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Teaching and Learning in Uncertainty
Varun Jog and Po-Ling Loh

Abstract— We investigate a simple model for social learning
with two agents: a teacher and a student. The teacher’s goal is
to teach the student the state of the world; however, the teacher
himself is not certain about the state of the world and needs to
simultaneously learn this parameter and teach it to the student.
We model the teacher’s and student’s uncertainties via noisy
transmission channels, and employ two simple decoding strategies
for the student. We focus on two teaching strategies: a “low-
effort” strategy of simply forwarding information, and a “high-
effort” strategy of communicating the teacher’s current best
estimate of the world at each time instant, based on his own
cumulative learning. Using tools from large deviation theory,
we calculate the exact learning rates for these strategies and
demonstrate regimes where the low-effort strategy outperforms
the high-effort strategy. Finally, we present a conjecture con-
cerning the optimal learning rate for the student over all joint
strategies between the student and the teacher.

Index Terms— Large deviations theory, random walks, social
learning.

I. INTRODUCTION

INDIVIDUALS in a society may learn about their environ-
ment directly through their own experiences, or vicariously

via communication with other members of the society. Such
interactions drive the exchange of ideas, technology, news, and
opinions, and are critically important to the social and eco-
nomic development of a society. However, understanding and
predicting the effects of social interaction on society is a hard
problem: each individual’s opinion is dynamic and depends on
his or her own biases, observations, and social interactions.
The theoretical question of how agents learn through social
interactions has consequently received much attention in the
past few decades, and a number of mathematical models have
been proposed to analyze social learning phenomena, such as
those detailed in Chamley [1] and Mossel and Tamuz [2].

Social learning models generally comprise an unknown state
of the world and a number of agents. These agents have
private observations of the state and use it to take actions
to achieve a certain goal, such as maximizing their utility
functions. Often, agents are able to observe the actions of
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some or all of the other agents, which they can use to glean
more information about the state of the world and thereby play
better actions. Broadly speaking, one is interested in analyzing
the following questions in these models: (a) Convergence:
Do the agents’ actions eventually converge? (b) Agreement:
Given convergence, do the agents agree? (c) Learning: Given
agreement, is the unanimous opinion the true state of the
world? and (d) Given learning, how fast does learning take
place?

In this paper, we focus on analyzing the rate of learning
posed in question (d) for a simple model with two agents.
Our work is most closely related to the work of Vives [3],
Jadbabaie et al. [4], [5], and Harel et al. [6], which also
investigate learning rates in different social learning models.
The specific learning model we consider is motivated by the
work of Harel et al. [6], which we will describe in detail in
Section II and contrast with our model.

A brief overview of our social learning model is as follows:
The unknown state of the world Θ is drawn uniformly from
{−1, +1}. The first agent, whom we call the teacher, receives
repeated observations of Θ through a binary symmetric chan-
nel with flipping probability p. At each time instant, the teacher
can transmit one bit over another binary symmetric channel
with flipping probability q to the second agent, whom we
call the student. The teacher’s goal is to ensure that the
student learns the state of the world. Our goal is to understand
how the rate of learning of the student depends on the
joint strategies of the teacher and the student, where we
assume that both the teacher and student are aware of each
other’s strategies. We analyze two particular student strategies:
(i) A strategy where the student simply takes an average
(or majority vote, when the state of the world is binary)
over all observations received from the teacher; and (ii) a
strategy where the student—shrewdly cognizant of the fact that
the teacher is also learning from his own observations over
time—only averages a final segment of observations, which
she assumes to more accurately reflect the state of the world
than the initial observations.

The main mathematical tools we use in this paper are
derived from the theory of large deviations, specifically con-
cerning the large deviation properties of the sign of a transient
Markov random walk on Z. We show that the rate function
of this process can be explicitly calculated; moreover, it has a
surprisingly neat closed-form expression that can be used in
our subsequent analysis. When the state of the world is binary,
our results show that when the student employs either of the
two learning strategies discussed above, the relative ordering
of teacher strategies in terms of the learning rate of the student
generally depends on the noise parameters of the teacher’s
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and student’s channels, in a manner we can make explicit.
We also analyze a setting where the state of the world is a
continuous parameter and the learning rate is quantified by
the variance of the student’s estimator, and reach a markedly
different conclusion that the laziest strategy of the teacher
already leads to an optimal rate of learning for the student.

The remainder of the paper is organized as follows:
In Section II, we describe our model in detail and discuss the
strategies employed by the teacher and student. In Section III,
we develop the main technical tools used in analyzing the
learning rate of the student when the state of the world is
binary; the rates of learning for the two student strategies are
subsequently analyzed in Sections IV and V. In Section VI,
we discuss the somewhat different case of Gaussian learning
with continuous-valued parameters. Finally, we conclude the
paper in Section VII with a discussion of open problems and
teaching philosophy.

Notation: For a real parameter p ∈ [0, 1], we write p̄ to
denote the quantity 1 − p. For a random variable Xn, a set
A, and a function f(A), we write P(Xn ∈ A) ≈ e−nf(A)

to mean that P(Xn ∈ A) = e−n(f(A)+o(1)). We write
D(a||b) = a log(a/b) + ā log(ā/b̄) to denote the Kullback-
Leibler divergence between the Bernoulli(a) and Bernoulli(b)
distributions. We write 1 ∈ Rn to denote the n-dimensional
vector of all 1’s.

II. PROBLEM STATEMENT AND RELATED WORK

We consider a simple model of social learning with two
agents: a teacher and a student. Suppose both agents are trying
to learn an unknown binary random variable Θ, which is called
the state of the world. We assume that Θ takes values in the
set {−1, +1}, uniformly at random. At each time i ≥ 1,
the teacher observes a noisy version of Θ through a binary
symmetric channel with parameter p ∈ [0, 1/2); i.e.,

P(Yi = Θ) = 1 − p, and P(Yi = −Θ) = p.

Conditioned on Θ, the random observations {Yi}i≥1 are
independent and identically distributed, as above. The student
does not make any direct observations (noisy or otherwise) of
Θ, and may only learn its value from the teacher.

At each time i, the teacher communicates a binary random
variable X̂i, which is a (possibly random) function of the
history of observations {Yj}1≤j≤i, and the student receives
a noisy version of X̂i, which we call Zi. The communication
channel from the teacher to the student is assumed to be a
binary symmetric channel with parameter q ∈ [0, 1/2). The
student’s estimate of Θ after observing {Zj}j≤i is denoted by
Θ̂i ∈ {−1, +1}. We refer to the sequence of random variables
{X̂i} as the teacher’s strategy, and the decoding rules {Θ̂i} as
the student’s learning strategy. For fixed teaching and learning
strategies, the student’s rate of learning is defined as follows:

R = lim sup
n→∞

{
− 1

n
log P

(
Θ̂n %= Θ

)}
. (1)

Notice that the teacher is guaranteed to the learn the state of
the world eventually, owing to his repeated noisy observations
of Θ.

Comparison to Harel et al. [6]: Despite the differences
between our model and that of Harel et al. [6], we also uncover
certain counterintuitive phenomena in our two-agent setting.
The model in Harel et al. [6]1 also considers two agents A
and B and an unknown binary state of the world Θ. The agents
receive i.i.d. observations {Ai}i≥1 and {Bi}i≥1 of Θ through
their respective binary symmetric channels. At each time i,
the agents also form their binary-valued best estimates θ̂A and
θ̂B of Θ. The information available to the agents is modeled
in two settings: (i) A can observe B’s estimates of Θ, but not
vice versa; and (ii) A and B can both observe each other’s
estimates. The authors made the surprising observation that
agent A’s learning rate is higher in setting (i) than in (ii)—
contrary to the intuition that setting (ii) involves a greater
exchange of information, so one might expect A to learn
faster. The authors attribute this counterintuitive result to a
phenomenon they call “rational groupthink.”

The model studied in our paper differs from that of
Harel et al. [6] in three key ways: First, the second agent,
the student, does not have any private observations that allow
her to learn. Any information she receives about the state of
the world follows from a noisy interaction with the teacher.
Second, the agents are not necessarily Bayesian, but instead
perform heuristic calculations to form their opinions. Rich
bodies of literature studying both Bayesian and non-Bayesian
models of social learning exist, which we shall describe in
more detail in Section II-D1. Third, the model proposed in
Harel et al. [6] involves pure information externalities, where
each agent receives a payoff which depends only on their
action and the state of the world. In contrast, our model does
not include payoff functions for agents; rather, the teacher and
student are jointly working to optimize the student’s learning
rate. Similar features appear in team decision theory and
control, which we briefly comment on in relation to our setting
in Section II-D2.

Despite the differences between our model and that of
Harel et al. [6], we also uncover certain counterintuitive
phenomena in our two-agent setting. In particular, we observe
that “helpful” social interactions, where the teacher always
tries to transmit his best guess to the student, may actually
hinder the student’s rate of learning.

In Section VI below, we will introduce an alternative model
for teacher/student learning when the state of the world is a
continuous real number. The rate of learning of the student will
then be quantified by the variance of the student’s estimate,
rather than the probability of error. We will introduce the
appropriate terminology later; in the remainder of this section
and throughout Sections IV and V, we will adopt the setting
and notations for the binary model described above.

A. Student Strategies

The student’s learning rate depends on both the teacher’s
strategy and her own decoding strategy. When the student
is aware of the teacher’s strategy, the optimal learning rate

1See version 1 of the arXiv manuscript. In later versions, the model was
extended to more than two agents, but the key ingredients of the analyses
may be found in the analysis of the two agent model.
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is achieved when the student uses a maximum likelihood
decoder to arrive at her estimate of Θ̂n. However, as is well-
documented in the literature on social learning, a fully rational
model often places unreasonable computational demands on
Bayesian agents [2]. Assuming that agents are non-Bayesian
serves two goals: it makes the model more realistic by reduc-
ing its complexity; and in some cases, it also helps make the
model mathematically tractable. In this paper, we will consider
two simple non-Bayesian student strategies, which we now
describe.

