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IMAGE-DRIVEN BIOPHYSICAL TUMOR GROWTH MODEL
CALIBRATION∗
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Abstract. We present a novel formulation for the calibration of a biophysical tumor growth
model from a single-time snapshot, multiparametric magnetic resonance imaging (MRI) scan of a
glioblastoma patient. Tumor growth models are typically nonlinear parabolic partial differential
equations (PDEs). Thus, we have to generate a second snapshot to be able to extract significant
information from a single patient snapshot. We create this two-snapshot scenario as follows. We use
an atlas (an average of several scans of healthy individuals) as a substitute for an earlier, pretumor,
MRI scan of the patient. Then, using the patient scan and the atlas, we combine image-registration
algorithms and parameter estimation algorithms to achieve a better estimate of the healthy patient
scan and the tumor growth parameters that are consistent with the data. Our scheme is based
on our recent work (Scheufele et al., Comput. Methods Appl. Mech. Engrg., to appear), but we
apply a different and novel scheme where the tumor growth simulation in contrast to the previous
work is executed in the patient brain domain and not in the atlas domain yielding more meaningful
patient-specific results. As a basis, we use a PDE-constrained optimization framework. We derive
a modified Picard-iteration-type solution strategy in which we alternate between registration and
tumor parameter estimation in a new way. In addition, we consider an `1 sparsity constraint on the
initial condition for the tumor and integrate it with the new joint inversion scheme. We solve the sub-
problems with a reduced space, inexact Gauss–Newton–Krylov/quasi-Newton method. We present
results using real brain data with synthetic tumor data that show that the new scheme reconstructs
the tumor parameters in a more accurate and reliable way compared to our earlier scheme.

Key words. tumor progression inversion, biophysical model calibration, image registration,
PDE-constrained optimization, Picard iteration
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1. Introduction. Glioblastoma multiforme (GBM) tumor is a terminal primary
brain cancer—the most aggressive one. Biophysical models are increasingly used to
help the analysis of GBM magnetic resonance imaging (MRI) scans for epidemiological
studies and also for assisting clinical decision making [61, 69], survival estimation,
diagnosis, and preoperative and treatment planing [20, 48, 54, 62]. The key step
in integrating biophysical models with clinical information is to calibrate them with
patient MRI scans. After calibration, we can either use the estimated parameters
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as biomarkers, or we can evolve the calibrated PDE to estimate short-term tumor
infiltration. Tumor growth models are typically nonlinear reaction-diffusion PDEs
and their calibration is challenging. Not only do we need to estimate reaction and
diffusion parameters, but also the tumor concentration, which is only partially (and
implicitly) observed in the MRI scan. If we had an MRI scan of the patient without
the tumor, we could solve an inverse problem for the initial condition, the reaction,
and diffusivity parameters of the tumor. Unfortunately, a healthy patient MRI scan
is rarely available. To resolve this conundrum, Davatzikos’s group [48] pioneered the
idea of using an MRI scan of another, healthy, individual as a proxy for the tumor-free
patient scan. In practice, we use a standardized average brain of several individuals,
also known as a statistical atlas. But it turns out that naively using such an atlas would
result in erroneous results. The second key idea addresses this by simultaneously using
image registration to deform the atlas towards the patient scan as far as possible. In
this paper, we present a novel formulation of such a joint registration and inversion
problem and a numerical solver scheme.

In the image registration problem, the goal is to estimate spatial point correspon-
dences between a template image mT (the atlas) and a reference image mR (the
patient scan). To solve the registration problem, we use an optimal control formu-
lation, in which we seek a (stationary) velocity field v (parametrizing a deformation
map y), such that the transported template image intensities match the intensities in
the reference image, i.e., mT ◦ y ≈ mR. In the tumor inversion problem, we want to
estimate tumor-growth parameters (such as tumor origin, infiltration, and prolifera-
tion rates) of our PDE model so that if we start growing the tumor at t = 0 we match
the partial tumor observations at t = 1. (The astute reader is probably wondering
how do we know the time horizon. We don’t, but t = 1 is related to a nondimensional
form of the tumor growth PDE.) We simultaneously solve for both v and the tumor
parameters.

Let us try to explain the setting using a somewhat high-level notation. In our
work we are not using the original MRI scan intensities, but assume that we have
segmentation labels describing different brain tissue (white matter, gray matter, etc.)
distributions for both atlas and patient images. Let mA be the healthy atlas labels
and mD the patient labels (both vector functions in the unit cube in R3). Let T and
R, respectively, be abstract forward operators for a tumor simulation and registration
mapping component. T (m,p) takes a label image m without tumor and tumor model
parameters p and creates a labeled image that now has tumor labels in addition to the
original healthy tissue labels (e.g., gray matter, white matter, etc.). R(m,v) takes
a label image m and a velocity v that parametrizes the deformation and creates a
deformed image.

Then, we can summarize the general idea of our previous moving-patient and the
new moving-atlas schemes by defining two optimization problems:

(1.1)
moving-patient (MP): minp,v‖R (T (mA,p),v)−mD‖,
moving-atlas (MA): minp,v‖T (R(mA,v),p)−mD‖.

Notice that the main difference is switching the order of the registration and the tu-
mor operators; see Figure 1.1 for an illustration. This seemingly simple change has
significant impact in the solution of this problem. In [55, 56], we used the MP scheme
and only inverted for the tumor initial condition. Note that in MP, to evaluate the
objective function, we first grow a tumor in the atlas and then deform the patient
image to match the resulting tumor-bearing atlas. As long as the tumor-bearing atlas
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Fig. 1.1. Schematic view of the MP and the (new) MA scheme. The MP coupling scheme
performs the tumor simulation (operator T ) (and parameter estimation) in a healthy atlas brain
and warps the patient anatomy and tumor labels towards the atlas space (operator R) [55, 56].
For the new MA coupling scheme, we first compute an approximation of the actual healthy patient
brain by warping the atlas anatomy labels towards the patient (operator R) and perform the tumor
simulation (operator T ) (and parameter estimation) in the resulting approximation of the healthy
brain geometry. This is critical to obtain patient specific tumor parameter estimates (of, e.g., tumor
origin, tumor cell migration rate, tumor cell proliferation rate) that may be of (future) clinical
relevance in decision making and treatment. Brain images modified from [20].

is topologically similar to the tumor-bearing patient brain, image registration can al-
ways yield good tumor reconstruction, even with completely wrong tumor parameters.
Thus this approach enables efficient nondiffeomorphic registration between an atlas
and a tumor-bearing patient, but is limited in terms of meaningful tumor inversion.

In this paper, we propose the MA scheme. To evaluate the objective function
given, we first deform the healthy atlas (using v) so that it matches the patient. Then
we grow a tumor in the transformed atlas. It turns out that the new formulation is
more appropriate for the biophysical modeling since the tumor growth takes place in
images that resemble the actual patient.

Contributions. The main contributions of this paper are as follows:
(i) We present a new optimization problem formulation (MA) for tumor-growth

model calibration based on patient individual single-snapshot data.
(ii) The new formulation prevents fitting of patient input data to a possibly poor

tumor reconstruction. The computed biophysical parameters “live” in the pa-
tient space, i.e., the tumor parameters are estimated assuming tumor growth in
(an approximation of) the healthy patient brain (as opposed to the atlas brain
for the former scheme). This renders the new scheme better for biophysical
inversion.1

(iii) We derive a Picard-iteration-type solution scheme that alternates between the
image registration and the inverse tumor-growth problem.2

(iv) We enhance the tumor inversion component; the tumor solver used in [56] in-
verted for the tumor initial condition only, penalized with an `2 constraint. In
this paper, we use an `1 constraint (which restricts the tumor to more plausi-

1The presented results are to be seen as a proof of concept for the developed methodology. To
enable predictive capabilities, we require a more complex tumor model.

2A modified objective function for the registration subcomponent allows us to fulfill the strongly
coupled first order optimality conditions of the joint optimization problem formulation.
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ble initial condition), and also invert for the diffusion parameter in the tumor
growth PDE (modeling tumor infiltration).

(v) We conduct numerical experiments to evaluate the new scheme using syntheti-
cally grown tumor data from real clinical brain imaging data. We demonstrate
that the MA scheme yields better results in terms of the accuracy and robust-
ness of tumor parameter reconstruction.3 For a synthetic example, we showcase
a malfunction4 of the MP scheme, whereas the new MA scheme yields good
results.

Limitations. The reaction-diffusion tumor-growth model we consider is purely
phenomenological. Important biophysical, biomechanical, and biochemical effects and
phenomena such as mitosis, apoptosis, chemotaxis, deformation of brain parenchyma
(mass effect), and the modeling of edema, necrosis, and angiogenesis are neglected. It
is, however, the most common model used for clinical analysis [9, 21, 23, 29, 60, 62].
The effect of tumor growth induced deformation of brain parenchyma is important
and not accounted for in our current model. This is ongoing work. Note that the
main work here lies in the enhancement of the tumor component. Integrating it
into the coupled formulation and the Picard iteration is straightforward due to our
modular approach. The inverse tumor-growth problem with inversion for all growth
parameters is ill-posed. We have to introduce additional prior information. Currently,
if we want to invert for the proliferation rate ρ and the diffusion rate, we run the solver
for multiple values of ρ and compare the quality of reconstruction results. We do not
account for uncertainties in input imaging data, employed algorithms and solution
approaches, and model parameters (such as tumor initial condition and characteristic
net cell migration into surrounding tissue). A Bayesian framework is subject to future
work; we currently invert for the maximum a posteriori estimate of the parameters.
Our approach does not directly process MRI data but requires prior segmentation
of the imaging data. Note that reliably integrating models with MRI is an open
problem, since one needs to estimate cell density from data or link model output to
intensities. Last, we emphasize that within this work we present a proof-of-concept
for a new, promising methodology; future work will include its application to real
clinical data.

Related work. One important application of biophysical models is to enable non-
diffeomorphic image registration. Classical image registration [46, 57] assumes that
the input images (template and reference) are topologically equivalent. But registering
a healthy atlas (no tumor) to a tumor-bearing patient image violates this assump-
tion. We refer to this problem as the normal-to-abnormal registration. We refer to our
previous work in [56] for an extensive review in nondiffeomorphic image registration.

