected data is maximized (or the average squared dis-
tance between the original data and the projected data is minimized)
occurs when the principal subspace is the span of the eigenvectors⋯u u, , M1 of the sample covariance matrix S corresponding to the M
largest eigenvalues. The sample covariance matrix S is defined as

∑= − − −=
− −S x x x x

N
1

1
( )( ) ,

n

N

n n T

1

where
−x is the sample mean.

The optimal value of M is commonly decided by plotting the cu-
mulative explained variance ratio r M( ) corresponding to the number of
principal components as follows.

= ∑∑ =
=r M

λ
λ

( ) ,i
M

i

j
D

j

1

1

where ≥ ≥ ⋯≥λ λ λD1 2 are the sorted eigenvalues of the sample
covariance matrix S. When =M D, this linear projection could be done
with no information loss. <M D leads to dimensionality reduction,
data compression, and feature extraction. We can choose M to be the
minimum value such that the cumulative explained variance ratio r M( )
is higher than a threshold value, e.g., 99% of the total variance. Then
the projected data ̂xn using the first M principal components could be
obtained by ̂ =x U xn M

T
n, where = ⋯U u u[ , , ]M M1 is the projection ma-

trix.
While ANNs are able to learn complicated features from the raw

data, combining them with additional feature extraction methods such
as PCA can significantly improve model accuracy and speed up model
training, especially when only a limited amount of training data is
available. In our case, multi-sensor signals have high correlations (e.g.,
similar types of sensors or closely located sensors), so PCA can greatly
reduce computational complexity and improve model accuracy without
much information loss. As a result, we first apply PCA for dimension
reduction and then use the compressed (projected) data to train the
RNN. We will further examine how PCA can improve anomaly detec-
tion performance in Section 5.2.

4. Methodology

Section 4.1 first explains how we slide a fixed-width time window to
generate multiple training samples of multi-sensor signals with the
same length and then implement PCA to reduce the dimensionality of
the data. Section 4.2 then describes how to label these training samples
based on the manually recorded anomaly time to incorporate label
uncertainty. As described in Section 1, it is common to have extremely
imbalanced training samples in nuclear applications, i.e., far more
training samples are obtained during normal operations than abnormal
operations. In Section 4.3, we illustrate how to tackle this imbalanced
training data via oversampling. Section 4.4 provides an overview of
how to construct and train the proposed RNN-based framework based
on the preprocessed dataset.

4.1. Sliding time window and PCA

Online multi-sensor signals in NPPs are often collected over long
periods of time, and different sensors measure different aspects of an
NPP simultaneously. To preprocess such data, one intuitive approach is
to generate one training sample for each operation record. Yet, to
capture the behavior of a system over a short time period and provide
sufficient training samples, it is more efficient to generate multiple
training samples from one operation record. We can achieve this by
sliding a time window of fixed width nTW over the whole multi-sensor
signal data, i.e., dividing a long time series into a set of equal-sized sub-
sequences. Fig. 2 illustrates how we slide a time window of width nTW
to generate multiple training samples from the data collected during
one operation, when a system has d sensors. For any system whose
operating time is shorter than nTW , we can create one sample using its
full operating time. The suitable width of the time window nTW can be
decided based on the characteristics of a system, e.g., signal sampling
frequency or mechanisms of anomalies. We can either adopt domain
knowledge or investigate historical signals (e.g., cross validation) to
decide the appropriate value of nTW . In general, while a larger nTW
conveys more information to the model, it also makes the model
training procedure more computationally expensive.

After generating samples from the raw data, we apply a normal-
ization technique to all signals, e.g., z-score normalization or min–max
normalization, such that each signal is within a comparable range. Then
the PCA algorithm introduced in Section 2.2 can be applied to reduce
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the dimensionality of the data.

4.2. Robust labeling

In this study, our primary goal is to accurately detect when
anomalies occur. From a supervised learning perspective, this goal can
be achieved by considering anomaly detection as a binary classification
problem, where a label is 1 if the data is obtained when an anomaly

occurs, and 0 otherwise. For instance, suppose an anomaly time is re-
corded as T in the operational report. It is straightforward to assign
label 1 to the samples (sub-sequences) collected atT , and 0 to the rest of
the samples. However, as described in Section 1, the anomaly time
recorded in an operational report may involve uncertainty, particularly
when reports are manually recorded. In such cases, it is highly likely
that the exact anomaly time is different from T .