Majority rule: This is perhaps the simplest possible strat-
egy for the student, defined as a majority vote over her
observations:

Θ̂n =

{
+1 if

n
i=1 (Zi=+1)

n ≥ 1
2 ,

−1 otherwise.

Note that in some cases (e.g., when the teacher uses the simple
forwarding strategy defined in the next section), the majority
strategy for the student corresponds to the MLE; however, this
is not generally true when the teacher employs other strategies.

ε-majority rule: This is a generalization of the majority
learning rule, where the student’s estimate is a majority vote
among the latter εn observations, for a parameter ε ∈ (0, 1]:

Θ̂n =

{
+1 if

n
i=!(1−ε)n# (Zi=+1)

&εn' ≥ 1
2 ,

−1 otherwise.

The rationale is that the student is aware that the teacher is
learning as time progresses, so she may be skeptical of the
teacher’s initial transmissions and prefer to place more weight
on the most recent observations. However, since analyzing
the learning rate of the student becomes rather complicated
for arbitrary weighting strategies, we will restrict our analysis
to a strategy that places zero weight on the first (1 − ε)n
observations and equally weights the remaining observations.

Note that the majority rule is a special case of the ε-majority
strategy when ε = 1. However, as our analysis will reveal,
the optimal choice of ε depends in a nontrivial manner on
the channel parameters p and q. Thus, we will generally be
interested in the behavior of ε-majority learning when ε is
optimized to the parameters p and q, operating under the
assumption that such a strategy would only be employed if
the student had some knowledge of the channel parameters.
We will also analyze the majority learning strategy on its own.

B. Teacher Strategies

We now turn to describing several teaching strategies that
we will analyze in our paper.

Simple forwarding: A “lazy” strategy for the teacher that
requires no learning on his part is to put X̂i = Yi; i.e., simply
forward his observation at each time step directly to the
student.

Cumulative teaching: In contrast to the lazy strategy of
simply forwarding information, the teacher might follow a
strategy of always transmitting his current best estimate of
Θ, obtained by applying the majority rule to his observations
{Yi}1≤i≤n.

Note that the cumulative teaching strategy clearly satisfies
the property that after some finite time, the process {X̂n}
is identically equal to Θ. In contrast, the simple forwarding
strategy never converges in this manner, so the teacher is
correct more often in the cumulative teaching strategy if n is
sufficiently large. This is the intuitive reason why one might
expect the cumulative teaching strategy to dominate the simple
forwarding strategy; however, as we will see later, the relative
merits of the two strategies are intricately linked to the values
of p and q.

ε-teaching: We will also analyze a teaching strategy that
is tailored to the ε-majority student strategy. In this strategy,
the teacher transmits no information during the first (1 − ε)n
time steps (e.g., always transmitting a default value of 1),
and then repeatedly transmits his best guess based on the first
(1 − ε)n observations in the remaining time steps:

X̂i =

{
+1 if

$(1−ε)n%
i=1 (Yi=+1)

&(1−ε)n' ≥ 1
2 ,

−1 otherwise,
for i ≥ &(1−ε)n'.

Evidently, the ε-teaching strategy could potentially be
improved if the teacher transmitted more information in the
first (1 − ε)n time steps, or transmitted a more sophisticated
estimator based on cumulative learning in the last εn time
steps. However, we again focus on analyzing this simpler strat-
egy since it leads to closed-form expressions for learning rates
that may be more easily compared to other student/teacher
strategies.

Remark: The definition of learning rate in equation (1)
is motivated, at least in part, for reasons of mathematical
tractability. It is natural to wonder how large n should be
so that the probability of error is close to the approximation
resulting from an asymptotic calculation. Calculating the exact
probability of error for large n is not computationally feasible
for n > 20; however, the error probability can be approximated
using Monte Carlo simulations for moderate values of n.
Based on our experiments for the “cumulative teaching +
majority learning” strategy, we observe that although the
values of p and q generally affect the outcome, in most cases,
the asymptotic approximation becomes reasonably accurate
when n ≈ 100. Figure 1 displays plots for the error probability
vs. n when (p, q) = (0.1, 0.3) and (p, q) = (0.3, 0.1).

C. Overview of Results

To aid readability, we now provide a preview of our main
results. As mentioned earlier, we will focus on characterizing
the learning rate of different strategies when the student’s
strategy is fixed. The main message of our paper is that certain
teacher strategies are better than other strategies for particular
regimes of the channel parameters (p, q):

• When the student employs the majority rule strategy,
neither the simple forwarding strategy nor the cumu-
lative teaching strategy strictly dominates the other.
In Section IV, we calculate the analytical expressions
for the learning rates in both cases. Comparing them
for different values of p and q, we observe that for
small values of q (which one may interpret as sharp
and attentive students), the simple forwarding strategy
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Fig. 1. Plots showing the convergence of the non-asymptotic error probability
of the student in the “cumulative teaching + majority learning” strategy to the
exact learning rate defined by equation (1).

dominates. However, we also note that for all q larger than
≈0.15, the simple forwarding strategy is worse than the
cumulative teaching strategy for all values of p; i.e., no
matter how “bad” the teacher (corresponding to large
values of p), a moderately attentive student still benefits
from a cumulative teaching strategy.

• When the student employs the ε-majority strategy, nei-
ther the simple forwarding strategy nor the cumulative
teaching strategy strictly dominates the other. However,
we can show that the cumulative teaching strategy uni-
formly dominates the ε-teaching strategy for all values
of p and q. We can obtain closed-form expressions for
the learning rate of the latter teaching strategy; for the
former teaching strategy, we obtain an expression that can
be computed by solving an optimization problem using
computer software. Comparing the cumulative teaching
strategy with the simple forwarding strategy, we observe
that the cumulative teaching + ε-majority learning strat-
egy dominates the simple forwarding + majority learning
strategy for almost all values of p and q, except when q
is very small.

In the case of Gaussian teaching and learning, we show
that rather surprisingly, the majority learning rule for the
student and simple forwarding strategy for the teacher is
jointly dominant. Notably, neither of these teaching or learning
strategies requires knowledge of the Gaussian channel parame-
ters. This underscores a fundamental difference between the
social learning problem in discrete vs. continuous state spaces.

D. Related Literature

The problem described in the section above possesses
additional connections to various research threads spanning
a diverse range of topics. We briefly highlight some of these
below.

1) Social Learning and Signaling Games: The economics
literature contains a vast body of work concerning social
learning. We refer the reader to the survey articles by Mossel
and Tamuz [2] and Mobius and Rosenblat [7] for a broad
coverage, and only highlight a subset of this literature that is
most relevant to our work.

Aumann’s Agreement Theorem [8] may be viewed as an
early example of social learning. Aumann showed that if two
agents agree on the prior of state of the world and their
posteriors are “common knowledge,” their posteriors must be
identical; i.e., they cannot agree to disagree. Geanakoplos
and Polemarchakis [9] studied the speed of convergence of
the agents’ posteriors when they exchange and update their
posteriors at each time step. Social learning situations where
agents update their actions repeatedly—based on their pri-
vate signals and the (continuously updating) actions of other
agents—have been studied in numerous popular models in
economics. Banerjee [10], Bikhchandani et al. [11], and Smith
and Sorenson [12] proposed models of social learning which
exhibit the phenomenon of herding, where agents “herd” to
the same (possibly wrong) action.

Gale and Kariv [13] proposed a social network model,
wherein agents occupy vertices of a graph and are able to
observe the actions of their neighbors. Akin to Aumann’s
result [8], Gale and Kariv showed that fully Bayesian (or fully
rational) agents converge to the same action under suitable
conditions. Mossel et al. [14] studied learning in this model
by incorporating a state of the world that dictates private
signals of the agents. The model studied in our paper may be
considered as operating on a social network graph with one
edge: the student can noisily observe the teacher’s actions.
Nonetheless, the information structure is somewhat different
in our model, which is more closely related to the model
proposed in Harel et al. [6].

Another notable aspect of our model is that the two
agents are non-Bayesian. Learning models with non-Bayesian
agents have been studied by various authors, e.g., DeG-
root [15], Ellison and Fudenberg [16], Bala and Goyal [17],
Rahimian and Jadbabaie [18], Hazła, Jadbabaie, Mossel, and
Rahimian [19] and Molavi et al. [5]. Non-Bayesian models
are relevant for two reasons: (1) humans are not Bayesian; and
(2) it can be challenging to analyze the behavior of Bayesian
agents. This is remarked upon in Gale and Kariv [13] in the
study of a graph with just three nodes and also explored further
in Kanoria and Tamuz [20]. Consequently, we have chosen to
consider a model in which agents make heuristic rather than
Bayesian decisions.

2) Team Decision Theory and Control: Team decision the-
ory, as described in Ho [21], considers agents with correlated
sources of private information who take coordinated actions
to optimize a payoff function. The agents may communi-
cate beforehand to agree on any protocol of their choice.
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Similarly, our model involves a teacher and student who share
a common goal and are free devise a joint strategy; however,
the specifics of the mathematical model in Ho [21] differ from
ours in several ways, particularly with respect to the repeated
observations and actions in our setting.

Our model also shares several similarities with Witsen-
hausen’s counterexample from stochastic control [22]. This
counterexample, which involves two agents—one with a per-
fect observation of the state but expensive control, and the
other with a noisy observation of the state (after it has been
modified by the first agent) but free control—demonstrates
how non-classical information structures can alter the nature
of optimal control solutions. The goal of both agents is to
drive the state to 0. The problem may be reduced to finding
the optimal strategy of the first agent, since the second agent
can use a simple minimum mean-square-error decoder. In our
model, the teacher has, in some sense, direct access to the
state of the world; the teacher can then communicate this
state to the student in a noisy manner. Just as in the optimal
control problem, our goal is to determine the teacher’s optimal
strategy, since the student’s optimal strategy is simply the
MAP decoder once the teacher’s strategy is fixed. (A notable
difference is the absence of a “control” aspect in our setting.)
Nonetheless, the difficulty in identifying the optimal strategies
in Witsenhausen [22] and our paper exemplifies how asymmet-
ric information structures can lead to very hard problems that
might initially appear innocuous.