Here, we are interested in fitting models to patient individual imaging data. Sev-
eral groups have tackled this problem using derivative-free optimization approaches [8,
27, 29, 36, 43, 45, 67, 68], or address the parameter estimation problem within a
derivative-free Bayesian framework [22, 31, 32, 33, 34, 44, 52]. There has been only
limited work in the direction of PDE-constrained optimization for model-based image
analysis [10, 16, 23, 27, 28, 35, 36, 43, 53]. Most of these approaches rely on longitu-
dinal patient data. In particular, they require knowledge of the healthy patient brain
before tumor occurrence. To allow for model-inversion based on single-snapshot data

3For all considered test cases the tumor-growth ground truth parameters are known, to allow for
comparison of the respective reconstruction accuracy.

4The patient input data are fitted to a poor reconstruction of the tumor in the atlas (due to
large anatomical differences); consequently, the target data are corrupted in the further course of the
inversion.
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only, deformable intersubject registration becomes necessary to artificially generate a
second snapshot in time. Such a combination of registration and biophysical inversion
has been previously targeted in [20, 23, 48, 71, 72, 73]. The work in [48, 71, 72, 73],
however, uses a purely mechanical model for tumor progression and falls short in
providing information about progression and infiltration of cancerous cells into sur-
rounding healthy tissue. In [2, 20, 23, 30], the authors propose a framework for joint
segmentation, registration, and tumor modeling, which is very similar to our approach.
In our previous work [56], we significantly reduce the time-to-solution by employing
second order derivative information in conjunction with highly scalable and efficient
numerics, improved algorithms, and powerful preconditioners. We eliminate the need
for manual tumor seeding, and improve intersubject registration performance.

Outline. The outline of the paper is as follows: In section 2 we present the math-
ematical formulation for the MA joint registration and biophysical inversion problem.
We present the PDE-constrained optimization problem and derive the first order opti-
mality conditions in section 2.1 and propose a Picard-iteration-type solution strategy,
outlined in section 2.2. Details on continuation schemes, adaptivity, and convergence
criteria are given in section 2.3. More details on the two main sub-components, dif-
feomorphic medical image registration and biophysical tumor-growth inversion are
summarized in section 3. In section 4, we perform numerical experiments to analyze
our scheme, and compare it to the MP scheme [56].

2. Formulation and Picard iteration for the MA coupled problem. To
apply tumor inversion and image registration in a joint approach, we consider an opti-
mal control formulation, which results in a PDE-constrained, nonlinear optimization
problem. In this section, we present the new MA formulation along with an iterative
fixed-point coupling scheme. This scheme allows us to solve the joint optimization
problem based on two separate components: a tumor-growth inversion solver and a
modified diffeomorphic image registration component. Before presenting the formu-
lation and the iterative solver, we shortly introduce the notation we are going to use
throughout the paper.

Notation. mX(x, t) ∈ [0, 1], (x, t) ∈ Ω × [0, 1] with X ∈ {WM,GM,CSF} rep-
resent probability maps of different brain tissue types, namely, white matter (WM),
gray matter (GM), and cerebrospinal fluid (CSF), which includes ventricles. The
probability maps for each tissue label are computed from (segmented) MRI data
in a preprocessing step. In the following, we refer to mX(x, t) as anatomy labels.
Ω = [0, 2π]3 denotes the normalized spatial domain. We gather these probability
maps in a space-time vector field

(2.1) m(x, t) = (mi(x, t))i=WM,GM,CSF ∈ R3.

The normalized tumor cell concentration c : ΩB×[0, 1]→ [0, 1], (x, t) 7→ c(x, t) (tumor
map) is given as a fourth field and interpreted as a probability map for cancerous
tissue. ΩB ⊂ Ω = [0, 2π)3 is embedded5 in the simulation domain Ω, and denotes the
domain occupied by brain tissue; it is bounded by the skull. All anatomy and tumor
labels evolve in space and time. To simplify notation, we introduce the space-time
domain U := Ω × (0, 1], and Ū := Ω × [0, 1). We omit the spatial dependency, and
indicate temporal evolution by the pseudotime tR ∈ [0, 1] for the advection problem of

5We use the fictitious domain method [24, 63] and discretize the tumor equations in the extended
cubic box Ω = [0, 2π]3. No-flux Neumann boundary conditions ∂c

∂n
= 0 on ∂ΩB × (0, 1), restricting

tumor cell invasion beyond the boundary of the CSF edged skull of the brain, are (approximately)
satisfied via a penalty approach [11].
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Table 2.1
Notation for the MA joint tumor inversion and image registration formulation: m denotes the

vector of anatomy labels (probability maps for WM, GM, and CSF) defining the brain geometry,
and c denotes a probability map for the tumor. Subscripts A and P indicate variables in the atlas
and patient spaces, respectively. Anatomy labels and tumor label with subscript D denote the patient
input imaging data (after prepossessing). The fields evolve in time and space; anatomy labels m for
brain tissue evolve along a pseudotime tR ∈ [0, 1] associated with registration, and tumor labels evolve
along the (normalized) time tT ∈ [0, 1] of tumor growth. The integration of a simulated tumor map
c(1) into healthy brain tissue m is indicated by m′, and modeled via the formula m′ = m(1− c(1))
(assuming that the probability of encountering WM, GM, CSF, or tumor at location x sum up to
one). To judge the proximity of the predicted state of our mathematical model to the observed data
mD, and cD, we define the `2-distance measures Dc and Dm.

Healthy atlas brain (input) mA

mP(0)
R

mP(1)
c(0)

T m′
P(1)
c(1)

tR = 0 tR = 1
tT = 0 tT = 1

Atlas
mA

Patient
mD, cD

Patient brain with tumor mD

(input; target data)
Patient tumor cD

(input; target data)
Healthy patient brain mP (1)
Tumor initial condition c(0)
Simulated tumor c(1)
Approximated patient brain m′P (1)
`2-misfit tumor Dc [c1, c2]

:= 1
2
‖c1 − c2‖2L2(Ω)

`2-misfit anatomy labels Dm [m1,m2]
:= 1

2
‖m1 −m2‖2L2(Ω)3

the registration, and the normalized time tT ∈ [0, 1] for tumor growth; cf. Table 2.1.
To judge the proximity of the predicted state of our mathematical model to the
observed datamD, cD, we define the `2-distance measures Dc and Dm (see Table 2.1),
which drive the optimization process.

2.1. MA coupled formulation. The MA coupled problem formulation is given
by the minimization problem

min
v,p,kf ,w

Dc[c(1), cD] +Dm[mP (1)(1− c(1)),mD] + S[p,v, w]

subject to

T : (tumor forward op.)

∂tc− divk(mP (1))∇c− f(c, ρ(mP (1))) = 0 in U,(2.2a)

c(0) = Φ(mP (1))p in Ω,(2.2b)

R : (registration advection op.)

∂tmP +∇mP · v = 0 in Ū ,(2.2c)

mP (0) = mA in Ω,(2.2d)

divv = w in U.(2.2e)

That is, we seek parameters and space-time fields (v,p, kf , w), such that the pre-
dicted state of our model becomes similar to the observed data. The distance between
data and predicted state is quantified by the two `2-distance measures Dc[c(1), cD]
and Dm[mP (1)(1 − c(1)),mD]. Dc[c(1), cD] measures the discrepancy between the
simulated tumor c(1) computed from (2.2a)–(2.2b) in the approximated patient space
and the input tumor data cD. Dm[mP (1)(1 − c(1)),mD] quantifies the discrepancy
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between the patient’s anatomy labels and the warped-to-patient atlas anatomy labels
in regions not affected by the tumor6 computed from (2.2c)–(2.2e). S[p,v, w] :=
βpSp[p] + βvSv[v] + βwSw[w] is a regularization term.

To simulate tumor growth over time, we use a diffusion-reaction model with diffu-
sion tensor k and a logistic reaction term f(c, ρ) = ρc(1− c) with reaction rate ρ. For
the tumor initial conditions, we use a parametrization Φp, i.e., c(0) lives in an np-
dimensional space spanned by Gaussian basis functions (p ∈ Rnp , Φp :=

∑np

i=1 Φipi).
Within CSF, the Gaussians are set to zero to prevent spurious diffusion of cancerous
cells into CSF. We model the diffusion and reaction coefficient as

(2.3) k(m) := kf

3∑
i=1

kimiI = kmI and ρ(m) := ρf

3∑
i=1

ρimi = ρm

with k = (k1kf , k2kf , k3kf )T and ρ = (ρ1ρf , ρ2ρf , ρ3ρf )T , i.e., both diffusion and
reaction parameters vary in space depending on the value of the anatomy labels m
describing the brain geometry. For simplicity, we only consider isotropic diffusion.7

To regularize the tumor growth initial condition parametrization, we use combinations
of `1- and `2-regularization, i.e.,

(2.4) S1
p[p] =

1

2
‖p‖2L1(Ω) and S2

p[p] =
1

2
‖p‖2W(Ω) :=

pn∑
i=1

wi · p2
i ,

where βp > 0 is the regularization parameter and ‖ ·‖W(Ω) is a weighted `2-norm. For
more details on how we switch between the two penalty terms in the solver algorithm,
see section 2.3.

For image registration, we use an advection model with a stationary velocity field
v. We require v to be suifficiently smooth to ensure that the associated deformation
map is a diffeomorphism [64, 65, 70]. These smoothness requirements are typically
stipulated using a Sobolev norm for v [5]. We consider an H1 regularization model
for the velocity field

(2.5) Sv[v] =
1

2
‖v‖2H1(Ω) =

1

2

∫
Ω

3∑
i=1

|∇vi(x)|2 dΩ

with an additional penalty on the divergence w = divv, which allows us to control
volume change. We refer to [38, 42] for details. A similar model has been considered
in [6]. We refer to [4, 5, 6, 7, 26, 64, 65, 70] for theoretical results for various regularity
assumptions on v and the image data. We use periodic boundary conditions on ∂Ω
for all involved physical fields of (2.2).

Optimality conditions. As a general optimization approach, we use the method
of Lagrange multipliers. Taking variations yields the strong form of the first order

6The simulated pathology is embedded into the advected atlas anatomy labels when caculating
the registration misfit. This can be seen as a “masking” of the tumor region, i.e., the registration
does not alter the tumor concentration nor the discrepancy measure Dc.