To incorporate such type of uncertainty in the proposed framework,
we develop a technique called “robust labeling.” Instead of labeling
each data with binary codes, 0 (normal) and 1 (abnormal), robust la-
beling treats the probability that data is obtained when the abnormal
event happens as the label, i.e., placing a distribution over the anomaly
time. For instance, we can place a Gaussian distribution over the exact
anomaly time with mean T and a certain variance; in this way, a larger
probability value is assigned to the data collected closer to T .
Alternatively, we can also use a uniform distribution with width t2∆ ,
assigning probability t1 2∆ to the data collected between −T t∆ and+T t∆ and 0 to the rest. Domain knowledge or historical data can be
used to select the appropriate distribution form and the parameters of
the distribution, e.g., variance and t∆ . In our case study, the recorded
time on the operational report is the time when the operator completes
immediate follow-up actions after detecting the anomaly, so we use a
truncated Gaussian distribution with support −∞ T( , ], i.e., the prob-
ability that the anomaly happens after T is 0. This probability density
function is then used to calculate the label of each sample. In particular,
the label corresponding to the sample at time t can be interpreted as the
probability that the abnormal event happens within the interval

Fig. 2. Sliding time window of width nTW where a system has d sensors.

Fig. 3. The proposed RNN-based online anomaly detection framework.
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−t δt t( , ), where δt is a very short time duration. The calculated la-
bels are scaled such that the maximum possible label is equal to 1, since
the ANN’s outputs using the sigmoid activation function are within the
range of [0, 1]. Note that a conventional method using binary codes can
be regarded as a special case of the robust labeling approach, where we
use the Dirac-delta distribution function, i.e., =y t( ) 1 if =t T and=y t( ) 0 otherwise, where y t( ) is the label of the sample at time t. In
some cases such as the Gaussian distribution, >y t( ) 0 for all t. We then
set y t( ) to be 0 if it is too small, assuming that the difference between
the recorded abnormal time and the true abnormal time is not too large.

In fact, even when we have limited uncertainty regarding labels,
e.g., the anomaly time is recorded with absolute certainty, robust la-
beling can still contribute to model accuracy and generalization. This is
because we may view the robust labeling technique as capturing not
only abnormal patterns in multi-sensor signals observed at the exact
moment when an anomaly occurs, but also patterns observed right
before or after the anomaly. In other words, robust labeling might be
used to identify signs of a failure event before its occurrence, and thus it
has the potential to be extended from detection of acute anomalies to
detection of gradual/chronic anomalies or even anomaly prediction in
cases when we have exact accurate anomaly times in the training data.
However, we will leave this investigation to future work.

4.3. Random oversampling

In practice, the number of operation records involving anomalies is
much smaller than the number of records without anomalies. This data
imbalance can lead to significant detection errors in most machine
learning approaches, which are often designed to maximize accuracy on
a balanced dataset (Buda et al., 2018; Yap et al., 2014). Two common
ways to alleviate this problem are by oversampling data in the minority
class or downsampling data in the majority class. In this study, we
employ random oversampling, i.e., sampling with replacement from the
available training samples representing anomalies. In this way, we
balance the ratio between the number of samples representing
anomalies and the number of samples obtained during normal opera-
tions. After applying the robust labeling method to the training data as

Fig. 4. UWNR open pool reactor.

Table 1
Summary of scrams.

Scram Time Description

2017/05/11 09:10:00 Reason for scram is unknown. No indication of trip element. Possible spurious failure of actual SCRAM relays. During completion of this step of the
procedure an obvious power fluctuation occurred in the building and an actual Loss of Alternating current annunciator came in. Now suspect SCRAM is a
result of building wide power fluctuation.

2017/12/01 11:21:00 SCRAM from picoammeter number 2. While performing a normal reactor setup, a reactor operator trainee did not appreciate the differential worth of the
transient rod and inserted sufficient reactivity to result in a short period alarm. The trainee became distracted by the period alarm and failed to uprange
the picoammeter to the next higher range.

2018/01/25 09:47:00 Manual emergency shutdown. During steady state operations at full power the ventilation system exhaust fan failed. The on-duty reactor operator
observed decreasing exhaust flow and immediately initiated corrective actions by inserting a manual SCRAM.

2018/07/16 10:38:00 Shutdown by manual rundown following the loss of EF-7.

Table 2
Detailed description of sensor signals.