3) Fluctuation of Random Walks: Analyzing the sign of the
random walk appearing in our paper may be seen as a part
of the broader literature concerning fluctuation theory in prob-
ability [23]. These works explore the distributions of various
quantities such as the time to reach the maximum or minimum,
and (of relevance to us) the sojourn time, which is the duration
of time when the random walk is positive. Fluctuation theory is
also closely related to ballot theorems in probability, where the
probability of a random walk being positive, negative, or lying
within certain bounds is studied [24]. Our contribution differs
due to its focus on the large deviation properties of the sign,
as opposed to characterizing its distribution as in Chung and
Feller [25], Andersen [26], and several works along these lines.
We note that the paper of Andersen [26] contains a result
concerning the sign of a random walk that may be used to
prove our Theorem 1 more directly. However, we have retained
our original analysis (which is a brute force computation,
as opposed to the specialized result from Anderson [26]),
because the technique extends to non-binary random walks
and the calculation of rate functions for the duration of time
the random walk lies within a certain interval. A possible
generalization of our model to continuous random walks may
be possible to study using arcsine laws [27], [28], but we do
not explore that in this paper.

4) Communication Theory: A model identical to
ours was proposed independently and concurrently in
Huleihel et al. [29], who studied how to reliably send one
bit across a cascade of binary symmetric channels. For
simplicity, Huleihel et al. [29] assume that all the binary
symmetric channels in the cascade are identical, with flipping
probability δ. Just as in this paper, the authors examine the

learning rate (which they call the “information velocity”) as
a function of the number of channels k in the cascade. The
paper establishes that when δ → 1/2, the ratio of the learning
rates for k = 2 and k = 1 is at least 3/4, and proposes
an interesting conjecture that the ratio should be arbitrarily
close to 1. Translated into our setting, this would mean that
when the teacher and student both have very noisy channels,
the student learns as fast as the teacher; i.e., the channel from
the teacher to the student can be made “clean.” We shall
further discuss the conjecture from Huleihel et al. [29] in our
concluding section along with other conjectures of interest.

III. TECHNICAL RESULTS

The following results, related to the sign sequence of a ran-
dom walk and its derived properties, will be used throughout
our paper. They provide the main technical results underlying
our calculations of explicit learning rates. Throughout our
analysis, we assume without loss of generality that Θ = +1.

The random process Xn :=
∑n

i=1 Yi, recording the cumula-
tive observations of the teacher, may be modeled as a random
walk Z with the following transition probabilities:

p(Xn+1 = i + 1|Xn = i) = 1 − p, and

p(Xn+1 = i − 1|Xn = i) = p,

where p < 1/2. Notice that this random walk is transient;
i.e., for every i ∈ Z, the random walk visits state i finitely
many times, with probability 1. Since p < 1/2, the random
walk eventually runs off to +∞. Now define the following
process:

X̂n =






+1 if Xn > 0,

−1 if Xn < 0,

X̂n−1 if Xn = 0,

which is the teacher’s best guess about the state of the world
at time n.

Let Mn :=
∑n

i=1 (X̂i = +1) denote the number of
times that the teacher’s majority guess is correct up to time
n. In order to determine learning rates for the cumulative
teaching strategy, we will need to explore the large devia-
tions behavior of Mn. In particular, we are interested in the
quantity P

(
Mn
n ≈ 1 − δ

)
. We expect this probability to be

approximately equal to e−nf(δ), for some suitable exponent
f(δ); in Section III-B, we will pinpoint the function f(δ) in
terms of p and δ.

A. Preliminary Calculations for {Xn}
Since the random walk {Xn} is transient, it has a positive

probability of never returning to state i, starting from state i.
A simple calculation shows that this probability is 1− 2p, for
any value of i.

Next, we focus on the sojourn time T , defined to be the time
of the first return to 0, starting from 0. We use the convention
that T is positive if the random walk is positive during the
sojourn; otherwise, T is negative. Note that sojourn times can
only take even values: T = 2k when the random walk takes
a total of k positive steps and k negative steps, with only the
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endpoints of the sojourn being at 0. The probability that T =
2k may be calculated by counting the number of such paths
and multiplying the result by pkp̄k. Furthermore, the number
of these paths is the (k − 1)st Catalan number [30], Ck−1 =
1
k

(
2k−2
k−1

)
. The distribution of T is therefore given by

P(T = 2k) =






p|k|p̄|k| 1
|k|
(2|k|−2
|k|−1

)
if 0 < |k| < ∞,

0 if k = 0,

1 − 2p if k = +∞,

0 if k = −∞.

We will be interested in the random variable T conditioned
on the event that |T | < ∞, which we call T̃ . It is easy to see
that ET̃ = 0, and

E|T̃ | =
∞∑

k=1

2 · pkp̄k

2p
Ck−1 · 2k = 2

∞∑

k=0

pk+1p̄k+1

p
Ck ·(k + 1).

Recall that the generating function of the Catalan numbers is
given by

f(x) =
∞∑

k=0

Ckxk =
1 −

√
1 − 4x

2x
. (2)

Thus,
∑∞

k=0 Ck(k + 1)xk = d
dx(xf(x)) = 1√

1−4x
. Substitut-

ing x = pp̄, we conclude that E|T̃ | = 2p̄
(p̄−p) .

Another quantity that will be critical for deriving large
deviations results is the log moment generating function of
the random vector (T̃ , |T̃ |), defined by

L(λ1, λ2) = log Eeλ1T̃+λ2|T̃ |.

The following lemma is proved in Appendix A:
Lemma 1: Let

D = {(x1, x2) | |x1| + x2 ≤ D(1/2||p)}.

For (λ1, λ2) ∈ D, we have L(λ1, λ2) ≤ log 1
2p . For

(λ1, λ2) /∈ D, we have L(λ1, λ2) = +∞.
Finally, the last ingredient we need is the number of returns

of the random walk {Xn} to 0. This is a geometric random
variable, with distribution given by

P(G = i) = (2p)i(1 − 2p), i ≥ 0.

B. Large Deviations Properties of Mn

Let B be the random variable indicating the time of the
final visit of {Xn} to state 0. We break up the probability of
interest as follows:

P
(

Mn

n
≤ 1−δ

)
=




n/2∑

g=0

P(Mn ≤ n(1 − δ), B ≤ n, G = g)





+ P(Mn ≤ n(1 − δ), B > n). (3)

Note that the sum contains fewer than n terms (the maximum
number of returns to 0 in n steps is n

2 ), and the largest among
these terms will dictate the exponential growth rate of the sum.

We have the following lemma, proved in Appendix B:
Lemma 2: We have

P(Mn ≤ n(1 − δ), B > n) ≈ e−n(D(1/2||p).

We now turn to the initial n
2 terms in equation (3).

We rewrite the probability as follows:

n/2∑

g=0

P(Mn ≤ n(1 − δ), B ≤ n, G = g) =
n/2∑

g=0

P(G = g)

×
{

n∑

b=2g

b∑

a=−b

P




g∑

j=1

T̃j = −a,
g∑

j=1

|T̃j | = b





(
a + b

2
≥ nδ

)}
.

This is because conditioned on G = g, the behavior of the
random walk can be broken into segments in between return
times to 0, corresponding to the sojourn times {T̃1, . . . , T̃g}.
Furthermore, the time B = b of the final sojourn time must
be at least 2g and at most n, which is the time of the last
return to 0; and the sum −a of the signed sojourn times is
then clearly in [−b, b]. Finally, the quantity Mn is a sum of
(n − b) (corresponding to the final n − b time steps) and
the sum of lengths of positive sojourn segments, which is
b−a
2 . Then the inequality Mn ≤ n(1 − δ) is equivalent to

a+b
2 ≥ nδ.
We now substitute α := a

n , β := b
n , and γ := g

n . We may
rewrite the above expression as a summation over α, β, and
γ, where we implicitly assume that these variables take values
of the form i

n , for some integer i:

1/2∑

γ=0

P
(

G

n
= γ

)
×

1∑

β=max(δ,2γ)

β∑

α=2δ−β

P
(∑nγ

j=1 T̃j

n
= −α,

∑nγ
j=1 |T̃j|

n
= β

)
.

Our next theorem is a core technical result of this paper:
Theorem 1: Let δ ∈ [0, 1]. The following equality holds:

lim
n→∞

1
n

log P
(

Mn

n
≤ (1 − δ)

)
= −δD(1/2||p).

Proof: Define the random vector

Zn :=

(
G

n
,

∑G
j=1 T̃j

n
,

∑G
j=1 |T̃j |

n

)
.

Define the set

Q :=
{

α, β, γ | γ ∈ [0, 1/2], β ∈ [max(δ, 2γ), 1],

α ∈ [2δ − β, β]
}
⊆ R3.

Note that we are interested in the quantity P(Zn ∈ Q).
We will evaluate this probability for large n using the Gärtner-
Ellis theorem from large deviation theory [31]. The first
step is to show that the following limit exists for every
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λ := (λ1, λ2, λ3) ∈ R3:

Λ(λ) := lim
n→∞

1
n

log Eenλ·Zn

= lim
n→∞

1
n

log E exp



λ1G+λ2




G∑

j=1

T̃j



+λ3




G∑

j=1

|T̃j |









= lim
n→∞

1
n

log E
[
E
[

exp

(
λ1G

+ λ2




G∑

j=1

T̃j



+ λ3




G∑

j=1

|T̃j |




)∣∣∣G

]]

(a)
= lim

n→∞

1
n

log E
[
eλ1G+L(λ2,λ3)G

]

(b)
=

{
0 if λ1 + L(λ2, λ3) < log

(
1
2p

)
,

+∞ otherwise,

where equality (a) holds for (λ2, λ3) ∈ D, using the fact
that the T̃j’s are conditionally i.i.d. (and the limit is +∞
if (λ2, λ3) /∈ D); and equality (b) holds by evaluating the
moment generating function of a geometric random variable.
To summarize, we have

Λ(λ) =




+∞ if (λ2, λ3) ∈ Dc,

+∞ if (λ2, λ3) ∈ D and λ1 ≥ log
(

1
2p

)
− L(λ2, λ3),

0 otherwise.