7Note that our approach can be generalized in a straightforward way to general diffusion tensors.
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optimality conditions:

tum., state

∂tc− divk(mP (1))∇c− f(c, ρ(mP (1))) = 0 in U,(2.6a)

c(0)− Φ(mP (1))p = 0 in Ω,(2.6b)

tum., adj.

−∂tα− divk(mP (1))∇α+ ∂cf
?(c, ρ(mP (1)))α = 0 in Ū ,(2.6c)

cD − c(1) + (mP (1))T (mP (1)(1− c(1))−mD)− α(1) = 0 in Ω,(2.6d)

reg., state

∂tmP +∇mPv = 0 in Ū ,(2.6e)

mP (0)−mA = 0 in Ω,(2.6f)

reg., adj.

−∂tλ− div (λ⊗ v) = 0 in Ū ,(2.6g)

(c(1)− 1)(mP (1)(1− c(1))−mD) + ∂mP (1)Φ(p)α(0)(2.6h)

−
∫ 1

0

(∇c)T∇α∂mP (1)k
?(mP (1)) + ∂mP (1)f

?(c, ρ(mP (1)))αdt− λ(1) = 0 in Ω,

tum., inv.

βp∇pSp[p]− ΦTα(0) = 0 in Ω,(2.6i) ∫ 1

0

∫
Ω

mP (1)
(
(∇c)T∇α

)
dx dt = 0 in Ω,(2.6j)

reg., inv.

βv∇vSv[v] +K[

∫ 1

0

(∇mP )Tλ dt] = 0 in Ω(2.6k)

with adjoint variables α, λ, ν associated with the state variables c(1),mP , andmP (1).
We eliminate w from the optimization problem and use the resulting operator K in
(2.6k). For div v = w = 0, K would be the Leray projection K(u) := u+∇ ∇−1divu;
for a nonzero w, the projection operator becomes slightly more involved; we refer
to [37, 38] for additional details. The gradients of the diffusion and reaction terms in
(2.6h) with respect to mP (1) can be derived from (2.3), and are given by

∂mP (1)k = k̄ = kf (k1, k2, 0) and ∂mP (1)f = ρmP (1)(1− 2c(1)).(2.7)

Discussion. We summarize the advantages of the MA scheme over the previously
used MP scheme [56]: (i) Image registration operates on the brain anatomy only such
that the tumor solver is forced to actually produce a biophysically more meaningful8

tumor that is similar to the observed patient tumor. (ii) Tumor growth parameters,
i.e., p and kf , are estimated directly in an approximation of the patient brain such
that their quality does not strongly deteriorate with differences between the atlas
and the patient brain. This comes at a price, which we account for by employing
suitable solver strategies presented in section 3: (a) The decomposition of the moving
atlas formulation into tumor and registration components requires modifications of
the registration formulation as shown in section 2.2. (b) The exploitation of the full

8We are assuming a biophysical tumor progression model which accurately reflects the physio-
logical processes; the model used here does not fulfill this assumption.
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potential of the MA scheme requires sparse localization of the tumor initial condition,
encouraged by an `1-regularization in the tumor component as outlined in section 3.1
(cf. also [55, 59]). The derivation of the optimality conditions of the proposed
formulation is formal only. A rigorous analysis is beyond the scope of the present
manuscript and remains subject to future work.

2.2. Picard iteration scheme. We solve the optimization problem by iterating
over the registration velocity v, the tumor growth initial guess parametrization p and
(if switched on) the diffusion coefficient kf . We use a superscript j to mark variables
associated with the jth Picard iteration. Each Picard iteration is decomposed into
two substeps:
(1) Solve inverse tumor problem, i.e., given vj solve for (pj+1, kj+1

f ) such that
(2.8)

(pj+1, kj+1
f ) = arg min

p,kf

Dc[c(1), cD] +Dm[mP (1)j(1− c(1)),mD] + βpSp[p]︸ ︷︷ ︸
=: JT

subject to the tumor forward problem (2.2a) and (2.2b) for the healthy patient
anatomy mP (1) = mP (1)j kept fixed (result of the previous Picard iteration or
initial guess). This means, we fulfill the first order optimality conditions (2.6a)–
(2.6d), (2.6i), and (2.6j) for mP (1) = mP (1)j . Aside from new iterates for p and
kf , this step yields a new simulated tumor c(1)j+1 and tumor adjoint αj+1.

(2) Solve modified registration problem, i.e., given (pj+1, kj+1
f ), solve for vj+1 such

that

(vj+1, wj+1) = arg min
v,w

Dm[mP (1)(1− c(1)j+1),mD]

+

∫
Ω

qTmP (1) dx+ βvSv[v] + βwSw[w]
(2.9)

subject to the image advection problem (2.2c)–(2.2e). q = (q1, q2, q3)T is defined
as

q(x) =

∫ 1

0

k((∇c(1)j+1)T∇αj+1) + ρc(1)j+1(1− c(1)j+1)αj+1 dt.

(3) Iterate until convergence.
The particular modification of (2.9) by introducing the term

∫
Ω
qTmP (1) dx

ensures that the registration problem reproduces (2.6e)–(2.6h) and (2.6k) as first order
optimality conditions. Note that we freeze the variables c(1), and α from the previous
iteration, i.e., neglect the indirect impact of the registration velocity v on c(1) and α
via changes in mP (1). Besides new iterates for v, the registration step also provides a
new approximation mP (1)j+1 of the healthy patient brain. The converged solution of
the respective Picard or fixed-point iteration fulfills all first order optimality conditions
of (2.2) with the exception of (2.6h). For the latter, the term ∂mP (1)Φ(p)α(0) is
neglected and not enforced explicitly. We found experimentally that our scheme
works well and produces satisfying results despite the simplification.

2.3. Adaptivity and convergence criteria. In our Picard scheme, we use sev-
eral strategies to control convergence and to adapt the tumor and image registration
regularization over the Picard iterations.

For the tumor solver, the regularization term βpSp[p] is used to attain better
conditioning, and also to encourage sparse localization of the initial condition. Thus,
we use Sp[p] = 1/2‖p‖2L1(Ω) to compute a sparse solution of the initial condition and
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switch to a weighted `2-regularization Sp[p] = ‖p‖2W (Ω) = 1/2
∑pn
i=1 wi · p2

i in a second
phase of the tumor inversion solver, where the weights wi are calculated according to

wi =

{
wlarge if |p`1i | < τS‖p‖L∞(Ω),
wsmall otherwise.

Here, τS is a user defined tolerance. The `2-phase uses p`1 achieved in the `1-phase
as initial approximation. In the `1-phase we invert for p only and keep the diffusivity
kf (estimated in the `2-phase) fixed;9 initially, we start with kf = 0. For more details
on numerics of the tumor inversion solver, we refer to [56].

For the registration solver, convergence and robustness are improved by regular-
ization. We perform a parameter continuation. That is, we start with a large value
βinit
v and subsequently reduce βv by a factor of ten after each Picard iteration un-

til we reach the prescribed value βfinal
v . Image registration calculates solutions and

possibly increases βv internally based on a check of lower admissible bounds for the
determinant of the deformation gradient. The deviation of the determinant of the
deformation gradient from one indicates local volume changes (expansion for a value
larger then one and contraction for a value smaller then one; see [38, 56] for more
details).

As a stopping criterion for the Picard iterations, we consider a mixed criterion
that is fulfilled either if we reach βfinal

v or if the image registration fails due to violation
of the user defined lower bound on the determinant of the deformation gradient. We
always execute two Picard iterations with the final βfinal

v .
For both tumor inversion and image registration, we use fixed tolerances for the

norm of the reduced gradients as given in (2.6i), (2.6j), and (2.6k), respectively. Note
that we use norms relative to the gradient norm at the beginning of the first Pi-
card iteration for all gradients. We combine these gradient tolerances with a pre-
scribed maximal number of Newton iterations for the reduced space KKT systems
(see also [56]).

3. Numerical methods for tumor inversion and image registration. In
this section, we shortly describe the numerical and algorithmic features of the tumor
and the image registration solvers. We give only a brief summary along with references
to previous publications since these methods have not been changed from our previous
work.

3.1. Regularization and nonlinear solver components for tumor inver-
sion. The tumor inversion problem is solved based on an optimize-then-discretize
approach. To solve the respective system of optimality conditions, we use different
solvers for `1 or weighted `2-regularization, respectively. For `1-regularization, the
general iterative shrinkage thresholding (GIST) [19] is applied. In every iteration, it
determines a solution pk+1 close to the result pksd of a gradient descent step in the
direction ∇Dc(c(1), cD) with step length αk:

pk+1 = arg min
p

1

2
‖p− pksd‖2L2(Ω) + αk

βp
2
‖p‖L1(Ω), and(3.1a)

pksd = pk − αk∇Dc(c(1), cD).(3.1b)

9We found experimentally, that diffusion inversion in the `1-phase has vanishing impact on the
proposed sparsity of the solution, and the `2 estimation for kf is better.
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To determine the step length αk, we use an Armijo line search. For `1-regularization,
we find the analytical solution

pk+1 = sign(pksd) max(0, |pksd| − αkβp).(3.1c)

The stopping criteria are given by

|JT (pk+1)− JT (pk)| < τJ(1 + JT (p0)),(3.2a)

‖pk+1 − pk‖L∞(Ω) <
√
τJ(1 + ‖pk+1||L∞(Ω)),(3.2b)

where JT is the objective function of the tumor inversion problem (2.8), and τJ > 0
is a user defined tolerance. We perform parameter continuation in βp to estimate its
value. We start with a large βp, bounded by ‖∇Dc(c(1), cD)‖L∞(Ω), and perform a
binary search in subsequent GIST iterations based on the Hoyer sparsity measure [25],
Hs(p) ∈ [0, 1]:

(3.3) Hs(p) =
np − ‖p‖L1(Ω)/‖p‖L∞(Ω)

np − 1
,

where np is the dimensionality of p. Solutions with larger values of Hs feature higher
sparsity, i.e., have fewer nonzero entries. We use a tolerance of 0.95 to identify sparse
solutions. If the sparsity is large enough (larger than the tolerance), we search for a
smaller regularization parameter and, alternatively, increase it if the sparsity is insuf-
ficient. GIST features slow first order convergence, which is, however, acceptable for
our purpose as only a rough estimate for c(0) is to be calculated with `1-regularization.