Symbol Description Units

LCR Log Count Rate Log CR
pA #1 Picoammeter #1 %
pA #2 Picoammeter #2 %
LogN Log Neutron Power Log W
Period Period DPM
Core Inlet Core Inlet Temperature °F
Demin Inlet Demineralizer Inlet Temperature °F
Pri HX I Primary Heat Exchanger Inlet Temperature °F
Pri HX O Primary Heat Exchanger Outlet

Temperature
°F

Int HX I Intermediate Heat Exchanger Inlet
Temperature

°F

Int HX O Intermediate Heat Exchanger Outlet
Temperature

°F

CWS Chilled Water Supply Temperature °F
CWR Chilled Water Return Temperature °F
Fuel Fuel Temperature °C
CAM Part Raw Continuous Air Monitor Particulate Raw
CAM Gas Raw Continuous Air Monitor Gas Raw
SAM Part Raw Continuous Air Monitor Particulate Raw
SAM Gas Raw Continuous Air Monitor Gas Raw
Vent Flow Ventilation Flow Rate KCFM
Demin Res Demineralizer Resistivity MOhm-cm
Hold Tank Level Hold Tank Level Gallon
Pool Level Pool Level Feet
CAM Part Continuous Air Monitor Particulate

Concentration
uCi/mL

CAM Gas Continuous Air Monitor Gas Concentration uCi/mL
SAM Part Continuous Air Monitor Particulate

Concentration
uCi/mL

SAM Gas Continuous Air Monitor Gas Concentration uCi/mL
CAM Part Exponent CAM Part Exponent Concentration uCi/mL
CAM Part Significand CAM Part Significand
CAM Gas Exponent CAM Gas Exponent Concentration uCi/mL
CAM Gas Significand CAM Gas Significand
SAM Part Exponent SAM Part Exponent Concentration uCi/mL
SAM Part Significand SAM Part Significand
SAM Gas Exponent SAM Gas Exponent Concentration uCi/mL
SAM Gas Significand SAM Gas Significand
Totalized Air Flow Totalized Air Flow MCF
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described in Section 4.2, samples with label > 0 are randomly over-
sampled. In Section 5.2, we will investigate how much improvement in
anomaly detection performance can be achieved using the random
oversampling approach.

Random oversampling may lead to overfitting to the training data
and poor generalization to the test dataset particularly when the future
anomalies are significantly different from the historical anomalies. To
avoid such overfitting issues, more advanced oversampling techniques
have been developed, such as the Synthetic Minority Over-sampling
TEchnique (SMOTE) and ADAptive SYNthetic Sampling (ADASYN)
(Chawla et al., 2002; He et al., 2008). For instance, in SMOTE, new
synthetic minority class samples (i.e., samples representing anomalies)
are generated by randomly interpolating pairs of closest neighbors in
the minority class. However, it has been shown that SMOTE does not
work well for high-dimensional data such as the multi-sensor signals in
this study (Blagus and Lusa, 2013). Thus, in our case study, we consider
situations in which the anomalies in the test dataset share similarities

with those in the training dataset and apply random oversampling to
handle imbalanced training data.

4.4. Overview of the proposed RNN structure

Fig. 3 illustrates the overall framework of the proposed approach.
First, the data preprocessing procedures described in Sections 4.1
through 4.3—sliding time windows, PCA, robust labeling, and random
oversampling—are conducted. The RNN then aims to learn relation-
ships between the preprocessed multi-sensor signals and their corre-
sponding labels. As the labels all lie in the range [0, 1], we apply a
sigmoid activation function and use binary cross-entropy as the loss
function ∙ ∙( , )L (Goodfellow et al., 2011). Depending on the char-
acteristics of the data, e.g., the number of sensors, sampling frequency,
and size of the training dataset, stacking multiple RNN layers may yield
better performance by learning more complicated patterns hidden in
the data.

Fig. 5. An example of multi-sensor signals with a recorded anomaly marked by the vertical red line.
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5. Numerical study

In this section, we apply the proposed method to a real case study.
In Section 5.1, we first provide an overview of the reactor and dataset.
In Section 5.2, we apply different techniques developed in Sections 4.1
through 4.3 to the dataset and investigate how each of them can con-
tribute to the anomaly detection performance. Section 5.3 demonstrates
the benefits of using historical anomalies in model training. In parti-
cular, the proposed method is compared with a conventional residual-
based method to investigate how anomaly detection performance im-
proves according to the number of historical anomalies in the training
data.