Let the domain of Λ be DΛ, and let Λ∗ denote the convex
conjugate of Λ. A direct application of the Gärtner-Ellis
theorem then gives the following upper bound:

lim sup
n→∞

1
n

log P(Zn ∈ Q) ≤ − inf
z∈Q

Λ∗(z). (4)

We now evaluate the convex conjugate of Λ at the point
(γ, α, β) ∈ R3

+:

Λ∗(γ, α, β) = sup
λ∈DΛ

{λ1γ + λ2α + λ3β}

(a)
= sup

(λ2,λ3)∈D

{(
log
(

1
2p

)
− L(λ2, λ3)

)
γ

+ λ2α + λ3β

}
,

where in equality (a), we have used the fact that γ ≥ 0
in Q. We now make the following crucial observations: First,
Lemma 1 implies that the coefficient of γ in the above expres-
sion is positive, so Λ∗(γ, α, β) is a monotonically increasing
function of γ for fixed α and β. Second, the set Q is such that
the possible values of the pair (α, β) can only increase as γ
becomes smaller. This implies that if γ1 < γ2, then

inf
(α,β):(γ1,α,β)∈Q

Λ∗(γ1, α, β) < inf
(α,β):(γ2,α,β)∈Q

Λ∗(γ2, α, β),

since not only is the left-hand objective smaller than the right-
hand objective for every fixed (α, β), but also the range of
possible values of (α, β) on the left-hand side contains the

range of values on the right-hand side. Thus, the infimum of
Λ∗ over Q must occur when γ = 0; i.e.,

inf
(γ,α,β)∈Q

Λ∗(γ, α, β) = inf
β∈[δ,1],α∈[2δ−β,β]

Λ∗(0, α, β).

When β ∈ [δ, 1] and α ∈ [β − 2δ, β], we have

Λ∗(0, α, β) = sup
(λ2,λ3)∈D

{λ2α + λ3β} = βD(1/2||p).

Hence, we conclude that

inf
(γ,α,β)∈Q

Λ∗(γ, α, β) = inf
β∈[δ,1],α∈[2δ−β,β]

βD(1/2||p)

= δD(1/2||p).

To complete the proof, we need to establish a lower bound
counterpart to inequality (4). This is established via the
following lemma, proved in Appendix C:

Lemma 3: The following inequality holds:

lim inf
n→∞

1
n

log P(Zn ∈ Q) ≥ −δD(1/2||p).

The proof follows by constructing a set of paths that
satisfy Mn < (1 − δ)n and explicitly computing the com-
bined probability of these paths. This completes the proof of
Theorem 1.

C. Large Deviations for a Bernoulli Mixture

Finally, we first prove the following large deviations result
for a mixture of Bernoulli random variables. Recall [31] that
the rate function I of a sequence of random variables {Wn}
has the property that for any closed subset F ⊆ R and any
open subset G ⊆ R, we have

lim sup
n→∞

1
n

log P(Wn ∈ F ) ≤ − inf
w∈F

I(w),

lim inf
n→∞

1
n

log P(Wn ∈ G) ≥ − inf
w∈G

I(w).

Lemma 4: Let θ ∈ [0, 1] and q ∈ [0, 1/2].
Consider a sequence of i.i.d. Bernoulli(1−q) random variables
{Ui}1≤i≤n−&nθ' and a sequence of i.i.d. Bernoulli(q) random
variables {Vj}1≤j≤&nθ', such that the Ui’s are independent of
the Vj ’s. The random variable

Wn :=
∑n−&nθ'

i=1 Ui +
∑&nθ'

j=1 Vj

n

satisfies the large deviation principle with rate function

Iθ(w) = w log (η) − θ̄ log (q̄η + q) − θ log (qη + q̄) ,

where

η :=
−τ +

√
τ2 + 4ww̄

2w̄
, and τ :=

q̄

q
(θ̄ − w) +

q

q̄
(θ − w).

The proof is a direct application of the Gärtner-Ellis theorem
and is detailed in Appendix D. Lemma 4 will be useful for
evaluating the probability that the student makes an error
when we condition on various aspects of the random walk
{Xn}, such as the number Mn of +1 transmissions by the
teacher, or the last return time of the random walk to 0.
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IV. MAJORITY LEARNING

We now present our main results in the case where the
student employs the simplest majority rule strategy.

A. Simple Forwarding

If the teacher employs the simple forwarding strategy,
the student’s observations {Zn} may be viewed as noisy
observations of Θ through a binary symmetric channel with
error parameter

p * q := p(1 − q) + q(1 − p) = pq̄ + qp̄.

In this case, the majority learning strategy for the student
exactly corresponds to the Bayesian strategy, producing an
optimal learning rate of D(1/2||p * q) [31]. We will use this
simple expression as a benchmark for comparing the learning
rate of more complicated combinations of teacher/student
strategies.

B. Cumulative Teaching

Note that Theorem 1 already provides the exact learning
rate if q = 0, since the student makes an error exactly
when Mn < n

2 . Substituting δ = 1/2, we see that the
student will learn at a rate of 1

2D(1/2||p) via the cumulative
teaching strategy. In contrast, the learning rate for simple
forwarding is D(1/2||p), since p * q = p—and this rate is
higher than that of cumulative teaching! It is natural to wonder
what values of the channel parameters (p, q) make simple
forwarding a better strategy than cumulative teaching, and vice
versa.

To analyze the general case q > 0, we can use Lemma 4
to evaluate the probability that at most n(1 − δ) instances of
the student’s received sequence {Zn} are equal to +1. The
learning rate of a student using a majority learning rule can
then be obtained by plugging in δ = 1

2 .
Theorem 2: Let δ ∈ [q, 1 − q]. Suppose we say that the

student commits an error if the fraction of received +1’s is at
most (1 − δ). Then the rate of learning is given by

R = inf
θ∈[0,1]

{
θD(1/2||p) + Î(θ)

}
,

where

Î(θ) = inf
w∈[0,1−δ]

Iθ(w),

and Iθ(·) is the rate function appearing in Lemma 4.
The learning rate provided in Thereom 2 can be

approximately calculated using computing software; see
Figure 2.

Proof: Let En be the error event that the number of +1’s
received by the student is at most n(1−δ). Consider an integer
N > 0, whose value will be specified later. We divide the
interval [0, 1) into intervals {Li}N−1

i=0 , where Li :=
[

i
N , i+1

N

)
.

The probability of error can then be written as

P(En) =
N−1∑

i=0

P
(

Mn

n
∈ Li

)
P
(
En

∣∣∣
Mn

n
∈ Li

)
. (5)

Fig. 2. Plots showing the benefits of ε-teaching + ε-learning, analyzed
in Theorem 3. The figure on the right is simulated using the formula in
Theorem 2. In both figures, the (lighter) yellow region indicates the parameter
values where ε-teaching + ε-learning dominates the competing strategy based
on majority learning. In (a), note that when the cumulative noise in the
communication system is small, it is better to simply forward information.
In (b), note that when the teacher’s noise is large compared to the student’s
noise, the ε-teaching strategy dominates the cumulative teaching strategy, since
the teacher has less time to confuse himself.

Note that

P
(

Mn

n
∈ Li

)
= P

(
Mn

n
<

i + 1
N

)
− P

(
Mn

n
<

i

N

)
.

(6)

Let ε1 > 0 be an arbitrarily small constant. By Theorem 1,
we know that for all 0 ≤ i ≤ N − 1 and for all large enough
n, the following inequality holds:
∣∣∣∣−

1
n

log P
(

Mn

n
∈ Li

)
− N − i − 1

N
D (1/2||p)

∣∣∣∣ < ε1, (7)

since the first term in equation (6) dominates.
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Turning to the second term in the summand of equation (5),
we note that the probability of error is a monotonically
decreasing function of Mn

n , so

P
(
En

∣∣∣Mn =
⌈
n · i + 1

N

⌉)
≤ P

(
En

∣∣∣
Mn

n
∈ Li

)

≤ P
(
En

∣∣∣Mn =
⌊
n · i

N

⌋)
. (8)

Let ε2 > 0 be an arbitrarily small constant. Using the large
deviations principle from Lemma 4, we know that for all large
enough n and for all 0 ≤ i ≤ N − 1, we have the bound
∣∣∣
1
n

log P
(
En

∣∣∣Mn =
⌊
n · i

N

⌋)
− Î

(
N − i

N

) ∣∣∣ < ε2, (9)

since conditioned on the fraction Mn
n ≈ i

N of +1’s that are
transmitted by the teacher, the distribution of +1’s received
by the student behaves exactly as the mixture of Bernoulli
distributions in Lemma 4 with θ = 1 − i

N . Furthermore,
the conditional probability of the error event exactly corre-
sponds to the infimum of the rate function over the interval
[0, 1−δ]. We have a similar bound for the left-hand expression
in inequality (8).

Combining the bounds from inequalities (7) and (9), we then
obtain

P(En) ≤
N−1∑

i=0

e−n(N−i−1
N D(1/2||p)+Î(N−i

N )−ε1−ε2),

P(En) ≥
N−1∑

i=0

e−n(N−i−1
N D(1/2||p)+Î(N−i−1

N )+ε1+ε2).

Let ε3 > 0 be an arbitrarily small constant. Define the three
quantities

u := inf
x∈[0,1]

{
xD(1/2||p) + Î(x)

}
,

ū := inf
0≤i≤N−1

{
N − i − 1

N
D(1/2||p) + Î

(
N − i

N

)}
,

u := inf
1≤i≤N−1

{
N − i − 1

N
D(1/2||p) + Î

(
N − i − 1

N

)}
.

Using the continuity of Î , we can now pick N (depending
only on ε3 and p) such that

max(|u − ū|, |u − u|) < ε3.