In the `2-phase, we employ a reduced space method. This means that we assume
the state and adjoint equations to be fulfilled exactly; they can be eliminated from
the KKT system. For the tumor inversion solver, the reduced gradients are calculated
based on the current iterates for p and kf as follows: (i) Solve the state equations
(2.6a)–(2.6b); (ii) use the result to solve the adjoint equations (2.6c)–(2.6d); (iii) insert
the result in (2.6i)–(2.6j) to calculate the reduced gradient with respect to p and kf .

As a solver for the reduced KKT system, we use a quasi-Newton approach (LBFGS,
[51, p. 135ff]) yielding a matrix-free approximation of the matrix-vector product of
the gradient with the respective inverse Hessian and, thus, making an inner linear
solver obsolete. We use the Moré–Thuente line search [49] for globalization.10 The
`2-phase is terminated when the relative change of the norm of the reduced gradient
is below a user defined threshold opttolT > 0. The reference gradient is the gradient
obtained for the zero initial guess, p0.

3.2. Nonlinear solver components for image registration. We use an
optimize-then-discretize approach for the image registration solver [42]. We employ
a reduced space method: The current iterate for the velocity v is used to (i) solve
the state equations (2.6e)–(2.6f) (forward advection), (ii) use the result to solve the
adjoint equations (2.6g)–(2.6h), (iii) insert the result in (2.6k) to calculate the reduced
gradient.

We use a Newton–Krylov approach with an inexact Gauss–Newton linearization
and a matrix-free PCG method as inner linear solver (see [17, 37, 38, 39, 40] for more
details) to compute the search direction.

For the convergence of the optimizer, we use a combination of the relative change
of (i) the norm of the gradient in (2.6k), (ii) the objective in (2.9), and (iii) the

10Note that we do not use line search in the outer Picard iterations.
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control variable v, all controlled by a single parameter, opttolR > 0, as a stopping
criterion. More details on the stopping conditions can be found in [37, 47]; see [18,
305 ff.] for a discussion. For the inner PCG solver, we perform inexact solves [12, 13]
with a tolerance that is proportional to the norm of the reduced gradient of our
problem. This prevents oversolving of the Hessian system if far from the optimum
(large gradient norm). See also [51, p. 165ff.] for details. We use an Armijo line search
for globalization.

For both tumor inversion and registration solver, we specify a maximum num-
ber (maxitN,T / maxitN,R) of Newton iterations, a maximum number (maxitK,T /
maxitK,R) of Krylov iterations, and a lower bound of 1E−6 for the absolute norm of
the gradient as a safeguard against a prohibitively high number of iterations.

3.3. Discretization in space and time for the state and adjoint equa-
tions. For all state and adjoint equations in (2.6), we use the following numerical
ingredients that have been published in more detail in [1, 16, 17, 37, 38, 39, 40]: (i)
spectral elements for spatial discretization combined with a regular mesh; (ii) three-
dimensional (3D) Fourier transforms to compute spatial derivatives; (iii) an uncon-
ditionally stable semi-Lagrangian time-stepping scheme to avoid stability issues and
small time steps for image advection; (iv) an approximation of boundary conditions
for the tumor equations at the brain surface based on a penalty approach combined
with periodic boundary conditions at the boundary of the overall domain Ω̄ = [0, 2π]3;
(v) an unconditionally stable, second order Strang-splitting approach [24, 58] with an-
alytical solution of the reaction terms and an implicit Crank–Nicholson method for
the diffusion terms in the tumor equations.

4. Numerical results. The experiments serve as a proof of concept for the
newly developed joint registration and biophysical inversion strategy (MA) and demon-
strate that the previously introduced MP scheme [56] can fail dramatically in terms
of both tumor reconstruction and inversion for initial conditions and tumor growth
parameters. We quantitatively and qualitatively compare the new MA strategy to
the MP with an emphasis on model inversion and parameter estimation and address
the scheme’s eligibility to recover true model parameters. This is an important step
towards reconstruction of meaningful biophysical characteristics. We consider the
following classes of test cases:

SYN: synthetic brain. This first academic test case shows that the MP scheme can
dramatically fail in terms of biophysical inversion. More precisely, we demonstrate
that the MP scheme yields a largely wrong reconstruction of the tumor, the tumor
initial condition, and the diffusion coefficient. We use two simple elliptical anatomies
consisting of WM and GM only for atlas and healthy patient brain, respectively, and
grow a tumor with known diffusion and reaction parameters in the patient anatomy.
The resulting pathologic patient brain serves as target input data for our joint in-
version approach. In order to achieve significant results, we create a case with large
intersubject differences between atlas and patient anatomy.

STRV: synthetic tumor, real velocity. This second class of test cases is based
on real brain geometries and serves as a means to examine the potential of the MA
formulation for biophysical inversion in realistic geometries, i.e, to examine the quality
of reconstruction for the known ground truth initial conditions, kf and healthy patient
geometry. We use two different real healthy brain geometries and grow a synthetic
tumor in one of them, which we use as the patient brain. The second healthy brain
serves as a normal brain template (atlas brain). In contrast to real patient tumors, in
this case we know the ground truth for tumor initial conditions, diffusion coefficient
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kf , and healthy patient geometry. Note that we do not know the ground truth for
the registration velocity v.

In our test cases, we compare three different solution strategies:
I. Tumor stand-alone (T). For the tumor stand-alone solution, the inversion is

carried out assuming a statistical atlas brain geometry as the healthy patient brain.
No intersubject registration is applied. The error is a function of the intersubject
variability between atlas and patient brain.

II. The joint registration and biophysical inversion MP scheme. The MP scheme
presented in [56] exhibits some inherent shortcomings with respect to the suitability
for biophysical inversion and model calibration. The registration may fit the input
data to a poor tumor reconstruction. We use the method described in [56] enhanced
with a sparsity constraint for the tumor inversion solver section 3.1.

III. The joint registration and biophysical inversion MA scheme. The MA scheme
presented in this work is designed to remedy some of the shortcomings of the MP
scheme.

In the following, we shortly describe data and parameters for the experiments in
section 4.1 as well as the hardware used and the general setup in section 4.2. We
introduce performance measures used in the evaluation of our numerical results in
section 4.3. In sections 4.4 and 4.5 we show results for the two classes of test cases.

4.1. Data and parameters. We use a common data basis for brain geometries
as well as some fixed parameter settings for all test cases as described below.

Brain imaging data. For the STRV cases, we use normal brain MRI data obtained
at the Perelman School of Medicine at the University of Pennsylvania. The 3D imaging
data have an image resolution of 2563 voxels. We use binary segmentations of MRI
scans for WM, GM, and CSF. In a preprocessing step, these labels are smoothed and
rescaled to probability maps, i.e, values between zero and one. To ensure partition
of unity across all anatomy labels for each x in Ω, we introduce a fourth probability
map for background based on

∀x ∈ Ω : c(·,1)(x) +
4∑
i=1

m
(·,1)
i (x) = 1.

Common model and numerical parameters. The tumor model and solver param-
eters are summarized in Table 4.1. The solver parameters are based on experiments.
We briefly discuss some of the more involved choices: For the parametrization of the
tumor initial condition, we select a regular grid of np Gaussian basis functions with a
variable standard deviation σ ∈ {2π/30, 2π/64} and a grid spacing of δ = 1.5σ around
the center of mass of the tumor. The number np is chosen a priori on a case-by-case
basis, such that the pathological domain is covered sufficiently.

For all experiments, we consider tumor growth only in WM (k1 = 1; ρ1 = 1)
and, consequently, set the characteristic diffusivity and net cell proliferation in GM
and CSF to zero, i.e., k2 = k3 = 0 and ρ2 = ρ3 = 0. To grow the synthetic tumor,
we choose ρ?f = 15 as cell proliferation rate (reaction coefficient), and k?f = 1E−1
as rate of cell migration into surrounding tissue (diffusion coefficient), respectively.
For the tumor evolution simulation, we choose a time step of ∆t = 0.01 and various
time horizons T ∈ {0.16, 0.32, 0.44}. The regularization parameter βp for the `2-
regularized inverse tumor problem has been determined experimentally from an L-
curve study similar to [16], using np = 125 Gaussian basis functions and an image
resolution of n = 1283. We fix the relation σ/δ = 1.5 for the spacing of the Gaussian
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Table 4.1
Summary of common parameters used in all test cases. We report values of the following

parameters: n denotes the image resolution with ni, i = 1, 2, 3; np is the number of Gaussians
for the parametrization of the tumor initial condition, σ is the standard deviation of the associated
Gaussian basis functions (and varies throughout test cases), δ denotes the spacing in-between centers
of adjacent Gaussians; k1, k2, and k3 are the characteristic diffusion parameters for WM, GM, and
CSF, kf the overall scaling parameter for the isotropic part of the diffusion coefficient for net
migration of cancerous cells into surrounding tissue; ρ1, ρ2, and ρ3 are the characteristic reaction
factors for WM, GM, and CSF, ρf is the overall reaction scaling factor; opttolR, opttolT are the
convergence tolerances for registration and tumor inversion; maxiti = (maxiti,N ,maxiti,K) denotes
the maximum number of Newton iterations and Krylov iterations (for the KKT system) for the
tumor inversion (i = T ) and registration (i = R), respectively; βp is the regularization parameter

for the tumor inversion; βinitv and βfinalv are the initial and final values for the β-continuation
scheme, applied in image registration; ε∇ is the bound on the variation of the deformation gradient
det(∇y) used in the continuation scheme.