5.1. Overview of the reactor and dataset

The University of Wisconsin Nuclear Reactor (UWNR) is a hetero-
geneous, pool-type nuclear reactor currently fueled with low-enriched
uranium TRIGA (Training, Research, Isotope Production, General
Atomics) fuel and cooled by natural convection. Fig. 4 illustrates the
UWNR open pool reactor. The reactor has been operating successfully
for> 40 years, and supports a mission of education, training, and re-
search. In this study, we use multi-sensor signals and operational re-
ports collected over 40 operations from April 2015 to August 2018. Out
of the 40 operations, 4 operations contained scrams. Recorded times
and description logs of the scrams are summarized in Table 1. We
consider these scrams as anomalies and investigate whether the pro-
posed data-driven method can detect sudden changes and characterize
distinct behaviors of multi-sensor signals due to scrams without prior
information about scrams and the underlying mechanism of the reactor
operation.

The data contains 35 sensors measuring different aspects of the
system condition, i.e., =d 35. Table 21 provides detailed descriptions of
these sensor signals, which are measured and recorded at one-second
intervals. Fig. 5 shows an example of multi-sensor signals collected
during an operation with an anomaly. In Fig. 5, red vertical lines in-
dicate anomaly times recorded in operational reports. We can see that
different sensors show significantly different patterns and trends.
Moreover, a comparison between this operation record and other re-
cords shows that even the same sensor may behave quite differently
under different operating circumstances. This complex data structure
motivates us to explore the powerful ANN-based methods described
earlier. The operational reports contain five different types: 3 check-
lists, 1 operating log, and 1 scram report. All these reports are hand-
written. Figs. 6 and 7 show examples of an operating log and a scram
report, respectively. As the focus of this study is on anomaly detection,
we only use the two types of reports which describe the operating log
and scram. In particular, the estimated anomaly time is obtained from
the operating log, and the reason and follow-up action for this anomaly
are obtained from the scram report. In cases where we have many hand-
written documents, we may apply automatic hand-writing recognition
algorithms to extract the information of interest. However, here, we
only have 4 anomalies, so we can manually extract the information
from the reports.

Note that for this dataset, the operator recorded the time after he/

Fig. 6. An example of an operating log (the recorded scram time is highlighted in the red bold rectangle).

1 CR: Count Rate in units of counts per second, W: Watts (the power level of
the reactor), DPM: Decades Per Minute (e.g., 1 DPM indicates that the reactor
power goes from 10 Watts to 100 Watts in one minute), KCFM: Thousand Cubic
Feet per Minute, and MCF: Mega Cubic Feet.
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she observed the abnormal event and performed immediate follow-up
actions. All the sensors and the clock in the control room acquire the
time from the local area network (LAN), and are synchronized to the
Network Time Protocol (NTP) server every hour. Yet, the control room
clock does not display seconds (i.e., one-minute resolution). Depending
on the complexity of the abnormal event and operator’s expertise, the
time difference between the exact abnormal event and the recorded
time could be several seconds to several minutes.

5.2. Results of the proposed model

In this subsection, the anomaly detection performance of the

proposed model is investigated. We randomly sample five operations,
two with anomalies and three without anomalies, to generate a test
dataset, and then use the remaining 35 operations as the training da-
taset. A sliding time window with =n 600TW is applied to generate
multiple samples of multi-sensor signals from each operation. The
window width is determined using 10-fold cross validation to maximize
the true positive ratio (TPR) = (# of true positives) / (# of true posi-
tives + # of false negatives), i.e., the proportion of anomalies that are
correctly detected out of all anomalies. Here, we prioritize high TPR,
since the failure of anomaly detection (false negatives) leads to much
more deleterious results than false alarms (false positives) in nuclear
applications. The following four models are considered to preprocess

Fig. 7. An example of a scram report.
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the samples:

(1) Proposed model not applying PCA, robust labeling (i.e., binary la-
beling of the data with 0 and 1), or oversampling