Then for all large enough n, we have the bounds

P(En) ≤ Ne−n(u−ε1−ε2−ε3),

P(En) ≥ e−n(u+ε1+ε2+ε3).

Taking logarithms, dividing by n, and taking the limit, we see
that

∣∣∣ lim
n→∞

1
n

log P(En) − u
∣∣∣ < ε1 + ε2 + ε3.

Since ε1, ε2, and ε3 are arbitrary constants, we conclude that

lim
n→∞

1
n

log P(En) = u,

completing the proof.

Remark: The learning rate in Theorem 2 may be simplified
further: Note that when θ̄q̄ + θq ∈ [0, 1 − δ], the value of
Î(θ) is 0, since Iθ(θ̄q̄ + θq) = 0. The constraint θ̄q̄ + θq ∈
[0, 1−δ] is equivalent to θ ∈

[
q̄

q̄−q , δ−q
q̄−q

]
. Hence, the minimum

of θD(1/2||p) + Î(θ) is clearly achieved over this range for
θ = δ−q

q̄−q . Further note that for θ ∈
[
0, δ−q

q̄−q

]
, we have the

equality Î(θ) = Iθ(1 − δ), since Iθ is convex and minimized
at w = θ̄q̄ + θq > 1 − δ. Thus, we can rewrite the learning
rate as

R = inf
θ∈[0, δ−q

q̄−q ]

{
θD(1/2||p) + Iθ(1 − δ)

}
.

This expression does not simplify further; but since the func-
tion being minimized is known in closed form, the value of
R is easy to simulate using Matlab or similar software.

V. ε-MAJORITY LEARNING

In the previous section, we assumed that the student is
simply a majority learner; i.e., the student takes the majority
of her observations to ultimately decide the value of Θ̂.
We now explore the alternative strategy where the student’s
final estimate is computed to be the majority over the final εn
observations, corresponding to a more lazy or more skeptical
student. We assume that the student has access to the problem
parameters p and q, and utilizes the value of ε that maximizes
her learning rate.

A. Simple Forwarding

Suppose that the teacher is simply forwarding his observa-
tions to the student and the student is taking an ε-majority
based on her observations. It is easy to see that the learning
rate for the student in this case is simply εD(1/2||p * q),
since her estimate is always a majority over some number
of i.i.d. observations. Thus, the optimal choice of ε is 1, and
the best learning rate for ε-majority learning simply coincides
with majority learning.

B. ε-Teaching

We first analyze the ε-teaching strategy, where the teacher
transmits noise in the first (1−ε)n time steps, and then repeat-
edly transmits his best guess at that point in the remaining εn
time steps.

Theorem 3: For the ε-teaching strategy, the student’s
learning rate, optimized over all values of ε ∈ [0, 1], is
given by

R =
D(1/2||p)D(1/2||q)

D(1/2||p) + D(1/2||q) .

Proof: Let the teacher’s estimate at time ε̄n, obtained
by taking a majority over his observations until that time,
be Θ̃. The teacher then transmits Θ̃ repeatedly for the final
εn time slots, and the student takes a majority over her εn
observations to determine Θ̂. The probability of error is thus
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calculated to be

P(Θ̂ %= Θ) = P(Θ̂ %= Θ, Θ̃ %= Θ) + P(Θ̂ %= Θ, Θ̃ = Θ)

= P(Θ̂ %= Θ|Θ̃ %= Θ)P(Θ̃ %= Θ)

+ P(Θ̂ %= Θ|Θ̃ = Θ)P(Θ̃ = Θ)

= P(Θ̂ = Θ̃)P(Θ̃ %= Θ) + P(Θ̂ %= Θ̃)P(Θ̃ = Θ).
(10)

Notice that

P(Θ̃ %= Θ) ≈ exp(−nε̄D(1/2||p)),

and

P(Θ̂ %= Θ̃) ≈ exp(−nεD(1/2||q)),

since the teacher obtains Θ̃ from nε̄ observations of Θ through
a binary symmetric channel with error probability p, and the
student obtains Θ̂ from nε observations of Θ̃ through a binary
symmetric channel with error probability q.

Substituting back into equation (10), we see that the learning
rate is determined by

min(ε̄D(1/2||p), εD(1/2||q)).

It is not hard to see that this expression is maximized when

ε =
D(1/2||p)

D(1/2||p) + D(1/2||q) ,

yielding the specified learning rate.
As we will see, the rate obtained in Theorem 3 is not optimal

from the point of view of the teacher; however, the ε-teaching
strategy nonetheless provides a nice closed-form expression
for the learning rate, which is convenient for comparison.

C. Cumulative Teaching

In the above strategy, the teacher essentially stops learning
after time ε̄n. Intuitively, the learning rate should be higher
if the teacher continues to transmit better and better estimates
of the state of the world in the latter εn time steps, based on
his own continual learning. Consequently, we now analyze the
cumulative teaching strategy of the teacher, where the student
continues to be an ε-majority learner. Note that when ε = 1,
this strategy is identical to the cumulative teaching + majority
learning combination studied before. Since the best choice of
ε will outperform ε = 1, the learning rate for this combination
will be at least as high.

We claim that when the student is an ε-learner, cumulative
teaching is indeed at least as good as ε-teaching. This is stated
and proved as a warm-up in Proposition 1; in Theorem 4 to
follow, we provide an expression for the precise learning rate.

Proposition 1: The learning rate of cumulative teaching and
ε-majority learning (with the optimum choice of ε) is at least
as large as the learning rate of the ε-teaching strategy from
Theorem 3.

Proof: Fix ε > 0, and let B be the final time that the
random walk {Xn} visits 0. Let Θ̂ denote the final estimate
of the student. We write

P(Θ̂ %= Θ) = P(Θ̂ %= Θ | B ≤ ε̄n)P(B ≤ ε̄n)

+ P(Θ̂ %= Θ | B > ε̄n)P(B > ε̄n),

and compare the respective quantities in the cases of cumula-
tive teaching vs. ε-teaching. The probabilities P(B ≤ ε̄n) and
P(B > ε̄n) have no dependence on the strategy employed by
the teacher.

Note that conditioned on the event {B ≤ ε̄n}, the
ε-teaching and cumulative teaching strategies are identical
as far as the final εn bits are concerned, so the values of
P(Θ̂ %= Θ | B ≤ ε̄n) are identical. Conditioned on the event
{B > ε̄n}, the random walk {Xn} is equally likely to be
positive or negative at time ε̄n, so in the case of ε-teaching,
we have P(Θ̂ %= Θ | B > ε̄n) = 1

2 . In the case of cumulative
teaching, we can lower-bound the learning rate by upper-
bounding the error as P(Θ̂ %= Θ | B > ε̄n) ≤ 1.

It is easy to see that increasing the value of the error
probability P(Θ̂ %= Θ | B > ε̄n) by a factor of 2 cannot
make the learning rate of cumulative teaching worse than the
learning rate of ε-teaching. Thus, we conclude that for every
choice of ε > 0, the learning rate of cumulative teaching is
at least as high as the learning rate of ε-teaching. Optimizing
the student’s choice of ε when the teacher employs cumulative
teaching can only increase the learning rate further, completing
the proof.

Using a more sophisticated argument, we can obtain an
expression for the learning rate of cumulative teaching when
the student is an ε-majority learner:

Theorem 4: The optimal learning rate for the cumulative
teaching and ε-learning strategy is

R = sup
ε∈[0,1]

[
min

(
εD(1/2||q),

inf
α∈[0,1/2]

{(ε̄ + εα)D(1/2||p) + εIα(1/2)}
)]

,

where Iα(·) is the rate function defined in Lemma 4.
Proof: We will show that the learning rate for a fixed

value of ε is given by the expression inside the objective
function. Let B denote the last time at which the random walk
{Xn} corresponding to the teacher’s transmissions visits 0.
We write the error probability of the student as

P(Θ̂ %= Θ) = P(Θ̂ %= Θ, B ≤ (1 − ε)n)

+ P(Θ̂ %= Θ, (1 − ε)n < B ≤ n)

+ P(Θ̂ %= Θ, B > n). (11)

Naturally, the largest of the three error probabilities determines
the overall learning rate. For the third term in equation (11),
we observe that

P(Θ̂ %= Θ, B > n) = P(B > n)P (Θ̂ %= Θ|B > n)

=
1
2

P(B > n)

≈ exp(−nD(1/2||p)),

where the second equality holds by the symmetry of the
random walk conditioned on {B > n}, and the final approxi-
mation follows from the proof of Lemma 2 from Appendix B.
For the first term in equation (11), notice that if B ≤ n(1−ε),
the teacher will transmit +1’s for the entire duration over
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which the student is taking a majority. The student’s error
probability is the probability of receiving more than nε

2 obser-
vations of −1’s in the final nε observations, so we have

P(Θ̂ %= Θ, B ≤ (1 − ε)n)

= P(Θ̂ %= Θ|B ≤ (1 − ε)n) · P(B ≤ (1 − ε)n)
≈ exp(−nεD(1/2||q)),

using the fact that

P(B > (1 − ε)n) ≈ exp(−(1 − ε)nD(1/2‖p)),

so P(B ≤ (1 − ε)n) = 1 − o(1).
Turning to the middle term in equation (11), suppose we

fix α ∈ [0, 1], and suppose B = /(1− ε)n+αεn0. As we will
see, the error probability is dominated by the error probability
of a random walk that is negative at all time instances up
to B. Thus, we define the indicator variable I = 1 if {Xn}
is negative for all time instances up to B, and 0 otherwise.
We then write

P(B = /nε̄ + nεα0, Θ̂ %= Θ)

= P(Θ̂ %= Θ | B = nα, I = 0)P(B = nα, I = 0)

+ P(Θ̂ %= Θ | B = nα, I = 1)P(B = nα, I = 1),

where we have used the shorthand nα := /nε̄ + nεα0. Note
that

P(B = nα) = (1 − 2p)
(

nα

nα/2

)
pnα/2p̄nα/2,

P(B = nα, I = 1) = (1 − 2p)
1

nα/2

(
nα − 2

nα/2 − 1

)
pnα/2p̄nα/2,

where the second expression involves the corresponding
Catalan number. Furthermore, by the same argument used in
the proof of Lemma 3, we know that

P(B = nα, I = 1) ≈ exp(−n(ε̄ + εα)D(1/2‖p)). (12)

Since P(B = nα) is at most a polynomial factor of n larger,
we conclude that

P(B = nα, I = 0) ≈ exp(−n(ε̄ + εα)D(1/2‖p)),

as well. Turning to the conditional probability terms, note that

P(Θ̂ %= Θ | B = nα, I = 0) ≤ P(Θ̂ %= Θ | B = nα, I = 1).