Description Parameter(s) Value(s)

Image resolution n = n1 · n2 · n3 ni = 128
Tumor initial condition parametrization np, σ, δ {125, 343}, { 2π

30
, 2π

64
}, 1.5

Tumor growth characteristic cell diffusivity k̄ = k?f (k1, k2, k3)T 0.1 · (1, 0, 0)T

Tumor growth characteristic ρ̄ = ρ?f (ρ1, ρ2, ρ3)T 15 · (1, 0, 0)T

net cell proliferation
Optimizer tolerances opttolR, opttolT 1E−3, 1E−3
Maximum Newton / Krylov iterations, maxitT (50,−)

tumor inversion = (maxitT,N ,maxitT,K)
Maximum Newton / Krylov iterations, maxitR (50, 80)

registration = (maxitR,N ,maxitR,K)
Tumor inversion regularization parameter βp 1E−4

Registration regularization parameter βinitv , βfinalv 1, 1E−4
continuation

Bound on local volume change
(variation det(∇y)) ε∇ 1E−2

basis functions.11 The lower bound βfinalv on the regularization parameter βv has
been determined based on extensive numerical experiments for different synthetic
and real brain data sets [38, 39]. By experimental analysis we found that reducing
the regularization weight by a factor of 10 in every Picard iteration is sufficient.12 For
the optimizer, we use tolerances of opttolR = opttolT = 1E−3 for registration and
tumor inversion, respectively.13 Further reduction of the gradient did not improve the
final reconstruction quality, since the overall error is bound by an O(1E − 3) error
introduced by the solution of the hyperbolic advection problem (cf. [56]). To prevent
prohibitively large runtimes, we define upper bounds on the number of Newton (and
Krylov) iterations.

4.2. Hardware and setup. All numerical experiments were executed on the su-
percomputer HazelHen at the High Performance Computing Center HLRS in Stutt-
gart (www.hlrs.de), a Cray XC40 system with a peak performance of 7.42 petaflops
comprising 7, 712 nodes with Xeon E5-2680 v3 processors and 24 cores on two sockets

11This leads to an invariant condition number of ΦTΦ for the corresponding interpolation problem
for varying standard deviations σ, i.e., width of the Gaussians.

12Using a smaller reduction or more Picard iterations per fixed regularization weight did not
improve the overall result.

13Note that, in combination with the applied stopping conditions, this results in a required relative
gradient of 1E−3 for the tumor inversion, but a gradient reduction of only about two orders of
magnitude for the registration.
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and 128 GB memory per node. Our SIBIA framework is written in C++ and uses
MPI for parallelism. It is compiled using the Intel 17 compiler. We use PETSc’s
implementations for linear algebra operations and PETSc’s TAO package for the non-
linear optimization [3, 50], AccFFT for Fourier transforms [15, 16], and PnetCDF for
I/O [66]. We use 3 nodes with 64 MPI tasks for (down-sampled) data sizes of size
ni = 128, i = 1, 2, 3, for all runs reported in this study.

4.3. Performance metrics. The task of our numerical experiments is to assess
(i) the convergence towards solutions with low mismatch between the prediction of
our model in (2.2a)–(2.2e) and the observed patient input data, both in the brain
geometry m and the tumor c (for all test cases), (ii) the reconstruction quality for
the (in practice inaccessible) healthy patient brain14 as a direct output of the moving
atlas formulation, (iii) the quality of inversion for the biophysical parameters, i.e.,
tumor growth initial conditions and diffusion coefficient, in terms of correctness of
the parameters compared to the known ground truth.

We report all performance measures in the patient space, i.e., with respect to the
patient anatomy and not the atlas anatomy, since the patient space is the relevant
space from an applications point of view. We use the following metrics: We measure
the relative mismatch/residual between patient anatomy and reconstructed anatomy,
between the reconstructed healthy patient anatomy and the ground truth, and be-
tween patient tumor and simulated tumor in the patient domain (compare diagram
on right of Table 2.1):

µB,L2 :=
‖m′P (1)−mD‖L2(Ω)3

‖mA −mD‖L2(Ω)3

,

µB0,L2 :=
‖mP (1)−m?

P (1)‖L2(Ω)3

‖mA −m?
P (1)‖L2(Ω)3

,

µT,L2 :=
‖c(1)− cD‖L2(Ω)3

‖cD‖L2(Ω)3

,

wherem?
P (1) denotes the ground truth healthy patient brain. Based on the cardinality

| · | of a set and a selection function H with threshold 0.5, i.e.,

H(u) := {ui ≥ 0.5},
we calculate Dice coefficients for the individual label maps associated with the anatomy
labels for l ∈ {WM,GM,CSF} and their average across labels for the patient and
the atlas anatomy

DICEl,B := 2
|H(mP,l(1)) ∩H(mD,l)|
|H(mA,l)|+ |H(mD,l)|

, DICEB =
3∑
l=1

DICEl,B/3.

Analoguously, we report values for the Dice coefficient computed for the healthy pa-
tient geometry, denoted by DICEB0

, and for the anatomy label of the tumor, denoted
by DICET . To monitor convergence of the Picard iterations, we report the relative
value of an approximation to the gradient for the coupled problem (see section 2.1)
for the final iteration k:

‖g‖rel := ‖gj‖L2(Ω)/‖g0‖L2(Ω),

14For our semisynthetic test case setting, where the patient target data are generated from syn-
thetic tumor progression simulation in the healthy brain, the healthy patient brain is known and the
approximation quality can be measured exactly.
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where gj is an approximation to the gradient of the coupled optimization problem (2.2)
(given by (2.6i)–(2.6k)) after the ith Picard iteration and g0 the corresponding ap-
proximate gradient for the initial guess. The gradient is only approximate, since we
neglect the term ∂mP (1)Φ(p)α(0) in the final condition (2.6h) of the adjoint equation
for the registration problem. This term is guaranteed to be small if the norm of the
remaining gradient is small as the latter requires α(0) and the change in the estimated
patient geometry to be small. Finally, we calculate the relative `2-error for the initial
condition:

ec0,L2 := ‖Φp? − c(0)‖L2(Ω)/‖Φp?‖L2(Ω),

where c(0) = Φp and Φp? denotes the parametrization of the ground truth tumor
initial condition.

4.4. Results for SYN. This first, purely synthetic experiment uses two fairly
different, very simplistic anatomies for the atlas and patient brain and an artificially
grown tumor in one of them (called the patient brain).

Purpose. This case is designed to cause the MP scheme to fail due to large dif-
ferences in the brain anatomy between patient and atlas in the tumor region. We
demonstrate that the MA scheme retains a good reconstruction quality for the tumor
anatomy label, the tumor initial condition, and the characteristic diffusivity of tu-
mor cells, while the MP scheme falls short as it inverts tumor growth in the “wrong”
(atlas) geometry.

Setup. For both, atlas and patient, we generate a purely synthetic brain anatomy,
composed of an elliptical WM inclusion surrounded by GM. The WM inclusions for
atlas and patient differ greatly in size. The target data cD are generated synthetically
from a tumor-progression simulation (with p = p?) using our reaction-diffusion model
with ρ?f = 15 and k?f = 1E−2 from an initial condition with two nearby Gaussians
enabled in the patient geometry. The healthy atlas geometry is depicted in the first
row, the tumor-bearing patient geometry in the last row of Figure 4.1. We use the
same set of np = 343 Gaussians with standard deviation σ = 2π/30 for the target data
generation and inversion. For simplicity, tumor growth is enabled only in WM. We
invert for the registration velocity v, the parameters p for the tumor initial condition,
and for the characteristic diffusivity kf in WM.

Observation. In this case, the inclusions of WM in atlas and patient vary signifi-
cantly in size (cf. Figure 4.1). Thus, registering the atlas to the patient requires strong
local expansion of volume. Looking at Figure 4.1 (right tableau), in the first itera-
tion, to prevent the registration from directly matching the target tumor unaided by
the tumor solver, we choose a higher regularization parameter βv for the registration
problem. Therefore, warping the target tumor to the atlas space basically corresponds
to a copy operation. (before k = 2). This warped-to-atlas tumor is used for tumor
inversion in the atlas space. The subsequent registration step (with lower regulariza-
tion) computes a velocity that registers the patient (small tumor in large WM blob)
to the atlas (small tumor in small WM blob). This results in a compression of the
patient WM and, consequently, yields a very small target tumor for the inversion
in the atlas (k = 3).15 In subsequent iterations (with further reduced registration
regularization), the warped-to-atlas target tumor is compressed further, ultimately
causing the MP scheme to fail and returning a relative error of almost 100% for the

15Note, the displayed results are in the patient space, i.e., the inverse of the deformation is
applied to display atlas labels in patient space, and the very small reconstructed tumor in the atlas
is expanded when warped to the patient space.
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Quantitative Results

inv-kf ekf µB,L2 DICEB µB0,L2 DICEB0 µT,L2 DICET ec0,L2

MA 7.68E−3 2.32E−1 5.04E−2 9.98E−1 3.25E−2 9.98E−1 3.32E−2 9.89E−1 1.84E−1
MP 0.00 1.00E0 6.50E−2 9.95E−1 3.48E−2 9.96E−1 9.88E−1 0.00E0 1.00E0

Fig. 4.1. Results for SYN (ground truth proliferation rate ρf = 15 and diffusivity kf = 1E−2
in WM, tumor growth disabled in GM). We compare the new MA Picard scheme (left tableau), and
the MP scheme (right tableau). The figure shows anatomy and tumor labels (from left to right: WM,
GM, CSF, and TU), the residual differences (if available), and a hard segmentation based on the
given probabilities for the individual tissue classes. The synthetic healthy atlas and the patient are
composed of an elliptic inclusion of WM in a GM rectangular brain (see text for details; axial slice
64 of a 3D volume). We show the initial configuration for the problem (top row: iteration k = 1),
two intermediate results (second row: k = 2, and third row: k = 3), the final configuration after
joint registration and tumor inversion (fourth row: iteration k = 6) and the target patient data
(reference image: bottom row). All results are presented in patient space. In the table, we report
the reconstructed diffusivity inv-kf and its relative error ekf with respect to the ground truth, the
average mismatch for the anatomy labels of the tumor bearing brain µB,L2 , for the healthy brain
tissue labels µB0,L2 , and for the tumor µT,L2 , the mean Dice coefficients for brain tissue DICEB ,
for the healthy patient brain tissue DICEB0

, and for the tumor DICET . Furthermore, we measure
the `2-error ec0,L2 of the reconstructed tumor initial condition with respect to the ground truth.

reconstruction of the tumor label, the reconstruction of the tumor initial condition,
and the reconstruction of the characteristic diffusivity kf in WM; cf. Figure 4.1). The
new MA scheme, however, maintains a good reconstruction quality and results in only
3.3% relative errors for the tumor label, 18.4% relative errors for the reconstruction
of the tumor initial condition, and 23.2% relative error in the reconstruction of the
characteristic diffusivity rate kf in WM.