(2) Proposed model applying PCA, but not robust labeling or over-
sampling

(3) Proposed model applying PCA and robust labeling, but not over-
sampling

(4) Proposed model applying PCA, robust labeling, and oversampling

From Model (1) to Model (4), we incrementally add techniques il-
lustrated in Sections 4.1 to 4.3 to the model. Comparisons between
different models highlight the benefit of each proposed data pre-
processing procedure in accordance with the model construction. First,
Fig. 8 plots the cumulative explained variance ratio, r M( ) as a function
of the number of principal components M , using PCA. Consequently, we
decided to use 21 principal components in Models (2) to (4), which
explain 99.2% of the total variance. To extract eigenvalues and corre-
sponding eigenvectors, the approximation approach proposed in (Halko
et al., 2011) is used. Second, robust labeling is applied using a truncated
Gaussian distribution in Models (3) to (4). This means that if the re-
corded time on the operating log is T , we use a Gaussian distribution
with mean −T 60 and variance 300, and the distribution is truncated at

T (a label after T is set to 0). The variance is again chosen using 10-fold
cross validation to maximize the TPR. In addition, if the label is less
than 0.00001, it is set to 0. After generating samples from the raw
multi-sensor signal data by using the sliding time window approach and
applying robust labeling, the samples turn out to be highly imbalanced
(i.e., the ratio between the number of samples with label > 0 and the
number of samples with label = 0 is around 75). Lastly, in Model (4),
the training samples with label > 0 are randomly oversampled to set
the ratio between the number of samples with label > 0 and those
with label = 0 to be 1.

Although Models (1) to (4) apply different techniques to preprocess
the data and generate training samples, they all use the same structure
of RNN to fairly compare the effects of the proposed techniques. We
first fix the number of hidden layers to 1 to reduce computational costs
and optimize the number of hidden neurons via 10-fold cross valida-
tion. As a result, the number of hidden neurons of the RNN is set to 50,
which achieves the best overall performance. We also explored deeper
structures of RNNs, i.e., RNNs with> 1 hidden layer, but the resulting
anomaly detection performance was worse than the RNN with 1 hidden
layer in our case study. One possible reason is that deeper networks are
more likely to overfit the training data, as they involve a larger number
of parameters.

RMS-Prop which is one of the most widely used optimization al-
gorithms designed for NNs is used to train the RNN (Tieleman, 2012).
RMS-prop adaptively sets the learning rate in a way that smaller
learning rates are used for more frequently updated dimensions. The
simulations are repeated 100 times for each model. Every trial was
executed with two Intel(R) Xeon(R) CPU E5-4620 0 2.20 GHz pro-
cessors and 192 GB RAM. All models are implemented and experi-
mented using Tensorflow framework. Along with the TPR, the area
under the receiver operating characteristic (ROC) curve, known as AUC,
is employed to evaluate and compare the anomaly detection perfor-
mance of different models. The AUC, which is one of the most com-
monly used metrics for classification performance, provides a relative
tradeoff between the TPR and false positive ratio (FPR) = (# of false
positives)/(# of true negatives + # of false positives). AUC takes a
value between 0 and 1. A perfectly inaccurate anomaly detection model
has an AUC of 0; a model that makes random guesses has an AUC of 0.5;
and a perfectly accurate model has an AUC of 1, i.e., a higher AUC
corresponds to better anomaly detection performance. The TPR, AUC,
and average model training time of each model are summarized in
Table 3. We can see that from Model (1) to Model (4), as we apply more
proposed techniques, the models obtain higher TPR and AUC. Model
(4), which applies all the proposed techniques illustrated in Section 4,
achieves the highest TPR and AUC, thus giving the best anomaly de-
tection performance. In addition, a comparison between Models (1) and
(2) shows how PCA improves anomaly detection performance and
speeds up model training. As Model (4) applies random oversampling to
train the model, it takes longer for model training than other models.
Yet, once the model is trained, all constructed models take a similar
amount of time to implement and detect anomalies in real time, as they
have similar NN structures.

5.3. Comparison with the Residual-Based model

In this subsection, the anomaly detection performance of the pro-
posed method is further compared with a conventional residual-based
ANN method. As described in Section 1, most existing ANN-based ap-
proaches only use anomaly-free data from normal operations. An
anomaly is identified when the residual (the difference between the
observed and estimated values) is significant. Here, we construct a re-
sidual-based benchmark model which is also based on an RNN. To
achieve a fair comparison, this benchmark model uses the same struc-
ture of RNN as the proposed model, i.e., 1 hidden layer with 50 hidden
neurons, and the same data preprocessing procedures, including sliding
time windows and PCA. The difference between the proposed model

Fig. 8. Cumulative explained variance ratio with respect to the number of
components.

Table 3
The TPR, AUC, and average model training time of each model (the best per-
formance is highlighted in bold and the standard deviation is in parentheses).