Hence, the error probability P(B = nα, Θ̂ %= Θ) is within a
poly(n) factor of

P(Θ̂ %= Θ | B = nα, I = 1)P(B = nα, I = 1),

implying that

lim
n→∞

1
n

log P(B = nα, Θ̂ %= Θ)

= lim
n→∞

1
n

log
(

P(Θ̂ %= Θ | B = nα, I = 1)

P(B = nα, I = 1)
)
.

Now suppose α ∈ [0, 1/2]. We have

P(Θ̂ %= Θ | B = nα, I = 1) ≈ exp(−nεIα(1/2)),

since conditioned on the event {B = nα, I = 1}, we know
that the teacher transmits εαn values that are -1 and (εn−εαn)
values that are +1 to the student in the last εn time steps, so the
error probability is given by the rate function in Lemma 4.
Combining the equations, we have

P(B = nα, Θ̂ %= Θ)
≈ exp(−n(ε̄ + εα)D(1/2||p)) · exp(−nεIα(1/2))
= exp(−n((ε̄ + εα)D(1/2||p) + εIα(1/2))).

Finally, for α > 1
2 , note that

P(B = nα, I = 1) ≤ P(B = n1/2, I = 1)

by equation (12), and

P(Θ̂ %= Θ | B = nα, I = 1) ≤ 1

= 2P(Θ̂ %= Θ | B = n1/2, I = 1).

Thus, we conclude that the error rate is given by

inf
α∈[0,1]

lim
n→∞

− 1
n

log P(B = nα, Θ̂ %= Θ)

= inf
α∈[0,1/2]

{(ε̄ + εα)D(1/2||p) + εIα(1/2)} .

Combining the bounds for the three terms in equation (11),
the overall learning rate for a fixed choice of ε is therefore
equal to

min
(
D(1/2||p), εD(1/2||q),

inf
α∈[0,1/2]

{(ε̄ + εα)D(1/2||p) + εIα(1/2)}
)
.

Since the student is allowed to tune ε, the optimal learning
rate is therefore

sup
ε∈[0,1]

[(
D(1/2||p), εD(1/2||q),

inf
α∈[0,1]

{(ε̄ + εα)D(1/2||p) + εIα(1/2)}
)]

.

Finally, note that we may drop the term D(1/2||p) from the
inner minimization, since when ε = 0 (and for any choice of
α), we have

(ε̄ + εα)D(1/2‖p) + εIα(1/2) = D(1/2‖p).

Thus, the optimal learning rate is

R = sup
ε∈[0,1]

[
min

(
εD(1/2||q),

inf
α∈[0,1/2]

{(ε̄ + εα)D(1/2||p) + εIα(1/2)}
)]

.

Note that when q = 0, i.e., the student is a perfect learner,
the learning rate in Theorem 4 corresponds to the optimum of

sup
ε∈[0,1]

inf
α∈[0,1/2]

{(ε̄ + εα)D(1/2||p) + εIα(1/2)} ,

which occurs when ε = 0 and produces a learning rate
of D(1/2‖p). In other words, the optimal strategy of the
student is to estimate the state of the world based on the final
transmission of the teacher, in which case her learning rate
agrees with the teacher’s learning rate. Although it is generally
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Fig. 3. Plots showing the benefits of ε-majority learning over majority
learning, when the teacher employs a cumulative teaching strategy. The
learning rate for the simple forwarding + majority learning strategy is
D(1/2||p"q); the learning rate for the cumulative teaching + majority learning
strategy is simulated using the formula in Theorem 2; and the learning rate for
the cumulative teaching + ε-majority learning strategy is simulated using the
formula derived in Theorem 4. In both figures, the blue region indicates the
parameter values where simple forwarding + majority learning dominates
the competing strategy. In (a), note that the simple forwarding + majority
learning strategy is better for smaller values of q (i.e., sharper students).
However, we see a curious threshold around q = 0.15, such that if the
student’s channel is more noisy that this value, it is better to use the cumulative
teaching strategy regardless of the teacher’s noise parameter. In (b), note that
the (darker) blue region is significantly smaller, since the ε-majority learning
strategy is uniformly better than the majority learning strategy. As before,
we observe that the simple forwarding + majority learning strategy is better
for smaller values of q. Furthermore, for all q larger than approximately 0.05,
it is always preferable to use the ε-majority learning strategy over the majority
learning strategy.

not possible to simplify the expression in Theorem 4 further
for other choices of q, it is easy to calculate the learning rate to
a high degree of accuracy using standard computing software.
See Figure 3 for a comparison of the ε-learning strategy

(and the majority learning strategy) with the simple forward-
ing + majority learning strategy.

VI. GAUSSIAN LEARNING

We now turn to a continuous analog of the teacher-student
learning problem. Suppose the state of the world corresponds
to a parameter µ ∈ R. The teacher receives observations
{yi}n

i=1, where yi ∼ N(µ, σ2
1) are i.i.d. Furthermore, at time

step i, the teacher transmits an estimate xi = fi(y1, . . . , yi)
to the student, who receives zi = xi + εi, where εi

i.i.d.∼
N(0, σ2

2). In other words, the teacher observes the state of
the world through a Gaussian channel with noise variance σ2

1 ,
and the student observes the teacher’s transmissions through a
Gaussian channel with noise variance σ2

2 . The final estimate of
the student after n time steps is some function θ̂(z1, . . . , zn).

We again seek to compare different teaching/learning
strategies, where the learning rate of the student is now
characterized by the parameter pairs (σ1, σ2) governing the
two channels, rather than the pairs (p, q). In the continuous
parameter setting, we replace the notion of a majority learner
(which no longer makes sense) by a learner who simply takes
an average over all observations. More broadly, we allow both
the teacher and student to learn by taking a linear combination
of observations; i.e., the functions {fi}n

i=1 and θ̂ are linear.
We compare various strategies in terms of the variance Var(θ̂)
of the final estimate of the student.

Consequently, we may reparametrize the problem according
to a matrix-vector pair (A, b). If we use x, y, z, ε ∈ Rn to
denote the vectorized versions of the corresponding random
variables, we see that the teacher receives the observation
vector y ∼ N(µ1, σ2

1 In) and transmits the vector Ay. The
student receives z = Ay + ε, where ε ∼ N(0, σ2

2 In), and
deduces θ̂ = bT z.

The quality of the student’s estimator may be calculated as

f(A, b) := Var(bT z) = Var(bT Ay + bT ε)
= σ2

1bT AAT b + σ2
2b

T b. (13)

We seek to minimize f with respect to A and b.
Note that the fact that the teacher must transmit mes-

sages depending only on his past observations constrains the
matrix A to be lower-triangular. Furthermore, we impose
the additional assumption that the teacher’s transmissions on
successive days are unbiased estimators of the state of the
world, so

µ1 = E[z] = E[Ay] = µA1. (14)

Equivalently (assuming we are in an arbitrary setting where
µ %= 0), we have A1 = 1, so A is a row-stochastic
matrix. Similarly, we require the student to output an unbiased
estimator, so

µ = E[bT z] = E[bT (Ay + ε)] = bT A · µ1,

implying that bT A1 = 1, so bT 1 = 1.
Due to the relatively simple form of expression (13), we can

analyze the optimal student strategy for a fixed teacher strategy
with relative ease. We can also determine a jointly optimal
strategy in terms of the pair (A, b).
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Remark: We briefly remark on the condition (14) that
the teacher must transmit unbiased estimators of the state of
the world. Note that if this were not the case, the teacher
and the student could agree a priori that the teacher would
simply amplify each observation by a large constant M , and
the student would rescale the received transmissions by 1

M .
Thus, the student would receive the vector z = My+ε, which
would be transformed to z′ = y + 1

M ε. As M → ∞, this
would correspond to a noiseless channel from the teacher to
the student. By the Cramer-Rao bound, the minimum variance
unbiased estimate for the teacher based on n i.i.d. observations
{yi}n

i=1 is the average, which has variance σ2
1

n . Furthermore,
it is possible to achieve this lower bound by taking A = MIn

and b = 1
Mn 1.

A. Optimal Student Strategy

We first consider the optimal strategy of the student when
the strategy of the teacher (corresponding to the matrix A) is
fixed. We have the following result:

Theorem 5: Let A be a fixed row-stochastic, lower-
triangular matrix. The student strategy that minimizes the
variance f(A, b) of the estimator is given by

b∗ =
(σ2

1 AAT + σ2
2 I)−11

1T (σ2
1 AAT + σ2

2 I)−11
,

resulting in a variance of

f(A, b∗) =
1

1T (σ2
1 AAT + σ2

2I)−11
.

Proof: The optimal strategy of the student may be
obtained by optimizing the expression (13):

min
b

bT (σ2
1 AAT + σ2

2 I)b

s.t. bT 1 = 1.