4.5. Results for STRV. With the results for the STRV test cases, we show the
general applicability of the new registration and tumor inversion coupling scheme as
well as its improved properties in terms of correct reconstruction of initial tumor and
healthy brain geometry. We evaluate the MA scheme for a real brain geometry with
synthetically generated target tumor such that the true tumor model parameters are
known and we have access to the true healthy patient brain.

Purpose. With the STRV test case experiments, we pursue the following main
purposes: (i) We give experimental evidence for the convergence of the new MA
scheme for several settings; (ii) we compare our coupled image registration and tumor
inversion schemes MP and MA to stand-alone tumor inversion, replacing the miss-
ing second snapshot (healthy patient) by a statistical atlas without involving image
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Table 4.2
STRV test case variations. Parameter choices for the STRV test case; ground truth (ρ?f = 15,

ρ?1 = 1, ρ?1 = 0, k?f = 1.00E−1, k?1 = 1, k?1 = 0, p = p?). For the initial condition parametrization,

we use a regular grid of np = 125 (large σ), and np = 343 (small σ) Gaussian basis functions,
respectively, with standard deviation σ as outlined below, and a spacing of δ = 1.5σ. The grid
is centered around the positions xc1 = 2π/128(39, 63, 64) (STRV-C 1) and xc2 = 2π/128(61, 89, 64)
(STRV-C 2), respectively (cf. Figures 4.3 and 4.4 for the location of the tumor seed).

Test case Setting #1 Setting #2 Setting #3

(STRV-C1) σ = 2π/30, T = 0.16 σ = 2π/64, T = 0.32 σ = 2π/64, T = 0.44
(STRV-C2) σ = 2π/64, T = 0.16 σ = 2π/64, T = 0.32

registration; (iii) we examine the robustness of our joint inversion against noise in
the data; (iv) we show the superiority of the new MA scheme over the previously
presented MP scheme in terms of reconstruction quality of the (initially unknown)
healthy patient brain anatomy and meaningful reconstruction of biophysical tumor-
growth characteristics, in particular, shape and sparsity of the ground truth tumor
initial condition and prediction of the grown tumor.

Setup. For both atlas and patient, we use real brain MRI data from (healthy)
individuals. The target tumor cD is generated synthetically from a tumor-progression
simulation (with p = p?) using our reaction-diffusion model. Accordingly, the ground
truth velocity field is unknown (or may not even exist due to a possibly wrong
model), but the true tumor model parameters are known. We consider two differ-
ent tumor locations (STRV-C1) and (STRV-C2) and varying time horizons for the
tumor-progression simulation. An overview is given in Table 4.2. For (STRV-C1) we
also employ different settings of the parametrization of the tumor initial condition:
For parameter setting #1, we use a set of np = 125 Gaussian basis functions with
standard deviation σ = 2π/30, whereas, for settings #2 and #3, we use smaller (but
more; np = 343) Gaussians with σ = 2π/64 to generate sparser ground truth initial
conditions. The same set of Gaussian basis functions is used for target data gener-
ation and inversion. The target data are generated from a forward simulation using
nt = 100 time steps with parameters ρ?f = 15 and k?f = 1E−1, and an initial condi-
tion with two nearby Gaussians enabled. As suggested by recent investigations [14],
tumor growth is enabled in WM only. We invert for the tumor initial condition and
the characteristic diffusivity kf in WM.

Misfit and gradient reduction of the MA scheme. To experimentally assess con-
vergence of the MA scheme over the Picard iterations, we report the `2-mismatch
and Dice overlay coefficients for the reconstruction of the (pathologic) brain anatomy
(µB,L2 and DICEB), the healthy patient anatomy (µB0,L2 and DICEB0

), and the
reconstructed (grown) tumor (µT,L2 and DICET ) in Figure 4.2 for the (STRV-C1)
test case. Furthermore, we monitor the `2-error ec0,L2 for the reconstructed tumor
initial condition with respect to the ground truth and the relative norm ‖g‖rel of the
(approximated) reduced gradient of the coupled formulation (2.2).

Observations. Figure 4.2 shows a monotonic reduction of data-misfit values and
the corresponding gain in tissue overlay Dice scores for the brain anatomy, the healthy
patient anatomy, the grown tumor, and the initial tumor condition. Although we do
not have a proof for the convergence of the MA Picard-iteration-type solution strategy
(outlined in section 2.2), we monitor the relative norm ‖g‖rel of the (approximated)
reduced gradient for the MA formulation (2.2), indicating convergence to an optimum.
The norm of the approximated gradient continually decreases throughout our Picard-
iteration-type solution strategy. Our solution scheme, and hence the gradient, neglect
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Qualitative Results for the Moving Atlas Joint Inversion Scheme
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Quantitative Results for the Moving Atlas Joint Inversion Scheme

It βv µB,L2 DICEB µB0,L2 DICEB0
µT,L2 DICET ‖g‖rel ec0,L2 T it [s]

1 1E0 1.00E0 5.45E−1 6.77E−1 5.51E−1 1.00E0 0.00E0 1.00E0 1.00E0 5.64E2
2 1E−1 8.79E−1 5.80E−1 6.07E−1 5.93E−1 2.90E−1 7.92E−1 2.04E−2 4.25E−1 9.45E2
3 1E−2 6.54E−1 7.29E−1 4.51E−1 7.38E−1 2.04E−1 8.24E−1 1.45E−2 3.51E−1 8.44E2
4 1E−3 4.06E−1 8.66E−1 2.80E−1 8.72E−1 1.16E−1 8.80E−1 1.36E−2 2.08E−1 1.63E3
5 1E−4 2.62E−1 9.32E−1 1.81E−1 9.37E−1 7.57E−2 9.48E−1 7.01E−3 9.55E−2 8.46E2
6 1E−4 2.36E−1 9.42E−1 1.64E−1 9.46E−1 6.74E−2 9.51E−1 4.91E−3 5.75E−2 8.58E2

7 1E−4 2.33E−1 9.43E−1 1.62E−1 9.47E−1 6.49E−2 9.50E−1 4.15E−3 7.13E−2 5.69E3

Fig. 4.2. Misfit reduction of the new MA Picard iteration scheme. We show qualitative and
quantitative results for the (STRV-C 1) test case with parameter setting #1 from Table 4.2 over
the course of the MA Picard-iteration-type solution scheme with a sparsity constraint on the initial
condition for the tumor inversion solver. We use the ground truth values ρf = ρ?f = 15 and

kf = k?f = 1E−1 in WM for the inversion. The figure shows anatomy labels of the healthy atlas

brain and the patient brain with an (artificially) grown tumor (see text for details; axial slice 64 of
a 3D volume). We show the initial configuration for the problem (top row: iteration k = 1), an
intermediate result (second row: k = 3), the final configuration after joint registration and tumor
inversion (third row: iteration k = 7), and the target patient data (bottom row: reference image).
Each row contains (from left to right) the anatomy labels for WM, GM, CSF, and TU, the residual
differences (if available) between the anatomy labels, and a hard segmentation based on the given
probabilities for the individual tissue classes. In the table, we report the average mismatch for the
anatomy labels for the pathologic brain tissue labels µB,L2 , the healthy brain tissue labels µB0,L2 ,
and the tumor µT,L2 , the mean Dice coefficient for brain tissue DICEB, healthy patient brain tissue
DICEB0

, and tumor DICET over the Picard iterations. Furthermore, we measure the `2-error
ec0,L2 of the reconstructed tumor initial condition to the ground truth, and the relative norm ‖g‖rel
of the approximated reduced gradient of the coupled formulation. Timings per iteration are given in
seconds for parallel execution using 64 MPI tasks on three nodes of HazelHen. The last row shows
the final values for mismatch and Dice as well as the time-to-solution (accumulated runtime) in
seconds.

the term ∂mP (1)Φ(p)α(0) in (2.6h). This term, however, becomes very small as the
misfit and, thus, α(0) decrease.

We note, that within seven iterations of our Picard scheme, both p and v have es-
sentially converged, and the respective updates become very small (i.e., for (STRV-C1)
we get ‖∆p‖r := ‖p

k−pk−1‖2/‖pk−1‖2 ≈ O(8E − 4) and ‖∆v‖r := ‖v
k−vk−1‖2/‖vk−1‖2 ≈

O(1E − 4)). These small updates have little to no effect on the model prediction,
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and are not reflected in significant changes of the objective function value (after an
additional 23 iterations, ‖∆v‖r drops from O(1E − 12) to zero, while ‖∆p‖r remains
on the order of O(1E − 4)). Since after completion of the βv-continuation scheme,
little to no progress is made, we terminate the solver. We explain such deterioration
in convergence, and justify termination of our solver by a few remarks: (i) We employ
an optimize-then-discretize approach, which together with the semi-Lagrangian time
stepping for the pure advection steps, results in inconsistencies between the discretized
objective function and the discretized gradient and, therefore, ultimately results in
a stagnation of convergence (in other words, the associated numerical errors in the
forward and adjoint operators are on the order of the norm of the gradient). (ii)
In each subsolver we are reducing the gradient by three orders of magnitude, which
has been confirmed to be adequate if real data input images, presenting many im-
age features and details, are considered [37, 39, 41]. Our empirical observations on
numerous datasets suggest that further reducing the gradient does, in general, not
result in an improved data mismatch. For practitioners in the field data mismatch
is the main benchmark (aside from the requirement that the deformation map is a
diffeomorphism).

Stand-alone tumor inversion versus MP versus MA. To compare the different
inversion schemes, we show results obtained using the newly introduced MA strategy
to the results for the MP solution scheme and those for a tumor stand-alone (T)
solver without intersubject registration, respectively, in Table 4.3 for both test cases
(STRV-C1) and (STRV-C2).

Observations. Solving the single-snapshot tumor inversion problem without inter-
subject registration using a tumor stand-alone solver for some arbitrary normal brain
anatomy (atlas) (cf. [16]) exhibits poor reconstruction quality. Our joint registration
and biophysical inversion MA approach (runs #3 and #6 in Table 4.3) results in
significantly higher reconstruction quality and outperforms the other strategies (MP,
runs #2 and #5, and tumor stand-alone, runs #1 and #4) by a large margin, both in
terms of data misfit and Dice coefficient, as well as in reconstructing the true initial
condition.