TPR AUC Average Model Training Time (s)

Model (1) 0.669 (0.047) 0.744 (0.018) 237.93 (50.68)
Model (2) 0.820 (0.039) 0.809 (0.018) 204.05 (53.85)
Model (3) 0.866 (0.064) 0.827 (0.031) 215.74 (53.11)
Model (4) 0.922 (0.071) 0.849 (0.020) 336.82 (122.56)

Table 4
The AUC of each model (the best performance is highlighted in bold and the
standard deviation is in parentheses).

# of historical anomalies in
training data

AUC

Proposed models Model (A) 1 0.757 (0.126)
Model (B) 2 0.821 (0.037)
Model (C) 3 0.843

(0.019)
Benchmark model Model (D) 0 0.691 (0.025)
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and the benchmark model is that the benchmark model is trained only
using anomaly-free data, whereas the proposed model is trained using
the proposed robust labeling technique and data from both normal and
abnormal operations. In the literature, different methods have been
proposed to choose the optimal threshold value, but a standardized
procedure does not exist. Thus, we use AUC, which provides a com-
prehensive measure of anomaly detection performance across all pos-
sible threshold values, to evaluate different models. Similar to Section
5.2, we consider the following models:

(A) Proposed model when one operation with a historical anomaly is
included in the training dataset

(B) Proposed model when two operations with historical anomalies are
included in the training dataset

(C) Proposed model when three operations with historical anomalies
are included in the training dataset

(D) Benchmark model which aims to estimate the signal measurements
and detects anomalies based on the residuals

We randomly sample four operations, one with anomalies and three
without anomalies, to generate the test dataset. Then, 34 operations are
randomly sampled from the remaining 36 operations to use as the
training dataset, so that na operations have historical anomalies and− n34 a operations do not have historical anomalies, where na is 1, 2, 3,
and 0 for Models (A), (B), (C), and (D), respectively. As a result, all the
models use the same size of the training dataset, while only the number
of historical anomalies in the training dataset varies. Other detailed
settings of the proposed models and preprocessing procedures follow
Section 5.2. The AUC of each model is summarized in Table 4. We can
see that as the number of historical anomalies in the training dataset
increases, the AUC of the proposed model increases. This is because as
the proportion of historical anomalies in the training dataset increases,
the RNN is exposed to more diverse realizations of multi-sensor signals
during training, and thus it generalizes better in the testing phase
compared with that of fewer anomalies (Chawla, 2005). Furthermore,
the standard deviation of the AUC decreases with the number of his-
torical anomalies, implying more stable anomaly detection perfor-
mance. Yet, a comparison between Models (A) and (D) shows that even
only one historical anomaly in the training data can provide valuable
guidance to the model and significantly improve anomaly detection
performance.

6. Conclusion

In this study, we proposed a novel RNN-based method based on
several advanced techniques to tackle the practical challenges involved
in analyzing nuclear data. RNNs have shown outstanding performance
and potential in dealing with a wide range of complex systems, in-
cluding nuclear applications. Nevertheless, most existing RNN-based
anomaly detection methods only employ anomaly-free data during
model training. Moreover, even when historical anomalies are avail-
able, there are still several challenges in incorporating the data into
model training. To address the challenges, PCA and sliding time win-
dows are applied to preprocess the raw data to capture the unique
patterns of observed signals over a period of time, speed up model
training, and minimize overfitting. Robust labeling is then developed to
incorporate uncertainties involved in estimating historical anomaly
times. Finally, the preprocessed training samples representing anoma-
lies are randomly oversampled to balance the ratio between the num-
bers of anomalous samples and anomaly-free samples.

Comprehensive numerical studies on the real reactor dataset
showed how each proposed technique contributes to anomaly detection
performance. The proposed method outperforms the benchmark
method trained only using anomaly-free data, measured in terms of
AUC. The results demonstrate the importance of incorporating histor-
ical abnormal data into model training and the feasibility of using ANN-

based approaches for anomaly detection in NPPs.
Several topics exist for future work. First, it would be interesting to

extend the proposed method to handle anomaly classification. For ex-
ample, in cases where the types of historical anomalies are known, we
can construct a similar RNN to the proposed one, designing the outputs
with one-hot encoding and using the softmax activation function.
Second, the proposed method considers the cases where we only know
approximate anomaly times. It is worth exploring cases where we know
exact anomaly times and extend the proposed model to predict future
anomalies as well.
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