We can optimize this using the method of Lagrange multipli-
ers. Define the function

g(b, λ) = bT (σ2
1 AAT + σ2

2 I)b + λ(bT 1 − 1).

Then
∂g

∂b
= 2(σ2

1 AAT + σ2
2 I)b + λ1,

so setting ∂g
∂b = 0 and solving for b gives

b =
−λ

2
(σ2

1 AAT + σ2
2 I)−11.

Hence, setting bT 1 − 1 = 0 implies that

−λ

2
1T (σ2

1 AAT + σ2
2 I)−11 − 1 = 0,

so
λ =

−2
1T (σ2

1 AAT + σ2
2 I)−11

,

implying that

b =
(σ2

1AAT + σ2
2I)−11

1T (σ2
1AAT + σ2

2I)−11
. (15)

The variance of the optimal strategy is then obtained by plug-
ging the value of b into the variance formula (13), to obtain

1
1T (σ2

1AAT + σ2
2I)−11

. (16)

Note that although we focused on fixed (and relatively
simplistic) learning strategies for the student in the binary
case, the simpler expressions for the variance of the student’s
estimators allow us to derive the optimal strategy that a student
should employ for a particular teaching mechanism. Indeed,
different values of the teacher’s matrix A determine the relative
weights of the vector (σ2

1 AAT +σ2
2 I)−11, which govern how

the student should weight her observations as time progresses.
In the case A = I , the student’s optimal strategy would be to
place equal weight on all observations (i.e., simple averaging).
Note that the student’s optimal strategy will never correspond
to a weighted average of her last εn observations, since the
teacher’s transmissions in the first (1 − ε)n time steps are
assumed to be unbiased estimators of µ, so an optimal student
learner would always prefer to compute a weighted average
that takes into account these initial observations, as well.

B. Teacher Strategies

As analogs to the strategies studied in the binary teaching/
learning setting, we now discuss the following classes of
teacher strategies, and provide a brief comparison of the
relative quality of the ensuing estimators computed by an
optimal student.

1) Simple forwarding: This corresponds to A = In.
2) ε-teaching: The teacher first learns for (1−ε)n steps, and

then transmits his best estimate based on the first (1−ε)n
observations, for the remaining εn steps. The teacher’s
best estimate corresponds to y1+···+y$(1−ε)n%

&(1−ε)n' , so A is a
block matrix with all entries in the lower left εn×/(1−
ε)n0 block equal to 1

&(1−ε)n' , and the remaining entries
equal to 0.

3) Cumulative learning: The teacher transmits his best
estimate at each step. This corresponds to A being a
lower-triangular matrix with all entries in column i equal
to 1

i .
In the simple forwarding teaching strategy, the student

receives i.i.d. observations zi ∼ N(µ, σ2
1 + σ2

2), and the
minimum-variance strategy is clearly for the student to take a
simple average. We can also see this by plugging A = I into
the formula (15):

b =
1

σ2
1+σ2

2
I1

1T 1
σ2
1+σ2

2
I1

=
1
n

1.

The variance of the overall estimator is then equal to σ2
1+σ2

2
n .

We now make two surprising observations: First, suppose
the teacher employs the ε-teaching strategy, and the student
simply averages the latter εn observations. As shown above,
this may not agree with the optimal strategy for the student;
however, this leads to closed-form expressions and a simple
comparison. This is analogous to the strategy in the binary
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setting where the student takes a simple majority over the
latter εn observations. Plugging into the formula (13), it is
not hard to see that the variance of this strategy is

σ2
1

(1 − ε)n
+

σ2
2

εn
,

since the matrix AAT has all entries equal to 0 other than the
lower right εn×εn block, which has all entries equal to 1

(1−ε)n .

Clearly, this expression is strictly larger than σ2
1

n + σ2
2

n . Thus,
contrary to the conclusions in the binary setting, the simple
forwarding teacher strategy always dominates the ε-teaching +
simple averaging strategy.

Second, suppose the teacher is clairvoyant, and is allowed
to transmit estimates of the state of the world based on his
entire observation vector y, rather than only the observations
seen up to time i. (As an alternative interpretation, suppose the
teacher first learned from n observations in a previous epoch,
prior to teaching.) The “best” strategy is intuitively to set
A = 1

n11T , corresponding to repeatedly transmitting the max-
imum likelihood estimator for µ. Based on the formula (16),
we can see that the optimal student strategy actually produces
the same variance as the best estimator in the case of simple
forwarding: Note that A is doubly stochastic, so 1 is clearly
an eigenvector of (σ2

1 AAT + σ2
2 I), and we can easily check

that
(σ2

1 AAT + σ2
2 I)1 = (σ2

1 + σ2
2)1.

But then 1
σ2

1 + σ2
2

1 = (σ2
1 AAT + σ2

2 I)−11,

so we have

1T (σ2
1 AAT + σ2

2 I)−11 =
n

σ2
1 + σ2

2

,

from which the claim follows. This is markedly different from
the binary learning setting.

C. Jointly Optimal Strategies
The calculations from the previous subsection suggest that

the simple forwarding teacher strategy may sometimes be
dominant. Indeed, we now prove that this strategy is always
jointly optimal:

Theorem 6: The joint optimization problem

min
A,b

f(A, b)

s.t. A1 = 1,

bT 1 = 1,

is minimized when A∗ = In and b∗ = 1
n1.

Proof: Denote the set of parameters

Θ :=
{
(A, b) : A1 = 1, bT 1 = 1

}
,

and for any κ > 0, define the set

Θκ :=
{
(A, b) : ‖b‖2

2 ≥ κ, bT A1 = 1
}

.

Note that for (A, b) ∈ Θ, we have ‖b‖1 ≥ bT 1 = 1, so

‖b‖2
2 ≥ 1

n
‖b‖2

1 ≥ 1
n

,

implying that Θ ⊆ Θκ for κ ≥ 1
n .

Now note that

min
(A,b)∈Θκ

f(A, b) ≥ min
(A,b)∈Θκ

σ2
1 bT AAT b + σ2

2κ.

Furthermore, if we define w = AT b, we see that the expression
σ2

1 bT AAT b is simply the variance of the estimator wT y of
µ, where the condition that bT A1 = 1 simply constrains
wT y to be an unbiased estimator. By the Cramer-Rao bound,
we therefore conclude that

min
(A,b)∈Θκ

f(A, b) ≥ σ2
1

n
+ σ2

2κ.

Finally, taking κ = 1
n , we conclude that

min
(A,b)∈Θ

f(A, b) ≥ min
(A,b)∈Θκ

f(A, b) ≥ σ2
1

n
+

σ2
2

n
. (17)

Since this lower bound is achieved when A = In and b =
1
n1, the simple forwarding + simple averaging strategy must
always be a joint minimizer.

Remark: In fact, the preceding argument only requires
A to be row-stochastic, and not necessarily lower-triangular.
Thus, we see that the simple forwarding teaching strategy +
simple averaging learning strategy is in fact optimal even for
clairvoyant teachers.

D. Generalizations

Note that the optimality argument in the previous sub-
section does not actually require the εi’s to be Gaussian,
as long as they are i.i.d. with variance σ2

2 . Some natural
questions are whether the results also rely on Gaussianity of
the teacher’s observations and/or linearity of the teacher or
student strategies.

Regarding the Gaussian assumption on the teacher’s obser-
vations {yi}n

i=1, we note that if Var(zi) = σ2
1 , we similarly

have the lower bound

min
(A,b)∈Θκ

f(A, b) ≥ min
(A,b)∈Θκ

σ2
1 bT AAT b + σ2

2κ,

if the teacher and student strategies are parametrized by A
and b, respectively. Although it is no longer true that the
Cramer-Rao lower bound is achieved for non-Gaussian data,
the best linear unbiased estimator (BLUE) based on n i.i.d.
samples is nonetheless still achieved by the empirical average.
Hence, inequality (17) holds, with equality achieved in the case
A = In, b = 1

n1, and κ = 1
n , as before.

Moving to the question of whether linearity of strategies is
required, note that we can generalize our optimality argument
in the case when the yi’s are Gaussian to the case when
the teacher is allowed to transmit any family of functions
{fi}n

i=1 at each time step (even functions that depend on
any future observations in the set {y1, . . . , yn}). In such a
setting, the Cramer-Rao lower bound (17) still applies to
the wider class of estimators, showing that the linear/simple
forwarding strategy is optimal over the entire class. The
question of whether such a statement holds when the yi’s are
not Gaussians remains open. We also do not currently have a
characterization of the set of jointly optimal strategies when
the student is allowed to employ a more sophisticated non-
linear strategy.
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VII. DISCUSSION AND OPEN PROBLEMS

In Figure 3, we compared the learning rates for the student
for various teacher strategies. Our results indicate that if the
teacher to student channel has a low level of noise, it is better
for the student to transmit “uncoded” information. Intuitively,
the teacher might receive many incorrect observations initially
by chance, in which case the cumulative teaching strategy
would have a significant delay in correcting the teacher’s
opinion. However, if the teacher were following the simple
forwarding strategy, the flipped observations in the beginning
would have no effect on the teacher’s future communications.
Furthermore, since the student has a relatively clean channel,
she does not need a cumulative teaching strategy to learn
quickly. We also noted a surprising threshold of q ≈ 0.15
that emerged from the figure: if the teacher to student channel
is more noisy than this threshold, then it is always beneficial
to use the cumulative teaching strategy, no matter how bad the
teacher’s channel.

Various alternative teaching and learning strategies exist
that have not been analyzed here. In particular, we did not
analyze Bayesian strategies for the student. Although the
learning rate of such strategies could be simulated for small
n, obtaining an accurate approximation of the (exponentially
small) error probability from simulations for larger values
of n is challenging. We also note that analyzing specific
teaching and learning strategies provide lower bounds on the
best possible learning rate.

An interesting line of inquiry is to characterize the optimal
learning rate over all possible joint strategies between the
teacher and student. Observe that the optimal learning rate
for the teacher is D(1/2‖p) and the optimal learning rate
for the student, if she were to observe Θ directly through
her channel, is D(1/2‖q). Simple arguments using the data
processing inequality show that the optimal learning rate is at
most min(D(1/2‖p), D(1/2‖q)). Can this bound be achieved?
We think this would be very surprising, leading us to formulate
the following conjecture:

Conjecture 1: Let 0 < p, q < 1/2. We conjecture that
the optimal learning rate of the student over all possible joint
strategies between the teacher and the student is strictly less
than min(D(1/2‖p), D(1/2‖q)).