Comparing to the tumor stand-alone approach, we improve the reconstruction
quality of the input data (grown tumor) from a relative data misfit of 2.90E−1 (run
#1) to 6.49E−2 (run #3) using the new MA joint inversion scheme, and likewise
improve the reconstruction quality for the tumor initial condition (compared to the
ground truth) from a relative `2−error of 4.25E−1 for tumor stand-alone (run #1)
to 7.13E−2 (run #3) for the MA scheme. Furthermore, the estimation of the charac-
teristic diffusivity in WM kf is significantly improved for the joint inversion scheme
(going from a relative error of 4.80E−1 (tumor stand-alone; run #4) to a relative
error of 7.70E−2 (MA; run #6)).

MP versus MA. For a more detailed comparison of the MA and the MP schemes,
we show qualitative results of the reconstructed tumor initial condition and the grown
tumor compared to the target data and ground truth initial condition in Figure 4.3 (for
STRV-C1) and Figure 4.4 for (STRV-C2). In Figure 4.5, we outline the initial and final
residuals for the different brain tissue labels (WM, GM, CSF, grown tumor (TU(t =
1)), and tumor initial condition TU(t = 0); for axial slice 64 of a 3D volume) before
and after the joint registration and biophysical inversion for the test case variants
(STRV-C1) and (STRV-C2). Furthermore, we display structural differences between
the utilized normal brain anatomies for both inversion schemes. We show qualitative
results for a longer time horizon of tumor evolution for the (STRV-C1) test case (with
a very sparse initial condition) in Figure 4.6.
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Moving-Atlas Moving-Patient

(#2: T = 0.32, ρ = 15, k f = 0.1, σ = 2π/64)
ATRV-C1: Target Data and Ground Truth

Moving-Atlas Moving-Patient

(#1: T = 0.16, ρ = 15, k f = 0.1, σ = 2π/30)
ATRV-C1: Target Data and Ground Truth

Fig. 4.3. Comparison of the MP and the new MA schemes. We show qualitative results for
the (STRV-C 1) test case with parameter setting #1 from Table 4.2 (left), and parameter setting #2
from Table 4.2 (right). The image shows the reconstructed grown tumor and tumor initial condition
for the MA and MP solution schemes, featuring different time horizons and sparsity of the initial
condition. We show parts of the patient brain anatomy with the respective reconstructed tumor
initial condition (magenta wireframe/volume) as compared to the ground truth initial condition
(cyan volume). The grown tumor is indicated as white wireframe (3D cut image), and as blue
semitransparent volume compared to the target data given as red wireframe (close-up image). The
top row shows the test case target data (grown tumor; white wireframe) and initial condition ground
truth (cyan volume) for each set of parameters. The close-up image shows a volume rendering of
the grown tumor, overlaid with a wireframe indicating the boundary of the tumor resulting from the
segmentation (used for visualization purposes). The light blue/white area indicates the ventricles
with CSF.

We also study the sensitivity of the MA and MP solution strategies with respect
to perturbations in the tumor model parameters. In Table 4.4, we vary the value of
the characteristic diffusivity in WM from the ground truth, and monitor the obtained
reconstruction performance.

Observations. The new MA scheme outperforms the MP counterpart [56] in
various ways. Table 4.3 shows that, for the reconstruction of the brain anatomy
(model prediction for anatomy labels of brain tissue labels WM, GM, and CSF), we
reach a relative data misfit (`2-error) of 2.33E−1 (run #3) compared to 3.72E−1 (run
#2) for the MP scheme (this translates to a Dice score of 9.43E−1 (averaged over all
labels) for the MA compared to a Dice score of 8.72E−1 for the old scheme). Similarly,
for the approximation of the actual healthy patient anatomy, we improve from a Dice
score of 8.79E−1 (relative `2-error of 25.6%; run #3) obtained from the MP solution
to a Dice score of 9.47E−1 (relative `2-error of only 16.2%; run #2) using the new
scheme. Figure 4.5 illustrates the structural differences between the atlas and patient
brain, the initial residuals, and the residuals after joint inversion using the MA and
the MP schemes, respectively, for an exemplary slice (axial slice 64) of the 3D volume.
We observe smaller errors for the MA solution. The improved anatomy reconstruction
is characteristic for the MA strategy; we observe similar trends for various solver and
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Moving-Atlas Moving-Patient

(#2: T = 0.32, ρ = 15, k f = 0.1, σ = 2π/64)
ATRV-C2: Target Data and Ground Truth

Moving-Atlas Moving-Patient

(#1: T = 0.16, ρ = 15, k f = 0.1, σ = 2π/64)
ATRV-C2: Target Data and Ground Truth

Fig. 4.4. Comparison of the MP and the new MA schemes. We show qualitative results for
the (STRV-C 2) test case with parameter setting #1 from Table 4.2 (left image), and parameter
setting #2 from Table 4.2 (right image). The image shows the reconstructed grown tumor and the
tumor initial condition for the MA and MP solution schemes featuring different time horizons for
the tumor evolution. Illustrated are parts of the (approximated) patient brain anatomy with the
respective reconstructed tumor initial condition (magenta wireframe/volume) as compared to the
ground truth initial condition (cyan volume). The grown tumor is indicated as white wireframe
(bottom images), and as blue semitransparent volume compared to the target data given as red
wireframe (top images). The first row shows the test case target data (grown tumor; white wireframe
(left) and volume rendering (right)) and initial condition ground truth (cyan volume) for each set
of parameters.

parameter configurations (compare also Table 4.4 with inversion under perturbed or
wrong tumor model parameters).

The MA scheme furthermore results in improved reconstruction quality of the
predicted grown tumor and higher similarity to the target data. For (STRV-C1),
the MA scheme results in a relative error of 6.4% (Dice score of 9.50E−1; run #3)
compared to a relative error of 14.4% (Dice score of 9.25E−1; run #2) for the MP
solution. The numbers for (STRV-C2) are very similar with 6.0% relative error (Dice
score of 9.70E−1; run #6) versus 19.0% relative error (Dice score of 7.96E−1; run #5).

The primary objective for the derivation of the MA scheme was to allow for a
more informative inversion for biophysical model parameters. We primarily consider
the estimation of the tumor initial condition, but also invert for the characteristic dif-
fusivity kf in WM. The relative errors16 ec0,L2 for the inversion of the ground truth
tumor initial condition in Table 4.3 obtained for each scheme clearly attest the MA
scheme to be more reliable and sound in recovering biophysical parameters.17 Us-

16Note that for the MA scheme, the reconstructed initial condition naturally lives in the patient
space; for the MP solution strategy, we invert for the tumor initial condition in the atlas space. For
a fair comparison, the reconstructed initial condition for the MP scheme is advected to the patient
space before computing the relative error to the ground truth.

17Our analysis assumes that tumor growth is perfectly described by a reaction-diffusion model,
which is quite certainly not true. When we say “biophysically meaningful” this is to be seen under
the aforementioned assumption. Note furthermore, that the tumor model can easily be exchanged
in the modular setting of our Picard iteration approach.
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Residuals after Reconstruction using the MA and MP Scheme for (STRV-C 1)

WM
Residuals for Pathologic/Healthy Patient Anatomy and Tumor Reconstruction
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Residuals after Reconstruction using the MA and MP Scheme for (STRV-C 2)

WM
Residuals for Pathologic/Healthy Patient Anatomy and Tumor Reconstruction
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Fig. 4.5. Comparison of the MP Picard iteration scheme, and the new MA Picard iteration
scheme. We show initial and final residuals for the (STRV-C 1) test case (top) and the (STRV-C 2)
test case (bottom) with parameter setting #1 from Table 4.2, respectively. The tableaus show the
initial and final residual for the reconstruction of the pathologic and healthy patient for the MA and
MP solution schemes, respectively for parameter setting #1 from Table 4.2 for both tumor seeds
xc1 and xc2 . For each case, the top row shows the initial residual between patient input data and
the healthy atlas anatomy; the healthy anatomies are illustrated on the right, where gray indicates
WM, blue indicates GM, and black indicates CSF. The final residual for the reconstruction of the
patient input data and the healthy patient anatomy are shown in the second and third row, for joint
inversion using the MP (run #2 for (STRV-C 1) and run #5 for (STRV-C 2) in Table 4.3) and the
MA scheme (run #3 for (STRV-C 1) and run #6 for (STRV-C 2) in Table 4.3), respectively. All
images show axial slice 64 (of 128) of the 3D volume.
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(#3: T = 0.44, ρ = 15, k f = 0.1, σ = 2π/64)
ATRV-C1: Target Data and Ground Truth

Moving-Atlas Moving-Patient

Fig. 4.6. Comparison of the MP, and the new MA schemes. We show qualitative results for the
(STRV-C 1) test case with parameter setting #3 from Table 4.2. The image shows the reconstructed
grown tumor and the tumor initial condition for the MA and MP solution schemes. The images show
parts of the patient brain anatomy and illustrate the respective reconstructed tumor initial condition
(magenta wireframe/volume) as compared to the ground truth initial condition (cyan volume). The
grown tumor is indicated as white wireframe (bottom row), and as blue semitransparent volume
compared to the target data given as red wireframe (top row). The light blue/white area indicates
the ventricles with CSF. The top row shows the test case target data (grown tumor; white wireframe)
and initial condition ground truth (cyan volume). The close-up image shows a volume rendering
of the grown tumor, overlaid with a wireframe indicating the boundary of the tumor resulting from
the segmentation (used for visualization purposes). We observe that the MP reconstruction yields a
wrong position for the initial condition and inferior reconstruction of the grown tumor.