It is interesting to note that if the teacher is allowed
to have non-causal strategies, the upper bound of
min(D(1/2‖p), D(1/2‖q)) may be achieved: The teacher
can use all n time slots to learn Θ, and then transmit the
learned value over n time slots to the student. The conjecture
above essentially states that a price must be paid for using
causal teaching and learning strategies (at least in the binary
case, since our analysis shows that no such penalty exists in
the Gaussian setting). A harder open problem is to determine
optimal joint strategies that the teacher and student could
employ to maximize the student’s learning rate; note that
since the student will always be Bayesian in the optimal
strategy, this problem boils down to identifying an optimal
teaching strategy.

We also state the fascinating conjecture from Hulei-
hel et al. [29] alluded to in Section II, which concerns
identifying the optimal learning rate:

Conjecture 2 (Huleihal et al. [29]): Let p = q. In the
regime p → 1/2, the optimal learning rate of the stu-
dent is D(1/2‖p)(1 + o(1)); i.e., the optimal learning rate
is the same as that of the teacher up to first-order error
terms.

In the case of the Gaussian learner, we showed that the
teacher-student problem is of an entirely different nature,
and the simplest strategy where the teacher simply forwards
information and the student constructs a simple average is
always optimal over the class of linear, unbiased estimators.
However, we also showed that if the teacher is allowed to
transmit estimators that are not unbiased, which the student
subsequently decodes, the overall estimator can have an even
smaller variance. In general, the question of the best estimator
over different classes of teaching/learning strategies (e.g., non-
linear strategies, or biased strategies with appropriate power
constraints) remains open.

Finally, we concede that the teacher/student model analyzed
in this paper is a vast oversimplification of reality, and the
dynamics of social learning may be substantially different
in practice. The simple forwarding and ε-teaching strategies
employed by the teacher have a “learn by rote” flavor, which
any experienced teacher would realize is not the best way
to convey information to a student: artful teaching involves
presenting concepts from different angles, rather than simply
repeating the same lesson from one day to the next. Further-
more, we have assumed that no feedback is available to the
teacher from the student, whereas a teacher should be able to
adapt his strategy based on how well the student is learning.
A fascinating new framework in which the teacher feeds the
student carefully crafted examples from a set of lessons is
known as machine teaching [32]. It is also unreasonable to
expect that the student (or teacher) would have knowledge
of the noise parameters of the channels beforehand, and a
more realistic setting might involve gradually estimating these
parameters based on feedback and adapting strategies over
time. After all, a student would rightfully choose to pay less
attention to a teacher if she thinks he does not know what he
is talking about!

APPENDIX A
PROOF OF LEMMA 1

It is enough to show that Eeλ1T̃+λ2|T̃ | ≤ 1
2p . Using the

generating function (2), we may calculate

Eeλ1T̃+λ2|T̃ | =
∞∑

k=1

P (T̃ = 2k)
(
e(λ1+λ2)2k + e(λ2−λ1)2k

)

=
∞∑

k=1

1
2p

(pp̄)kCk−1

(
e(λ1+λ2)2k + e(λ2−λ1)2k

)

=
p̄

2

(
e2(λ1+λ2)

∞∑

k=0

Ck

(
pp̄e2(λ1+λ2)

)k

+ e2(λ2−λ1)
∞∑

k=0

Ck

(
pp̄e2(λ2−λ1)

)k
)
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=
p̄

2

(
e2(λ1+λ2)f

(
pp̄e2(λ1+λ2)

)

+ e2(λ2−λ1)f
(
pp̄e2(λ2−λ1)

))

=
2 −

√
1 − 4pp̄e2(λ1+λ2) −

√
1 − 4pp̄e2(λ2−λ1)

4p
.

Suppose λ1 + λ2 > D(1/2‖p). Then

λ1 + λ2 ≥ 1
2

log
(

1
2p

)
+

1
2

log
(

1
2p̄

)
=

1
2

log
(

1
4pp̄

)
.

Thus,
4pp̄e2(λ1+λ2) > 1,

so the moment generating function is undefined, and
L(λ1, λ2) = +∞. We can argue similarly if −λ1 + λ2 >
D(1/2‖p).

Now consider (λ1, λ2) ∈ D. We have

λ1 + λ2 ≤ D(1/2||p),
−λ1 + λ2 ≤ D(1/2||p).

It is easy to see that for fixed p, the maximum value of
the moment generating function expression is attained when
λ1 = 0 and λ2 = D(1/2||p), and that this value is 1/2p. This
concludes the proof.

APPENDIX B
PROOF OF LEMMA 2

We may rewrite the probability as P(B > n)P(Mn ≤ n(1−
δ)|B > n). Furthermore, conditioned on the event {B > n},
the random variable Mn

n has a symmetric distribution around
1/2, since the mirror image of every path up to time n has the
exact same probability as the original path when conditioned
on the event {B > n}. Thus,

1
2
≤ P

(
Mn

n
≤ (1 − δ)

∣∣∣B > n

)
≤ 1,

implying that

P(Mn ≤ n(1 − δ), B > n) = Θ
(

P(B > n)
)
.

We now upper-bound

P(B > n) =
∞∑

i=n/2

P(B = 2i)

=
∞∑

i=n/2

(
2i

i

)
pi(1 − p)i(1 − 2p)

≤
∞∑

i=n/2

22ipi(1 − p)i(1 − 2p)

= (4pp̄)n/2
∞∑

i=0

(4pp̄)i(1 − 2p)

= (4pp̄)n/2 · 1 − 2p

1 − 4pp̄

= (4pp̄)n/2 · 1
1 − 2p

= e−n(D(1/2||p)) · 1
1 − 2p

.

Furthermore, letting m = &n+1
2 ', we have

P(B > n) ≥ P(B = 2m) =
(

2m

m

)
pm(1 − p)m(1 − 2p)

≥ 22m

2m
pm(1 − p)m(1 − 2p)

≥ 4n/2

n + 1
(pp̄)n/2pp̄(1 − 2p)

= e−n(D(1/2‖p)) · pp̄(1 − 2p)
n + 1

.

Combining the upper and lower bounds, we clearly have
P(B > n) = e−n(D(1/2||p)+o(1)), as claimed.

APPENDIX C
PROOF OF LEMMA 3

Consider the event
{
G = 1 and T̃1 < −&nδ'

}
. This

corresponds to the event that there is only one return to 0, but
sojourn time is at least nδ and the sojourn is on the negative
side of the integers. If this event occurs, then Mn can at most
be n(1 − δ), giving us the lower bound

P(Mn ≤ n(1 − δ)) ≥ P(G = 1, T̃1 ≤ /−nδ0)
≥ P(G = 1, T̃1 = −nδ̃n),

where δ̃n is such that −nδ̃n is an even integer that is at most
/−nδ0. Clearly, we can take δn → δ as n → ∞. Continuing,
we have

P(G = 1, T̃1 = −nδ̃n)

= (1 − 2p) × 1
nδ̃n/2 + 1

(
nδ̃n − 2

nδ̃n/2 − 1

)
(pp̄)nδ̃n/2.

Taking logarithms, dividing by n, and taking the lim inf as n
tends to infinity, we obtain

lim inf
n→∞

1
n

log P(Zn ∈ Q)

≥ lim inf
n→∞

1
n

log

(
(1 − 2p)

× 1
nδ̃n/2 + 1

(
nδ̃n − 2

nδ̃n/2 − 1

)
(pp̄)nδ̃n/2

)

= lim inf
n→∞

1
n

log
(

nδ̃n − 2
nδ̃n/2 − 1

)
(pp̄)nδ̃n/2

= lim inf
n→∞

(
δ̃n log 2 +

δ̃n

2
log(pp̄)

)

= −δ · 1
2

log
1

4pp̄
= −δD(1/2||p).

APPENDIX D
PROOF OF LEMMA 4

Using the independence of the Ui’s and Vj’s, we may
compute the limit

lim
n→∞

1
n

log EenλWn = lim
n→∞

1
n

log Ee
λ

n−$nθ%
i=1 Ui+

$nθ%
j=1 Vj

= lim
n→∞

1
n

(
(n − /nθ0) log(eλq̄ + q)

+ /nθ0 log(eλq + q̄)
)

= θ̄ log(eλq̄ + q) + θ log(eλq + q̄).
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Thus, we may use the Gärtner-Ellis theorem to conclude
that Wn satisfies the large deviation principle with rate
function

Iθ(w) =
(
θ̄ log(eλq̄ + q) + θ log(eλq + q̄)

)∗
(w)

= sup
λ

{
λw − θ̄ log(eλq̄ + q) − θ log(eλq + q̄)

}
.

Differentiating with respect to λ, we see that the above
supremum is attained when the following equality is
satisfied:

w =
θ̄eλq̄

eλq̄ + q
+

θeλq

eλq + q̄
. (18)

This is a quadratic equation in eλ, which we may solve to
obtain

eλ =
−τ(θ, w) +

√
τ(θ, w)2 + 4ww̄

2w̄
,

where

τ(θ, w) :=
q̄

q
(θ̄ − w) +

q

q̄
(θ − w).

The rate function is then given by

Iθ(w) = w log

(
−τ(θ, w) +

√
τ(θ, w)2 + 4ww̄

2w̄

)

− θ̄ log

(
q̄

(
−τ(θ, w) +

√
τ(θ, w)2 + 4ww̄

2w̄

)
+ q

)

− θ log

(
q

(
−τ(θ, w) +

√
τ(θ, w)2 + 4ww̄

2w̄

)
+q̄

)
.

As a sanity check, when θ = 0, we have eλ = qw
q̄w̄ , and the

rate function is

Iθ(w) = w log
qw

q̄w̄
− log

(qw

w̄
+ q
)

= w log
qw

q̄w̄
− log

( q

w̄

)

= D(w||q̄),

which is what we expect. We also note that when w =
q̄θ̄ + qθ, the solution to equation (18) is eλ = 1, which gives
Iθ(w) = 0.
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