ing the improved MA scheme, we achieve excellent reconstruction of the true initial
condition with a relative error of only 7.1% (for (STRV-C1); run #3) and 6.3% (for
(STRV-C2); run #6), as opposed to a relative error of 32.5% (for (STRV-C1); run
#2) and 42.4% (for (STRV-C2); run #5), respectively, when using the MP scheme
instead. An illustration of the error is given in Figure 4.5 (for an axial cut at slice 64).
We explain the improved inversion properties of the MA scheme by its general idea to
seek for a good approximation of the healthy patient brain anatomy first and, thus, to
carry out the inversion in the “correct” space. For the MP scheme, the inversion in the
wrong anatomy (atlas space) has the potential to induce large errors for the estimation
of biophysical parameters as shown in section 4.4 since the intersubject deformation
map can aid matching the pathologic brains. In particular, there is no implication
that this deformation map produces reasonable results when applied to the tumor
initial condition (or other quantities that describe the time point of tumor genesis)
in order to translate the latter into the individual patient application space. Visual
inspection of our simulation results for longer time horizons in Figure 4.6 support this
point: The MP solution recovers a wrong position of the tumor initial condition (com-
pare the green (ground truth) and purple (reconstruction) isovolume representations
of the initial tumor condition. A wrong position, wrong shape, or wrong sparsity of
the initial condition can, in a second step, also cause a wrong estimation of the char-
acteristic proliferation rate or tumor cell infiltration rate. For our experiments, the
difference for the estimation of the characteristic diffusivity kf is, however, not signif-
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Table 4.4
Comparison of the MP, and the new MA schemes. We report results for the (STRV-C 1)

and (STRV-C 2) test cases with centers xc1 and xc2 , and parameter setting #1 from Table 4.2,
respectively. Here we are not inverting for kf , but only invert for the tumor initial condition and
registration velocity. We analyze the sensitivity of the joint inversion with respect to perturbations
in the characteristic diffusivity kf by inverting with different choices of kf ; bold numbers correspond
to inversion with the ground truth value (k?f = 1E−1). We always use the ground truth proliferation

rate ρf = 15. We report the average mismatch for the anatomy labels for the pathologic brain tissue
labels µB,L2 , the healthy brain tissue labels µB0,L2 , and the tumor µT,L2 , the mean Dice coefficient
for brain tissue DICEB, for the healthy patient brain tissue DICEB0

, and for the tumor DICET (in
cases without Dice score for the tumor reconstruction, the tumor probability map has values below
0.5 everywhere). Furthermore, we measure the `2-error ec0,L2 of the reconstructed tumor initial
condition to the ground truth.

ID kf µB,L2 DICEB µB0,L2 DICEB0
µT,L2 DICET ec0,L2

#7

S
T
R
V
-C

1
(
#

1
)

M
P

5E−1 3.80E−1 8.62E−1 2.58E−1 8.79E−1 3.96E−1 – 4.99E−1
#8 3E−1 3.76E−1 8.64E−1 2.57E−1 8.79E−1 2.88E−1 7.76E−1 8.68E−1
#9 k?f = 1E−1 3.72E−1 8.72E−1 2.56E−1 8.79E−1 1.45E−1 9.21E−1 3.23E−1
#10 1E−3 3.73E−1 8.75E−1 2.59E−1 8.73E−1 2.49E−1 8.75E−1 5.39E−1

#11

M
A

5E−1 2.40E−1 9.46E−1 1.62E−1 9.47E−1 5.65E−1 – 1.37E0
#12 3E−1 2.40E−1 9.37E−1 1.63E−1 9.48E−1 2.86E−1 3.66E−1 9.41E−1
#13 k?f = 1E−1 2.35E−1 9.43E−1 1.62E−1 9.48E−1 6.77E−2 9.56E−1 8.02E−2
#14 1E−3 2.37E−1 9.48E−1 1.61E−1 9.48E−1 5.40E−1 – 7.04E−1

#15

S
T
R
V
-C

2
(
#

1
)

M
P

3E−1 3.76E−1 8.79E−1 2.55E−1 8.80E−1 3.66E−1 – 4.96E−1
#16 2E−1 3.76E−1 8.79E−1 2.55E−1 8.80E−1 2.64E−1 – 5.25E−1
#17 k?f = 1E−1 3.76E−1 8.80E−1 2.55E−1 8.80E−1 1.93E−1 8.34E−1 4.24E−1
#18 1E−2 3.82E−1 8.75E−1 2.59E−1 8.75E−1 2.57E−1 6.86E−1 6.94E−1

#19

M
A

3E−1 2.41E−1 9.46E−1 1.63E−1 9.47E−1 4.20E−1 – 5.99E−1
#20 2E−1 2.40E−1 9.46E−1 1.62E−1 9.47E−1 2.54E−1 – 7.96E−1
#21 k?f = 1E−1 2.37E−1 9.48E−1 1.60E−1 9.48E−1 6.07E−2 9.70E−1 6.33E−2
#22 1E−2 2.40E−1 9.46E−1 1.62E−1 9.47E−1 3.39E−1 6.21E−1 6.78E−1

icant; both schemes yield comparable results. One possible reason for this could be
that the diffusion part of the gradient initially is large but then flattens out compared
to the gradient component for the initial condition parametrization. The theoretical
and numerical analysis of this effect is ongoing work.

Robustness of the joint inversion against perturbed taget data. We examine the
sensitivity of our joint inversion scheme to the synthetic data generation process by
considering low-frequency noise in the target data cD, and varying image resolu-
tions (i.e., mesh sizes) for target data generation and inversion. We investigate two
variations for the (STRV-C1) test case: (i) We perturb the synthesized target data
by adding 1%, 5%, and 10% noise. Rather then using uncorrelated high frequency
(white) noise, we study the effects of a more realistic low-frequency noise model. To
this end, we modify the low-frequency spectrum of the target data cD by adding uni-
form random noise scaled by the inverse squared frequency to the respective frequency
components of the data. Thereafter, the inverse Fourier transform of this noisy spec-
trum is applied to obtain the noise-corrupted data. This results in tumors with a
slightly different shape compared to the one generated by plain forward simulation.
(ii) We consider the higher resolution n = 2563 patient brain to synthesize the target
data cD, and resample the latter to n = 1283 for application of the joint inversion
scheme. Note, that the orginial MRI data have a resolution of n = 2563, exposing a
higher fidelity of brain structures and imaging features, which, consequently, results
in the generation of more detailed target data. Table 4.5 shows numerical results for
both variations of the (STRV-C1) test case, comparing the MA joint inversion against
the MP schemes.
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Observations. We observe that the MA scheme exhibits a slight deterioration in
the reconstruction accuracy of the tumor initial condition for increasingly high noise
level in the observed data. Nonetheless, even with using target data with 10% noise
corruption, the new MA scheme outperforms the MP scheme by a large margin with
respect to reconstruction of the initial and grown tumor, as well as the approximation
of the healthy patient brain. Overall, both joint inversion schemes are quite robust
against the employed low-frequency noise model.

Similarly, when using target data obtained from a resampled high resolution, high
fidelity forward simulation, we observe a deterioration in reconstruction accuracy for
both MP and MA schemes. Despite this fact, the MA scheme remains superior, and
produces higher accuracy reconstructions of the initial and grown tumor, and the
healthy patient brain.

From this experiment, we conclude that the presented small reconstruction errors
µT,L2 , and ec0,L2 for the grown tumor and its initial condition are partly attributed
to the synthetic data generation process, and deterioration of reconstruction quality
is expected when moving towards clinical data. Notwithstanding the above, the MA
scheme results in higher quality estimates due to a better (and direct) approximation
of the healthy patient anatomy.

5. Conclusion. We present a new inverse problem formulation to solve the
patient-specific tumor inversion problem given a single data snapshot in time only.
We remedy the lack of healthy patient imaging data via registration to a healthy atlas
brain, resulting in a joint intersubject registration and biophysical inversion scheme.
We simultaneously solve for an estimation of the intersubject deformation map and (a
subset of) the biophysical model parameters for tumor progression. More specifically,
we solve for an estimation of a sparse tumor initial condition and for the characteristic
diffusivity rate of tumor cells in WM. The presented scheme conceptually improves
on our earlier coupled solution approach [56]. The latter uses the registration to warp
patient target data towards the atlas space, and inverts for tumor model parameters
in the atlas brain (proxy for the unknown healthy patient brain). This may introduce
large errors due to unwanted data fitting and model inversion in a wrong anatomy.
We demonstrate this for synthetic cases. The new scheme computes an approxima-
tion of the healthy patient and performs the tumor inversion in the patient space.
We furthermore encourage a sparse localization of the initial tumor (presented in our
work [59]) to allow for a more reliable reconstruction of the model parameters. This
biophysically motivated constraint can help to understand tumor genesis and its role
in the subsequent tumor evolution. We derive a Picard-iteration-type solution strat-
egy by dividing the strongly coupled set of first order optimality conditions into two
solvers.

For our new method, we observe (i) improved similarity of the reconstructed
probability maps of brain tissue labels (WM, GM, CSF) with respect to the patient
data, (ii) significantly smaller errors for the reconstruction of the grown tumor, (iii)
a better approximation of the actual healthy patient brain anatomy, and, (iv) more
reliable reconstruction of biophysical parameters, such as the tumor initial condi-
tion.

The reconstruction result obtained from the MA scheme seems to be more “nat-
ural” as we invert in the correct brain anatomy of the (healthy) patient, and the
registration does not act on the tumor probability map (as is the case for the MP
strategy). In particular, using the MA scheme, we were able to improve the Dice score
for the brain anatomy from 8.72E−1 for the MP strategy to 9.43E−1; the Dice score
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for the approximation of the healthy patient brain anatomy from 8.79E−1 for MP to
9.47E−1; and the Dice coefficient for the tumor reconstruction from 8.34E−1 for MP
to 9.70E−1. We observe an excellent reconstruction of the true initial condition with
a relative error of only 7.1% (STRV-C1) and 6.3% (STRV-C2) (compared to 32.3%
and 42.4% for MP) using the more sophisticated MA scheme. We further conclude,
that a sparse localization of the initial condition is essential if targeting biophysical
parameter estimation from patient MRI. The previously used `2-regularization results
in rich initial conditions. Last, the MA solution scheme seems to be more useful in
identifying wrong parameters (such as cell proliferation rate and cell migration rate
of brain tissue) than the MP counterpart.

In this study, we focused on the differences between two registration approaches
and, thus, used a single healthy brain as “atlas.” Typically, the latter refers to
a representative image that provides label maps for, e.g., functional areas or to a
statistical template, generated from a population of images. The presented approach
works for either dataset. If we are interested in normalizing patient individual results
to a common template [20], using a statistical atlas, would be a good choice. For
image-driven biophysical model calibration, an atlas brain may be selected from a
database of healthy individuals based on a measure of closeness to the patient brain
(e.g., mutual information, sum of squared differences, or cross correlation).
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